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ABSTRACT- Energy providers are moving to the smart meter era, encouraging consumers to install, free of 

charge, these devices in their homes, automating consumption readings submission and making consumers life 

easier. However, the increased deployment of such smart devices brings a lot of security and privacy risks. In 

order to overcome such risks, Intrusion Detection Systems are presented as pertinent tools that can provide 

network-level protection for smart devices deployed in home environments. In this context, this paper is exploring 

the problems of Advanced Metering Infrastructures (AMI) and proposing a novel Machine Learning (ML) 

Intrusion Prevention System (IPS) to get optimal decisions based on a variety of factors and graphical security 

models able to tackle zero-day attacks. 
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I. INTRODUCTION  

The so-called ‘smart devices’, an indispensable part of the Internet of Things (IoT), have provided an 

ubiquity of connected systems aiming at improving the quality of our life [6]. An increased number of 

businesses, homes and public areas are now starting to use these intelligent devices. The number of 

interconnected IoT devices (wide area and short-range IoT connections) in use worldwide has already 

exceeded 10.7 billion since 2019 and is expected to grow to 24.6 billion by 2025 [38].  

All security reports warn that more than 80% of connected smart home devices are vulnerable to a wide 

range of attacks [15, 41]. As compared to traditional computers and mobile phones, resource 

constrained IoT devices lack computing power, memory, and storage [24]. Some devices could also be 

deployed in remote locations that depend on battery power. As a result, these resource-constrained 

devices are unable to process antivirus software and cryptographic algorithms required for essential 

security protocols, thus increasing their vulnerabilities. Likewise, the interconnected nature of IoT 

devices could also allow cybercriminals to carry out parallel attacks once they infiltrate a network. For 

instance, Mirai botnet that appeared in late 2016, is a high profile example of such risk where embedded 

and IoT devices were used to execute massive distributed denial-of-service (DDoS) attacks on popular 

services, like Twitter, Netflix and PayPal [7]. Similarly, adversaries have also targeted the IoT 

ecosystem using gateway attacks, side-channel attacks, malicious injection attacks, Sybil attacks, 

routing attacks and physical tampering [8].  

Lack of robust government policies and agreed upon standards among vendors and standardisation 

bodies have also resulted in the production of IoT devices with weak security protocols [19]. Instead, 

vendors are more focused on the rapid and mass production of devices with less concern for security. 

Likewise, vendors are also not providing enough support to legacy IoT devices with firmware updates 

and security patches [40], further weakening the defence of IoT ecosystem. As a result, security 

breaches could also expose the confidentiality and privacy of data, possibly violating legal obligations 

such as the General Data Protection Regulation (GDPR) and resulting in severe penalties. However, 

designers, manufactures and policymakers are not the only ones responsible for breach of IoT security. 

Often, users who lack IT security knowledge use default usernames and passwords, making them easier 

to hack once identified using tools such as Shodan and IoT Seeker [20]. Although these vulnerabilities 

highlight the risks and challenges for IoT, security professionals are constantly exploring new ideas to 

strengthen its cyber-security. 
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From the early stage, researchers have been investigating numerous novel cyber-security measures 

focusing specifically for IoT domain as several studies [3, 6, 8, 42] indicate that traditional cybersecurity 

measures are not suitable for current IoT networks and devices. Reasons vary from heterogeneous 

nature of IoT devices that lack computational power [20] to well-known Intrusion Detection System 

(IDS) such as Snort and Suricata [22] not optimised for IoT. Hence, researchers, vendors and 

standardisation bodies are proposing new solutions to tackle the issue with their own unique approaches. 

