35,343 research outputs found

    Towards Ad Hoc Recovery for Soft Errors

    Get PDF
    The coming exascale era is a great opportunity for high performance computing (HPC) applications. However, high failure rates on these systems will hazard the successful completion of their execution. Bit-flip errors in dynamic random access memory (DRAM) account for a noticeable share of the failures in supercomputers. Hardware mechanisms, such as error correcting code (ECC), can detect and correct single-bit errors and can detect some multi-bit errors while others can go undiscovered. Unfortunately, detected multi-bit errors will most of the time force the termination of the application and lead to a global restart. Thus, other strategies at the software level are needed to tolerate these type of faults more efficiently and to avoid a global restart. In this work, we extend the FTI checkpointing library to facilitate the implementation of custom recovery strategies for MPI applications, minimizing the overhead introduced when coping with soft errors. The new functionalities are evaluated by implementing local forward recovery on three HPC benchmarks with different reliability requirements. Our results demonstrate a reduction on the recovery times by up to 14%.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 708566 (DURO). This research is also supported by the Ministry of Economy and Competitiveness of Spain and FEDER funds of the EU (Projects TIN2016-75845-P and the predoctoral grant of Nuria Losada ref. BES-2014-068066), and by the Galician Government (Xunta de Galicia) under the Consolidation Program of Competitive Research (ref. ED431C 2017/04).Peer ReviewedPostprint (author's final draft

    A novel cooperative opportunistic routing scheme for underwater sensor networks

    Get PDF
    Increasing attention has recently been devoted to underwater sensor networks (UWSNs) because of their capabilities in the ocean monitoring and resource discovery. UWSNs are faced with different challenges, the most notable of which is perhaps how to efficiently deliver packets taking into account all of the constraints of the available acoustic communication channel. The opportunistic routing provides a reliable solution with the aid of intermediate nodes’ collaboration to relay a packet toward the destination. In this paper, we propose a new routing protocol, called opportunistic void avoidance routing (OVAR), to address the void problem and also the energy-reliability trade-off in the forwarding set selection. OVAR takes advantage of distributed beaconing, constructs the adjacency graph at each hop and selects a forwarding set that holds the best trade-off between reliability and energy efficiency. The unique features of OVAR in selecting the candidate nodes in the vicinity of each other leads to the resolution of the hidden node problem. OVAR is also able to select the forwarding set in any direction from the sender, which increases its flexibility to bypass any kind of void area with the minimum deviation from the optimal path. The results of our extensive simulation study show that OVAR outperforms other protocols in terms of the packet delivery ratio, energy consumption, end-to-end delay, hop count and traversed distance

