
HAL Id: hal-00761038
https://hal.inria.fr/hal-00761038

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CONTRACT-EXTENDED PUSH-PULL-CLONE
MODEL FOR MULTI-SYNCHRONOUS

COLLABORATION
Hien Thi Thu Truong, Claudia-Lavinia Ignat, Pascal Molli

To cite this version:
Hien Thi Thu Truong, Claudia-Lavinia Ignat, Pascal Molli. A CONTRACT-EXTENDED PUSH-
PULL-CLONE MODEL FOR MULTI-SYNCHRONOUS COLLABORATION. International Jour-
nal of Cooperative Information Systems, World Scientific Publishing, 2012, 21 (3), pp.221-262.
�10.1142/S0218843012410031�. �hal-00761038�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49840774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00761038
https://hal.archives-ouvertes.fr

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

A CONTRACT-EXTENDED PUSH-PULL-CLONE MODEL FOR

MULTI-SYNCHRONOUS COLLABORATION

HIEN THI THU TRUONG

Inria Nancy-Grand Est, Université de Lorraine,
Villers-lès-Nancy, 54600, France,

hien.truong@inria.fr

CLAUDIA-LAVINIA IGNAT

Inria Nancy-Grand Est,

Villers-lès-Nancy, 54600, France,

claudia.ignat@inria.fr

PASCAL MOLLI

Nantes University,

Nantes Cedex 3, 44322, France,
pascal.molli@acm.org

Received (22 February 2012)
Revised (6 August 2012)

In multi-synchronous collaboration users replicate shared data, modify it and redistribute

modified versions of this data without the need of a central authority. However, in this
model no usage restriction mechanism was proposed to control what users can do with the

data after it has been released to them. In this paper, we extend the multi-synchronous

collaboration model with contracts that express usage restrictions and that are checked a
posteriori by users when they receive the modified data. We propose a merging algorithm

that deals not only with changes on data but also with contracts. A log auditing protocol

is used to detect users who do not respect contracts and to adjust user trust levels. Our
contract-based model was implemented and evaluated by using PeerSim simulator.

Keywords: multi-synchronous collaboration; contract model; usage control; push-pull-

clone model; trust; log auditing.

1. Introduction

Collaboration between a large number of users has emerged for years in the re-

search domain of CSCW (Computer Supported Cooperative Work). Collaboration

can be synchronous13, asynchronous or multi-synchronous.12 Synchronous (or real-

time) collaboration mode allows communication in an instantaneous manner with

bounded time and changes performed by one user are transmitted immediately to

other group members. Asynchronous or non-real time mode conversely makes no

assumption about the time intervals involved between interactions among users.

1

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

2 H.T.T.Truong, C.-L.Ignat, P.Molli

Multi-synchronous collaboration was introduced firstly by Dourish.12 Multi-

synchronous environment allows private working in cycles of divergence and conver-

gence. Users work simultaneously in isolation in their workspaces and user changes

are not visible to others until they decide to synchronize. Shared data diverges

when users work in isolation and converges later after synchronization of shared

data. Multi-synchronous collaboration model was used not only in research work

such as SAMS28, DSMW37 but also in practical applications such as Distributed

Version Control Systems (DVCS) (e.g. Git23, Mercurial32) and Microsoft SharePoint

Workspace. 9

In multi-synchronous collaboration model, it is very difficult to control what

users will do with the data after it has been released to them and to ensure that

they will not misbehave and violate usage policy. From the view of deontic logic,

usage policy can be expressed in terms of obligation, permission and prohibition.

We model these concepts as contracts. The main issue addressed by this paper is

how contracts can be expressed and checked within multi-synchronous collaboration

model and what actions can be taken in response to users who misbehaved.

We consider, as an example, implicit contracts in DVCS which is an instance

of multi-synchronous working environment. At the beginning, DVCS systems were

mainly used by developers in open-source code projects but nowadays they started

to be widely adopted by companies for source code development. In open source

projects, usage restriction is expressed in the license of the code, while in closed

source code projects, it is expressed in the contracts developers sign when accept-

ing their job. In both cases, usage restrictions are checked a posteriori outside the

collaborative environment with social control or plagiarism detection. As a result

of observations concerning usage violation, trustworthiness on the users who misbe-

haved is implicitly decreased and collaboration with those users risks to be ceased.

We aim at building a contract-based model that can express explicitly usage re-

strictions which are checked within a collaborative environment.

Access control mechanisms do not address the issue of usage restriction after

data was released to users. Traditional access control mechanisms prevent users

from accessing to data and granted rights are checked before access is allowed. It has

been shown that these access control mechanisms are too strict.11 There exist some

optimistic approaches46 that can control access a posteriori. In these approaches, if

user actions violate granted rights, a recovery mechanism is applied and all carried-

out operations are removed. Usually, this recovery mechanism requires a centralized

authority which ensures that the recovery is taken by the whole system. However, a

recovery mechanism is difficult to be applied in decentralized systems such as DVCS

where a user has no knowledge of the global network of collaboration. Roughly

speaking, access control mechanisms aim at ensuring that systems are used correctly

by authorized users with authorized actions. Rather than ensuring such a strong

security model, we target a flexible approach based on contracts that can be checked

after users gained access to data and based on trust management mechanisms that

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 3

help users collaborate with other users they trust.

Push-Pull-Clone (PPC) is one of paradigms supporting multi-synchronous col-

laboration. In PPC model, users replicate shared data, modify it and redistribute

modified versions of this data by using the primitives push, pull and clone. Users

clone shared data and maintain in their local workspaces this data as well as changes

done on it. Users can then push their changes to many channels at any time they

want, and other users who have granted rights may pull these changes from these

channels. By using pull primitives replicas are synchronized.

The main issue in designing a contract-based multi-synchronous collaboration

is that contracts are objects that are part of the replication mechanism. In our

contract-based model each user maintains a local workspace that contains shared

data and contracts for the usage restriction of that data as well as changes on

data. Changes done locally on the data together with specified contracts are shared

with other users. Algorithms for merging and for conflict resolution have to deal

not only with data changes but also with contracts. For checking if users respect

contracts, a log auditing mechanism is used. According to auditing results, users

adjust their trust levels assigned to their collaborators. To our best knowledge, there

is no existing collaborative editing model based on contracts which allows auditing

and updating trust levels during collaboration process. Major contributions of this

paper are as follows:

• A PPC model extended with contracts for multi-synchronous collaboration

that we call the C-PPC model. The proposed model ensures consistency of

the shared document.

• A log auditing mechanism to detect user misbehavior in contract-based

collaboration model.

• A set of experiments to evaluate the performance of the C-PPC model and

the log auditing mechanism by using a peer-to-peer simulator.

This paper is an extension of our previous published work.49 We present a real

world motivating example for our approach and more details about deontic concepts

that are used in the formalisation of the contract model. In addition, we classify

different types of contract conflicts and present the solution to deal with these

conflicts. Furthermore, we complete the C-PPC model with a log auditing protocol

and provide some additional discussion around this model.

The paper is structured as follows. We start by presenting an overview of our

proposed approach in Section 2. We then describe the C-PPC model in Section

3, including representation of logs of operations and formalisation of contracts ex-

pressed inside the model. In section 4, we present aspects of collaborative process

over C-PPC model: logging changes, push and pull protocols, consistency model,

log auditing and trust assessment mechanisms. We report some experimental results

of simulation to evaluate the efficiency of our model in Section 5. In Section 6, we

review related approaches and point out their differences from our work. We end

the paper with some concluding remarks and directions for future work in Section

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

4 H.T.T.Truong, C.-L.Ignat, P.Molli

7.

2. Approach Overview

We consider a collaboration model that requires high levels of respect and trust

among users. To create a trustful and respectful collaborative environment, we

introduce collaboration contracts that will be used in collaborative interactions. In

this section, we present an overview of our C-PPC model which extends the PPC

model with contracts.

Let us give a simple example to illustrate how C-PPC model works in a real world

example of collaboratively building a photo collection. Nowadays it is very common

that people share photos. Photos help people stay in touch with their family and

friends all around the world. They take photos in their daily life experience coming

from many contexts such as from a wedding to a vacation or from a local meeting to

an international conference. After an event where many people took many photos,

people who joined the event want to share those photos with each other. By that

way they can remember all little moments they might have missed during the event.

Together users can build a great photo-based story for the event in which they

participated.

Pierre

Olivia

Tom

Alex

insert(comment 1)

insert(comment1)

edit is permitted
share Pierre->Tom

share is permitted insert(comment 2)

insert(comment1)

edit is permitted
share Pierre->Tom

share is permitted
insert(comment2)
share Tom->Alex
delete is forbidden
share is permitted
insert is obligatory

(a)

(b)

insert(comment 1)

edit is forbidden
share Pierre->Olivia

share is permitted

(c)

insert(comment 3)
delete(comment 1)

insert(comment 5)

share Tom->Alex
delete is forbidden
share is permitted
insert is obligatory
insert(comment 5)
share Alex->Tom
delete is forbidden

(d)

(e)

insert(comment 4)

(f)
edit is permitted
share is permitted

delete is forbidden
share is permitted
insert is obligatory

edit is forbidden
share is permitted

edit is forbidden

delete is forbidden
share is obligatory

share is forbidden

detect
misbehavior

contracts
conflict

share is obligatory

Fig. 1. A Push-Pull-Clone collaboration scenario of four users over a photo X between Time 1

and Time 2. User actions are recorded chronologically.

We assume a friend-to-friend network of four users Alex, Tom, Olivia, and Pierre.

We suppose that users can edit photos by means of adding and deleting comments.

At the beginning, the network is built based on social trust between users and

connections are established only between users who trust each other. Users trust

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 5

their collaborators with different trust levels that are updated according to their

collaboration experience. For instance, Pierre trusts both Tom and Olivia, however,

with different trust levels, and thus he gives them different contracts over the shared

photo. For example, Pierre gives Tom the permission to edit and to share, while he

gives Olivia only the permission to share the photo. Receivers are expected to follow

these contracts; otherwise, their trust levels will be adjusted once misbehavior is

detected. We log changes that users do on the photo collection with contracts that

they receive from others when they receive their changes. Assume that in the time

interval [Time 1, Time 2], Alex, Tom, Olivia, and Pierre perform their local changes

on the collection.

Alex Tom

Olivia Pierre

0.6

0.7

0.2

0.5

0.5
0.4

0.8

0.6

0.4

0.6 0.7

0.5

0.6

0.7

0.2

0.5

0.5
0.4

0.8

0.6

0.4

0.6 0.7

0.1

Alex Tom

Olivia Pierre

Time 1 Time 2

Fig. 2. Trust values at two different times Time 1 and Time 2.

Let us assume that user trust values at a time instance Time 1 are shown in Fig.

2 in which values are real numbers ranged in the interval [0, 1]. However, trust values

change over time based on user’s assessment. The values we take in this example

show the implicit trust each user has on others. A user has no global knowledge of

the trust values that each user assigns to others, but knows directly only the trust

values he assigned to other users.

Our model uses push, pull and clone as native direct pair-wise communica-

tion primitives between users. To work with others, a user simply sets up a local

workspace, and uses trusted channels to push her changes to trusted friends. Other

users can then get the photo by cloning (executing a clone primitive) it into their

workspaces. In this way, they have independent local workspaces for the shared

data. They do their changes on their local replicas and publish changes by execut-

ing a push primitive. The user then executes a pull primitive to get the changes

into his local workspace. Push, pull, and clone primitives are used for efficient dis-

tributed collaboration and they were already implemented in distributed version

control systems such as Git and Mercurial. We assume the system uses a FIFO

channel between two users for changes propagation to guarantee that messages are

received in the order they are sent. This order can be preserved by using logical

timestamps to sort messages into chronological order.

