12,051 research outputs found

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    A framework for integrating syntax, semantics and pragmatics for computer-aided professional practice: With application of costing in construction industry

    Get PDF
    Producing a bill of quantity is a knowledge-based, dynamic and collaborative process, and evolves with variances and current evidence. However, within the context of information system practice in BIM, knowledge of cost estimation has not been represented, nor has it been integrated into the processes based on BIM. This paper intends to establish an innovative means of taking data from the BIM linked to a project, and using it to create the necessary items for a bill of quantity that will enable cost estimation to be undertaken for the project. Our framework is founded upon the belief that three components are necessary to gain a full awareness of the domain which is being computerised; the information type which is to be assessed for compatibility (syntax), the definition for the pricing domain (semantics), and the precise implementation environment for the standards being taken into account (pragmatics). In order to achieve this, a prototype is created that allows a cost item for the bill of quantity to be spontaneously generated, by means of the semantic web ontology and a forward chain algorithm. Within this paper, ‘cost items’ signify the elements included in a bill of quantity, including details of their description, quantity and price. As a means of authenticating the process being developed, the authors of this work effectively implemented it in the production of cost items. In addition, the items created were contrasted with those produced by specialists. For this reason, this innovative framework introduces the possibility of a new means of applying semantic web ontology and forward chain algorithm to construction professional practice resulting in automatic cost estimation. These key outcomes demonstrate that, decoupling the professional practice into three key components of syntax, semantics and pragmatics can provide tangible benefits to domain use

    Constraint-based reachability

    Get PDF
    Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    Towards creative information exploration based on Koestler's concept of bisociation

    Get PDF
    Creative information exploration refers to a novel framework for exploring large volumes of heterogeneous information. In particular, creative information exploration seeks to discover new, surprising and valuable relationships in data that would not be revealed by conventional information retrieval, data mining and data analysis technologies. While our approach is inspired by work in the field of computational creativity, we are particularly interested in a model of creativity proposed by Arthur Koestler in the 1960s. Koestler’s model of creativity rests on the concept of bisociation. Bisociative thinking occurs when a problem, idea, event or situation is perceived simultaneously in two or more “matrices of thought” or domains. When two matrices of thought interact with each other, the result is either their fusion in a novel intellectual synthesis or their confrontation in a new aesthetic experience. This article discusses some of the foundational issues of computational creativity and bisociation in the context of creative information exploration

    Quality measures for ETL processes: from goals to implementation

    Get PDF
    Extraction transformation loading (ETL) processes play an increasingly important role for the support of modern business operations. These business processes are centred around artifacts with high variability and diverse lifecycles, which correspond to key business entities. The apparent complexity of these activities has been examined through the prism of business process management, mainly focusing on functional requirements and performance optimization. However, the quality dimension has not yet been thoroughly investigated, and there is a need for a more human-centric approach to bring them closer to business-users requirements. In this paper, we take a first step towards this direction by defining a sound model for ETL process quality characteristics and quantitative measures for each characteristic, based on existing literature. Our model shows dependencies among quality characteristics and can provide the basis for subsequent analysis using goal modeling techniques. We showcase the use of goal modeling for ETL process design through a use case, where we employ the use of a goal model that includes quantitative components (i.e., indicators) for evaluation and analysis of alternative design decisions.Peer ReviewedPostprint (author's final draft

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery
    • 

    corecore