Towards Ad Hoc Recovery For Soft Errors

Nuria Losada
Universidade da Coruiia
A Coruiia, Spain
nuria.losada@udc.es

Abstract—The coming exascale era is a great opportunity for
high performance computing (HPC) applications. However, high
failure rates on these systems will hazard the successful comple-
tion of their execution. Bit-flip errors in dynamic random access
memory (DRAM) account for a noticeable share of the failures in
supercomputers. Hardware mechanisms, such as error correcting
code (ECC), can detect and correct single-bit errors and can
detect some multi-bit errors while others can go undiscovered.
Unfortunately, detected multi-bit errors will most of the time
force the termination of the application and lead to a global
restart. Thus, other strategies at the software level are needed to
tolerate these type of faults more efficiently and to avoid a global
restart. In this work, we extend the FTI checkpointing library
to facilitate the implementation of custom recovery strategies
for MPI applications, minimizing the overhead introduced when
coping with soft errors. The new functionalities are evaluated by
implementing local forward recovery on three HPC benchmarks
with different reliability requirements. Our results demonstrate
a reduction on the recovery times by up to 14%.

Index Terms—Fault Tolerance, Checkpoint/Restart, ABFT.

I. INTRODUCTION

Exascale offers great opportunities for HPC applications.
Even though failures may be handled by resiliency techniques,
they entail extended execution times, for instance due to
a restart of the application. While the mean time to fail-
ure (MTTF) of one compute node could be in the order of
a century, a machine with 100000 nodes will statistically
encounter a failure every 9 hours; furthermore, a machine
consisting of 1000000 of those nodes will be hit by a failure
every 53 minutes on average [1]. Comprehensive research
has been performed studying those failures [2]. The study
by “Di Martino et al.” [3] have studied failures in the Cray
supercomputer Blue Waters during 261 days, reporting that
1.53% of applications running on the machine failed because
of system-related issues. The cost for electricity within this
period that could have been avoided by introducing appropriate
fault tolerance mechanisms in the applications, was estimated
to be almost 0.5 million dollars. Future exascale systems will
have tens of thousands of nodes and millions of cores, and
they are expected to present high failure rates due to their
scale and complexity. Following the taxonomy of AviZienis
and others [4]-[6], faults such as physical defects, cause
incorrect system states (i.e. errors). An error may lead to a
failure when it causes the incorrect service of the system,
i.e., an incorrect system’s functionality and performance that
can be externally perceived. Corrupted memory regions are
among the most common root causes of failures, and various
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works

Leonardo Bautista-Gomez, Kai Keller, Osman Unsal

Barcelona Supercomputing Center
Barcelona, Spain

{leonardo.bautista, kai.keller, osman.unsal} @bsc.es

studies are focusing on DRAM and SRAM faults [7], [8].
Memory faults can be classified as hard errors, when bits
are repeatedly corrupted due to a physical defect (e.g. bits
permanently at “0” or “1”), and soft errors, which transiently
corrupt bits [9]. Depending on whether memory errors can
be detected and/or corrected, they are commonly classified in
detectable correctable error (DCE), detectable uncorrectable
error (DUE), and silent data corruption (SDC). DCEs are
managed by the hardware and are oblivious to the applications.
DUEs can lead to the interruption of the execution, while
SDCs can lead to a scenario in which the application returns
incorrect results but the user might not be aware of it. Most
modern systems employ hardware mechanisms such as ECCs,
parity checks or Chipkill-Correct ECC against data corruption
in order to prevent SDCs and reduce DUEs [10]. The study
by the Di Martino et al. study [3] shows the value of those
protection mechanisms reducing failures in large supercom-
puters. However, even though the number of DUEs over the
total machine check events is low, they still represent around
6.34% of the hardware errors leading to single/multiple node
failures. Data also shows how GPU memory is 100 times more
sensitive to uncorrectable errors because only ECC protection
is used (i.e., no Chipkill). Therefore, software techniques are
necessary to reduce the overhead caused by the remaining
DUE:s, which otherwise will trigger fail-stop failures.

Long-running scientific applications need to use software
fault tolerance techniques to ensure their successful com-
pletion. Most popular parallel programming models, such
as MPI, lack fault tolerance support and a fail-stop failure
in one of the MPI processes results in the termination of
the entire application. Traditional fault tolerant solutions for
these applications rely on checkpoint/restart mechanisms: the
application state is periodically saved into checkpoint files
that allow the restart into intermediate states of the execution
in case of failure. However, in this scheme all the running
processes are terminated and need to be re-initialized and
restarted. For large applications with several tens of thousands
of processes, this can introduce high overheads. More efficient
solutions can be implemented. Software mechanisms can pre-
vent soft errors from causing fail-stop failures, and alternatives
to coordinated rollback can be used to get the application to a
global consistent state after a memory corruption. This is the
case of local and/or forward recovery protocols.

Increasing the locality of the recovery process, i.e. re-
stricting the resiliency actions to a subset of the application

processes, can reduce the failure recovery overhead. The
same applies for forward recoveries, in which the application
attempts to construct a new state to successfully continue
the execution instead of using a previously checkpointed
state and repeating computation already done, as in roll-
back strategies. In this work, we extend the Fault Tolerance
Interface (FTI) [11] checkpointing library to facilitate the
implementation of flexible resilience strategies for MPI ap-
plications that allow the handling of soft errors during run
time. We evaluate these software extensions on three different
benchmarks, implementing forward local recovery protocols
that reduce the failure overhead by 14%.

The rest of this paper is structured as follows. Section II
provides an insight into related work. The FTI extensions
to support forward recovery are presented in Section III.
The integration of these new functionalities on three HPC
benchmarks is described in Section IV. The experimental
evaluation of the tested benchmarks is presented in Section V.
Section VI comments on the applicability of these extensions
and the implementation of recovery techniques and finally,
Section VII concludes this paper.