In Fig. 1 and Fig. 2, after Time 1, Pierre trusts Tom with a trust value 0.6.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

6 H.T.T.Truong, C.-L.Ignat, P.Molli

Pierre makes a change on photo X by adding a new comment comment 1. He shares

his change on photo X with Tom with the contract {edit is permitted, share is

permitted} (step a). The change and the contract are pushed to a communication

channel with Tom. As it is the first time that Tom initiates a communication with

Pierre, he has to clone photo X with changes from Pierre. Tom now has in his

local workspace a clone of the photo collection from Pierre, on which he can work

in isolation. In the example, Tom adds another comment to the photo comment

2. Since he has the right to distribute further the data, he then shares it with

his trusted friend Alex (step b). Tom wants Alex to redistribute the collection of

photos only after adding her own comment on photo X. He therefore shares his

data with the contract {delete is forbidden, share is permitted, insert is obligatory}.
Concurrently, Pierre collaborates also with Olivia. He trusts her less than Tom and

he wants to forbid her from editing the photo while allowing her to share it. Pierre

specifies the contract {edit is forbidden, share is permitted}. Olivia thus has no right

to edit photo X after she receives it from Pierre (step c).

Olivia violates the contract she received from Pierre by deleting Pierre’s com-

ment and adding her comment, comment 3, to photo X. She continues to collaborate

with Tom by specifying the contract that he is forbidden to delete any comment on

the photo (step d). As soon as Tom receives the changes from Olivia, he discovers

that she misbehaved. He thus updates the trust value on Olivia. The Fig. 2 shows

that her trust level at Time 2 is decreased to 0.1.

In parallel, Pierre adds a new comment, comment 4, to photo X. He wants the

comment is kept private except for Tom. He thus shares the photo with this new

comment with his friend Tom, but with the restriction of not sharing it further,

{share is forbidden} (step f). Tom receives the data with the new contract from

Pierre. This contract conflicts with the contracts he holds after synchronizing with

Alex (step e) which is {share is obligatory}. As Tom wants to be able to further

modify and share the photo, he decides to resolve the conflict, for example, by

discarding the changes from Pierre, or by negotiating to relax the prohibition of

sharing.

In the example, Alex behaves well by always respecting contracts she has re-

ceived. She adds comment 5 to photo X and shares it with Tom by restricting him

not to delete the added comments with the contract {delete is forbidden, share is

obligatory} (step e). After these user interactions in the time interval [Time 1, Time

2], user trust values are illustrated at Time 2 in Fig. 2.

We have given an illustration of how the C-PPC model can be used for the

collaboration between four users Alex, Tom, Olivia, and Pierre on the assumption

that users trust each other at different trust levels. We move next to the formal

representation of our C-PPC model.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 7

3. C-PPC Model

In this section, we describe main parts of our target model: users, logs of operations

on shared document and contracts between users.

3.1. Users

Users are main participants in the C-PPC model. They are connected in a collabo-

rative network based on the trust they have in other users. However, users are not

uniformly trusted by others. Each user keeps at his local site the replica of shared

documents and works locally on these replicas. For the sake of simplicity we con-

sider that all users (also called sites throughout this paper) are collaborating on a

single shared document.

3.2. Document, Changes and Logs

The system keeps a document as a log of operations that have been done during

the collaborative process. The log maintains information about user’s contributions

to different parts of the document and when these contributions were performed.

The outcome of collaboration is a document that could be obtained by replaying

the write operations such as insert, delete, update from the log. Two users can

write independently on the shared document. Changes are propagated in weakly

consistent manner that a user can decide when, with whom and what data is sent

and synchronized. Push, pull and clone communication primitives are operated on

FIFO channels for allowing an ordered exchange of operations done on document

replicas. A replica log contains all operations that have been generated locally or

received from other users. Logs are created and updated at user sites. The log

structure is defined in the following definitions.

Definition 3.1. (Event) Let P be a set of operations {insert, delete, edit, share}
that users can generate; and let T be a set of event types {write, communication,

contract}. An event e is defined as a triplet of 〈evt ∈ T, op ∈ P, attr〉, in which

attr includes attributes which are in form of {attr name, attr value} to present

additional information for each event.

Definition 3.2. (Log) A document log L is defined as an append-only ordered

list of events in the form [e1, e2, . . . , en].

Users store operations in their logs in an order that is consistent with the gener-

ated order. The event corresponding to a share operation of type communication is

issued when a user pushes his changes and it is logged at the site of receiver when

this one performs a pull. This share event can be followed in the log by an event of

type contract representing usage policies for the shared data.

In Fig. 3 we give an example of a log containing a single event that has three

attributes. The log is presented in XML format. The write event refers to insert

operation and belongs to write type. The event has attributes {by, P ierre} (done

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

8 H.T.T.Truong, C.-L.Ignat, P.Molli

<log> <!-- at local site of Pierre -->

<event>

<evt>write</evt>

<op>insert</op>

<attr>

<by>Pierre</by>

<content>comment 1</content>

<gsn>1</gsn> <!--generation timestamp -->

</attr>

</event>

</log>

Fig. 3. An example of log with one event in XML format.

by Pierre), {content, comment1} and {GSN, 1} for the sequence number when the

event is generated.

The event attribute GSN (generate sequence number) of an event is assigned

at the site where event was generated. The event attribute RSN (receive sequence

number) of either a communication or a contract event is assigned at reception of

this event by receiving site. We will discuss how to use these sequence numbers later

in Section 4.

3.3. Contract

A contract expresses usage policies which one user expects others to respect when

they receive and use shared data. Contracts are built on the top of basic deon-

tic logic55 with the normative concepts of obligation, permission and prohibition

representing what one ought to, may, or must not do.

Contract in C-PPC model is different from traditional usage policy that is pre-

sented accompanied with application systems. For example, W3C platform for pri-

vacy preference P3P52, which uses preference exchange language, APPEL51, is an

industry standard that provides a method for users to gain control over the use

of personal information collected by web sites they visited. Our approach does not

require additional platform to express contracts. Instead, contract is a part of repli-

cation system and it is built over operations within application domain.

3.3.1. Symbolism of deontic concepts

Let us start first with our review of deontic logic. Deontic logic is one of four main

groups of modalities that the philosopher Von Wright mentioned in his papers55

(the alethic models or models of truth, the epistemic models or models of knowing,

the deontic models or models of obligation and the existential models or models

of existence). Deontic logic is used as the logic of rights and duties. In the deontic

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 9

models, the first preliminary concept is the act that is pronounced obligatory, per-

mitted and forbidden. The word act is used for properties and not for individuals,

for example, steal or smoke are acts. The negation of a given act is performed by a

subject, if and only if, it does not perform the given act. For example, the negation

of the act of answering a question is the act of not answering it.

The philosopher von Wright considers the concept of permission is true on formal

grounds, then defines the concept of the obligatory and the forbidden. The deontic

concepts that are applied to a single act follows.

“If an act is not permitted, it is called forbidden. For instance, theft is not

permitted, hence it is forbidden. We are not allowed to steal, hence we must

not steal.”

“If the negation of an act is forbidden, the act itself is called obligatory. For

instance: it is forbidden to disobey the law, hence it is obligatory to obey

the law. We ought to do that which we are not allowed not to do.”

“If an act and its negation are both permitted, the act is called indifferent.

For instance: in a smoking compartment we may smoke, but we may also

not smoke. Hence smoking is here a morally indifferent form of behavior.

[..] Indifference is a narrower category than permission. Everything indif-

ferent is permitted but everything permitted is not indifferent. For, what

is obligatory is also permitted , but not indifferent.”

(Deontic logic55, pages 3-4).

The norms derived from deontic concepts of the permitted, the obligatory and

the forbidden are permission, obligation and prohibition, respectively. We build the

contract on the top of these norms and handle them in distributed manner. For

the permission, we distinguish a permission that can be either a strong permission

or a weak permission.56 The permission, which is an exception of an obligation

and a prohibition, is a strong permission. The permission which follows from the

absence of a prohibition, is a weak permission. If an act is strongly permitted then

its negation is permitted, whereas if an act is weakly permitted then its negation

is forbidden. With a strong permission, a subject always can choose to perform the

act or not, while it is not the case for weak permission.

We illustrate the concepts of deontic logic model in Fig. 4. We will summarize

how these deontic norms are symbolized as a formal logic following von Wright

model.

We use A to denote a name of an act and ∼A is used as a name of its negation.

The proposition that the act named by A is permitted is expressed in symbols by

PA. The proposition that the act named by A is forbidden, which is the negation of

the proposition that it is permitted, is symbolized by ∼PA or FA. The proposition

that the act named by A is obligatory, which is the negation of the proposition

that the negation of the act is permitted, is symbolized by ∼P∼A. We use simpler

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

10 H.T.T.Truong, C.-L.Ignat, P.Molli

forbidden

permitted
obligatory

indifferent
permitted

Fig. 4. Three deontic concepts that cover all possibilities assigned to an act. The act is only either

forbidden, obligatory or permitted indifferently.

symbol for the obligatory, OA. The proposition that the act named by A, which is

called indifferent, is symbolized by (PA)&(P∼A). In this symbolism, P , O, F are

called the deontic operators. Sentences of the type “P name of act(s)“ are called

P-sentences. Similarly, we might have O-sentences and F-sentences. Also we have

“permitted”, “obligatory”, “forbidden” as deontic values.

The above deontic operators apply to a single act with what we call an atomic

name. Since we can define the conjunction, disjunction, implication of two given

acts to be what we call a molecular name, we can apply deontic operators to pairs

of acts as well. If A and B denote acts, then A&B is used as a name for their

conjunction, A ∨ B as a name for their disjunction, A → B as a name of their

implication.

Considering the distribution property of deontic operators, wrong conclusions

might be taken with respect to the application of these operators. We first con-

sider negation operation. If the act A is permitted, we can conclude nothing to

the permitted, forbidden or obligatory as character of ∼A. Sometimes ∼A is per-

mitted, sometimes not. From the Fig. 4 we can see that A might be obligatory or

indifferent. If A is obligatory as well as permitted, then ∼A would be forbidden.

If A is what we call indifferent, then ∼A is also permitted. For example, in smok-

ing compartment, smoking and not-smoking is permitted. But in the non-smoking

compartment, not-smoking is permitted but smoking is forbidden.

We next consider distribution property in the conjunction of two acts. If both A

and B are permitted, it does not mean A&B is permitted because doing either of

them may commit us not to do the other. For example, it is permitted to promise

to give a thing and it is also permitted not to give a thing, but it is forbidden to

promise to give a thing and then not give it.

We finally consider distribution property in the disjunction of two acts. If at

least one of the acts A and B is permitted, it follows that their disjunction A ∨ B
is permitted. When both acts are forbidden, their disjunction is forbidden.

The von Wright deontic model includes also laws of deontic logic. A true proposi-

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 11

tion, that a certain molecular P-/O-sentence expresses a deontic tautology, is called

a law of deontic logic. We summarize below these laws from notions of permission

and obligation. It should be noticed that the combining force order follows that “∼”

is stronger than “&”, “&” is stronger than “∨”, and “∨” is stronger than “→”.

• Two laws on the relation of permission and obligation:

(1) PA is identical with ∼O∼A.

(2) OA entails PA.

• Four laws for the dissolution of deontic operators:

(1) OA&B is identical with OA&OB .

(2) PA&B is identical with PA ∨ PB .

(3) OA ∨OB entails OA∨B .

(4) PA&B entails PA&PB .

• Seven laws on commitment (doing an act commits to do another act if the

implication of one to another is obligatory):

(1) OA&OA→B entails OB . This law is intuitively obvious. If doing an

act that is obligatory commits us to do another act, then this act is

obligatory also.