For example [34] are proposing an end-to-end security scheme for IoT-based healthcare systems, using 

certificate-based Datagram Transport Layer Security (DTLS) and smart gateways. Similarly, [35] is 

suggesting similar end-to-end security using a novel security middleware that keeps track of (D)TLS 

sessions, Pre-Shared Keys (PSKs), and device IDs. On the other hand, some solutions focus solely on 

protocols. For instance, wireless protocols such as Bluetooth Low Energy (BLE), ZigBee and IPv6 over 

Low-power Wireless Personal Area Network (6LoWPAN); and application protocol like Constrained 

Application Protocol (CoAP) [4]. Likewise, researchers are suggesting further solutions based on trust 

management [23], access management [47] and intrusion detection [13].  

In addition to academics, government bodies and standardisation organisations are also working on 

developing necessary frameworks and guidelines in order to provide clear directions to manufactures 

and promote consumer confidence. For example, online Trust Alliance, an initiative within the Internet 

Society (ISOC) put forward an IoT Trust Framework [1] with strategic principles that highlighted 

support for IoT devices throughout its entire lifecycle. Likewise, European Telecommunication 

Standards Institute published ETSI TS 103 645 [2], a technical publication aiming to guide developers 

and manufactures on ensuring the security of their IoT devices. Although the importance of these 

frameworks and guidance cannot be denied, it can be argued that manufactures are only likely to comply 

if policies are made mandatory as such changes can likely increase production cost and impact on their 

profit margins. Nevertheless, the continuous effort from all stakeholders has certainly made a positive 

contribution to the security of IoT and researches are continually searching for newer technologies to 

further improve this process. This paper aims at addressing the challenges in AMI security by proposing 

a new Intrusion Prevention System able to detect and mitigate attacks using Machine Learning and 

Graph Theory for optimal decision on the threat detected.  

The article is organized as follows: in section II a high-level overview of AMI is presented; in section 

III the Cyber Security risks along with their impact at AMI are discussed; in section IV the proposed 

Machine Learning (ML) IDS, able to detect unknown (zero-day) threats is explained; in section V the 

intelligent intrusion response system accompanying the ML IDS for optimal decision support is 

analysed; finally conclusions and future work are reported in section VI. 

II. ADVANCED METERING INFRASTRUCTURE 

In this section, the architecture, components, and communication aspects of advanced metering 

infrastructures are provided. As illustrated in Figure. 1, an advanced metering infrastructure is 

comprised of three main components, namely the smart meters, the data concentrators, and the Meter 

Data Management (MDM) systems [18]. It aims at supporting two-way communication between the 

various service delivery endpoints and a utility provider to allow the real-time sharing of vast amounts 

of data, such as power usage, outage detection, and voltage measurements, and also the remote 

monitoring and management (connection, disconnection, and configuration) of various services and 

AMI components. 

A. AMI components 

The AMI components are interconnected to a complex ecosystem of heterogeneous systems, covering 

a large geographical area, that may involve millions of smart meters and thousands of concentrators 

serviced by the MDM system. Details about the components are given below.  

• Smart meters. They are installed at the service delivery points, e.g. smart homes for residential 

users to measure power usage (as shown in Figure. 1), or other locations depending on the type 



of service a utility company is offering. A smart meter typically contains an RF component to 

communicate consumption data to one or more concentrators; such data may involve 

measurements from other IoT devices in the Home Area Network (HAN) that are obtained 

either directly or via the smart home’s gateway [10]. The transmission of data occurs at regular 

time intervals called duty cycles and is less than 1KB. 

Network Protocols 

HAN Ethernet, Wi-Fi (IEEE 802.11x), Zigbee, Power line carrier (PLC), Broadband over 

power line (BPL) 

NAN Ethernet, Digital subscriber line (DSL), Frame relay, EDGE, High speed packet access 

(HSPA), Universal mobile telecommunications system (UMTS), Long term evolution 

(LTE), WiMax, 3G/4G, PLC, BPL 

WAN Frame relay, LTE, Multi-protocol label switching (MPLS), WiMax 

Table 1: Communication technologies used in AMIs [16] 

• Concentrators. These are the components bridging the smart meters with the MDM system, 

and are typically installed at electrical substations. The measurements from the smart meters in 

the Neighbourhood Area Network (NAN) are being collected using various topologies [18, 27], 

such as a point-to multipoint or mesh topology. In the former, each smart meter communicates 

directly with a (single only) data concentrator, whereas in the latter, smart meters can 

communicate both with data concentrators and other smart meters (referred to as relays in 

Figure. 1) towards delivering their measurements in an efficient way. Mesh topologies are 

common in rural areas, where concentrators’ signal range can cover a limited number of smart 

meters. 