II. RELATED WORK

Checkpoint/restart techniques, such as [11]-[14], have been
extensively studied in the past decades. These techniques
usually target fail-stop failures, enabling the application’s
restart when a failure causes the interruption of execution
and recovering the computation from the most recent set of
checkpoint files. In large scale applications, failures usually
affect a small part of the computational resources being
used, thus, terminating and re-initializing all the application
processes imposes unnecessary performance penalties. The
User Level Failure Mitigation (ULFM) [15] corresponds to the
most recent effort for the inclusion of resilience capabilities
in the MPI standard, enabling applications to detect and
react to failures without stopping their execution. Several
works have implement resilient applications using the ULFM
features [16]-[22]. ULFM enables the deployment of different
recovery strategies after repairing the communication environ-
ment when a failure hits the application, thus, avoiding the
overheads of re-initializing the entire MPI application.

Detectable soft errors related to memory corruption may
be handled by the application before triggering a failure, and
hence, avoiding the interruption of the execution when they
arise. Some of these techniques are based on redundancy [23]-
[25]. Comparing the results of the replicas enables error
detection, and error correction in the case of triple-redundancy.
However, replication requires substantially more hardware
resources which rapidly becomes prohibitively expensive.

Other approaches exploit the characteristics of the partic-
ular application/algorithm by implementing ad hoc recovery
techniques, which can introduce significant performance ben-
efits in the recovery process. Traditionally, checkpoint/restart
relies on a backward recovery, in which all processes in
the application rollback to a previous committed state, and
repeat the computation done from that point on. Increasing the

checkpointing frequency reduces the amount of computation to
be repeated, decreasing the failure overhead but increasing the
checkpointing overhead in terms of performance, storage and
bandwidth. Forward recovery strategies attempt to build a new
application state from which the execution can resume, without
rolling back to a past checkpointed state and repeating all the
computation already done, thus, significantly reducing the re-
covery overhead. This is the case of partial re-computation [26]
(which is focused on limiting the scope of the recomputation
after a failure), and Algorithm Based Fault Tolerance (ABFT)
techniques. ABTF was originally introduced by Huang and
Abraham [27] to detect and correct permanent and transient
errors on matrix operations. The method is based on the
encoding of data at a high level and the design of algorithms
to operate on the encoded data. ABFT has been used in combi-
nation with disk-less checkpointing for its usage in matrix op-
erations [28], [29], and it has been implemented on algorithms
such as the High Performance Linpack (HPL) benchmark [30],
Cholesky factorization [31], algorithms using sparse matrices
and dense vectors [32], and tasks based applications [33].
Another key aspect of the recovery process is the locality,
i.e. the number of processes not affected by the error that
need to be involved in the recovery. Restricting the recovery
actions to only those processes affected by the error, or a
subset of the processes (i.e., for those scenarios in which the
failed processes cannot recover on their own, and require the
participation of neighbour processes) also contributes towards
the efficiency of the fault tolerance solution.

Generally, in order to tolerate fail-stop failures, multilevel
checkpointing APIs enable programmers to save a subset of the
application variables in different levels of the storage hierarchy
at a specific frequency (called the checkpoint frequency).
However, ad hoc recoveries, such as ABFT, may require
access to past values of variables that differ from the ones
checkpointed, and may require to do so at a different frequency
to cope with soft errors. This work builds on top of those
strategies exploiting the particularities of the application to
boost the recovery and aims to provide a generic and intuitive
way for applications to implement ad hoc recovery strategies.
In particular, these new extensions are added to the FTI library
in order to provide the necessary flexibility to facilitate the
implementation of custom recovery mechanisms.

III. EXTENSIONS FOR LOCAL/FORWARD RECOVERY

HPC applications that use any type of fault tolerance usually
focus on fail-stop failures which terminate the execution of one
or several processes running the application. The most widely
used technique is checkpoint/restart, which enforces a global
coordinated rollback to the last checkpoint upon a failure.
Soft errors (i.e., errors affecting/corrupting part of the data
in a non-permanent fashion) are usually handled in the same
way. When a soft error is detected, the recovery process is
determined by how the application has been protected against
it. No protection will force the complete re-execution of the
application from the beginning. Protecting the application
with checkpoint/restart enables the recovery from the last

void sig_handler_sigdue (int signo) {

1

2 FTI_RankAffectedBySoftError();

3 /* Algorithm recovery code =/

4 [...]

s)

6 int main(int argc, char* argv[])

7 /* SIGDUE: signal reporting a DUE */
8 signal (SIGDUE, sig_handler_sigdue);

9 /% Application initialization =/ [...]
10 for (i=0; i<N; i++){ /% Main loop */
11 int ret=FTI_Snapshot ();

12 if (ret==FTI_SB_FAIL) {

13 int*x status_array;

14 FTI_RecoverLocalvars({ ... }
15 /* Algorithm recovery code */

16 L.]
17 }

18 [...]

19 }

20 [...]

21}

Fig. 1: Detection of a soft error.

checkpoint. This is inefficient because many of those soft
errors could be tolerated without performing a global rollback,
in which all processes running the application are recovered
from the last checkpoint. Instead, they could be handled locally
in a much more time and energy efficient way. Strategies such
as ABFT allow the implementation of local-forward recovery,
that exploit particularities of the application, to provide con-
siderable performance boosts in the recovery process. In this
work two types of soft errors are considered: i) DUEs, and ii)
SDCs that are detected by software mechanisms [32], [34].

We provide a framework that allows developers to exploit
the characteristics of their MPI applications in order to achieve
a more efficient resilience strategy against soft errors. We
leverage the FTI library [11] with an extended API for this
purpose. FTI is an application-level multilevel checkpointing
library that provides fault tolerance support by adding in-
strumentation blocks in the application code for: (i) marking
those variables necessary for the recovery for their inclusion
in the checkpoint files using the FTI_Protect routine, and
(ii) inserting the FTI_Snapshot in the main loop of the
application to generate checkpoint files.

We implement a signal handler to inform the local process
about the occurrence of a soft error. This is achieved by
the handling of the signal sent to the affected process by
the operating system when a DUE occurs, or by means
of software error/data-corruption detection (e.g., online data
monitoring). The OS can provide information of the affected
memory page which allows to derive the affected variables.
In any case, the MPI process handles the error and triggers
a recovery (example code shown in Figure 1). Once the
soft error is locally detected, the process will notify FTI
of the error event by means of the extended API function
FTI_RankAffectedBySoftError (). This function is
non-collective and merely sets a flag in the local address space.