(2) PA&OA→B entails PB . If doing what we are free to do commits us

to do another act, then this act is permitted to do also.

(3) ∼PB&OA→B entails ∼PA. This is a vice versa law of the law above.

If doing an act commits us to a forbidden, then this act is forbidden

also.

(4) OA→B∨C&∼PB&∼PC entails ∼PA. This law is an extension of

above law. Doing an act that commits us to a choice of forbidden

alternatives, then this act is forbidden also.

(5) ∼(OA∨B&∼PA&∼PB). This law means it is impossible to oblige

to choose between forbidden alternatives.

(6) OA&O(A&B)→C entails OB→C . This law means that if doing two

acts, one of which being obligatory, commits us to do a third act, then

doing the second act commits us to do the third act.

(7) O∼A→A entails OA. If it is failure to perform an act commits us

to perform it, then this act is obligatory.

Combining two acts into a molecular act might lead to the incompatible. Two

acts are incompatible if their conjunction is forbidden. For example, reading and

smoking both are not permitted in library, so they are incompatible.

3.3.2. From deontic modalities to contracts

Based on deontic concepts, we formalize contract in our target model as follows.

Definition 3.3. (contract primitive). For a set of n possible operations P =

{op1, op2, . . . , opn}, a contract primitive is denoted by a deontic operator followed

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

12 H.T.T.Truong, C.-L.Ignat, P.Molli

by a write or a communication operation. A contract primitive is an event in log

that takes deontic operators P (the permitted), O (the obligatory), F (the forbid-

den) as modality attributes (so-called modal). If op is an operation in P then the

contract primitive cop based on op is denoted as: Fop (doing op is forbidden), Oop

(doing op is obligatory), and Pop (doing op is permitted). When we use the generic

notation c it means that the contract c can refer to any operation.

Definition 3.4. (contract). A contract C is a collection or a set of con-

tract primitive(s) which are built on the operations of P. It is denoted as

CP = {cop1 , cop2 , . . . , copn}. Alternatively, we can use the notation C =

{cop1
, cop2

, . . . , copn
} for a contract.

For example, in Fig. 1, Pierre inserts a comment into photo X and gives it to Tom

with a contract C{edit, share} = {Pedit, Pshare} (edit and share are permitted) with

two single contract primitives Pedit and Pshare. When a user shares data by means

of a push primitive, at the site of the receiver, a share event is logged with attributes

representing users who sent and received the changes. Moreover, contract events are

logged describing the contracts received. In Fig. 5, we illustrate the representation

of the log at site of Tom after he cloned photo X from Pierre.

If we have n contract primitives, we can obtain a contract by merging these

contract primitives. For instance, if we have two contract primitives c1 = Pop1
(op1

is permitted) and c2 = Oop2 (op2 is obligatory), then we can build the contract

C{op1,op2} = {Pop1
, Oop2

}. Concerning merging contract primitives to obtain a

contract, we consider two following axioms:

(A1) C = {c1} & (c1 → c2) −→ C = {c1, c2} (deducibility)

(A2) C = {c1op, ..., cnop} & (c1op � c2op � . . . � cnop) −→ C = {c1op} (priority)

(“�” denotes a higher priority relationship between two contract primitives or two

operations).

The axiom (A1) shows the consequent deducibility. We assume a set of inference

rules can be defined among the contract primitives in the system. Following this

axiom, if c1 ∈ C and c1 → c2 then c2 ∈ C. At a certain time if the user u has a

contract C that contains c1 and respecting c1 commits to respecting c2 then even

if c2 is not explicitly given to user u, c2 is added to C. This is helpful to reduce

the number of contract primitives given at a certain sharing time since users do

not have to specify contracts that can be inferred from other contract primitives

based on deducible rules of system settings. For instance, if we suppose that Oedit

→ Pinsert, then C = {Oedit} & (Oedit → Pinsert) −→ C = {Oedit, Pinsert}. This

means if a user receives an obligation to edit, she will have the permission to insert

automatically since the setting of inference rule Oedit → Pinsert holds. Another

example, if system allows Pedit → Pinsert then C = {Pedit} & (Pedit → Pinsert) −→
C = {Pedit, Pinsert}.

The axiom (A2) rules the merging process of different contract primitives refer-

ring to a same operation. If we have n contract primitives referring to an operation

op with priority order c1op � . . . � cnop then these contract primitives can be merged

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 13

<log> <!-- at local site of Tom -->

<event>

<evt>write</evt><op>insert</op>

<attr>

<by>Pierre</by>

<content>comment 1</content>

<gsn>1</gsn>

</attr>

</event>

<event>

<evt>share</evt><op>share</op>

<attr>

<by>Pierre</by>

<to>Tom</to>

<gsn>2</gsn>

<rsn>1</rsn> <!-- receipt timestamp -->

</attr>

</event>

<event>

<evt>contract</evt><op>edit</op>

<attr>

<by>Pierre</by><to>Tom</to>

<modal>P</modal>

<gsn>3</gsn>

<rsn>2</rsn>

</attr>

</event>

<event>

<evt>contract</evt><op>share</op>

<attr>

<by>Pierre</by><to>Tom</to>

<modal>P</modal>

<gsn>4</gsn>

<rsn>3</rsn>

</attr>

</event>

</log>

Fig. 5. An example of log containing contract events

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

14 H.T.T.Truong, C.-L.Ignat, P.Molli

and the resulting contract is deducible as C = {c1op}. For instance, if C = {Fop, Pop}
and Fop � Pop then it is deducible to have a contract C = {Fop}. This means that

even though op is permissive with the contract primitive Pop, it is forbidden to

perform op if C = {Fop} and C = {Pop} are merged with the condition Fop � Pop.

3.3.3. Contract conflict

When multiple users work on the same shared data and share their changes to one

another under different contracts, it is not possible to ensure that the system will be

conflict-free regarding these contracts. Therefore it is necessary to identify conflicts,

to detect conflicts and to propose conflict resolution strategies.

The term deontic conflict and deontic inconsistency have been used interchange-

ably in the literature. In the book On Law and Justice, Ross41 identifies three

ways in which inconsistency in law arises: “total-total”, “total-partial” and “partial-

partial”.

(1) Total-total inconsistency: this means neither of a pair of norms is applicable

without conflicting with the other. If the conditional facts of each norm are sym-

bolized by a circle, a total-total inconsistency occurs when the two circles coincide

(Fig. 6a). In total-total inconsistency two norms are absolutely incompatible. This

is thus said strong inconsistency since no norm can be performed without causing

norm violations. For example, the total-total inconsistency arises when an action is

simultaneously obligatory and forbidden.

conflict area
conflict area

conflict areac1
c2

c1

c2 c1 c2

(a) Total-Total inconsistency (b) Total-Partial inconsistency (c) Partial-Partial inconsistency

Fig. 6. Three ways of inconsistencies.

(2) Total-partial inconsistency: this means one of the two norms is not applicable

in any case without coming into conflict with the other, whereas the other norm

does not conflict in all cases with the first one. Such inconsistency occurs where one

circle lies inside the other. (Fig. 6b). As an example, the total-partial inconsistency

arises when an action is simultaneously permitted and forbidden.

(3) Partial-partial inconsistency: this means each of the two norms has cases that

conflict with the other but also cases in which no conflict arises. This inconsistency

exists when two circles intersect. (Fig. 6c). We can see this inconsistency in an

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 15

example which a person is obliged to attend a concert but the entering to the

theatre without ticket is forbidden. The partial-partial inconsistency arises between

two norms which are the obligation to attend and the prohibition to enter without

ticket. If the person has a ticket, then she can fulfill one of two norms or both

without causing violation to the other. In this case, she can enter the theatre, and

by attending the concert, she fulfills the obligation requiring her to attend it. By

this, no conflict arises. However, if she does not have a ticket, then she cannot

act following one norm without violating the other. Without having a ticket, when

she respects the prohibition to enter by staying outside, she violates the obligation

to attend the concert. In contrast, when she fulfills the requirement to attend the

concert, she will violate the prohibition not allowing her to enter without ticket.

Through the example we see two norms that are incompatible in once case and

compatible in another case.

Ross41 also figures out that in judging inconsistencies an important part is the re-

lationship between statutes where conflict occurs. Inconsistency is drawn (a) within

the same statute or (b) between older and more recent statutes.

Concerning inconsistencies, in the normative discourse, the unrealizability is

mentioned with two conditions: (i) the norm belonging to a set of norms must

be individually realizable. This condition means each single norm should not be

impossible to conform; (ii) however, the norms in that set of norms are not jointly

realizable. This means what is prescribed by a set of norms cannot be performed

simultaneously.

Definition 3.5. (contract consistency) A contract which is a collection (or a set)

of contract primitives (norms of obligations, permissions, and prohibitions), is con-

sistent, if and only if, its contract primitives are simultaneously jointly realizable.

Inconsistencies arise due to the incompatibility of the deontic operators. The

deontic square of opposition (Fig. 7), which is based on Aristotle’s philosophy (as

stated by Moretti30) about logic square and first used in deontic logic by Bentham5,

depicts the relationship between norms. It shows four types of inconsistencies be-

tween four deontic modalities.

Weak Permission
(not forbidden)

Strong Permission
(allowed but not required)

Prohibition Obligationcontrary

co
nt

ra
di

ct
or

y

co
nt

ra
di

ct
or

y

sub-contrary

implication

im
pli

ca
tio

n

FA

PA

OA

P~APA&

Fig. 7. Deontic square of opposition.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

16 H.T.T.Truong, C.-L.Ignat, P.Molli

(1) Contraries: the pair obligation and prohibition forms this opposition. An

action cannot be obligatory and forbidden simultaneously. This is a total-total in-

consistency since both norms may be false.

(2) Contradictories: strong permission and prohibition, obligation and weak per-

mission form this opposition. One norm in each pair of norms is true. An action is

either permitted or forbidden as well as an action is either obligatory or omissible.

(3) Implication: obligation implies weak permission, prohibition implies strong

permission. If an action is obligatory, then it cannot be forbidden, thus its permission

is possible. Also, if an action is forbidden, then it cannot be obligatory, and thus

its omission is possible.

(4) Sub-contrary : from the contrary of obligation and prohibition, strong per-

mission (PA&P∼A) and weak permission PA are contrary to each other. An action

may be performed if it is not forbidden, as well as it may be omitted if it is not

obligatory.

According to this square, there are three possibilities for an action that is either

forbidden, obligatory or indifferent (permitted but not obliged) (this is consistent

with what is shown in Fig. 4). From this square we can observe that the contrary

relationship between prohibition and obligation raises the real conflict (total-total

inconsistency). The situation when an action is simultaneously obliged and forbid-

den influences behaviors in conflicting fashion in the sense that it is impossible to

do the action that is compliant with one norm without conflicting the other. For

the pair permission and prohibition, we adopt the view that their contradictory is

an inconsistency but not a real total-total conflict. This comes from the fact that

a permission may not be acted on, so no real conflict occurs between permission

and prohibition. Therefore from our view, real conflict rather than normal incon-

sistency arises only between obligation and prohibition. In our model, we assume

users should be able to perform actions and therefore contracts must not be incon-

sistent or they must not contain any inconsistency or conflict between their contract

primitives.

Even though each contract is conflict free, conflicts may arise when two con-

tracts are merged during synchronization phase. The fact that two users assert two

contract primitives that are inconsistent is quite frequent. It is even possible for

one and the same user to assert two inconsistent contract primitives. If we want

that users collaborate in contract-compliant manner, we must resolve conflicts. The

important thing is to identify inconsistencies and to examine the techniques used

to remove them.

