14 research outputs found

    DESIGN, DEVELOPMENT, AND EVALUATION OF A MRI-GUIDED NEUROSURGICAL INTRACRANIAL ROBOT

    Get PDF
    Brain tumors are among the most feared complications of cancer. Their treatment is challenging because of the lack of good imaging modality and the inability to remove the complete tumor. To overcome this limitation, we propose to develop a Magnetic Resonance Imaging (MRI)-compatible neurosurgical robot. The robot can be operated under continuous MRI, and the Magnetic Resonance (MR) images can be used to supplement physicians' visual capabilities, resulting in precise tumor removal. We have developed two prototypes of the Minimally Invasive Neurosurgical Intracranial Robot (MINIR) using MRI compatible materials and shape memory alloy (SMA) actuators. The major difference between the two robots is that one uses SMA wire actuators and the other uses SMA spring actuators combined with the tendon-sheath mechanism. Due to space limitation inside the robot body and the strong magnetic field in the MRI scanner, most sensors cannot be used inside the robot body. Hence, one possible approach is to rely on image feedback to control the motion of the robot. In this research, as a preliminary approach, we have relied on image feedback from a camera to control the motion of the robot. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used reliably to control the joint motion of the robots. A series of MRI compatibility tests were performed to evaluate the MRI compatibility of the robots and to assess the degradation in image quality. The experimental results demonstrated that the robots are MRI compatible and created no significant image distortion in the MR images during actuation. The accomplishments presented in this dissertation represent a significant development of using SMA actuators to actuate MRI-compatible robots. It is anticipated that, in the future, continuous MR imaging would be used reliably to control the motion of the robot. It is aspired that the robot design and the control methods of SMA actuators developed in this research can be utilized in practical applications

    Smart actuation and sensing for meso-scale surgical robotic systems

    Get PDF
    This dissertation presents the development of meso-scale surgical robotics based on smart actuation and sensing for minimally invasive surgery (MIS). By replacing conventional straight tools by steerable surgical robots, surgical outcomes can potentially be improved due to more precise, stable, and flexible manipulation. Since bending and torsion are the two fundamental motion forms required by surgical tools to complete general surgical procedures, compact torsion and bending modules, both integrated with intrinsic sensors for motion feedback, have been developed based on shape memory alloy (SMA). The developed actuation and sensing techniques have been applied on a robot for neurosurgical intracerebral hemorrhage evacuation (NICHE) and a steerable catheter for atrial fibrillation (AFib) treatment. The NICHE robot consists of a straight stem, an SMA torsion module, and an SMA bending module as a distal bending tip. By synchronizing the motion of the stem, the bending module, and the torsion module, the robot is capable of tip articulation within the brain to remove hemorrhage effectively through suction and electrocauterization. In addition, a skull-mounted robotic headframe has been developed based on a Stewart platform to manipulate the NICHE robot. The robotic catheter is developed by integrating multiple SMA bending modules with flexible braid reinforced tubing. Polymer 3D-printing is used to fabricate all the structural components due to its relatively low cost, short fabrication period, and capability of fabricating complicated structures with high accuracy. The developed surgical robotic systems have been thoroughly evaluated using phantom or cadaver models under computed tomography (CT) and/or magnetic resonance imaging (MRI) guidance. The imaging-guided experimental studies showed that the developed robotic systems consisting of smart actuation and sensing were compatible with CT and MR imaging.Ph.D

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Monolithic self-supportive bi-directional bending pneumatic bellows catheter