    Application-level Fault Tolerance and Resilience in HPC Applications

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] As necesidades computacionais das distintas ramas da ciencia medraron enormemente nos últimos anos, o que provocou un gran crecemento no rendemento proporcionado polos supercomputadores. Cada vez constrúense sistemas de computación de altas prestacións de maior tamaño, con máis recursos hardware de distintos tipos, o que fai que as taxas de fallo destes sistemas tamén medren. Polo tanto, o estudo de técnicas de tolerancia a fallos eficientes é indispensábel para garantires que os programas científicos poidan completar a súa execución, evitando ademais que se dispare o consumo de enerxía. O checkpoint/restart é unha das técnicas máis populares. Sen embargo, a maioría da investigación levada a cabo nas últimas décadas céntrase en estratexias stop-and-restart para aplicacións de memoria distribuída tralo acontecemento dun fallo-parada. Esta tese propón técnicas checkpoint/restart a nivel de aplicación para os modelos de programación paralela roáis populares en supercomputación. Implementáronse protocolos de checkpointing para aplicacións híbridas MPI-OpenMP e aplicacións heteroxéneas baseadas en OpenCL, en ámbolos dous casos prestando especial coidado á portabilidade e maleabilidade da solución. En canto a aplicacións de memoria distribuída, proponse unha solución de resiliencia que pode ser empregada de forma xenérica en aplicacións MPI SPMD, permitindo detectar e reaccionar a fallos-parada sen abortar a execución. Neste caso, os procesos fallidos vólvense a lanzar e o estado da aplicación recupérase cunha volta atrás global. A maiores, esta solución de resiliencia optimizouse implementando unha volta atrás local, na que só os procesos fallidos volven atrás, empregando un protocolo de almacenaxe de mensaxes para garantires a consistencia e o progreso da execución. Por último, propónse a extensión dunha librería de checkpointing para facilitares a implementación de estratexias de recuperación ad hoc ante conupcións de memoria. En moitas ocasións, estos erros poden ser xestionados a nivel de aplicación, evitando desencadear un fallo-parada e permitindo unha recuperación máis eficiente.[Resumen] El rápido aumento de las necesidades de cómputo de distintas ramas de la ciencia ha provocado un gran crecimiento en el rendimiento ofrecido por los supercomputadores. Cada vez se construyen sistemas de computación de altas prestaciones mayores, con más recursos hardware de distintos tipos, lo que hace que las tasas de fallo del sistema aumenten. Por tanto, el estudio de técnicas de tolerancia a fallos eficientes resulta indispensable para garantizar que los programas científicos puedan completar su ejecución, evitando además que se dispare el consumo de energía. La técnica checkpoint/restart es una de las más populares. Sin embargo, la mayor parte de la investigación en este campo se ha centrado en estrategias stop-and-restart para aplicaciones de memoria distribuida tras la ocurrencia de fallos-parada. Esta tesis propone técnicas checkpoint/restart a nivel de aplicación para los modelos de programación paralela más populares en supercomputación. Se han implementado protocolos de checkpointing para aplicaciones híbridas MPI-OpenMP y aplicaciones heterogéneas basadas en OpenCL, prestando en ambos casos especial atención a la portabilidad y la maleabilidad de la solución. Con respecto a aplicaciones de memoria distribuida, se propone una solución de resiliencia que puede ser usada de forma genérica en aplicaciones MPI SPMD, permitiendo detectar y reaccionar a fallosparada sin abortar la ejecución. En su lugar, se vuelven a lanzar los procesos fallidos y se recupera el estado de la aplicación con una vuelta atrás global. A mayores, esta solución de resiliencia ha sido optimizada implementando una vuelta atrás local, en la que solo los procesos fallidos vuelven atrás, empleando un protocolo de almacenaje de mensajes para garantizar la consistencia y el progreso de la ejecución. Por último, se propone una extensión de una librería de checkpointing para facilitar la implementación de estrategias de recuperación ad hoc ante corrupciones de memoria. Muchas veces, este tipo de errores puede gestionarse a nivel de aplicación, evitando desencadenar un fallo-parada y permitiendo una recuperación más eficiente.[Abstract] The rapid increase in the computational demands of science has lead to a pronounced growth in the performance offered by supercomputers. As High Performance Computing (HPC) systems grow larger, including more hardware components of different types, the system's failure rate becomes higher. Efficient fault tolerance techniques are essential not only to ensure the execution completion but also to save energy. Checkpoint/restart is one of the most popular fault tolerance techniques. However, most of the research in this field is focused on stop-and-restart strategies for distributed-memory applications in the event of fail-stop failures. Thís thesis focuses on the implementation of application-level checkpoint/restart solutions for the most popular parallel programming models used in HPC. Hence, we have implemented checkpointing solutions to cope with fail-stop failures in hybrid MPI-OpenMP applications and OpenCL-based programs. Both strategies maximize the restart portability and malleability, ie., the recovery can take place on machines with different CPU / accelerator architectures, and/ or operating systems, and can be adapted to the available resources (number of cores/accelerators). Regarding distributed-memory applications, we propose a resilience solution that can be generally applied to SPMD MPI programs. Resilient applications can detect and react to failures without aborting their execution upon fail-stop failures. Instead, failed processes are re-spawned, and the application state is recovered through a global rollback. Moreover, we have optimized this resilience proposal by implementing a local rollback protocol, in which only failed processes rollback to a previous state, while message logging enables global consistency and further progress of the computation. Finally, we have extended a checkpointing library to facilitate the implementation of ad hoc recovery strategies in the event of soft errors) caused by memory corruptions. Many times, these errors can be handled at the software-Ievel, tIms, avoiding fail-stop failures and enabling a more efficient recovery

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time
    corecore