16 research outputs found

    Usage control in SIP-based multimedia delivery

    Get PDF
    The Session Initiation Protocol (SIP) is an application layer signaling protocol for the creation, modification and termination of multimedia sessions and VoIP calls with one or more participants.SIP is widely accepted as the protocol that will dominate multimedia communications in the future and one of the reasons is that it can inherently support multidomain heterogeneous networks.While SIP operates in highly dynamic environments, in the current version its authorization support is based on traditional access control models.The main problem these models face is that they were designed many years ago, and under some circumstances tend to be inadequate in modern highly dynamic environments.Usage Control (UCON), instead, is a model that supports the same operations as traditional access control models do, but it further enhances them with novel ones.In previous work, an architecture supporting continuous authorizations on SIP, based on the UCON model, was presented.In this paper, an authorization support implementing the whole UCON model, including authorizations, obligations and conditions, has been integrated in a SIP system.Moreover, a testbed has been set up to experimentally evaluate the performance of the proposed security mechanism

    Towards Achieving Data Security with the Cloud Computing Adoption Framework

    Get PDF
    Offering real-time data security for petabytes of data is important for Cloud Computing. A recent survey on cloud security states that the security of users’ data has the highest priority as well as concern. We believe this can only be able to achieve with an approach that is systematic, adoptable and well-structured. Therefore, this paper has developed a framework known as Cloud Computing Adoption Framework (CCAF) which has been customized for securing cloud data. This paper explains the overview, rationale and components in the CCAF to protect data security. CCAF is illustrated by the system design based on the requirements and the implementation demonstrated by the CCAF multi-layered security. Since our Data Center has 10 petabytes of data, there is a huge task to provide real-time protection and quarantine. We use Business Process Modeling Notation (BPMN) to simulate how data is in use. The use of BPMN simulation allows us to evaluate the chosen security performances before actual implementation. Results show that the time to take control of security breach can take between 50 and 125 hours. This means that additional security is required to ensure all data is well-protected in the crucial 125 hours. This paper has also demonstrated that CCAF multi-layered security can protect data in real-time and it has three layers of security: 1) firewall and access control; 2) identity management and intrusion prevention and 3) convergent encryption. To validate CCAF, this paper has undertaken two sets of ethical-hacking experiments involved with penetration testing with 10,000 trojans and viruses. The CCAF multi-layered security can block 9,919 viruses and trojans which can be destroyed in seconds and the remaining ones can be quarantined or isolated. The experiments show although the percentage of blocking can decrease for continuous injection of viruses and trojans, 97.43% of them can be quarantined. Our CCAF multi-layered security has an average of 20% better p- rformance than the single-layered approach which could only block 7,438 viruses and trojans. CCAF can be more effective when combined with BPMN simulation to evaluate security process and penetrating testing results

    Usage Control, Risk and Trust

    Get PDF
    Abstract. In this paper we describe our general framework for usage control (UCON) enforcement on GRID systems. It allows both GRID services level enforcement of UCON as well as fine-grained one at the level of local GRID node resources. In addition, next to the classical checks for usage control: checks of conditions, authorizations, and obligations, the framework also includes trust and risk management functionalities. Indeed, we show how trust and risk issues naturally arise when considering usage control in GRID systems and services and how our architecture is flexible enough to accommodate both notions in a pretty uniform way

    Cloud computing adoption framework:A security framework for business clouds

    Get PDF
    This paper presents a Cloud Computing Adoption Framework (CCAF) security suitable for business clouds. CCAF multi-layered security is based on the development and integration of three major security technologies: firewall, identity management and encryption based on the development of Enterprise File Sync and Share technologies. This paper presents our motivation, related work and our views on security framework. Core technologies have been explained in details and experiments were designed to demonstrate the robustness of the CCAF multi-layered security. In penetration testing, CCAF multi-layered security could detect and block 99.95% viruses and trojans and could maintain 85% and above of blocking for 100 hours of continuous attacks. Detection and blocking took less than 0.012 second per trojan and viruses. A full CCAF multi-layered security protection could block all SQL injection providing real protection to data. CCAF multi-layered security had 100% rate of not reporting false alarm. All F-measures for CCAF test results were 99.75% and above. How CCAF multi-layered security can blend with policy, real services and blend with business activities have been illustrated. Research contributions have been justified and CCAF multi-layered security can offer added value for volume, velocity and veracity for Big Data services operated in the Cloud

    Attribute-based access to scalable media in cloud-assisted content sharing

    Get PDF

    Access Control in Industrial Internet of Things

    Get PDF
    The Industrial Internet of Things (IIoT) is an ecosystem that consists of - among others - various networked sensors and actuators, achieving mainly advancements related with lowering production costs and providing workflow flexibility. Introducing access control in such environments is considered to be challenging, mainly due to the variety of technologies and protocols in IIoT devices and networks. Thus, various access control models and mechanisms should be examined, as well as the additional access control requirements posed by these industrial environments. To achieve these aims, we elaborate on existing state-of-the-art access control models and architectures and investigate access control requirements in IIoT, respectively. These steps provide valuable indications on what type of an access control model and architecture may be beneficial for application in the IIoT. We describe an access control architecture capable of achieving access control in IIoT using a layered approach and based on existing virtualization concepts (e.g., the cloud). Furthermore, we provide information on the functionality of the individual access control related components, as well as where these should be placed in the overall architecture. Considering this research area to be challenging, we finally discuss open issues and anticipate these directions to provide interesting multi-disciplinary insights in both industry and academia

    A Tool for Managing the X1.V1 Platform on the Cloud

    Full text link

    A CONTRACT-EXTENDED PUSH-PULL-CLONE MODEL FOR MULTI-SYNCHRONOUS COLLABORATION

    Get PDF
    International audienceIn multi-synchronous collaboration users replicate shared data, modify it and redistribute modified versions of this data without the need of a central authority. However, in this model, no usage restriction mechanism was proposed to control what users can do with the data after it has been released to them. In this paper, we extend the multisynchronous collaboration model with contracts that express usage restrictions and that are checked a posteriori by users when they receive the modified data. We propose a merging algorithm that deals not only with changes on data but also with contracts. A log auditing protocol is used to detect users who do not respect contracts and to adjust user trust levels. Our contract-based model was implemented and evaluated by using PeerSim simulator

    Indeterminacy-aware prediction model for authentication in IoT.

    Get PDF
    The Internet of Things (IoT) has opened a new chapter in data access. It has brought obvious opportunities as well as major security and privacy challenges. Access control is one of the challenges in IoT. This holds true as the existing, conventional access control paradigms do not fit into IoT, thus access control requires more investigation and remains an open issue. IoT has a number of inherent characteristics, including scalability, heterogeneity and dynamism, which hinder access control. While most of the impact of these characteristics have been well studied in the literature, we highlighted “indeterminacy” in authentication as a neglected research issue. This work stresses that an indeterminacy-resilient model for IoT authentication is missing from the literature. According to our findings, indeterminacy consists of at least two facets: “uncertainty” and “ambiguity”. As a result, various relevant theories were studied in this work. Our proposed framework is based on well-known machine learning models and Attribute-Based Access Control (ABAC). To implement and evaluate our framework, we first generate datasets, in which the location of the users is a main dataset attribute, with the aim to analyse the role of user mobility in the performance of the prediction models. Next, multiple classification algorithms were used with our datasets in order to build our best-fit prediction models. Our results suggest that our prediction models are able to determine the class of the authentication requests while considering both the uncertainty and ambiguity in the IoT system
    corecore