Definition 3.6. (contract conflict) Two contracts C1 and C2 conflict if at least one

contract primitive ci ∈ C1 conflicts with one another cj ∈ C2. Contract primitives

are conflicting between Oop and Fop. Besides, two contracts are inconsistent to each

other if at least one contract primitive ci ∈ C1 is inconsistent with one another

cj ∈ C2.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 17

3.3.4. Conflict resolution

We present in this section our solution to deal with inconsistencies of contracts.

There is no fixed principles for conflict resolution. In order to ensure the consis-

tency of contracts in the system, conflicts are resolved based on several criterias.

Contracts, among which a real conflict arises, cannot co-exist in the contractual

system, hence they must be avoided. One way to do this is by means of negoti-

ation between users. In this case, the system should inform contracting partners

about their contractual situation and what are the conflicting contracts on which

operations. Then contracting partners decide how obligations and prohibitions can

be “relaxed” in order to allow additional options for further actions. For example,

Figure 8 depicts the case that conflict need to be negotiated to precede further

work of contracting partners. In the figure we can see even the conjunction of two

obligations might create conflict. Say, a night club is obliged to close emergency

exit to prevent crimes quit for drugs (Oop1 from police department), and a night

club is obliged to open emergency exit (Oop2
from fire safety). In this case Oop1&op2

is inconsistent and two obligations are not realizable at the same time. In current

work, we consider only the inconsistency between deontic operators (P , F and O)

and not yet between semantic content of actions under those operators.

Contract C1

Fop1
Oop

2

Contract C 2

Pop1
Fop2

Oop3

Fig. 8. A scenario when a user adopts two contracts that are inconsistent with each other. The

user holds Contract 1 and a coming one Contract 2. The conflict between Oop2 and Fop2 needs to

be resolved to proceed further actions.

In case of partial inconsistencies only, inconsistent contracts can co-exist. For

example, in Fig. 8, if we eliminate the conflict between Oop2
and Fop2

, there still

remains the partial inconsistency between Fop1
and Pop1

. In this case if the user

is not performing op1 then Fop1
and Pop1

are both respected and therefore no real

conflict occurs. Similarly, if Fop1
and Pop1

are both given by the same user and

Pop1 overrides Fop1 (we discuss overriding rules later) then no real conflict occurs.

Even though this type of inconsistency can exist in the system, it is better to re-

duce inconsistency possibilities. Users should be informed about their contractual

situation when a synchronization is performed. This helps them choosing between

different contracts the ones that give them better benefit. In what follows we de-

scribe a method for ordering contracts based on the order of operations associated

with them.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

18 H.T.T.Truong, C.-L.Ignat, P.Molli

3.3.5. Ordering contracts

Contract primitives are naturally interrelated and interdependent and there is no

hierarchy between them. Thus, some priorities can be established in terms of par-

ticular objectives and they vary depending on particular applications. One way to

select a contract in the case of conflict is to assign orders to various contract prim-

itives, and sort them in ascending or descending order and then compare contracts

composed of them. The hierarchical ordering of contracts enables users to give pref-

erences to some contracts over others. In that case, the set of contract primitives is

not a normal set but a partially ordered set and the ordering relations are intrinsic

to the contracts in the system.

Depending on the operation types, the order of contract primitives is given as

follows. Operations are categorized to different groups according to their types.

Given two operations op1 and op2 with the priority order op1 � op2, then the order

of contract primitives with the same deontic operator is assigned according to the

order of operations, cop1
� cop2

. If the contract primitives associated with operations

belong to different groups, then we determine a combined order for each, based on

the order within group and the order of the group.

We formalize the method to order single operations as well as sets of operations.

Our method is inspired from the work of Cholvya and Hunterb.8 We present below

the ordering of operations within single category and across multiple categories,

and next is our solution to compare contracts.

• Ordering categories of operations: Each category includes a set of operations

referring to a specific kind of action. Let us consider two categories Λ1 =

[α1, ..., αm] and Λ2 = [β1, ..., βn]. The ordering of Λ1 and Λ2 is given based

on the priority of them in a particular system. In addition, the order of Λ1

and Λ2 implies the order of every operation of Λ1 and Λ2. For example,

Λ1 > Λ2 ⇒ αi > βj ∀αi ∈ Λ1, βj ∈ Λ2.

• Ordering operations within a single category: Operations in a single cate-

gory of actions can be put in a hierarchical order specific to a particular

system. For two operations α1 and α2, their orders should be either α1 > α2

or α1 < α2. For example, (add-comment > read) in category edit.

To compare two contracts, let P be a set of n operations that could be ordered as

[op1, op2, . . ., opn] from the highest to the lowest priority conforming to the orders

of operations within each category (if any) and between categories as presented

above. Let S be a set of n-digit ternary numbers from 0 to 3n− 1 and a contract C

composed of m contract primitives built over operations of P, C = {c1, c2, . . ., cm},
ci = Popj |Oopj |Fopj , ci ∈ C, opj ∈ P, 1 ≤ i ≤ m, 1 ≤ j ≤ n as a list of contract C

where contract primitives are ordered following operation order.

To order contract, we set norms in some kind of hierarchy, some is regarded

as more basic than others. Without losing generality, let us assume that deontic

operators are ordered as P � O � F ; also operations in P are put in order opn �

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 19

opn−1 � . . . � op1. A mapping from C to S results in s ∈ S. For each opj ∈ P,

1 ≤ j ≤ n, we set:

• If ∃ci = Popj
|Oopj

|Fopj
∈ C then:

(1) if ci = Popj
then s[j]3 = 2, where 1 ≤ i ≤ m;

(2) if ci = Oopj
then s[j]3 = 1, where 1 ≤ i ≤ m;

(3) if ci = Fopj
then s[j]3 = 0, where 1 ≤ i ≤ m;

• If 6 ∃ci ∈ C, 1 ≤ i ≤ m, then s[j]3 = 2. This case presents the absence of

any contract specified on operation opj . We take the positive view that the

absence of obligations and prohibitions implies the permission. Therefore,

s[j] is set value as 2, as same as in case that opj is permitted.

The comparison of two contracts C1 and C2 is based on the comparison of their

corresponding digital numbers [s1]3 (mapped from C1) and [s2]3 (mapped from C2).

We have (C1 > C2) ⇔ (s1 > s2) and vice versa.

For instance, given a set P of two operations (n=2) in the order op2 � op1, and

we want to compare two contracts C1 = {Oop1 , Pop2} and C2 = {Oop2}. The 2-digit

ternary numbers s1 = [12]3 and s2 = [21]3 are mapped from C1, C2 to S. Since

s2 > s1, so that {Oop2
} > {Oop1

, Pop2
}, hence, C2 > C1.

This ordering mechanism helps users to make decision in case of inconsistencies

to choose the contracts with more benefits. It is important to make users aware

of what is added to the system might introduce inconsistency. Furthermore, in a

peer-to-peer network with no central authority that maintains the consistency of

contracts, once conflicts are detected, they should be resolved or adapted by users.

3.3.6. Repealing contracts

In addition to adding contracts to data when it is shared with collaborators, our

approach supports removal of given contracts. We consider the overriding rule to

repeal contracts issued in the past.

Overriding rule allows that an old contract is replaced by a new one. In this

case the new contract overrides the old one. The contract primitive c2 overrides c1
if both c1 and c2 are given by the same sender to the same receiver and c2 was

sent later than c1. We can express this by c2 overrides c1 ⇐⇒ (c1.op = c2.op) and

(c1.attr.by = c2.attr.by) and (c1.attr.to = c2.attr.to) and (c2 was received after c1).

Let us present an example of contract overriding when Tom realizes that the

operation op under the contract primitive cop = Fop he gave to Alex some time ago

should not be forbidden any longer because conditions that made the prohibition

of performing op have changed. He wants to permit Alex to do op. Since previous

changes performed together with given contracts were logged and shared with many

users, the only solution for removing the prohibition is by compensation. Tom can

override the prohibition by giving a new contract to Alex. Once the new contract

is accepted by Alex, the prohibition is removed for her.

With this compensation solution, the addition of new contract might introduce

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

20 H.T.T.Truong, C.-L.Ignat, P.Molli

new inconsistencies or might lead to wrong conclusion as mentioned in previous

section of deontic symbolism. We notice that inconsistencies would arise at receiver

side when a sender tries to repeal an old contract primitive by asserting its negation.

Therefore overriding a contract is not just simply adding its negation. This could

make contracts in system inconsistent. An ideal system, thus must help users to

be aware of any conflict when they repeal a contract, for example, by providing

awareness mechanism about conflict.

There is an alternative to remove old contract without introducing a new con-

tract. Rather than negating a contract users might reject its validation.3 This helps

to avoid inconsistency (notice that rejecting is not the same as negating, while with

negation we assert another contract primitive to the system for a negation while

with rejection we just simple add an event to confirm the revocation of an old con-

tract primitive). However, we do not adopt this solution in our current work as the

compensation solution seemed more appropriate to our logging mechanism.

4. Collaborative Process

This section describes the basic protocols of collaborative process over C-PPC

model: logging changes, pushing logs containing document changes and contracts,

and merging pairwise logs.

4.1. Logging Changes

Each site maintains a local clock to count events (write, communication, and con-

tract) generated locally or received from remote sites. When changes are made or

received, they are added to log in the following manner:

• When a site generates a new write event e, it adds e to the end of its

local log in the order of occurrence and augments its clock. The clock value

is assigned to attribute GSN (generate sequence number) of event e (i.e.

e.attr.GSN = clock).

• When a site receives and accepts (from now and afterward we simply say

a site receives a remote log since we do not proceed further in case users

reject the remote log) a log from another site, events from the remote log

that are new to its local log are appended at the end of the local log in the

same order as in the remote log.

• When a user shares a document with another user, she sends a commu-

nication event followed by some contracts, which are logged by receiving

user. We denote by e one of these events (communication or contract). At

time of reception, receiver assigns his local clock to attribute RSN (receive

sequence number) of e, (i.e. e.attr.RSN = clock).

• We assume that a user is unwilling to disclose to other collaborating users

all communication and contract events that she has given to a certain user.

Thus communication and contract events are not kept in the log of the

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 21

sender. Moreover, even if a site sends those events to other sites, receiv-

ing sites could refuse integration of remote changes. In this way, sending

sites would contain events that are not accepted by receivers. Therefore,

communication and contract events are not logged by sending site.

• An event e is said committed by site u when it is added (logged) to local

log of u in one of the following cases:

(1) e is a write event generated and saved (kept in log) by u.

(2) e is a contract or communication event given to u by another site

v. Recall that sending site does not keep contract or communication

events in its local log.

An important feature of C-PPC model is that changes of one site are not prop-

agated to all other sites since user trust levels are different and sites might re-

ceive different contracts for the same document state. We discuss the consistency

of proposed model based on the CCI consistency model47 which requires preserving

causality, ensuring document convergence and preserving user intention.

Concerning causality preservation, our model deals with two causal relationships

(denoted as
c−→): causal relation (based on happened-before defined by Lamport21)

and semantic causal relation.

w
1

w
2

w1 w2

(a) two write (contract)
events generated by
one site

w
1 w'

1
c
1

w
1

c
1

w'
2

w1 w'2
c1 w'2c1 c2

(b) two events generated by
two different sites

c
1

c
1
c
2

c1 c2

(c) two contracts
received and sent
by one site

w
1

w
2

c
1

c
1c

2

c
2

c

c

c

c
c

Fig. 9. Causal relations between events (wi represents for write events and ci represents for contract
or communication events).

