35 research outputs found

    Storms in mobile networks

    Get PDF
    Mobile networks are vulnerable to signalling attacks and storms caused by traffic that overloads the control plane through excessive signalling, which can be introduced via malware and mobile botnets. With the advent of machine-to-machine (M2M) communications over mobile networks, the potential for signalling storms increases due to the normally periodic nature of M2M traffic and the sheer number of communicating nodes. Several mobile network operators have also experienced signalling storms due to poorly designed applications that result in service outage. The radio resource control (RRC) protocol is particularly susceptible to such attacks, motivating this work within the EU FP7 NEMESYS project which presents simulations that clarify the temporal dynamics of user behavior and signalling, allowing us to suggest how such attacks can be detected and mitigated

    NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem

    Full text link
    As a consequence of the growing popularity of smart mobile devices, mobile malware is clearly on the rise, with attackers targeting valuable user information and exploiting vulnerabilities of the mobile ecosystems. With the emergence of large-scale mobile botnets, smartphones can also be used to launch attacks on mobile networks. The NEMESYS project will develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and improve mobile network security through better understanding of the threat landscape. NEMESYS will gather and analyze information about the nature of cyber-attacks targeting mobile users and the mobile network so that appropriate counter-measures can be taken. We will develop a data collection infrastructure that incorporates virtualized mobile honeypots and a honeyclient, to gather, detect and provide early warning of mobile attacks and better understand the modus operandi of cyber-criminals that target mobile devices. By correlating the extracted information with the known patterns of attacks from wireline networks, we will reveal and identify trends in the way that cyber-criminals launch attacks against mobile devices.Comment: Accepted for publication in Proceedings of the 28th International Symposium on Computer and Information Sciences (ISCIS'13); 9 pages; 1 figur

    Detection and mitigation of signaling storms in mobile networks

    Get PDF
    Mobile Networks are subject to "signaling storms" launched by malware or apps, which overload the the bandwidth at the cell, the backbone signaling servers, and Cloud servers, and may also deplete the battery power of mobile devices. This paper reviews the subject and discusses a novel technique to detect and mitigate such signaling storms. Through a mathematical analysis we introduce a technique based on tracking time-out transitions in the signaling system that can substantially reduce both the number of misbehaving mobiles and the signaling overload in the backbone

    Supporting QoS traffic at the network layer in multi-hop wireless mobile networks

    Get PDF
    Supporting real-time and quality-of-service (QoS) traffic in multi-hop wireless mobile networks is challenging due to the high level of dynamism involved. In this paper, we propose a network layer solution in the form of a hybrid routing protocol to enable QoS traffic support in this class of networks. Our proposed protocol combines link state topology updates, source routing and on demand link cost dissemination to concurrently support multiple classes of QoS and normal flows. Our protocol provides for QoS traffic by intelligent path selection at the source nodes based on the required QoS parameters/levels and dynamically adapting the paths as network topology and conditions change. This solution does not require any other layers/components in the network stack to be QoS-aware and is therefore readily deployable over existing networks. We present experimental results from a simulation study on the performance of our protocol. Our results show that the proposed solution can provide efficient QoS traffic support in small-to-medium sized mobile networks, where up to 90% improvement in QoS metrics are observed in certain experiments. © 2011 IEEE

    Security for smart mobile networks: The NEMESYS approach

    Get PDF
    The growing popularity of smart mobile devices such as smartphones and tablets has made them an attractive target for cyber-criminals, resulting in a rapidly growing and evolving mobile threat as attackers experiment with new business models by targeting mobile users. With the emergence of the first large-scale mobile botnets, the core network has also become vulnerable to distributed denial-of-service attacks such as the signaling attack. Furthermore, complementary access methods such as Wi-Fi and femtocells introduce additional vulnerabilities for the mobile users as well as the core network. In this paper, we present the NEMESYS approach to smart mobile network security, to develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and to improve mobile network security through a better understanding of the threat landscape

    A review of cyber threats and defence approaches in emergency management

    Get PDF
    Emergency planners, first responders and relief workers increasingly rely on computational and communication systems that support all aspects of emergency management, from mitigation and preparedness to response and recovery. Failure of these systems, whether accidental or because of malicious action, can have severe implications for emergency management. Accidental failures have been extensively documented in the past and significant effort has been put into the development and introduction of more resilient technologies. At the same time researchers have been raising concerns about the potential of cyber attacks to cause physical disasters or to maximise the impact of one by intentionally impeding the work of the emergency services. Here, we provide a review of current research on the cyber threats to communication, sensing, information management and vehicular technologies used in emergency management. We emphasise on open issues for research, which are the cyber threats that have the potential to affect emergency management severely and for which solutions have not yet been proposed in the literature

    Modeling and analysis of RRC-based signalling storms in 3G networks

    No full text
    Mobile networks are vulnerable to signaling attacks and storms that are caused by traffic patterns that overload the control plane, and differ from distributed denial of service attacks in the Internet since they directly affect the control plane, and also reserve wireless bandwidth and network resources without actually using them. Such storms can result from malware and mobile botnets, as well as from poorly designed applications, and can cause service outages in 3G and 4G networks, which have been experienced by mobile operators. Since the radio resource control (RRC) protocol in the 3G and 4G networks is particularly susceptible to such storms, we analyze their effect with a mathematical model that helps to predict the congestion that is caused by a storm. A detailed simulation model of a mobile network is used to better understand the temporal dynamics of user behavior and signaling in the network and to show how RRC-based signaling attacks and storms cause significant problems in both the control and user planes of the network. Our analysis also serves to identify how storms can be detected, and to propose how system parameters can be chosen to mitigate their effect

    Opportunistic Communications for Emergency Support

    No full text
    I herewith certify that all material in this dissertation which is not my own work has been properly acknowledged
    corecore