A custom recovery process is coupled to the application
and the particular characteristics of the algorithm. The goal

is to protect as much application data as possible against soft
errors by implementing an ad hoc mechanism that allows the
regeneration of the protected variables to correct values when
corrupted. Two different scenarios are possible: a) the process
affected by the soft error can regenerate the affected data using
only local information; b) the process affected by the soft error
needs the neighbour processes to be involved in the recovery.

The second scenario requires knowledge of the soft error by
those unaffected peers that need to participate in the recovery.
The FTI_Snapshot function, which is inserted in the main
loop of the application, has been modified to check for soft
error status at a user defined interval. The default soft error
detection mechanism is global, involving all processes running
the application. However, the programmer may also implement
a custom detection mechanism in which only a subset of the
application processes detect the soft error, i.e., scenarios in
which the application processes are divided in groups, and
only those in the group of the failed peer need to participate
in its recovery.

Techniques such as forward recovery or ABFT most com-
monly focus on regenerating the affected data using local
information, therefore in this work we focus on the first
scenario, in which data can be recovered locally.

In most situations the regeneration of the protected variables
will imply accessing data from a past state of the computation.
The extended API function FTI_RecoverLocalVars ()
recovers only a subset of the checkpointed variables for
the calling process from its last checkpoint. This is a non-
collective function, thus it can be called by only a subset of
the processes (for completely local recoveries, only by the
processes actually affected by the soft error). Relying on the
data from the last checkpoint to implement an ad hoc local
recovery is useful for some applications, however, this is not
the general case. For instance, local forward recovery usually
requires to use information from the current iteration which is
not included in the last checkpoint (i.e, checkpoint frequency
has a much coarser granularity). Let’s consider an iterative
application in which a relevant amount of the data used by
the algorithm can be protected against soft errors by using the
values of some variables at the beginning of the last iteration.
Those variables may not be needed to perform a global
rollback when a fail-stop failure occurs. Thus, checkpoint-
ing them will lead to larger checkpoint files, and therefore,
higher overheads. In addition to this, the ad hoc recovery
will imply checkpointing at every iteration of the execution,
which will be translated in most cases into an inadequate
checkpointing frequency for the application. To prevent this
situation, a fast memory-saving mechanism is provided. The
FTI_MemSave () and FTI_MemLoad () routines perform
a copy in-memory of a given variable and restore its contents,
respectively. These routines allow the programmer to save
only the subset of variables that are mandatory for the ad hoc
recovery procedure, and to do so with the required frequency.

The flexibility of these new extensions to the FTI API
enables developers to implement a more efficient recovery
strategy exploiting the particular characteristics of the appli-

Checkpointed Memory-saved
data data

Soft error
protected
data

Fig. 2: Memory Protection

cation over a wide range of scenarios. As commented before,
some variables can be checkpointed and some variables can
be memory-saved using a different frequency in each case.
Figure 2 shows a schematic view of the memory used by
the application. Note that there is no restriction regarding the
checkpointed, memory-saved, and protected data: the inter-
sections between these three sets may or may not be empty.
Protected data is defined as data that can be regenerated by
using the checkpointed variables, the memory-saved ones,
both, or neither of them (e.g., read-only data initialized from
files). The fact that a variable is checkpointed and/or memory-
saved depends only on the application requirements when
checkpointing or when doing an ad hoc recovery.

IV. IMPLEMENTING AD HOC RECOVERY
ON HPC APPLICATIONS

In order to demonstrate the value of the new extensions
to the FTTI library, this section describes the implementation
of an ad hoc local forward recovery on three different HPC
benchmarks. All codes are instrumented with FTI to obtain
checkpoint/restart fault tolerance support. Then, the new func-
tionalities are used to protect a relevant part of the application
data against soft errors.

A. Himeno

The Himeno benchmark [35] solves a 3D Poisson equation
in generalized coordinates on a structured curvilinear mesh. A
simplified overview of the benchmark code instrumented with
FTI is shown in Figure 3a. The call to FTI_Snapshot is
located in the main loop. The only variables that need to be
checkpointed by FTT are the array p (pressure) and the loop
index n. The other variables in Himeno are either initialized at
the beginning of the execution and read-only (a, b, ¢, wrk1,
bnd), initialized in each iteration to constant values, or merely
depend on p(n). When a soft error hits, the failed process can
re-initialize the read-only variables locally at any point of the
execution, as shown in Figure 3b.

For Himeno, data protected against soft errors correspond
to the read-only variables, which account for 85% of the

memory used by the benchmark, as it will be presented in
more detail in Section V. Himeno does not need to memory-
save any variable to tolerate soft errors. Also, none of the
checkpointed variables (i.e, pressure) can tolerate a soft error
through local forward recovery. The data protected against soft
errors are read-only variables that can be regenerated without
being saved or checkpointed.

B. CoMD

CoMD [36] is a reference implementation of classical
molecular dynamics algorithms and workloads as used in Ma-
terials Science. It is created and maintained by The Exascale
Co-Design Center for Materials in Extreme Environments (Ex-
MatEx). Figure 4a presents the code instrumented with FTIL.
To tolerate fail-stop failures, FTI checkpoints the variables
nAtoms, gid, iSpecies, r, p, £, and iStep.

In contrast to the Himeno benchmark, there are no read-
only variables within each timestep. However, some variables
are read-only within each invocation of the computeForce
method, which consumes around 93% of the total run time.
These read-only variables can be protected against soft errors
by memory-saving their contents before the invocation of
the computeForce method, and replacing the default error
handler with a custom one within the scope of this function.
Within the error handler (shown in Figure 4b), their value
will be set to those valid when the method was invoked. In
CoMD, the protected variables that can be regenerated are both
memory-saved and checkpointed.

C. TeaLeaf

TealLeaf [37] is a mini-app from the mantevo project that
solves the linear heat conduction equation. Pawelczak et al.
have implemented ABTF for TealLeaf [32] as an alternative
method of protecting sparse matrices and dense vectors from
data corruptions, which can be combined with this proposal
to obtain a fast local forward recovery upon a soft error
corrupting the protected variables.

A simplified overview of the benchmark code instrumented
with FTI is shown in Figure 5a. A CG (Conjugate Gradient)
solver is performed within each step of the main loop. Most of
the variables are initialized for each CG solver run. Therefore,
locating the checkpoint call in the most external main loop
avoids checkpointing all the internal data of the CG solver,
reducing the checkpointed data by 87% (and its overhead)
while providing an adequate checkpointing frequency. To
tolerate fail-stop failures, only the main loop index and the
density and energy arrays need to be checkpointed.