• Causal relation: two events e1 and e2 are in a causal relation, denoted as e1
c−→

e2, if:

(1) for two events of the same type (i.e. two write events, two contract events or

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

22 H.T.T.Truong, C.-L.Ignat, P.Molli

two communication events) e1 and e2 generated by the same site, if e1 was

committed before e2 then e1
c−→ e2. For example, for two write events we

have (e1.attr.by = e2.attr.by) and (e1.attr.GSN < e2.attr.GSN) and (e1.evt

= e2.evt = write) =⇒ e1
c−→ e2 (see example Fig.2.(a)). For two contract

events we have (e1.attr.to = e2.attr.to) and (e1.attr.by = e2.attr.by) and

(e1.attr.RSN < e2.attr.RSN) and (e1.evt = e2.evt = contract) =⇒ e1
c−→

e2 [see e.g. Fig.9(a)].

(2) for two events generated by different sites, e1 generated by site u and e2
generated by site v, e1

c−→ e2 if e2 is committed after e1 has been received

(or committed) at site v [see e.g. Fig.9(b)]

• Semantic causal relation: Two contract events e1 and e2 are said to be in a

semantic causal relation if e1 is received by a site before that site sends e2 to

another site. The contract event one site gives to other sites should depend on

her current contracts: (e1.evt = e2.evt = contract) and (e1.attr.to = e2.attr.by)

and (e1.attr.RSN < e2.attr.GSN) =⇒ (e1
c−→ e2) [see e.g. Fig.9(c)].

The above causal relations between events are used in the auditing mechanism

for detection of users that did not respect the given contracts.

In C-PPC model, logs are propagated by using anti-entropy10 which ensures

the happened-before relation between events as defined by Lamport21 without us-

ing state vectors25 or causal barriers.34 We say that event e1 happened-before e2,

denoted as e1
hb−→ e2, if e2 was generated on some site after e1 was either generated

or received by that site. The happened-before relation is transitive, irreflexive and

antisymmetric. Two events e1 and e2 are said concurrent if neither e1
hb−→ e2 nor

e2
hb−→ e1.

Two events that are in a causal or semantic causal relation are also in a

happened-before relation.

We define a partially ordered set (poset) H = (E,
hb−→) where E is a ground

set of events and
hb−→ is the happened-before relation between two events of E, in

which
hb−→ is irreflexive and transitive. We call H as an event-based history in our

context. Given a partial order
hb−→ over a poset H, we can extend it to a total order

“<t” with which “<t” is a linear order and for every x and y in H, if x
hb−→ y then

x <t y. A linear extension L of H is a relation (E,<t) such that: (1) for all e1, e2 in

E, either e1 <t e2 or e2 <t e1; and (2) if e1
hb−→ e2 then e1 <t e2. This total order

preserves the order of operations from a partial order set H to the linear extensions

on the same ground set E.

We call these linear extensions as individual logs observed by different sites. The

Fig. 10 shows an example of a history and its congruent linear extensions.

In collaborative systems, where multiple sites collaborate on the same shared

data object, we can consider that the global stream of activity of all sites is defined

by a partially ordered set of events. Each site, however, maintains a single log as

its local observation and synchronization. It can see only events in local workspace

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 23

e0

e3

e2

e4

History

e0 e1 e2 e3 e
5

e
4

e
0 e

4
e
2

e
1

e3
e

6

Two different linear extensions

e1
Site 1

Site 2

e5 e6

e
6

e
5

Fig. 10. An example of history and logs

that it generated locally or received from other sites. The site keeps therefore an

individual log as a linearization of history built on a subset of a ground set of

operations. There are remaining events of global history built on entire ground set

of events that are not visible for the site.

4.2. Pushing Logs containing Contracts

A key advantage of weakly consistent replication by relaxing data consistency is that

the protocol for data propagation can accommodate contracts to let users decide

with whom to reconcile. Anti-entropy10,33 is an important mechanism to achieve

eventual consistency among a set of replicas. Basic anti-entropy allows two replicas

to become updated by sending updates generated at one replica to other replica.

Anti-entropy guarantees causal order of events which specifies that if an event is

known to a site then any event preceding that event is already known to the site.

In addition to propagation of changes, since in C-PPC model sites may have

different levels of trust in other sites and the trust relationship may change during

the collaboration, contracts are given to restrict usage on the shared document

when a user shares a document to another user. The user pushes her log as follows:

• Since a document is shared as a log of events, therefore to send a contract for

document usage control, the contract is attached at the end of the log.

• In sharing, a user specifies a new contract; however, she cannot specify a higher

contract than what she currently holds. For instance, if a user u currently holds

a contract C on the document d, she only can share d with another user with

a contract C ′ where C ′ ≤ C (contracts are compared as presented in section

3.3.5).

• A user cannot specify a new contract which conflicts with her current contract.

For instance, if user u has contract C = {Oop}, then she cannot add Fop to C.

• The contracts a user specifies to two distinguished users might be different.

These two users do not not know the contract of the other user as far as they

do not collaborate with each other.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

24 H.T.T.Truong, C.-L.Ignat, P.Molli

During the collaborative process the log of each site grows and the document

and contracts are updated each time a user synchronizes with other users.

4.3. Pulling and Merging Pairwise Logs

The collaboration involves logs reconciliation. Consider that a user u receives a

remote log L′ from a remote user v through anti-entropy propagation consisting of

events from site v that site u did not see since their last synchronization. u has to

elect new events from L′ to append to her log L.

Function isMerged(u, v, L, L’, CT, CT’)

1 if Trust(u, v) is low then

// v is distrustful

2 result ← Reject;

3 else
4 if ct′ ∈ CT ′ conflicts ct ∈ CT then

5 if conflict is resolvable then

6 result ← Merge;

7 else result ← Reject;

8 else
9 result ← Merge;

10 return result;

A site might receive a remote log with conflicting contracts. In case of unresolv-

able conflicts, the user decides either to reject the remote document version or to

leave the local version to accept new one. The function isMerged checks for conflict

before merging. It checks if remote log L’ sent by user v can be merged with local

log L of user u. The function takes as arguments the log L of the local site u and

the remote log L′ of the remote site v containing new events since their last syn-

chronization. Given these logs, the current contract holded by u and the contract

that v gives to u when L′ is sent can be computed. We denote these contracts by

CT and CT ′ respectively (CT is the contract holded by u and CT’ is the contract

given to u by v). A site neither merges nor creates a new branch if the sender is

distrustful. We consider a dominance of contract if a user revokes an old contract

and replaces it by a new one. For instance, the old contract Fshare received by site

v from site u can be replaced by a new one Pshare. Two logs can be merged if no

conflict is found.

If the result returned by isMerged function is Merge (merging can be performed),

we perform synchronization by using our proposed merging algorithm. We assume

the merging algorithm ensures causality not only between write events but also

between communication events and contract events. We next discuss in detail how

to ensure causality.

To determine the total order of events committed by one site, we use the “commit

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 25

sequence number” CSN. In merging function, commit sequence number CSN is used

to track the last event committed by one site.

As we mentioned before, the attributes of event e, e.attr.GSN and e.attr.RSN

record the values of the clock of its generation and its receipt, respectively. Note

that every event has GSN attribute assigned before log is propagated, but RSN

attribute is assigned to communication and contract events at the receiving site

during the synchronization. The value of CSN of an event e committed by site u is

computed as follows:

• If e is a write event generated by u, the commit sequence number CSN is as-

signed the value of attribute e.attr.GSN. The site who committed e is extracted

from e’s attribute e.attr.by.

• If e is a communication event or a contract event given by a site a to a site v and

committed by site v, the commit sequence number CSN is assigned the value

of attribute e.attr.RSN. The site who commits e is extracted from attribute

e.attr.to.

e
1@A,1

site A, 3

site B, 2

site C, 1
Received log

Summary vector

e
2@B,1

e
3@B,2

e
4@C,1

e
5@A,2

e
6@A,3

Fig. 11. An example of Summary Vector

The fact that the merging function ensures that new events are added only to

the end of log enables the property that if the log of a site u contains an event e

committed by v with a commit sequence number CSN, then it contains all the events

committed by v prior to e. In order to avoid merging events that have been already

integrated, we use a summary vector SV which has the maximum size equal to the

number of users. The summary vector of site u (SVu) keeps the highest commit

sequence number CSN of each site v 6= u known by u in its components SVu[v]

(see the example in Fig.11). A summary vector is a set of time-stamp of commit

sequence numbers, each from a different user indexed by site identifiers. This allows

a site u to correctly determine that an event from site v should be merged into local

log if its CSN is higher than the current entry value of SV corresponding to its

belonging site. The summary vector used here is different from the version vector

used in weakly consistent replication to maintain causal relationship between events

where the size is the number of sites and the version vector needs to be exchanged

together with the corresponding operation. Instead, summary vector is maintained

locally at sites and its size is the number of other sites whose events are known to

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

26 H.T.T.Truong, C.-L.Ignat, P.Molli

the site.

Function merge(L, L’, clock)

1 for i = 1 to sizeof(L′) do

2 e← L′[i] ;

3 if e.evt = write then

4 CSN ← e.attr.GSN ;

5 site← e.attr.by;

6 else
7 if e.attr.RSN = null then

8 e.attr.RSN ← clock;

9 clock ← clock + 1;

10 site← e.attr.to;

11 CSN ← e.attr.RSN ;

12 if CSN > SV [site] then

13 append e to the end of L;

14 SV [site]← CSN ;

15 return L;

It is possible to replay write events from log to get document state. We can use

any existing CRDT approach35,53,39 in which concurrent operations can be replayed

in any causal order as they are designed to commute in order to ensure document

consistency. The complexity of function merge is O(n) where n is the size of the

remote log L′.

4.4. Log Auditing and Trust Assessment

Compliance checking whether user actions in collaborative system comply with

contracts is an important part of our C-PPC model. This question is done through

logging and auditing mechanisms that are principle in many systems supporting

observation. Log auditing is an approach that adopts a posteriori enforcement. It

complements a priori access control, in order to provide a more flexible way of

controlling compliance of users after the fact. In this subsection we present log

auditing procedure and trust assessment based on auditing results.

4.4.1. Auditing principles

Before presenting our auditing procedure for C-PPC model, we clarify some prin-

ciples concerning our auditing mechanism.

(1) Users can perform auditing of the log in order to make misbehaving users ac-

countable for their actions without the need of any central authority. In this

way the dependence on an online entity that provides auditing logs is overcome.

However, the disadvantage of the mechanism is that users have no knowledge

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 27

about global actions done by all other users in order to completely assess if a

particular user behaved well or not. Our auditing mechanism is therefore based

on incompleteness evidence. Though this assumption could be claimed as a

drawback, it is suitable to human society where a person is assessed only based

on some of her noticed behaviors.

(2) Logs that reflect actions done by users and that are input to the auditing mech-

anism must be maintained correctly. Even though avoiding log tampering is im-

practical in distributed environments, tampering detection is possible. We have

proposed using authenticators for detecting log tampering.50 Log tampering is

detected at time of synchronization before the log is accepted by receivers.

(3) How to use log auditing result and treat data resulted from misused actions?

When a user discovers other users that misbehaved, she updates their trust

levels. Users use trust models to manage their friend reputation. The trust

levels obtained from auditing result are used as input data for a trust model.

We focus only on using auditing result to update trust values. We exclude any

further aspects of trust models such as how to propagate personal view of trust

among users or how to use external resources to assess trust values or how to

aggregate trust values.

These above principles distinguish our auditing mechanism from other prior ap-

proaches. In following subsections we identify situations when contracts are violated

and then provide the log auditing mechanism.

4.4.2. Contract violation

In this subsection we specify the three types of attacks that might lead to contract

violation.