• MDM systems. They are comprised of several subsystems to support advanced AMI operations 

and functionalities, including power grid management, utility optimization by means of data 

analytics, customer interaction and billing, etc. The distribution substations, where 

concentrators reside, are connected to the utility canters by means of the public network referred 

to as Wide Area Network (WAN) [10, 27]. 

As already seen above, the communication infrastructure of AMIs is divided into the HAN, NAN, 

and WAN layers, each one using several communications technologies to share data, as well as, to 

transmit and receive commands from the infrastructure’s components. An overview of such 

technologies is provided in Table 1. The fact that power line communications require expensive 

equipment, and that cellular technology induces security risks due to relying on third parties, makes 

RF technologies to be the ideal candidates. 



 

Figure 1: High-level diagram of AMI architecture and scope of the security analysis 

B. AMI requirements 

The AMIs constitute critical information infrastructures with their operation having a high impact on 

end-user’s everyday lives [28], making their security to be of outmost importance. High-level security 

requirements having been reported include [45, 46]:  

• Availability. Ensure timely and reliable access to AMI data and services/power delivery.  

• Integrity. Assure that AMI data, as well as their source, have not been tampered with. 

• Confidentiality. Allowing access to AMI information only to authorized relevant entities. As 

noted in [45], confidentiality is becoming more important due to increasing privacy concerns, 

something that led [28] into defining privacy as a concrete AMI requirement to also account 

for inference attacks (amongst other privacy–targeting attacks). 

III. SECURITY RISKS AND THEIR IMPACT 

AMIs security is considered to be one of the greatest challenges toward being accepted worldwide [11, 

18, 44]. Communications between AMI components incorporate real-time exchange of private and 

sensitive information that may include financial information of the customers [11], vital control and 

safety commands and utility provider’s private information [11, 18]. Moreover, AMIs are usually 

composed of a large number of smart meters that are generally installed in physically insecure locations 

and makes use of insecure wireless communication that can be easily corrupted [33]. All this makes 

AMIs the target of a wide variety of cyber-attacks coming from different malicious actors including 

illegal customers, insider attacks, criminal organisations with a large number of skilled employees, 

organised terrorist groups, business competitors, or even nation-states [18, 33]. The system impacts of 

those attack range from an unforeseen peak in usage to widespread outages [11], and in the worst 

scenario, a computer malware can traverse the AMI and results in millions of points of failure in a large 

metropolitan area, which may need several months to be fixed [18, 44]. Attacks that compromise the 

integrity of the AMI, also have the potential to cut power from consumers, which include homeowners 

and other critical infrastructure such as water, hospitals and telecommunications. 

The most common attacks on AMIs compromise the attack vectors that can target the AMIs end systems 

and communication networks [18, 27]. The main goal of those attacks is to get illegal access to the 

devices and networks, and therefore impacts the main security goals of confidentiality, integrity and 

availability [18, 27, 29]. This can be achieved by either physical or cyber access to the internal of the 

devices (e.g. smart meters, data collectors), or via a compromised supply chain [18, 27]. The main risks 

to the AMIs security include: 



A. Energy theft  

Security reports consider energy theft, referred also as theft of service, as one of the most important 

security threats against AMIs [17, 18]. This kind of attacks may be performed with a variety of known 

techniques. For instance, at the level of customer homes, fraudulent consumers may physically tamper 

with their smart meters to report malicious consumption readings, so that they are not billed for the 

energy they consume [30, 44]. This could be achieved by disconnecting meters from their sockets, or 

applying magnets to interfere with instruments, or modify the transformation ratio of the meter. It can 

also be performed by Cyber-attacks, which often require less expertise to execute within smart meters 

or via a communication link with the utility provider company (e.g. Descrambler boxes) [44]. For 

instance, cyber-attacks may disable the metering-related functionalities by preventing smart meters 

from acting on commands such as firmware updates and usage queries. This could be done by using a 

Denial-of-Service (DoS) attack on smart meter command execution [44]. 