There are read-only variables within a CG solver that are
initialized using the local density array. These read-only
variables can be protected against soft errors: they can be
regenerated using the version of the density array when the
CG solver was invoked. Figure 5b shows the error handler for
Tealeaf to regenerate those read-only variables. The handler
can be invoked at any time during the CG solver execution,
thus, the density array may have been modified. In order
to preserve the density array, it is copied to a temporary

T [o...]

2 FTI_Protect { n, p }

3 signal (SIGDUE, sig_handler_sigdue);

4 for(n=0 ; n<NN ; ++n){ /* Application main loop =/

5 int checkpointed = FTI_Snapshot (); 1
6 for i=l:imax-1, Jj=l:imax-1, k=l:imax-1 { 2
7 /* Read only data: { a,b,c,p,wrkl,bnd } */ 3
8 /% Write only data: { s0,ss,gosa,wrk2 } =/ 4
9 } 5
for i=1:imax-1, j=l:imax-1, k=l:imax-1 { 6
/* Read only data: { wrk2 } */ 7

/* Write only data: { p } */ 8

9

10

15 [... 1] 11

void sig_handler_sigdue (int signo) {
FTI_RankAffectedBySoftError();
/+ Algorithm recovery code */
*/

*/
bnd } */

/*
/*
/%

Re-initializate the
read only data:
{ a, b, ¢, wrkl,

}

(a) Instrumenting for checkpointing and soft error correction.

(b) Handler for forward recovery.

Fig. 3: Himeno simplified pseudocode.

[...

1
2 FTI_Protect { nAtoms,gid,iSpecies,r,p,f,iStep }
3 /% Application main loop x/
4 for (iStep=0; iStep<nSteps; iStep++) {
5 int checkpointed = FTI_Snapshot ();
6 if (iStep%printRate==0) sumAtoms (s) ; 1 void sig_handler_sigdue (int signo) {
7 advanceVelocity (); 2
8 advancePosition (); 3 FTI_RankAffectedBySoftError();
9 redistributeAtoms () 4
10 signal (SIGDUE, sig_handler_sigdue); 5 /* Algorithm recovery code =/
11 FTI_MemSave { gid, iSpecies, r, p } 6 /+ Recover values of read «/
12 computeForce (); 7 /* only variables within */
13 signal (SIGDUE, SIG_DFL); 8 /* computeForce: */
14 advanceVelocity () 9
15 kineticEnergy (s); 10 FTI_MemLoad { gid, iSpecies, r, p }
16 } 11
7 [...] 12}
(a) Instrumenting for checkpointing and soft error correction. (b) Handler for forward recovery.
Fig. 4: CoMD simplified pseudocode.
1 [...] 1 void sig_handler_sigdue (int signo) {
2 FTI_Protect { tt, density, energy } 2 FTI_RankAffectedBySoftError();
3 signal (SIGDUE, sig_handler_sigdue) ; 3
4 /+ Application main loop: diffuse method x/ 4 /% Algorithm recovery code =/
5 for(tt = 0; tt < end_step; ++tt) { 5 memcpy (aux_density, density,
6 int checkpointed = FTI_Snapshot (); 6 sizeof (double) xsizeD);
7 /* CG Solver x/ 7
8 FTI_MemSave { density } 8 FTI_MemLoad { density }
9 cg_init_driver (chunks, settings, rx, ry, &rro); 9 /* Regenerate read-only variables
10 for(t = 0; t < max_iters; ++t){ 10 * using density from the previous
11 cg_main_step_driver (chunks, settings, t, &rro, error); 11 * ckpt file
12 halo_update_driver (chunks, settings, 1); 12 */
13 if (fabs (xerror) < eps) break; 13 [...]
14 } 14
15 solve_finished_driver (chunks, settings); 15 memcpy (density, aux_density,
16 '} 16 sizeof (double) *sizeD) ;

] 17

(a) Instrumenting for checkpointing and soft error correction.

(b) Handler for forward recovery.

Fig. 5: TeaLeaf simplified pseudocode.

variable. Then, the protected variables are generated using
the density array that was memory-saved on invocation.
In contrast to CoMD, in Tealeaf not all the checkpointed
variables are memory-saved, and none of the checkpointed or
memory-saved variables can be regenerated upon a soft error.

V. EXPERIMENTAL EVALUATION

The experimental evaluation was performed in the CTE-
KNL cluster at the Barcelona Supercomputing Center (BSC-
CNS), based on Intel Xeon Phi Knights Landing processors,
a Linux Operating System and an Intel OPA interconnection.

TABLE I: Weak scaling configurations and baseline run time.

App NBPROCS PARAMETERS RUN TIME (S)
S 64 gridsize:513x2049x1025 498.54
g 128 gridsize:1025x1025x2049 501.92
T 256 gridsize:2049x2049x1025 502.61
n 64 x=128, y=128, z=256, N=100 561.69
% 128 x=128, y=256, z=256, N=100 582.10
© 256 x=256, y=256, =256, N=100 591.66
5 64 cells:3000x3000, timesteps=20 256.71
;‘2 128 cells:6000x3000, timesteps=20 482.70
ﬁ 256 cells:6000x6000, timesteps=20 765.25

TABLE II: Memory characterization of the tested benchmarks.

USED CKPT’D MEMORY- PROTECTED
MEMORY MEMORY SAVED MEMORY
(% AVAIL.) (%USED) (%USED) (%USED)
2 64p 82.03 7.14 0.00 85.71
g 128 82.03 7.14 0.00 85.71
& 256p 82.03 7.14 0.00 85.71
A 64p 10.92 89.24 62.42 62.42
% 128p 10.90 89.29 62.46 62.46
O 256p 10.92 89.24 62.42 62.42
2 64p 1.05 13.88 6.94 51.37
;: 128p 1.05 13.88 6.94 51.37
£ 256p 1.05 13.88 6.94 51.37

Each node of the cluster has one Intel(R) Xeon Phi(TM) CPU
7230 @ 1.30GHz 64-core processor, 94 GB of main memory
with 16 GB high bandwidth memory (HBM) in cache mode,
and 120 GB SSD as local storage. The technique proposed in
this work leverages all four storages levels efficiently: HBM
in cache mode is used to store the computation variables,
the main memory is used to store the extra data necessary
for the local forward recovery, the SSDs are used to store
the multilevel checkpoint files and the file system is used
to store checkpoints required to comply with batch scheduler
limitations (i.e., 24-48 hours jobs).