• Malicious users tamper logs to eliminate or modify contracts or other events

in the log. We consider that a user u is malicious if she re-orders, inserts or

deletes events in the log that consequently affects auditing result. For instance,

u removes some obligations that she does not want to fulfill. The log auditing

mechanism assumes logs are authenticated. Any tampering should be detected

by the log authentication mechanism.

• Malicious users perform actions that are forbidden by the specified contracts.

These action events are labelled as bad.

• Users neglect obligations that need to be fulfilled. For instance, a user receives

an obligation “insert is obligatory” but she never fulfills this obligation. If at a

given moment a log auditing mechanism is performed and no event that fulfills

the obligation is found, we cannot claim that the user misbehaved. He might

fulfill the obligation at a later time. The given obligation is labelled as unknown

meaning that the obligation has not yet been fulfilled. Once the obligation is

fulfilled, the unknown label is removed.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

28 H.T.T.Truong, C.-L.Ignat, P.Molli

Users are expected to respect given contracts. If a user respects all given con-

tracts, then she will get a good trust value assessed by others. Ideally, if a user

misbehaves in one of the three ways mentioned above, his misbahaviour should be

detected by other users. The auditing mechanism returns a trust value that is com-

puted from the number of events labelled with good, unknown and bad. Note that

this manner of computing trust values does not distinguish an accidental attack

from an intentional attack. In order to make users aware of unintentional misuses,

the system prevents users in case a contract is violated by reminding them the

obligations they hold.

4.4.3. Log auditing

An initial idea of our proposed log auditing mechanim was proposed in our previous

work 48. Our auditing procedure aims at finding contract violations and making

users accountable for their actions by adjusting their trust levels following a trust

metric. The general idea of the auditing procedure is to browse the log and check

each event appearing in the log whether it conforms to given contracts. For each

violation of a particular user found, we increase the number of bad events counted

for the user. Similarly for each obligation that is not yet fulfilled, we increase the

number of unknown events. This statistic of contract violations by a user over all

events that are audited is used to compute the trust level of this user.

Procedures updateAuditState and audit present auditing protocol and trust com-

putation in details when a user u audits actions of all other users, say v, who appears

in the log. In these procedures, Gv and Qv are used to keep a set of contracts and

a set of obligations which user v holds, respectively (Qv ∈ Gv). At the initial step,

Gv = ∅ and Qv = ∅. For each event e in the log L, the procedure updateAuditState

checks its event type, contract or write event. If e is a contract given to user v

then it is added to Gv. Moreover, if e is an obligation, it is counted as unknown

event until an event that fulfills it will be found. If e is a write or a communication

event performed by user v, it is checked if it complies with or violates contracts in

Gv. In the procedure for updating auditing state, for each user v, numberOfBadE-

vents[v] and numberOfUnknownEvents[v] are used to count the number of bad and

unknown events that are audited, respectively (remaining events are considered

good). auditedEvents[v] is used to count the total number of audited events. All

users v audited by u are inserted in set V . At the initial step of audit procedure,

these variables: numberOfBadEvents[v], numberOfUnknownEvents[v] and auditedE-

vents[v] are set equal to 0, and the set V is set empty.

Procedure audit takes as input the local log L of user u and the position in

the log lastCheckedPos identifying the last event checked in the previous auditing

mechanism. L is browsed to check whether each behavior of other users is correct.

When log analysis is finished, trust values of all audited users v in V are recom-

puted based on auditing results. By doing this, their accountability is made through

updating their trustworthiness.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 29

Procedure updateAuditState(e)

1 if (e.evt =′ contract′) then
2 v ← e.to;

3 Gv ← Gv ∪ {e};
4 if e overrides c in Gv then

5 Gv ← Gv \ {c};
6 if (e.attr.modal =′ O′) then

7 Qv ← Qv ∪ {e};
8 numberOfUnknownEvents[v] + +;

9 else
10 v ← e.by;

11 if e violates Gv then
12 numberOfBadEvents[v] + +;

13 if e fulfills c in Qv then
14 Qv ← Qv \ {c};
15 numberOfUnknownEvents[v]−−;

16 V ← V ∪ {v};
17 numberOfAuditedEvents[v] + +;

A user can perform log auditing at any time at local site and trust values are

updated personally. Log analysis has polynomial order of n time complexity O(n)

with n is the number of events that are audited. In case auditing creates significant

overhead, users might skip auditing some parts of log which were done by highly

trusted users. However, in case these users behave badly, they are discovered only

in a next auditing phase.

Procedure audit(L, lastCheckedPos)

1 for i = lastCheckedPos + 1 to length(L) do
2 e← ith event in L;

3 updateAuditState(e);

4 foreach v in V do

5 re-compute trust for user v;

In order to manage trust levels, we need a decentralized trust model. The trust

level of a user assessed by one another could be aggregated from log-based trust,

reputation trust and recommendation trust. Trust computation varies from trust

models. In order to provide a complete trust model, in our future work we will

propose a trust metric based on the log auditing result.

5. Evaluation

In this section, we present the evaluation of our proposed model by performing some

experiments using a peer-to-peer simulator and give some discussions around the

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

30 H.T.T.Truong, C.-L.Ignat, P.Molli

proposed model.

5.1. Correctness of C-PPC Model

The C-PPC model uses operation-based optimistic replication. The core data struc-

ture used in the model is a partially order log. Events (write, communication and

contract) are communicated using anti-entropy protocol which ensures causality.

The document is achieved correctly if and only if the log was not tampered. This is

an assumption of our model. Our solution about the construction and verification

of authenticators to secure log are presented in our previous work.50 Authentica-

tors prevent re-ordering of log events and therefore causality is preserved. If log

was tampered, receiving site might discard it and the trust level of the site that

misbehaved would be decremented.

Concerning the document convergence, as C-PPC model uses CRDT for com-

mutative operations, it ensures that in the presence of different contracts received

by different sites when the same set of write operations was executed at those sites,

their copies of the shared document are identical. However, the shared document

might be in different states on two sites since the shared document is not uniformly

distributed due to the use of contracts and the trust levels of users. And finally,

concerning the property of intention preservation of C-PPC model, it is ensured by

causality preservation and CRDT algorithm.

The C-PPC model supports multi-synchronous collaboration which allows si-

multaneous work in isolation workspace even when network is disconnected and

user changes are propagated and synchronized with reconnection. The extension of

using contract for PPC model made the condition that the logs are synchronized

more complex due to the arising of contract conflict. However, users can use log

auditing mechanism to detect any conflict of contracts and logs are synchronized

together if and only if all conflicts are resolvable. Conflicts can be resolved by the

rejection of the owner or by the overriding of user with high role in system (the

order of users can be voted between users in system).

5.2. Experiments

Due to the unavailability of real data traces of collaboration including contract,

we evaluate the feasibility of C-PPC model through simulation using PeerSim

simulator.29 We focus first on the ability of detecting misbehaving users; then we

estimate the overhead generated by using contract.

5.2.1. Setup

We setup the simulation with a network of 200 users in which a number of users

are set as honest users, and the remain are set as misbehaving users. The portion of

honest/misbehaving users in different experiments varies depending on the purpose

of evaluation.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 31

For simulating process, we generate randomly the data flow of collaboration

during the simulation. The data flow includes operations, contracts and users with

whom to share. The network topology with which users share log to their neighbors

are built randomly by the simulator. One interaction is defined as a process of

sharing a log with a specified contract, from one user to another one. Since the

total number of interactions generated should be pseudo uniformly distributed over

all users, we let one user perform sharing with not more than 3 other users at each

step. Similarly, the number of operations and contracts generated by one user each

time is at most 10 operations and 3 contracts (if we consider only 3 types of actions

in our system: insertion, deletion and sharing).

Each node in network represents for one user. Between two interactions, nodes

generate local operations randomly but must follow its current contract. Nodes keep

their contractual state temporarily to generate correctly operations. However not

every node respect its contracts. While honest nodes generate allowed operations,

misbehaving nodes generate operations that violate their contracts. This data is

used to evaluate our algorithms of detecting misbehavior.

Since contracts are generated randomly with only limited condition that they

should not bigger than node’s current contract (contracts are ordered as in previous

section), conflict certainly arises in simulation between contracts of different nodes.

As nodes in simulator cannot behave human acts, we omit negotiation protocol for

contracts. Furthermore, to simplify we do not allow neither total-total inconsisten-

cies nor partial-total inconsistencies for contracts hold by nodes. Contract conflict

thus are detected before logs are synchronized. Once conflict are found, logs are

rejected to be merged and the node which detected conflict waits for next cycle or

for other nodes which send log without conflicting (see our Algorithm isMerged).

With this restriction logs are always maintained under consistent contracts.

5.2.2. Experiment 1 - Misbehavior detection

To evaluate the ability of misbehavior detection, we check first the ability to detect

a selected misbehaving user according to the total number of interactions performed

by all users. The estimation is performed on a collaborative network of 200 users

with 60 misbehaving users (30% of users are misbehaving users). The auditing pro-

cess is performed after each synchronization with another user. We select randomly

one misbehaving user to be audited and we analyze the percentage of users that can

detect him. Fig. 12 shows the results recorded after each cycle. We can see that the

misbehaving user is detected by a few users at the beginning and then the number

of users that detect his misbehavior increases along with the increasing of number

of interactions.

Second, we check the percentage of misbehaving users that can be detected.

We select randomly one honest user from the network to observe the percentage of

misbehaving users that she can detect. Fig. 13 shows the result according to the

number of synchronizations done by the selected user with others. We can see from

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

32 H.T.T.Truong, C.-L.Ignat, P.Molli

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

P
e

rc
e

n
ta

g
e

s
 o

f
u

s
e

rs
 t

h
a

t
c
a

n
 d

e
te

c
t

th
e

 m
is

b
e

h
a

v
in

g
 u

s
e

r

Number of interactions of all users

30% misbehaving users

Fig. 12. Ability to detect one selected misbehaving user with respect to the total number of

interactions in a collaborative network of 200 users with 30% of them are misbehaving users.

the graph that up to 20% of misbehaving users are detected after the first four

synchronizations (auditing is done four times), and after the fifth synchronization

more than 80% of misbehaving users are detected. We can see a drastic change

in the figure between the fourth and the fifth synchronization. That change is due

to a synchronization of the log of selected user with a remote log that contains

misbehavior of most remaining misbehaving users. This can occur in distributed

networks of random topology where clusters of collaborating users exist. Once an

interaction occurs between two users belonging to such clusters, misbehaving users

of the two clusters are discovered. Only about 10% of misbehaving users may require

more interactions to be detected. From results in Fig. 13 we can see that the ability

to detect misbehaving users depends also on the topology of collaborative network.

In the future work we will perform more experiments to evaluate how topology

would affect the detection.

In order to have a global view about the evolution of the percentage of detected

misbehaving users, we compute the average value of detected misbehaving users over

all users of the collaborative network. Fig. 14 shows, on average, the percentage of

misbehaving users that are detected by one user. We perform the experiment in

case of a low, medium and high population of misbehaving users in the network

(respectively 5%, 30%, 80% of misbehaving users). The results show that the system

still functions well in case of a high/low population of misbehaving users.

5.2.3. Experiment 2 - Overhead estimation

We conduct this experiment to evaluate the time overhead generated by using con-

tract for the synchronization and auditing mechanism. We compare two models:

with and without contract. To be able to make the comparison between these two

models, we follow the same data flow. In the model without contract, the synchro-

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 33

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

P
e

rc
e

n
ta

g
e

s
 o

f
m

is
b

e
h

a
v
in

g
 u

s
e

rs
 t

h
a

t
a

re
 d

e
te

c
te

d

Number of synchronizations of selected user

30% misbehaving users

Fig. 13. Percentage of detected misbehaving users with respect to the number of synchronizations

done by selected honest user.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 o

f
m

is
b

e
h

a
v
in

g
 u

s
e

rs
 t

h
a

t
a

re
 d

e
te

c
te

d

Number of interactions of all users

5% misbehaving users
30% misbehaving users
80% misbehaving users

Fig. 14. Average percentage of detected misbehaving users with respect to to the total number of
interactions in the collaborative network.

nization mechanism requires merging logs of write events only. In the model with

contract the synchronization mechanism requires merging logs of write events and

contract events. Additionally, an auditing mechanism for user misbehavior detection

has to be applied.