International agencies confirm that the financial losses due to energy theft are billions of dollars per 

year. In this context, a world bank report found that energy theft attacks cost the industry over $96 

billion annual losses globally, with more than $6 billion every year in the United States alone [29]. 

B. Data theft  

Cyber-attacks against AMIs also include illegal monitoring of sensitive data either in transit or at the 

AMI endpoint systems (e.g. smart meters, Data collectors, Meter Data Management System), which 

expose both households and utility providers to significant data theft, misinformation, and vandalism 

[17, 18]. For instance, cyber-criminals may analysis the stolen data to reveal the electricity usage 

patterns and even determine the presence/absence of residents, which can strongly affect the customers’ 

privacy and therefore their view of deploying AMIs.  

Data theft also includes unauthorized injection of data or modification of legitimate data, like 

unauthorized access to infrastructure configuration information and device firmware (e.g. smart meter) 

that can be reverse-engineered and analysed to develop attacks [29]. Data theft could also be performed 

by the physical theft of meters for subsequent access to the stored data [21]. Therefore, AMI requires a 

solid protection against data theft and unauthorized accesses by using robust security mechanisms and 

intrusion detection and prevention techniques. 

C. AMI network security concerns  

In AMIs, communication network plays a critical role in exchanging critical information between smart 

meters, data collectors and the utility provider such as energy consumption, pricing information, 

firmware updates, remote disconnects, fault or outage detection, exception messages and other 

parameters [10]. The last report by the Electric Power Research Institute11 affirmed that security is one 

of the biggest challenges for the two-way communication path that controls the AMI network. the report 

stated that physically unprotected entry points and wireless networks that can be easily compromised 

add another attack surface to the AMI network. Therefore, the compromise of even a single vulnerable 

smart meter through focused attacks or reverse engineering potentially provides access to the whole 

AMI network. For instance, Compromised devices can be used by cybercriminals to conduct a localised 

denial of power by turning off power to a customer, a group of customers, or even critical infrastructures 

like hospitals and telecommunications [10, 18]. This can be done by sending disconnect commands to 

smart matters. This can also lead to a widespread denial of power when a large number, possibly 

millions of smart meters are disconnected [18]. Such a scenario may also occur, by injecting a computer 

worm in the MDM system or a data collector which then propagate in the AMI network to infect other 

components [10, 27].  

 
1 https://www.epri.com/ 



Another way to perform a widespread denial of power can be accomplished by using permanent denial-

of-service attacks (PDoS), also known as phlashing, which can damage the smart meters so badly that 

it requires replacement or reinstallation of hardware. The impact of this kind of attack may need several 

months to replace the damaged smart meters in a metropolitan area [10]. Data injection attack is another 

dangerous attack that can occur in the AMI network, especially NAN, in which a compromised device 

tries to exhaust the bandwidth as well as the resources of its next hops [10, 27]. This can lead to data 

theft, loss of data integrity, denial of service, as well as full AMI system compromise. This attack could 

be accomplished by using compromised smart meters that legitimately participate in the routing but try 

to corrupt the routing function, or interfering in the routing protocols, in the NAN, by impersonating 

the meters [10]. In [17], authors have been demonstrated the possibility of a command injection attack 

on an existing WebService SmartApp using an OAuth access token stolen from the SmartApps third-

party Android counterpart. The signal jamming attack is one of the most basic attacks that can be made 

against AMI communications [10, 21], where a signal is injected along the line path in order to prevent 

communication on the line. This can be done through the injection of Gaussian noise, which requires 

very little knowledge about the frequency at which the signal to be interfered with operates [21]. signal 

jamming attacks are considered as DoS attacks that would be easy to perform and difficult to detect 

without the appropriate countermeasures. Moreover, wireless channels used in AMI communication 

network, constitute a prominent target for main-in-the-middle (MitM) attacks and spoofing attacks. 

cyber-attacks at the smart home network level (i.e. HAN) also involves infecting connected devices by 

malware. In this context, several types of malware can be easily used to infect these devices and use 

them to spread the infection through the AMI network in the form of worms, botnets, or viruses. 