In order to quantify the results we determined the relative
overheads introduced by our modifications with respect to the
original code. The measurements are performed by increasing
the number of processes while keeping the problem size per
process constant (i.e., weak scaling). The parameters used for
each experiment are given in Table I, together with the original
completion run times without any FTI instrumentation. For
statistical robustness, we ran the experiments multiple times.
Thus, both in the table and in the rest of this section, each
reported number corresponds to the mean of ten executions.

A. Memory Characterization

First, we characterize the memory footprint of the bench-
marks in Table II. The table reports as USED MEMORY the
percentage of memory used by the application in comparison
to the available memory, that is, the total memory available
in the running nodes. Additionally, the table presents (i) the

percentage of the used memory that needs to be CHECK-
POINTED, (ii) the percentage of the used memory that needs
to be MEMORY-SAVED using the new FTI extensions, and
(iii) the percentage of the used memory that is PROTECTED,
i.e., that can be recovered from memory corruptions.

As observed, Himeno is the benchmark with the largest
amount of used memory (82.03% of the total memory that
is available) which was expected as Himeno is a memory
bounded benchmark. In contrast to that, CoMD and Teal.eaf
only use a small fraction of the available memory. Most
molecular dynamic applications such as CoMD have small
memory footprint. On the other hand, TealLeaf is a sparse-
matrix computationally-bounded benchmark, which explains
its reduced memory consumption. All in all, these three
benchmarks give us a wide spectrum with significantly dif-
ferent memory usages to analyze the impact of the proposed
resilience schemes in deep-memory hierarchies.

The checkpointed datasets are also heterogeneous across the
different testbed benchmarks. Himeno checkpoints 7.14% of
the used memory which corresponds to aggregated checkpoint
file sizes varying between 5.51GB and 22.03GB when increas-
ing the number of processes. CoMD generates checkpoint file
sizes ranging between 9.16GB and 36.65GB as the bench-
marks scale out, which correspond to checkpoining around
89.3% of the used memory. Finally, Tealeaf checkpoints
13.88% of the used memory, and generates the smallest
checkpoint file sizes of the testbed benchmarks, which range
between 0.14GB and 0.55GB. This shows that not all the data
used by the benchmarks needs to be checkpointed to perform
a successful global rollback after a failure, and accounts for
significantly different checkpointing overheads.

Another relevant difference between the three benchmarks
is the memory footprint of the forward recovery strategy
(the data that is memory-saved) and the protection cover-
age that is achieved by doing so. The table reports both
quantities (Memory-saved and Protected data) as the
percentage of the used memory. As commented before, a
memory corruption on the protected data is tolerated using
the local forward recovery strategies described in Section IV,
while corruptions on other datasets will lead to a global
rollback from the last checkpoint. The potential benefits of this
technique will be defined by the amount of protected, memory-
saved, and checkpointed data; as well as by the amount of
computation that needs to be repeated when doing a global
rollback. Scenarios in which a large protection coverage at low
cost (i.e. small amounts of memory-saved data) can introduce
important performance benefits in the recovery upon a soft
error, and, thus, in the total execution run time. This scenario
in which a large amount of data can be regenerated from a
small portion of memory-saved data is ideal, however it is not
always the case. The testbed benchmarks cover very different
scenarios regarding protected and memory-saved data. For the
Himeno benchmark, we can protect 85.71% of the used data
without needing to memory-save any variables, thus, at no
cost. In the case of CoMD, we can protect 62.42% of the
application data from soft errors by memory-saving the same

45%
40% [
35% [
30% [
25% [
20% [
15% [
10% [

5% [

FTl-Instrumented [
Checkpointing E
Checkpointing + Memory—Saving

4l m 10

45%
40% [
35% [
30% [
25% [
20% [
15% [
10% [

5%

Local forward recovery 222271
Global rollback recovery

ﬂﬂ ﬂﬂﬂ 1 -

0% F —— L =T 0% F e 0 |
5% 64 128 256 64 128 256 64 128 256 5% "6sa 128 256 64 128 256 64 128 256
Himeno CoMD Tealeaf Himeno CoMD Tealeaf

Fig. 6: Relative overheads in a fault-free execution with respect
to benchmarks original run times.

amount of data, which accounts for datasets 30% smaller than
the checkpointed data. Finally, for Tealeaf, 51.37% of the
used data is protected by memory-saving only 6.94% of the
datasets, which corresponds to half of the checkpointed data.

The next sections evaluate the overheads of the local for-
ward recovery implementation in the fault-free execution and
study the benefits obtained when recovering from soft errors.

B. Overhead in the Absence of Failures

This section studies the overheads introduced in the
fault-free execution. Figure 6 shows the relative over-
heads with respect to the original execution run times (re-
ported in Table I) for three different experiments. Firstly,
FTI-instrumented experiments measure the performance
penalty that is introduced by the calls to the FTT library added
to the application code, but neither checkpointing nor memory-
saving any dataset. The relative instrumentation overhead is
low, on average, 0.66% and always below 1.77%.

Secondly, we study the overhead introduced when check-
pointing for a global rollback. The Checkpointing ex-
periments generate checkpoint files at the optimal frequency,
calculated as defined by Young [38] and Daly [39]. These
experiments show the overhead that is introduced when check-
pointing to tolerate fail-stop failures, enabling a global rollback
recovery after a failure. The relative checkpointing overhead is,
on average, 5.92% and never exceeds 14.88%. This overhead
is tied to the checkpoint file size (i.e., the time writing the
data) and the synchronization cost that is introduced by the
coordinated checkpointing provided by FTI. For Tealeaf,
the overheads are sometimes negative, as the instrumentation
modifies the application code, the compiler’s optimizations
(and their benefit) may differ.