    Get PDF
    The minimally invasive surgery has proven to be advantageous over conventional open surgery in terms of reduction in recovery time, patient trauma, and overall cost of treatment. To perform a minimally invasive procedure, preliminary insertion of a flexible tube or catheter is crucial without sacrificing its ability to manoeuvre. Nevertheless, despite the vast amount of research reported on catheters, the ability to implement active catheters in the minimally invasive application is still limited. To date, active catheters are made of rigid structures constricted to the use of wires or on-board power supplies for actuation, which increases the risk of damaging the internal organs and tissues. To address this issue, an active catheter made of soft, flexible and biocompatible structure, driven via nonelectric stimulus is of utmost importance. This thesis presents the development of a novel monolithic self-supportive bi-directional bending pneumatic bellows catheter using a sacrificial molding technique. As a proof of concept, in order to understand the effects of structural parameters on the bending performance of a bellows-structured actuator, a single channel circular bellows pneumatic actuator was designed. The finite element analysis was performed in order to analyze the unidirectional bending performance, while the most optimal model was fabricated for experimental validation. Moreover, to attain biocompatibility and bidirectional bending, the novel monolithic polydimethylsiloxane (PDMS)-based dual-channel square bellows pneumatic actuator was proposed. The actuator was designed with an overall cross-sectional area of 5 x 5 mm2, while the input sequence and the number of bellows were characterized to identify their effects on the bending performance. A novel sacrificial molding technique was adopted for developing the monolithic-structured actuator, which enabled simple fabrication for complex designs. The experimental validation revealed that the actuator model with a size of5 x 5 x 68.4 mm3 i.e. having the highest number of bellows, attained optimal bi-directional bending with maximum angles of -65° and 75°, and force of 0.166 and 0.221 N under left and right channel actuation, respectively, at 100 kPa pressure. The bending performance characterization and thermal insusceptibility achieved by the developed pneumatic catheter presents a promising implementation of flexibility and thermal stability for various biomedical applications, such as dialysis and cardiac catheterization

    Shape Memory Alloy Actuators and Sensors for Applications in Minimally Invasive Interventions

    Get PDF
    Reduced access size in minimally invasive surgery and therapy (MIST) poses several restriction on the design of the dexterous robotic instruments. The instruments should be developed that are slender enough to pass through the small sized incisions and able to effectively operate in a compact workspace. Most existing robotic instruments are operated by big actuators, located outside the patient’s body, that transfer forces to the end effector via cables or magnetically controlled actuation mechanism. These instruments are certainly far from optimal in terms of their cost and the space they require in operating room. The lack of adequate sensing technologies make it very challenging to measure bending of the flexible instruments, and to measure tool-tissue contact forces of the both flexible and rigid instruments during MIST. Therefore, it requires the development of the cost effective miniature actuators and strain/force sensors. Having several unique features such as bio-compatibility, low cost, light weight, large actuation forces and electrical resistivity variations, the shape memory alloys (SMAs) show promising applications both as the actuators and strain sensors in MIST. However, highly nonlinear hysteretic behavior of the SMAs hinders their use as actuators. To overcome this problem, an adaptive artificial neural network (ANN) based Preisach model and a model predictive controller have been developed in this thesis to precisely control the output of the SMA actuators. A novel ultra thin strain sensor is also designed using a superelastic SMA wire, which can be used to measure strain and forces for many surgical and intervention instruments. A da Vinci surgical instrument is sensorized with these sensors in order to validate their force sensing capability

    Design, Modeling and Control of Micro-scale and Meso-scale Tendon-Driven Surgical Robots