D. Advanced Persistent Threats (APTs)  

Modern cyber-attacks against AMI are increasingly conducted by Advanced Persistent Threats (APTs), 

which are very sophisticated network attacks, where experienced cybercriminals gain unauthorised 

access to the AMI network by using zero-day malware and stay there undetected for a long period of 

time [37]. APTs are usually performed by skilled groups of hackers which often utilize stealth 

techniques in order to remain concealed for long periods and seem to be increasing the complexity, 

versatility, and potential damage of their attacks. Because of the high level of effort needed to perform 

such an attack, APTs are usually focusing on high-value targets, such as nation-states, critical 

infrastructures, and large corporations, with the ultimate goal of stealing information over a long period 

of time. The Ukraine power grid attacks is an example of highly successful APTs [12]. In this incident, 

the cyber-attack on the Ukraine’s electric grid gained access to energy distribution company systems 

more than six months before causing the outage that temporarily left about 225,000 customers without 

power [12]. 

GhostNet, Stuxnet, Deep Panda, APT28, APT34 and APT37 are more examples of the most destructive 

APTs attacks in last years. The main issue of APT attacks is that even when they are discovered and 

the immediate threat appears to be covered, the cybercriminals may have left many backdoors open that 

enable them to return when they want. Additionally, traditional cyber defences, such as antivirus and 

signature-based intrusion detection systems, are unable to protect against these types of attacks. 

Therefore, monitoring of traffic, users and entities behaviour can greatly help identify penetrations, 

lateral movement, and exfiltration at different stages of an APT attack, which is the purpose of this 

work. 

IV. ML-BASED MALWARE DETECTION 

This section presents the methodology used for developing the proposed ML-based malware detection 

system. The main objective of this system is to defend the whole metering infrastructure from 

malicious attacks using a novel intrusion prevention technique based on machine learning and binary 

visualisation. The proposed approach converts incoming network traffic into RGB images by using 



the visual representation tool Binvis2. Then, the produced images are analysed and classified using a 

learning algorithm. different learning algorithms can be used for classifying the produced images like 

Residual Neural Network (ResNet50), MobileNet, Self-Organizing Incremental Neural Networks 

(SOINN). The network traffic collection is done by using pcap files containing pre-captured network 

traffic (i.e. normal and abnormal traffic) that can be replayed to collect it again. Then, received data 

is stored out to a file that contains the data from the payload in the packet, so the visual representation 

tool can plot it into a 2D image. As illustrated in Figure 2, the detection and mitigation of potential 

cyber-attacks is performed at the networks level as well as at the device levels. The device monitoring 

is done at the gateway which is running the proposed ML-detection approach as a service due to the 

limited processing resource at the smart home gateway. Similarly, at the network level, the ML-

detection approach, which is integrated to the intrusion detection system, is used to monitor the 

incoming and outgoing network traffic. This helps to enforce network mitigation by applying the 

mitigation and remediation actions as necessary when an attack is detected. 

 

Figure 2: High-level architecture of the proposed approach 

A. Binary visualisation 

The research community has started considering the concept of image visualization for malware 

analysis and detection, which can successfully handle obfuscated and zero-day malware [14, 48]. This 

technique has proven to be effective because it leverages the structural similarity between known and 

new malware binaries. Moreover, visual analysis helps analysts to accurately capture and highlight 

malicious behaviour of malware samples, thus helping increase the efficiency of the detection system 

[37]. Most of these techniques transform malware detection into an image classification problem so 

that can be processed by machine learning algorithms [14, 37, 48].  