Lastly, Checkpointing+Memory—-saving experiments
study the overhead introduced when not only checkpoints are
taken but also the necessary datasets are memory-saved. Thus,
allowing the recovery using a global rollback upon a fail-stop
failure and enabling the usage of the local forward recovery
when a soft error hits any of the protected variables. In
these experiments, checkpointing is performed at the optimal

Fig. 7: Relative overheads when introducing a failure with
respect to benchmark original run times.

checkpointing frequency, while memory-saving data is per-
formed at every iteration of the main loop of the application.
The overhead introduced by the memory-saving operations is
negligible, and the cost of the in-memory copy accounts for
an increase over the checkpointing overhead of, on average,
0.57%, and always below 2.36%. As we see in Figure 6,
Himeno does not incur any extra overhead because no data
is memory-saved. On the other hand, for CoMD and Tealeaf
the local forward recovery strategies described in Section IV
require a memory copy of a subset of the application data in
every iteration for the regeneration of the protected variables.

C. Overhead in the Presence of Failures

This section compares the performance upon errors of the
global rollback recovery and the local forward recovery. In
these experiments, a soft error is introduced when approxi-
mately 75% of the execution has been completed by signalling
one of the processes running the benchmark. In the local
forward recovery, the affected process handles the signal and
recovers from the soft error to continue the execution, as
depicted in Section IV. On the other hand, in the global
rollback the soft error triggers a fail-stop failure, the signal
terminates the execution and a global restart takes place,
recovering all the processes running the benchmark from the
most recent available checkpoint file.

Figure 7 presents the overheads introduced when handling
the failure with each strategy. The overheads are calculated
as the difference between the original execution run times
(reported in Table I) and the run times when introducing a
soft error. Thus, the overheads correspond to the extra time
consumed by each proposal in order to tolerate the error.
Additionally, Table III details the reduction in the failure
overhead that the local forward recovery achieves over the
global rollback, both in absolute and relative terms.

On average, the reduction corresponds to 7.38% of the
execution time, with a maximum of 14.01% for CoMD. Note
that this reduction is determined by two factors: the size of the
checkpoint files and the amount of re-computations that has
to be performed. For Himeno and CoMD, the reduction in
the overhead increases as more processes run the benchmarks.

TABLE III: Reduction in the overhead when using the local
forward recovery instead of the global rollback upon a soft
error: absolute value (in seconds) and percentage value (nor-
malized with repect to the original execution run time).

TABLE 1IV: Original number of lines of code (LOCs) and
extra lines of instrumentation code to obtain fault tolerance
support for global rollback and for global rollback combined
with ad hoc recovery for soft errors.

REDUCTION IN THE OVERHEAD: SECONDS [%] LOCs EXTRA LOCs EXTRA LOCS GLOBAL
NPRoCS HIMENO CoMD TEALEAF ORIGINAL GLOBAL ROLLBACK + AD HOC
64 17.93 [3.60%] 75.75 [13.49%] 17.65 [6.88%] CODE ROLLBACK SOFT ERROR RECOVERY
128 29.06 [5.79%] 77.01 [13.23%] 7.07 [1.46%] HIMENO 284 15 57
256 37.51 [7.46%] 82.91 [14.01%] 3.93 [0.51%] CoMD 5638 30 82
TEALEAF 4415 15 99

On the other hand, for Tealeaf, the reduction decreases when
scaling out, because when using the optimal checkpointing
frequency, the amount of computation to be repeated in the
global rollback decreases, e.g. in the 256 processes experi-
ment a checkpoint is taken in every iteration and barely no
computation is repeated when rolling back. The local forward
recovery avoids that all processes read the checkpoint files at
the same instant, as it occurs in a global rollback recovery.
More importantly, it avoids rolling back the processes running
the application, avoiding the repetition of computation already
done, and, therefore, reducing the failure overhead.

VI. DISCUSSION

The new functionalities introduced on FTI enable the im-
plementation of ad hoc recovery techniques to improve the
performance when tolerating soft errors in MPI applications.
The usage of these new extensions does not disturb the oper-
ation of traditional checkpoint/restart to handle any other type
of failures by means of a global rollback to the last valid set
of checkpoint files. The evaluation of these new functionalities
was done implementing forward local recovery strategies on
three different benchmarks. In all of them, read-only data is
protected against soft errors in the scope of functions that
consume most part of the execution run time, and the protected
data account for an important part of the memory used by the
application, thus, providing a good coverage ratio. In order
to provide this protection, one benchmark does not need to
memory-save any data, while the other two do so: in one,
the amount of memory-saved and protected data are the same,
while in the other one the protected data is 7.4 times larger
than the memory-saved data. In all cases, any process can
recover locally from the soft error corrupting the protected data
by re-initialize/regenerate it. The protection of read-only data
has been proved to reduce the failure overhead. In addition,
using algorithm specific knowledge, the protection coverage
can be extended to other datasets, not necessarily read-only,
which will introduce further reduction in the recovery over-
head. Table IV summarizes the programming effort of this
protection coverage introduces in the testbed benchmarks. The
table reports the number of lines of code that are added to each
benchmark to obtain global rollback support with FTI, and to
extend the fault tolerance support with an ad hoc recovery to
manage soft errors.

Although this approach requires that the user identifies the
read-only variables in the computationally most expensive

parts of the applications, the benefits in the recovery of soft
errors affecting the protected variables can be important, and
these type of variables can represent an important fraction of
the data used by HPC applications. In addition, as this is a
static analysis of the application code, it could be automati-
cally done by a compiler.

In order to quantify the performance benefits that this
technique can offer in production environments, we have
modelled (i) the overhead introduced when all failures are
managed by global rollback, and (ii) the overhead when those
failure originated from soft errors that can not be corrected
by hardware mechanisms, i.e. uncorrectable errors (UEs), are
managed by ad hoc recoveries. The overall relative overheads
of the global rollback and the ad hoc recovery are estimated
as follows (notations detailed in Table V):

Ogiobal = Checkpointing + Restart(F:) + Recompute(Fy) 1)
O adHoc = Checkpointing + Restart(Fppur) + Recompute(F,pug)
+ ExztraAH + Recoveryau(Fpug) 2)

The different terms in the equations (1) and (2) are defined
as follows:
Ceost (Wrpey) - chpts
Rtime
Ceost(Rdpy)

Rtime

Cint/2
Recompute(F) = F - IOOLM

time

Restart(1) + Recompute(1)

