724 research outputs found

    Aerial Manipulators for Contact-based Interaction

    Get PDF

    2D Contour Following with an Unmanned Aerial Manipulator:Towards Tactile-Based Aerial Navigation

    Get PDF

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review

    Get PDF
    Over the last decade, there has been an increased interest in developing aerial robotic platforms that exhibit grasping and perching capabilities not only within the research community but also in companies across different industry sectors. Aerial robots range from standard multicopter vehicles/drones, to autonomous helicopters, and fixed-wing or hybrid devices. Such devices rely on a range of different solutions for achieving grasping and perching. These solutions can be classified as: 1) simple gripper systems, 2) arm-gripper systems, 3) tethered gripping mechanisms, 4) reconfigurable robot frames, 5) adhesion solutions, and 6) embedment solutions. Grasping and perching are two crucial capabilities that allow aerial robots to interact with the environment and execute a plethora of complex tasks, facilitating new applications that range from autonomous package delivery and search and rescue to autonomous inspection of dangerous or remote environments. In this review paper, we present the state-of-the-art in aerial grasping and perching mechanisms and we provide a comprehensive comparison of their characteristics. Furthermore, we analyze these mechanisms by comparing the advantages and disadvantages of the proposed technologies and we summarize the significant achievements in these two research topics. Finally, we conclude the review by suggesting a series of potential future research directions that we believe that are promising

    Aerial Tele-Manipulation with Passive Tool via Parallel Position/Force Control

    Get PDF
    This paper addresses the problem of unilateral contact interaction by an under-actuated quadrotor UAV equipped with a passive tool in a bilateral teleoperation scheme. To solve the challenging control problem of force regulation in contact interaction while maintaining flight stability and keeping the contact, we use a parallel position/force control method, commensurate to the system dynamics and constraints in which using the compliant structure of the end-effector the rotational degrees of freedom are also utilized to attain a broader range of feasible forces. In a bilateral teleoperation framework, the proposed control method regulates the aerial manipulator position in free flight and the applied force in contact interaction. On the master side, the human operator is provided with force haptic feedback to enhance his/her situational awareness. The validity of the theory and efficacy of the solution are shown by experimental results. This control architecture, integrated with a suitable perception/localization pipeline, could be used to perform outdoor aerial teleoperation tasks in hazardous and/or remote sites of interest

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Aerial Manipulator Force Control Using Control Barrier Functions

    Full text link
    This article studies the problem of applying normal forces on a surface, using an underactuated aerial vehicle equipped with a dexterous robotic arm. A force-motion high-level controller is designed based on a Lyapunov function encompassing alignment and exerted force errors. This controller is coupled with a Control Barrier Function constraint under an optimization scheme using Quadratic Programming. This aims to enforce a prescribed relationship between the approaching motion for the end-effector and its alignment with the surface, thus ensuring safe operation. An adaptive low-level controller is devised for the aerial vehicle, capable of tracking velocity commands generated by the high-level controller. Simulations are presented to demonstrate the force exertion stability and safety of the controller in cases of large disturbances

    The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance

    Get PDF
    This article summarizes new aerial robotic manipulation technologies and methods—aerial robotic manipulators with dual arms and multidirectional thrusters—developed in the AEROARMS project for outdoor industrial inspection and maintenance (I&M). Our report deals with the control systems, including the control of the interaction forces and the compliance the teleoperation, which uses passivity to tackle the tradeoff between stability and performance the perception methods for localization, mapping, and inspection the planning methods, including a new control-aware approach for aerial manipulation. Finally, we describe a novel industrial platform with multidirectional thrusters and a new arm design to increase the robustness in industrial contact inspections. In addition, the lessons learned in applying the platform to outdoor aerial manipulation for I&M are pointed out
    • …
    corecore