In our approach, the binary content of the input file is seen as a byte string, where each byte’s value 

is mapped to a colour based on the equivalent value in the ASCII table. Binvis divided the different 

ASCII bytes into four groups of colours, where red colour is attributed to extended ASCII bytes, blue 

colour is assigned to Printable ASCII bytes and green colour is assigned to control bytes. Black (0x00) 

and white (0xFF) colour respectively represent null and (non-breaking) spaces. Then, the coordinates 

 
2 https://binvis.io/ 



of each byte colour in the output image are identified by using the clustering algorithm’s space-filling 

curves (Figure. 3). The size of the output RGB image is 784 (1024 × 256) bytes. 

 

Figure 3: Binvis images of normal and malware pcap files created with  

the Hilbert space-filling curve. 

 

B. Malware detection  

In the context of malware detection and analysis, Machine Learning has recently gained significant 

attention for its capability to accurately detect malware attacks and therefore reduce the false positive 

alarms by proactively reacting against unknown attacks. Supervised learning algorithms can be used 

to analyse the available information of the system activity (e.g. network traffic), by using different 

features derived from dynamic analysis of the malware. Then, use extracted features to train the 

learning model to detect potential attacks. The output results are usually presented in a binary form 

(i.e. normal or malware), and each data sample is labelled as either normal or anomaly [5, 9, 25]. In 

this context, the predictive accuracy of various supervised learning algorithms has been tested like the 

Naive Bayes (NB), K-nearest Neighbour (KNN), Decision Tree (J48), Multi-Layer Perceptron (MLP) 

and Random Forest (RF) and Support Vector Machine (SVM). Experimental results noted that most 

of the learning algorithms gave a satisfying accuracy of over 90%, with low rates of false positives 

[36]. 

On the other hand, unsupervised learning algorithms, learn what is considered as normal, and then 

apply statistical tests to determine if a specific activity is an anomaly. A system based on this kind of 

anomaly detection method could detect any type of anomaly, including unknown and new attacks [25, 

43]. In the last few years, several unsupervised learning algorithms, especially Deep Learning 

techniques, which represent a huge step forward for unsupervised learning, have been employed for 

intrusion detection [36]. Such as Restricted Boltzmann Machine (RBM), Self-Organizing Incremental 

Neural Networks (SOINN) [9, 43], deep belief network (DBN), Residual Neural Network (ResNet), 

Deep Neural Network (DNN), Recurrent Neural Network (RNN), etc. Most of these techniques 

transform malware detection into an image classification problem so that can be processed by the 

learning algorithms. For instance, the STAMINA (Static Malware-as-Image Network Analysis) 

malware detection approach [26], which is recently proposed by Microsoft and Intel, converts input 

binary files into grayscale images then, a trained neural network classifier is used to analysis and 

classify the output images as legitimate or malware. The learning algorithm is trained on a huge 

amount of real-world data (2.2 million PE (Portable Executable) file hashes) that Microsoft has 

collected from Windows Defenders installations. STAMINA has proven to be effective, with over 

99.00% accuracy in classifying malware and a false positive rate slightly under 2.6%. However, this 

approach works well with small files, but it struggles with larger ones.  

In our approach, the produced Binvis images will be analysed using a trained learning algorithm to 

perform the classification of the incoming traffic as normal or malware (see Figure. 2). Detected 

malware traffic will be used to continuously train the classifier in order to enhance their detection 



accuracy. For that, the learning algorithm will be trained on a dataset that was created in the 

CyberTrust project testbed. The dataset includes a mixture of 2D images of normal and malware traffic 

that were collected from different network traffic sources. Normal PCAP files contain normal traffic 

captured from various clean devices in the Cyber-Trust project network and other sources. While 

malicious pcap files were collected from different public sources of malware PCAP files including 

the malware traffic analysis repository3 , the NETRESEC repository4 and the malware datasets of the 

stratosphere lab5. The malware pcap files contain real malicious traffic that was generated by different 

types of attacks such as trojans, botnets, IoT based attacks (DDoS, Key loggers, OS scans, spyware), 

backdoors, etc. 