We compute for each model the total time (T) of all the synchronizations per-

formed by a given user to build the same state of document, T =
∑
ti, where ti is

the time required for the ith synchronization. Fig. 15 shows the result according to

the number of write operations in the local log. From these results we can see that

the time overhead generated by using contract is reasonable since the difference

of time overhead computed for two models increases slowly with an increasing of

number of events.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

34 H.T.T.Truong, C.-L.Ignat, P.Molli

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000

T
im

e
 (

m
s
)

Number of write events

with contracts
without contracts

Fig. 15. Synchronization time with growing of number of write events

5.3. Discussion

In this section we discuss some potential limitations in our work. First, contract-

based collaboration does not offer a solution for plagiarism and violation of contracts

outside of the system. Beyond write, communication and contract events that a

computer system could log, there are always side channels that can work around

the logging. For example, a malicious user could replay write events from a log to

create a new document and then share it and claim herself as being the owner. Or

a malicious user could reveal the content of the document outside of the system by

using communication means such as email, telephone call and chat, these actions

being not logged by the system. These violations can be detected by humans or by

using plagiarism techniques, however, this is out of the scope of this paper. The

proposed model uses contract as a means to express data usage restrictions that

helps to protect data privacy and to build a trustworthy collaborative environment.

A second limitation of our approach is how to deal with the growing size of

the log during collaborative process. The log should be ultimately truncated so

that it does not grow without bound. That requires some additional constraints

and consensus of collaborators. Once the cycle of collaboration grows big after a

long period, log of operations can be converted to state of document. After this

conversion the log is emptied and all contracts recorded are not kept any more.

Removing all contracts is reasonable since the behavior kept a long time ago might

not be suitable to evaluate trust level at present. At the moment we do not consider

log truncation in the proposed model.

Third limitation is that we have not fully explored a wide range of contracts that

can be specified in our collaboration model. In C-PPC model, contracts are based

on a basic deontic logic including permission, prohibition, and obligation. They

can be combined with operators from temporal logic to express time dimension of

contracts, however, we will consider this in our further work.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 35

Next, we discuss the ability to apply the C-PPC model to multiple documents

rather than a single one. Our approach is a general solution and thus it is appli-

cable to multiple documents. We can keep a single log for operations over multiple

documents. As an example, the single log is kept for operations of different files in a

source code project using Mercurial distributed version control system. Each file has

its unique identifier in the project, so we can keep operations with an additional at-

tribute of file identifier to distinguish them. In each interaction of sharing, contract

can include multiple contract primitives that refer to rights and duties of user on

different files at the same time. For editing operations on documents, we use CRDT

approaches, so concurrent operations can be replayed in any order without making

document content diverge. When our approach is applied to multiple documents,

the approach works without considering file system operations such as moving a file

or renaming a file. We can allow these file operations in our approach if a solution

of CRDT for file systems is proposed. However, this is out of scope of this paper.

6. Related Work

Our work is related to several topics in the area of privacy and data management

in multi-synchronous working environment such as contract-based models, usage

control models, access control models, trust management and log auditing for log-

based collaboration. In this section we briefly survey the most relevant works and

point out the differences of our work with respect to these approaches

The contractual approach is useful for a wide range of applications, such as

resource management, cooperative task execution, cooperative work in distributed

systems and software engineering. Traditionally a contract is an agreement between

two or more persons about actions that are performed. Contracts also regulate be-

havior when persons cooperate or use shared resources. Contracts exist in many

systems. It is either implicit in communication protocols, software licenses, down-

loading and sharing policies in P2P file-sharing systems or explicit in paper-based

contracts of using network services. The push-pull-clone model for collaborative

editing source code was adopted in distributed version control systems but users

are uniformly trusted and there are no contracts specified during collaboration.

Wikipedia features an informal contract-based model where contracts are checked

by crowd sourcing. Anybody can edit according to rules that are checked a posteri-

ori by other people. In contract-based models rules have to be explicitly expressed

and checked by the system. Existing work has focused primarily on either contract

models for individual aspects or collaboration models with implicit contracts. Some

works proposed a contract framework (see, for example Contract Framework 44,43,

Contract Net protocol 45, Agreement Framework 40) for negotiating and controlling

resource usage in a distributed system and engaging to solve the connection prob-

lem between nodes with tasks to be executed simultaneously. Contracts express the

terms under which nodes in network promise (obligation) to offer and to get payment

with regard of exchanging resources. The contract model which deals with contract

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

36 H.T.T.Truong, C.-L.Ignat, P.Molli

specification including of the server, the client, the resource, the negotiation, the

signature scheme is different from our contract-based C-PPC model. Rather than

focusing on how to express contracts, in our model, we regard contracts as events of

deontic modals and operations. We deal with contract specification, merging con-

tracts and conflict resolution between conflict contracts. In order to guarantee the

fulfillment of contracts, we adopt the same view as the contract model in Shand et

al.44 on using a distributed trust model to audit participant actions if they conform

contracts.

Contractual approach is also adopted in software engineering. Métayer et al.27,26

proposed a set of methods and tools to define software liabilities among parties.

Proposed framework includes the formal definition of liability and the analysis of

log files to verify contractual liability a posteriori to make parties accountable. The

proposed framework is similar to our approach regarding a posteriori accountability

based on log analysis. However, the contractual framework is not possible to be

applied to multi-synchronous collaboration systems where contracts are replicated

and synchronized as in our C-PPC model.

Access control mechanisms are designed to limit which authorized users can

access to and use data or resources in a computer system. This checking is performed

before the access is allowed. Role-based access control (see, for example, RBAC42,

OrBAC1, OASIS4, NIST15) simplifies the specification and management of security

policies within an enterprise. Most RBAC models allow permissions to be assigned

to a functional role or set of roles which are hierarchically organized. The idea

of incorporating attributes to RBAC models to provide more flexible RBAC was

presented in Goh et al.16, Kumar et al.20 Our contract-based model is notably

different compared to access control mechanisms. The model gives access first to

data without control but with restrictions that are verified a posteriori.

In the field of access control, usage control is regarded as an extension of data

protection beyond access control.36 Usage control policies can be enforced by using

a detective enforcement or a preventive enforcement.14 Our work belongs to the

category of detective enforcement usage control mechanisms. The C-PPC model

does not help to prevent users from violating contracts; instead it makes users aware

of received contracts and of other users that violated contracts. The auditing result

will be used to evaluate user trustworthiness. We formalize contracts upon basic

terms of right and obligation which are common in many existing works (see UCON

model).17,57 Unfortunately existing usage control models do not support multi-

synchronous collaboration where users can work concurrently on shared documents.

Therefore, they do not deal with merging policies and resolving conflicts among

contracts.

Purpose-based access control, another approach for privacy preserving access

control based on the notion of purpose, has made a significant impact on many

access control systems. Purpose is a central concept in many privacy access control

models for database systems2,22 and the notion of purpose was clearly defined in

Byun et al.6 The concept of Hippocratic databases was introduced by Agrawal et

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 37

al.2 for privacy protection within relational database systems. The proposed struc-

ture Strawman Architecture consists of privacy policies and privacy authorizations

to define usage purposes. Lefevre et al.22 presented an approach of enforcing pri-

vacy policy in database systems to let providers have control over their users on

what they are allowed to see their personal data and for what purpose. Byun et

al.6 presented a model in which purpose information is associated with given data

element to specify the intended use of the data element to give user in the context of

relational databases. Even though these approaches define privacy policies of which

purpose data can be accessed at a later time, the real access is only given after the

access purpose was checked against the intended purposes was associated to the

data item at a prior time. This is different from our contract-based model where

contract is checked a posteriori. The purpose-based access control is pessimistic

in considering that users are not trusted in requesting data for the right purpose.

Conversely, our contract-based model is optimistic and allows users to use data first

and auditing is performed later. The optimistic model is more suitable to collabo-

rative environments where users need a certain level of mutual trust to collaborate

with each other. Another major difference is that all these approaches were mainly

applied for centralized database systems where policies can be verified by a central

authority. In our approach we applied a contract-based model for multi-synchronous

working environment where there is no central log that can be audited.

C-PPC collaboration model is closely related to the approach proposed by Wob-

ber et al.54 for ensuring security and privacy in a weakly consistent replication sys-

tem where users are not uniformly trusted. Access control policy claims are treated

as data items. The guards added to replication protocol enforce specified policies at

synchronization step. A replica must check whether the requested action is allowed

by the policy and then decide whether to accept or deny updates. In this approach,

each replica is a local authority that maintains current policies. This is similar to our

approach where we let each user perform self-auditing based on local view of other

users actions. However, the approach of Wobber et al. only expresses rights but not

obligations that each replica should follow. Moreover, only the author of an item

can define the policy associated to it and hence there is no requirement to resolve

conflicts between policies. In our approach, we need to deal with policy conflicts as

multiple contributors can specify different contracts on the shared document. More-

over, the system uses a state-based replication where each site applies updates to its

replica without maintaining a change log rather than an operation-based replication

as in our work.

Trust management is an important aspect of the solution that we proposed. The

concept of trust in different communities varies according to how it is computed

and used. Our work relies on the concept of trust which is based on past user

behaviors. 31 With C-PPC model users first bring social trust into the system.

However trust is not immutable and it changes over time. Thus trust should be

managed by using a trust model. A trust model includes three basic components24

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

38 H.T.T.Truong, C.-L.Ignat, P.Molli

that are gathering behavioral information, scoring and ranking peers and rewarding

or punishing peers. Most of existing P2P trust models (e.g. EigenTrust model18)

propose mechanisms to update trust values based on direct interactions between

peers while we use log auditing to help one user evaluate others either through

direct or indirect interactions. We are not aware of any existing trust model that

takes log auditing result into trust assessment.

Log auditing technique is a general principle in systems supporting observa-

tion. Keeping and managing event logs is frequently used for ensuring security and

privacy. This approach has been studied in many works. In Cederquist et al.7, a

log auditing approach is used for detecting misbehavior in collaborative work en-

vironments, where a small group of users shares a large number of documents and

policies. In Kruhow et al.19,38, authors present a logical policy-centric framework

for behavior-based decision making. The framework consists of a formal model of

past behaviors of principals which is based on event structures. However, these

models7,19,38 require a central authority that has the ability to observe all actions

of all users. This assumption is not valid for a purely distributed PPC collaboration.

The complexity of our log auditing mechanism compared to centralized solutions

comes from the fact that each user has only a partial overview of the global collab-

oration and can audit only users with whom he collaborates. Therefore, a user can

take decisions only from the information he possesses from the users with whom he

collaborates.

7. Conclusion

We have presented a contract extended push-pull-clone model (C-PPC) for multi-

synchronous collaboration where users share their private data with some contracts

that receivers should comply and rust levels are adapted according to users’ past

behavior regarding conformance to given contracts. Changes on shared data per-

formed by users and contracts given when data is shared are logged in a distributed

manner. We formalised the notions of contracts expressed inside the C-PPC model.