Reduction gactor

Checkpointing = 100

Restart(F) = F - 100

Recoveryapg(F)=F

The checkpoint cost, interval, number of checkpoints, and
number of failures and number of failures are denoted as:

Claiz
Ccost(bw) = %7

Cint - \/2 -MTBF - Ccost(Wrbw)

Rtime L — Rtime
Cint MTBF’
F.pue = Ft — Fpuk

_ Riime %pDUESs
MTBF 100

Neppts = Fpuge

Finally, the simplified equations used to calculate the rela-
tive overhead are to the following ones:

100 - Cyjze 100 - Cgjze 100 - Cipne
Ogiobal =
Wryw * Cint Rdyy - MTBF 2-MTBF
o 100 Csize (%onpUE) - Csize |, (YonpuE) - Cint
AdHoc —
Wryw * Cint Rdy,, - MTBF 2-MTBF
DUFE 2-Cy; Rdypy, - C;
+ ExtraAH + % size + bw int

MTBF 2 Rdyy - Reduction facior

TABLE V: Summary of key model notations.

NOTATION DESCRIPTION

Overall overhead using a global rollback.
Overall overhead using ad hoc recovery for soft errors.

Ociobal
OadHoc
Checkpointing Checkpointing overhead.
Restart(F') Restart overhead of F' failures.
Recompute(F) Recomputation overhead of F’ failures.

Extra overhead introduced by the ad hoc recovery operations
to obtain FT support. On average: 0.57%.

Overhead of tolerating F failures with the ad hoc recovery.
Application run time.

ExtraAH

Recoveryap (F)

Rtime
Average factor by which the global failure overhead is
reduced when using the ad hoc recovery. Average: 2.1.

Number of failures: total, non DUEs, DUEs.
Percentage of failures originated by: non DUEs, DUEs.

Reduction factor

Fi, FnpuE, FDUE
YonDUE, NDUE
Cleosty Rdpw, Wrpy Checkpoint cost; reading and writing bandwidth local SSD.
Clint, Csize, Nerpts Checkpoint interval, checkpoint size, number of checkpoints.
MTBF Mean Time Between Failures.

The benefit of the proposal is estimated as the reduction in
the relative overhead when incorporating the ad hoc recovery
(Ociobai—O admoc) to tolerate DUEs (while every other failure
is tolerated using a global rollback). Figure 8 shows this gain
for different MTBF and different percentage of DUEs over the
total number of failures. The simulation fixes the checkpoint
file size (200GB per node and using 128 nodes), and the /O
bandwidth (0.5GB/s for reading, and 80% of that performance
for writing using local SSD). The positive values of the
reduction in the relative overhead are represented in log scale.
Even though a performance penalty is introduced by the ad hoc
recovery in systems with large MTBFs and a low percentages
of DUEs, the extra overhead introduced is very low (less than
0.6%). On the other hand, the performance benefit is notable
for other parameters configurations, specially for low MTBE,
which are expected in the exascale era. Although memory
protection mechanisms (e.g., ECC Chipkill) contribute to keep
the rate of UEs low, new hardware devices such as GPUs and
FPGAs are more prone to suffer this type of errors as they
still do not implement all those technique in their products.

All in all, these extensions to the FTI library do not impose
a particular strategy for the management of soft errors. Their
flexibility enables the programmer to adapt the recovery strat-
egy to the algorithm and to the mathematical and/or domain-
specific properties of the underlying problem that the code
is modelling. These strategies would require a more extensive
knowledge of the application and its domain, and can introduce
some programming overhead if the user is not familiar with
the application code. Alternative recovery techniques may
include the regeneration of the corrupted datasets by means
of re-computation, for instance, to obtain a good enough
approximation of a partial result by using other non-corrupted
and/or memory-saved datasets. Although the most efficient
recovery techniques most probably would correspond with
those in which the processes affected by a soft can recover
locally, this proposal is not restricted to this layout. In other
scenarios, processes may need to use information from remote
peers, requesting the participation of other neighbour processes
in the recovery from a soft error. The goal of these FTI

100%

10%

32 1%

% UEs
= NI NINININ GO

o SRR OOONROOONRODO

0.1%

1 S T T O T

-0.6%

o

.25 0.5 1 2 5 10 24 48
MTBF (hours)

Fig. 8: Reduction in the relative overhead varying MTBF and
percentage of DUEs. Parameters: reading bandwidth per node
0.5GB/s, writing bandwidth per node 0.4GB/s, checkpoint file
size per node of 200GB, and 128 nodes.

extensions is to facilitate the catching and handling of error
signals, to free the user of the duties of saving and restoring
data in the applications at different frequencies and to allow the
easy extraction of partial information from the checkpoint files
in order to leverage from local forward recovery strategies.

VII. CONCLUDING REMARKS

This work presents the extension of the FTI checkpointing
library to facilitate the implementation of ad hoc recovery
strategies for HPC applications, to provide protection against
those soft errors that cannot be corrected by hardware mecha-
nisms. The new functionalities provide programmers different
mechanisms to save and access data from a past state of
the computation, without requiring it to be checkpointed nor
imposing restrictions on the saving frequency. The flexibility
of the extensions enables the implementation of more efficient
recoveries by exploiting the particular characteristics of the
application over a wide range of scenarios, while still being
compatible with multilevel checkpoint/restart. These exten-
sions have been evaluated on three different HPC benchmarks
to implement a local forward recovery. In those benchmarks,
a relevant part of the application data is protected against
soft errors by taking into account the particularities of each
algorithm. The experimental evaluation demonstrates the low
overhead introduced by the proposal, while it provides impor-
tant performance benefits when recovering from soft errors.

The usage of these new features in combination with a more
sophisticated knowledge of the algorithm particular character-
istics will allow the implementation of recovery protocols with
further performance benefits.

Future work includes the application of these new exten-
sions to Monte Carlo applications and Genetic Algorithms
(among others), in which memory corruptions over random
data can be regenerated on the fly.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 708566
(DURO). This research is also supported by the Ministry of
Economy and Competitiveness of Spain and FEDER funds of
the EU (Projects TIN2016-75845-P and the predoctoral grant
of Nuria Losada ref. BES-2014-068066), and by the Galician
Government (Xunta de Galicia) under the Consolidation Pro-
gram of Competitive Research (ref. ED431C 2017/04).