V. INTELLIGENT INTRUSION RESPONSE 

Cyber-attacks against AMIs constitute a major threat and thus much research has been devoted to their 

study with the upshot of developing an effective Intrusion Response System (IRS). In turn, this requires 

accurately modelling the cyber-attacks themselves, the potential attackers’ behaviours, and the available 

defensive strategies. Hereinafter, we unveil the basic methodologies that are utilized towards the design 

of Intelligent IRS capable of optimally mitigating AMI cyber-attacks. 

A. Graphical network security models  

The use of a Graphical Network Security Model (GNSM) is among the most common methodologies 

adopted for analysing network security. Many different models have been proposed, but they can be 

divided into tree-based and graph-based models. The main difference between them is that the former 

is being used to describe a single attack goal, while the latter can present scenarios with multiple attack 

goals. In addition, attack trees focus on the consequence of an attack, while attack graphs typically focus 

on the attackers’ activities and how they interact with the targeted infrastructure. Therefore, if there is 

a need to capture the attack paths, then a graph-based model would be preferable. On the other hand, if 

the focus is the assessment of the overall network security, where only the most critical vulnerabilities 

of the system need to be analysed, then a tree-based model would be more suitable. Attack Graphs (AG) 

have been employed in formal risk/threat analyses of large networks by a number of authors [39]. An 

AG represents the attack states and the transitions between them as shown in the example of Figure. 4. 

AGs can be used to identify attack paths that are most likely to succeed, or to simulate various attacks. 

In AGs a node represents states (e.g. host, privilege, exploit or vulnerability), and an edge is a directed 

transition from a pre-condition to a post-condition when an event of the state has been executed. A 

Bayesian attack graph (BAG), as the example illustrated in Figure. 4, is an important instance of AGs. 

A BAG can be seen as a directed acyclic graph over vertices representing random variables and edges 

signifying conditional dependencies between pairs of vertices; thus, it is very convenient for conducting 

a probabilistic analysis of the attacks. 

 
3 https://github.com/tatsui-geek/malware-traffic-analysis.net 
4 https://www.netresec.com/?page=PcapFiles 
5 https://www.stratosphereips.org/datasets-malware 



 

Figure 4: Bayesian attack graph illustrating the computation of local conditional probability  

distributions (the example is adjusted from [39]) 

B. Attack graph generation  

Various ways to model network topology information and generate an AG have been proposed in the 

literature. For large networks, like those corresponding to AMIs, a non-automated AG generation is 

impossible as the resulting graph would have a vast number of vertices. On the other hand, an automated 

AG generation process should be both exhaustive (all possible attacks are modelled) and succinct (only 

the network states from which an attacker can reach his goal are contained) so as to be efficient. The 

following aspects concerning the AG generation process are relevant.  

1) Reachability analysis: how AMI network interconnectivity is modelled across all layers of the 

open systems interconnection (OSI) model, and how the calculation of the possible ways an 

attacker can reach the goal state is performed.  

2) Template determination: how the relations between the required privileges to exploit a 

vulnerability (pre-conditions) and the privileges gained after a successful vulnerability 

exploitation (post-conditions) are being modelled.  

3) Structure determination: how the actual representation of the AG is defined and how expressive 

is the information collected (e.g. to subsequently allow performing risk analysis, computing the 

optimal remediation action, etc.).  

4) Core building mechanism: how the algorithms are employed to build the AG, i.e. to discover 

all attack paths from the initial states an attacker may start to the chosen target states. For the 

development of the Intelligent IRS AG Generator (iRG) of Figure. 2, the Multi-host, Multi-

stage Vulnerability Analysis Language (MulVAL) was used as a reasoning system in order to 

model AMI networks and generate a type of AGs, referred to as Logical Attack Graphs (LAG). 