We proposed a merging algorithm that deals not only with changes on data but also

with contracts and a conflict resolution mechanism among contracts specified in par-

allel by multiple contributors. A mechanism of log auditing in distributed manner

is applied during collaboration and users who did not conform to given contracts

are detected and made accountable by having their trust levels decremented. We

implemented the proposed collaboration model with a number of simulations us-

ing PeerSim simulator. Experiment results show the feasibility of our model. Some

directions of future work include proposing a trust metric that is suitable for our

C-PPC model and exploring a wider range of contracts that can be specified by

users.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 39

Acknowledgments

This research was partly funded by the ANR national research grant STREAMS

(ANR-10-SEGI-010).

References

1. A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miège, C. Saurel, and G. Trouessin. Organization Based Access Control. In 4th
IEEE International Workshop on Policies for Distributed Systems and Networks (Pol-
icy’03), Lake Como, Italy, June 2003.

2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases. In Proceedings
of the 28th International Conference on Very Large Data Bases, VLDB 2002, pages
143–154, Hong Kong, China, August 2002. VLDB Endowment.

3. C. E. Alchourron and E. Bulygin. The expressive conception of norms. In R. Hilpinen,
editor, New Studies in Deontic Logic, pages 95 – 124. D. Reidel Publishing Company,
1981.

4. J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control and its
support for active security. ACM Transactions on Information and System Security,
5:492–540, November 2002.

5. J. Bentham and H. L. A. Hart. Of Laws in General. University of London, Athlone
Press, 1945.

6. J.-W. Byun and N. Li. Purpose based access control for privacy protection in relational
database systems. The International Journal on Very Large Data Bases, 17:603–619,
July 2008.

7. J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and
G. Lenzini. Audit-based Compliance Control. International Journal of Information
Security, 6(2):133–151, March 2007.

8. L. Cholvya and A. Hunterb. Merging requirements from a set of ranked agents.
Knowledge-Based Systems, 16(2):113 – 126, March 2003.

9. M. Cooperation. Sharepoint - Collaboration Software for the Enterprise. http:

//sharepoint.microsoft.com.
10. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-

hart, and D. Terry. Epidemic Algorithms for Replicated Database Maintenance. In
Proceedings of the Sixth annual ACM Symposium on Principles of Distributed Com-
puting, PODC’87, pages 1–12, Vancouver, British Columbia, Canada, August 1987.
ACM Press.

11. P. Dewan and H. Shen. Controlling Access in Multiuser Interfaces. ACM Transactions
on Computer-Human Interaction, 5(1):37–62, March 1998.

12. P. Dourish. The parting of the ways: divergence, data management and collaborative
work. In Proceedings of the fourth conference on European Conference on Computer-
Supported Cooperative Work, ECSCW’95, pages 215–230, Norwell, MA, USA, 1995.
Kluwer Academic Publishers.

13. C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues and experiences. Com-
munications of the ACM, 34(1):39–58, January 1991.

14. S. Etalle and W. H. Winsborough. A posteriori compliance control. In Proceedings of
the 12th ACM symposium on Access control models and technologies, SACMAT ’07,
pages 11–20, New York, NY, USA, 2007. ACM.

15. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed
NIST standard for role-based access control. ACM Transactions on Information and
System Security, 4:224–274, August 2001.

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

40 H.T.T.Truong, C.-L.Ignat, P.Molli

16. C. Goh and A. Baldwin. Towards a more complete model of role. In Proceedings of
the third ACM workshop on Role-based access control, RBAC ’98, pages 55–62, New
York, NY, USA, 1998. ACM.

17. J.Park and R.Sandhu. The UCON-ABC usage control model. In ACM Transactions
on Information and System Security, pages 7(1):128–174, 2004.

18. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust Algorithm for
Reputation Management in P2P Networks. In Proceedings of the 12th International
Conference on World Wide Web, WWW 2003, pages 640–651, Budapest, Hungary,
May 2003. ACM Press.

19. K. Krukow, M. Nielsen, and V. Sassone. A Logical Framework for History-based Ac-
cess Control and Reputation Systems. Journal of Computer Security, 16(1):63–101,
January 2008.

20. A. Kumar, N. Karnik, and G. Chafle. Context sensitivity in role-based access control.
SIGOPS Operating Systems Review, 36:53–66, July 2002.

21. L. Lamport. Times, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7):558–565, July 1978.

22. K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.
Limiting disclosure in hippocratic databases. In Proceedings of the Thirtieth interna-
tional conference on Very large data bases - Volume 30, VLDB ’04, pages 108–119.
VLDB Endowment, 2004.

23. J. Loeliger. Collaborating with Git. Linux Magazine, June 2006.
24. S. Marti and H. Garcia-Molina. Taxonomy of Trust: Categorizing P2P Reputation

Systems. Computer Networks, 50:472–484, March 2006.
25. F. Mattern. Virtual Time and Global States of Distributed Systems. In M. C. et al.,

editor, Proceedings of the International Workshop on Parallel and Distributed Algo-
rithms, pages 215–226, Chateau de Bonas, France, October 1989. Elsevier Science
Publishers B. V.

26. D. L. Métayer. Formal methods as a link between software code and legal rules. In Pro-
ceedings 9th International Conference on Software Engineering and Formal Methods,
SEFM 2011, pages 3–18, Montevideo, Uruguay, November 2011.

27. D. L. Métayer, M. Maarek, V. V. T. Tong, E. Mazza, M.-L. Potet, N. Craipeau,
S. Frénot, and R. Hardouin. Liability in software engineering: overview of the LISE
approach and illustration on a case study. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, ICSE 2010, pages 135–144, Cape
Town, South Africa, May 2010.

28. P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain. Sams: Synchronous, asynchronous,
multi-synchronous environments. In Proceedings of the Seventh International Confer-
ence on CSCW in Design, CSCWD’02, pages 80–84, Rio de Janeiro, Brazil, 2002.

29. A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In Proceedings of
the 9th International Conference on Peer-to-Peer, P2P’09, pages 99–100, Seattle, WA,
September 2009.

30. A. Moretti. Why the logical hexagon? Logica Universalis, 6:69–107, 2012.
31. L. Mui, M. Mohtashemi, and A. Halberstadt. A Computational Model of Trust and

Reputation. In Proceedings of the 35th Annual Hawaii International Conference on
System Sciences, HICSS 2002, pages 2431–2439, Waikoloa, Big Island, Hawaii, Jan-
uary 2002. IEEE Computer Society.

32. B. O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media, 2009.
33. K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible

update propagation for weakly consistent replication. In Proceedings of the sixteenth
ACM symposium on Operating systems principles, SOSP ’97, pages 288–301, New

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

A Contract-extended Push-Pull-Clone Model for Multi-Synchronous Collaboration 41

York, NY, USA, 1997. ACM.
34. R. Prakash, M. Raynal, and M. Singhal. An Adaptive Causal Ordering Algorithm

Suited to Mobile Computing Environments. Journal of Parallel and Distributed Com-
puting, 41(2):190–204, March 1997.

35. N. Preguica, J. M. Marques, M. Shapiro, and M. Letia. A commutative replicated data
type for cooperative editing. In Proceedings of the 2009 29th IEEE International Con-
ference on Distributed Computing Systems, ICDCS ’09, pages 395–403, Washington,
DC, USA, 2009. IEEE Computer Society.

36. A. Pretschner, M. Hilty, and D. Basin. Distributed Usage Control. Commun. ACM,
49:39–44, September 2006.

37. C. Rahhal, H. Skaf-Molli, P. Molli, and S. Weiss. Multi-synchronous collaborative se-
mantic wikis. In Proceedings of the 10th International Conference on Web Information
Systems Engineering, WISE ’09, pages 115–129, Berlin, Heidelberg, 2009. Springer-
Verlag.

38. M. Roger and J. Goubault-Larrecq. Log Auditing through Model-Checking. In Pro-
ceedings of the 14th IEEE workshop on Computer Security Foundations, CSFW 2001,
pages 220–234, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer Soci-
ety.

39. H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Replicated abstract data types: Building
blocks for collaborative applications. Journal of Parallel and Distributed Computing,
71(3):354–368, March 2011.

40. M. Roscheisen and T. Winograd. A Communication Agreement Framework for Ac-
cess/Action Control. In Proceedings of the 1996 IEEE Symposium on Security and
Privacy, SP ’96, pages 154–, Washington, DC, USA, 1996. IEEE Computer Society.

41. A. Ross. On Law and Justice. Berkeley:University of California Press, 1959.
42. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. IEEE Computer, 29:38–47, February 1996.
43. B. Shand and J. Bacon. Policies in accountable contracts. In 3rd International Work-

shop on Policies for Distributed Systems and Networks (POLICY 2002), 5-7 June
2002, Monterey, CA, USA, pages 80–91. IEEE Computer Society, 2002.

44. B. N. Shand. Trust for resource control: Self-enforcing automatic rational contracts
between computers. Technical Report UCAM-CL-TR-600, University of Cambridge,
2004.

45. R. G. Smith. The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers, C-29(12):1104–1113,
December 1980.

46. G. Stevens and V. Wulf. A New Dimension in Access Control: Studying Maintenance
Engineering Across Organizational Boundaries. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, CSCW 2002, pages 196–205, New Orleans,
Louisiana, USA, November 2002. ACM Press.

47. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving Convergence, Causality
Preservation, and Intention Preservation in Real-Time Cooperative Editing Systems.
ACM Transactions on Computer-Human Interaction, 5(1):63–108, March 1998.

48. H. T. T. Truong and C.-L. Ignat. Log Auditing for Trust Assessment in Peer-to-
Peer Collaboration. In Proceedings of the 10th International Symposium on Parallel
and Distributed Computing, ISPDC 2011, Cluj-Napoca, Romania, July 2011. IEEE
Computer Society.

49. H. T. T. Truong, C.-L. Ignat, M.-R. Bouguelia, and P. Molli. A contract-extended
push-pull-clone model. In 7th International Conference on Collaborative Computing:
Networking, Applications and Worksharing, CollaborateCom 2011, pages 211–220, Or-

November 27, 2012 13:8 WSPC/INSTRUCTION FILE c-ppc

42 H.T.T.Truong, C.-L.Ignat, P.Molli

lando, FL, USA, October 2011.
50. H. T. T. Truong, C.-L. Ignat, and P. Molli. Authenticating Operation-based History

in Collaborative Systems. In Proceedings of the ACM International Conference on
Supporting Group Work, Group 2012, Sanibel Island, Florida, USA, October 2012.
ACM. (to appear).

51. W3C. World Wide Web Consortium (W3C) - A P3P Preference Exchange Language
1.0 (APPEL1.0). http://www.w3.org/TR/P3P-preferences/.

52. W3C. World Wide Web Consortium (W3C) - P3P: The Platform for Privacy Prefer-
ences. http://www.w3.org/P3P/.

53. S. Weiss, P. Urso, and P. Molli. Logoot-Undo: Distributed Collaborative Editing
System on P2P Networks. IEEE Transactions on Parallel and Distributed Systems,
21(8):1162–1174, August 2010.

54. T. Wobber, T. L. Rodeheffer, and D. B. Terry. Policy-based Access Control for Weakly
Consistent Replication. In Proceedings of the 5th European Conference on Computer
Systems, EuroSys 2010, pages 293–306, Paris, France, 2010. ACM Press.

55. G. H. V. Wright. Deontic logic. Mind, 60(237):1–15, January 1951. Oxford University
Press.

56. G. H. V. Wright. Norm and action : a logical enquiry. Routledge and Kegan Paul -
Humanities Press, London, New York, 1963.

57. X. Zhang, M. Nakae, M. J. Covington, and R. S. Sandhu. Toward a usage-based
security framework for collaborative computing systems. ACM Transactions on In-
formation and System Security, 11(1):1–36, 2008.