[1]

[2

—

[4]

[5

=

[6

=

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

J. Dongarra, T. Herault, and Y. Robert, “Fault tolerance techniques for
high-performance computing,” in Fault-Tolerance Techniques for High-
Performance Computing, 2015, pp. 3-85.

B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Transactions on Dependable and
Secure Computing, vol. 7, no. 4, pp. 337-350, 2010.

C. Di Martino, Z. Kalbarczyk, and R. Iyer, “Measuring the Resiliency of
Extreme-Scale Computing Environments,” in Principles of Performance
and Reliability Modeling and Evaluation, 2016, pp. 609-655.

A. AviZienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.
M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129-173, 2014.
F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, pp. 5-28, 2014.

L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: a large-scale study of DRAM raw error rate on
a supercomputer,” in High Performance Computing, Networking, Storage
and Analysis (SC), 2016, pp. 645-655.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the
wild: a large-scale field study,” in SIGMETRICS Performance Evaluation
Review, vol. 37, 2009, pp. 193-204.

R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258-266, 2005.

T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC
server main memory,” IBM Microelectronics Division, vol. 11, 1997.
L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: high performance fault tolerance
interface for hybrid systems,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011, pp. 1-12.

P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR)
for linux clusters,” in Journal of Physics: Conference Series, vol. 46,
2006, pp. 494-499.

G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “C 3: A sys-
tem for automating application-level checkpointing of MPI programs,”
in International Workshop on Languages and Compilers for Parallel
Computing, 2003, pp. 357-373.

G. Rodriguez, M. J. Martin, P. Gonzdlez, J. Tourifio, and R. Doallo,
“CPPC: a compiler-assisted tool for portable checkpointing of message-
passing applications,” Concurrency and Computation: Practice and
Experience, vol. 22, no. 6, pp. 749-766, 2010.

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” The International Journal of High Performance Computing
Applications, vol. 27, no. 3, pp. 244-254, 2013.

S. Pauli, M. Kohler, and P. Arbenz, “A fault tolerant implementation
of multi-level Monte Carlo methods,” Parallel Computing: Accelerating
Computational Science and Engineering, vol. 25, p. 471, 2014.

W. Bland, K. Raffenetti, and P. Balaji, “Simplifying the recovery model
of user-level failure mitigation,” in Workshop on Exascale MPI at High
Performance Computing, Networking, Storage and Analysis (SC), 2014,
pp. 20-25.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
(36]
[37]
(38]

[39]

I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, and B. R. de Supinski,
“Evaluating user-level fault tolerance for MPI applications,” in European
MPI Users’ Group Meeting, 2014, p. 57.

M. M. Ali, P. E. Strazdins, B. Harding, and M. Hegland, “Complex sci-
entific applications made fault-tolerant with the sparse grid combination
technique,” The International Journal of High Performance Computing
Applications, vol. 30, no. 3, pp. 335-359, 2016.

F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, B. Debusschere,
O. LeMaitre, and O. Knio, “ULFM-MPI implementation of a resilient
task-based partial differential equations preconditioner,” in Workshop on
Fault-Tolerance for HPC at Extreme Scale, 2016, pp. 19-26.

N. Losada, I. Cores, M. J. Martin, and P. Gonzilez, “Resilient MPI
applications using an application-level checkpointing framework and
ULFM,” The Journal of Supercomputing, vol. 73, no. 1, pp. 100-113,
2017.

F. Shahzad, J. Thies, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein,
“CRAFT: A library for easier application-level checkpoint/restart and
automatic fault tolerance,” CoRR, vol. abs/1708.02030, 2017. [Online].
Available: http://arxiv.org/abs/1708.02030

J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engel-
mann, “Combining Partial Redundancy and Checkpointing for HPC,” in
1. C. on Distributed Computing Systems, 2012, pp. 615-626.

C. Engelmann, H. Ong, and S. L. Scott, “The case for modular
redundancy in large-scale high performance computing systems,” in
IASTED I. C. on Parallel and Distributed Computing and Networks,
vol. 641, 2009, p. 046.

K. Ferreira, J. Stearley, J. H. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the viability of process replication reliability for exascale systems,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2011, pp. 1-12.

J. Sloan, R. Kumar, and G. Bronevetsky, “An algorithmic approach
to error localization and partial recomputation for low-overhead fault
tolerance,” in Dependable Systems and Networks, 2013, pp. 1-12.
K.-H. Huang and J. Abraham, “Algorithm-Based Fault Tolerance for
Matrix Operations,” Transactions on Computers, vol. 33, no. 6, pp. 518—
528, 1984.

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based
fault tolerance applied to high performance computing,” Journal of
Parallel and Distributed Computing, vol. 69, no. 4, pp. 410416, 2009.
Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, pp. 1628-1641, 2008.

T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen, “High per-
formance linpack benchmark: a fault tolerant implementation without
checkpointing,” in I. C. on Supercomputing (ICS), 2011, pp. 162-171.
D. Hakkarinen and Z. Chen, “Algorithmic Cholesky factorization fault
recovery,” in International Symposium on Parallel & Distributed Pro-
cessing, 2010, pp. 1-10.

G. Pawelczak, S. Mclntosh-Smith, J. Price, and M. Martineau,
“Application-Based Fault Tolerance Techniques for Fully Protecting
Sparse Matrix Solvers,” in Cluster Computing, 2017, pp. 733-740.

J. Yeh, G. Pawelczak, J. Sewart, J. Price, A. A. Ibarra, S. McIntosh-
Smith, F. Zyulkyarov, L. Bautista-Gomez, and O. Unsal, “Software-
level Fault Tolerant Framework for Task-based Applications,” in Poster
session at High Performance Computing, Networking, Storage and
Analysis (SC), 2016.

L. Bautista-Gomez and F. Cappello, “Detecting and correcting data
corruption in stencil applications through multivariate interpolation,” in
Cluster Computing, 2015, pp. 595-602.

Himeno Benchmark, http://accc.riken.jp/en/supercom/himenobmt/.
CoMD website, http://proxyapps.exascaleproject.org/apps/comd/.
Tealeaf website, https://github.com/UoB-HPC/Tealeaf.

J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Comm. of the ACM, vol. 17, no. 9, pp. 530-531, 1974.

J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computer Systems, vol. 22, no. 3,
pp. 303-312, 2006.