These were subsequently mapped into BAGs to perform probabilistic modelling of the attacks. 

 Initially, output from the supported vulnerability scanning tools (e.g. OpenVAS and Nessus), as well 

as network topology information, are expressed as Datalog tuples, which are then processed by the 

reasoning engine. To combat issues related to the poor scalability of AG generation (most approaches 

have exponential complexity), the monotonicity assumption on the attacker’s behaviour has been made; 

more precisely, we have assumed that the attacker will not give up any previously attained capabilities. 

Under this assumption, the AG generation reduces to polynomial complexity. 

C. Decision-making engine and mitigation  



In this section, we go a step further and deal with the intelligent intrusion response process, where the 

defender has to decide how to react against an attacker. The theoretical approach taken by this work 

relies on Game Theory (GT) that further leverages the representation offered by the GNSMs mentioned 

above. In our model, the attacker aims at exploiting system vulnerabilities for progressing his attack in 

an AMI with the aim of reaching some goal state, while the defender aims at simultaneously preventing 

the attacker’s progression and maintaining the AMI’s availability and other security requirements. Our 

goal is to develop an IRS that is capable of optimally responding to intrusions; this is referred to as the 

Intelligent IRS Mitigation Engine (iRE).  

The high-level architecture of the Intelligent IRS, with the components having been mentioned, is 

illustrated in Figure. 5. This also depicts the Decision-Making part of the iRE that relies on GT to yield 

the optimal defensive actions (subsequently being translated into applied mitigation rules). As in [31], 

we also employ a Partially Observable Monte-Carlo Planning (POMCP) algorithm to simulate possible 

future state trajectories from the current belief state (i.e. the defender’s view of the AMI network’s 

security) in order to evaluate the effectiveness of various defense decisions made, thus enabling the 

defender to make a selection in real-time.  

 

Figure 5: High-level architecture of the iIRS 

The intrusions are being signalled by the alerts generated from the IDS of Figure. 2, while the responses 

take the form of IDS and firewall rules. An efficient algorithm was implemented for generating the 

mitigation actions and for temporarily changing the AG by modifying the AMI’s attack surface. This is 

achieved by changing the connectivity of network hosts, thus effectively blocking access to vulnerable 

services and/or devices by employing the generated rules. The algorithm starts with a desired node to 

be blocked (corresponding to a security condition) and moves towards the leaves of the AG. It explores 

(using depth-first search) information that might be available to AG vertices for generating firewall 

rules and stores the connections and relations between rules in a tree structure. This structure represents 

multiple sets of firewall rules to be applied in order to block the progression of an attacker towards a 

goal condition of the AMI network’s AG. In principle, the goal of an attacker is linked with the desired 

ability to execute arbitrary code at a specific AMI device. This is defined as follows: 

 execCode(_attacker, _host, _permission)  

execCode(_host, _permission)  

where arguments beginning with an underscore represent variables. This allows the iRE’s Decision-

Making to weight differently cases where an attacker is believed to be close to a target condition, thus 

yielding excellent intrusion mitigation performance. 

VI. CONCLUSIONS 



As can be concluded from this paper, the combination of ML Intrusion Detection Systems (IDS) and 

Graphical Cyber Security Models(GCSMs) can lead to an innovative class of intelligent intrusion 

response systems (iIRS) providing dynamic security risk assessment and intelligent mitigation 

strategies to defend against adaptive multi–stage cyber-attacks on AMI, in an optimal and autonomous 

fashion[32]. This can be achieved by building upon advanced game theoretic security approaches, 

where accurate model of attackers and defenders (players), their interactions and the AMI network 

parameters would be able to calculate all the possible scenarios and provide the optimal solution to be 

applied by IDS. This will generate a positive impact on AMIs, small and medium-sized enterprises, but 

also to critical infrastructures and industrial IoT facilities as will be able to mitigate even (unknown) 

sophisticated cyber-attacks. 
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