28 research outputs found

    Controlled Noncontact Manipulation of Nonmagnetic Untethered Microbeads Orbiting Two-Tailed Soft Microrobot

    Get PDF
    A rotating two-tailed soft microrobot induces a frequency dependent flow-field in low Reynolds number fluids. We use this flow-field to achieve noncontact manipulation of nonmagnetic microbeads with average diameter of 30 μ m in 2-D space. Our noncontact manipulation strategy capitalizes on exerting a rotational magnetic torque on the magnetic dipole of the microrobot. The induced flow-field enables microbeads in the surrounding fluid to orbit the microrobot along a sprocketlike trajectory due to a periodic and asymmetric flow-field caused by the two tails. A hydrodynamic model of the two-tailed microrobot and the orbiting microbeads is developed based on the method of regularized Stokeslets for computing Stokes flows. The relations between the angular velocity of the orbiting microbeads and the rotation frequency of the microrobot, their proximity (p), and tail length ratio of the microrobots are studied theoretically and experimentally. Our simulations and experimental results show that the angular velocity of the orbiting microbeads decreases nearly as |p|-2 with the distance to the microrobot and its tail length ratio. We also demonstrate closed-loop control of the microbeads toward target positions along sprocketlike trajectories with an average position error of 23.1 ± 9.1 μ m (n=10), and show the ability to swim away without affecting the positioning accuracy after manipulation

    Microfluidics and Bio-MEMS for Next Generation Healthcare.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    A liquid lens based on electrowetting

    Get PDF
    A primary goal of this work is to develop and characterize a novel liquid lens based on electrowetting. A droplet of silicone oil confined in an aqueous solution works as a lens. Electrowetting then controls the shape of the confined silicone oil, and the focal length may be varied upon an applied electric potential. The planar lens design is employed for easy integration of a lens system into a microfluidic device. The achievements of this work are to develop an electrowetting-based planar liquid lens without an off-the-plane electrode structure and to demonstrate the planar liquid lens with variable focal length control. Electrowetting has recently become popular in many applications including a liquid lens. However, reported liquid lenses based on electrowetting had a limitation of integration onto a lab-on-a-chip system due to their off-the-plane electrode structures. In order to overcome the structural issue, a planar liquid lens is proposed in this thesis. A silicone oil droplet confined in an aqueous solution acts as a lens material. Planar ring-type electrodes control the confinement of silicone oil by electrowetting. With an applied potential, the surface above the ring-type electrodes becomes hydrophilic and attracts the surrounding aqueous solution making the confined silicone oil more curved. By charging the curvature of the lens, the focal length can be controllable. As the lens is in a planar shape, it will be simple to integrate the planar lens on a microfluidic system. The lack of a vertical wall requirement in the demonstrated liquid lens eliminates the limitation of the integration issue for lab-on-a-chip systems. In addition, due to the controllable variable focal length of this lens, it is applicable to various optical applications which need an integrated and controllable lens

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Micromachines for Dielectrophoresis

    Get PDF
    An outstanding compilation that reflects the state-of-the art on Dielectrophoresis (DEP) in 2020. Contributions include: - A novel mathematical framework to analyze particle dynamics inside a circular arc microchannel using computational modeling. - A fundamental study of the passive focusing of particles in ratchet microchannels using direct-current DEP. - A novel molecular version of the Clausius-Mossotti factor that bridges the gap between theory and experiments in DEP of proteins. - The use of titanium electrodes to rapidly enrich T. brucei parasites towards a diagnostic assay. - Leveraging induced-charge electrophoresis (ICEP) to control the direction and speed of Janus particles. - An integrated device for the isolation, retrieval, and off-chip recovery of single cells. - Feasibility of using well-established CMOS processes to fabricate DEP devices. - The use of an exponential function to drive electrowetting displays to reduce flicker and improve the static display performance. - A novel waveform to drive electrophoretic displays with improved display quality and reduced flicker intensity. - Review of how combining electrode structures, single or multiple field magnitudes and/or frequencies, as well as variations in the media suspending the particles can improve the sensitivity of DEP-based particle separations. - Improvement of dielectrophoretic particle chromatography (DPC) of latex particles by exploiting differences in both their DEP mobility and their crossover frequencies

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    Actuation Of Droplets Using Transparent Graphene Electrodes For Tunable Lenses And Biomedical Applications

    Get PDF
    Variable focal length liquid microlenses are the next candidate for a wide variety of applications. Driving mechanism of the liquid lenses can be categorized into mechanical and electrical actuation. Among different actuation mechanisms, EWOD is the most common tool for actuation of the liquid lenses. In this dissertation, we have demonstrated versatile and low-cost miniature liquid lenses with graphene as electrodes. Tunable focal length is achieved by changing both curvature of the droplet using electrowetting on dielectric (EWOD) and applied pressure. Ionic liquid and KCl solution are utilized as lens liquid on the top of a flexible Teflon-coated PDMS/parylene membrane. Transparent and flexible, graphene allows transmission of visible light as well as large deformation of the polymer membrane to achieve requirements for different lens designs and to increase the field of view without damaging of electrodes. Another advantage of graphene compared to non-transparent electrodes is the larger lens aperture. The tunable range for the focal length is between 3 and 7 mm for a droplet with a volume of 3 μL. The visualization of bone marrow dendritic cells is demonstrated by the liquid lens system with a high resolution (more than 456 lp/mm). The Spherical aberration analysis is performed using COMSOL software to investigate the optical properties of the lens under applied voltages and pressure. We propose a prototype of compound eye with specific design of the electrodes using both tunable lenses and tunable supporting membrane. The design has many advantages including large field of view, compact size and fast response time. This work maybe applicable in the development of the next generation of cameras, endoscopes, cell phones on flexible platform. We also proposed here the design and concept of self-powered wireless sensor based on the graphene radio-frequency (RF) components, which are transparent, flexible, and monolithically integrated on biocompatible soft substrate. We show that a quad-ring circuit based on graphene transistors may simultaneously offer sensing and frequency modulation functions. This battery-free and transparent sensors based on newly discovered 2D nanomaterials may benefit versatile wireless sensing and internet-of-things applications, such as smart contact lenses/glasses and microscope slides

    Current status and future application of electrically controlled micro/nanorobots in biomedicine

    Get PDF
    Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome
    corecore