    Get PDF
    Manual manipulation of passive surgical tools is time consuming with uncertain results in cases of navigating tortuous anatomy, avoiding critical anatomical landmarks, and reaching targets not located in the linear range of these tools. For example, in many cardiovascular procedures, manual navigation of a micro-scale passive guidewire results in increased procedure times and radiation exposure. This thesis introduces the design of two steerable guidewires: 1) A two degree-of-freedom (2-DoF) robotic guidewire with orthogonally oriented joints to access points in a three dimensional workspace, and 2) a micro-scale coaxially aligned steerable (COAST) guidewire robot that demonstrates variable and independently controlled bending length and curvature of the distal end. The 2-DoF guidewire features two micromachined joints from a tube of superelastic nitinol of outer diameter 0.78 mm. Each joint is actuated with two nitinol tendons. The joints that are used in this robot are called bidirectional asymmetric notch (BAN) joints, and the advantages of these joints are explored and analyzed. The design of the COAST robotic guidewire involves three coaxially aligned tubes with a single tendon running centrally through the length of the robot. The outer tubes are made from micromachined nitinol allowing for tendon-driven bending of the robot at variable bending curvatures, while an inner stainless steel tube controls the bending length of the robot. By varying the lengths of the tubes as well as the tendon, and by insertion and retraction of the entire assembly, various joint lengths and curvatures may be achieved. Kinematic and static models, a compact actuation system, and a controller for this robot are presented. The capability of the robot to accurately navigate through phantom anatomical bifurcations and tortuous angles is also demonstrated in three dimensional phantom vasculature. At the meso-scale, manual navigation of passive pediatric neuroendoscopes for endoscopic third ventriculostomy may not reach target locations in the patient's ventricle. This work introduces the design, analysis and control of a meso-scale two degree-of-freedom robotic bipolar electrocautery tool that increases the workspace of the neurosurgeon. A static model is proposed for the robot joints that avoids problems arising from pure kinematic control. Using this model, a control system is developed that comprises of a disturbance observer to provide precise force control and compensate for joint hysteresis. A handheld controller is developed and demonstrated in this thesis. To allow the clinician to estimate the shape of the steerable tools within the anatomy for both micro-scale and meso-scale tools, a miniature tendon force sensor and a high deflection shape sensor are proposed and demonstrated. The force sensor features a compact design consisting of a single LED, dual-phototransistor, and a dual-screen arrangement to increase the linear range of sensor output and compensate for external disturbances, thereby allowing force measurement of up to 21 N with 99.58 % accuracy. The shape sensor uses fiber Bragg grating based optical cable mounted on a micromachined tube and is capable of measuring curvatures as high as 145 /m. These sensors were incorporated and tested in the guidewire and the neuroendoscope tool robots and can provide robust feedback for closed-loop control of these devices in the future.Ph.D

    SMA-Based Muscle-Like Actuation in Biologically Inspired Robots: A State of the Art Review

    Get PDF
    New actuation technology in functional or "smart" materials has opened new horizons in robotics actuation systems. Materials such as piezo-electric fiber composites, electro-active polymers and shape memory alloys (SMA) are being investigated as promising alternatives to standard servomotor technology [52]. This paper focuses on the use of SMAs for building muscle-like actuators. SMAs are extremely cheap, easily available commercially and have the advantage of working at low voltages. The use of SMA provides a very interesting alternative to the mechanisms used by conventional actuators. SMAs allow to drastically reduce the size, weight and complexity of robotic systems. In fact, their large force-weight ratio, large life cycles, negligible volume, sensing capability and noise-free operation make possible the use of this technology for building a new class of actuation devices. Nonetheless, high power consumption and low bandwidth limit this technology for certain kind of applications. This presents a challenge that must be addressed from both materials and control perspectives in order to overcome these drawbacks. Here, the latter is tackled. It has been demonstrated that suitable control strategies and proper mechanical arrangements can dramatically improve on SMA performance, mostly in terms of actuation speed and limit cycles

    Bi-Directional Origami-Inspired SMA Folding Microactuator

    Get PDF
    We present the design, fabrication, and characterization of single and antagonistic SMA microactuators allowing for uni- and bi-directional self-folding of origami-inspired devices, respectively. Test devices consist of two triangular tiles that are interconnected by double-beam-shaped SMA microactuators fabricated from thin SMA foils of 20 µm thickness with memory shapes set to a 180° folding angle. Bi-directional self-folding is achieved by combining two counteracting SMA microactuators. We present a macromodel to describe the engineering stress–strain characteristics of the SMA foil and to perform FEM simulations on the characteristics of self-folding and the corresponding local evolution of phase transformation. Experiments on single-SMA microactuators demonstrate the uni-directional self-folding and tunability of bending angles up to 180°. The finite element simulations qualitatively describe the main features of the observed torque-folding angle characteristics and provide further insights into the angular dependence of the local profiles of the stress and martensite phase fraction. The first antagonistic SMA microactuators reveal bi-directional self-folding in the range of −44° to +40°, which remains well below the predicted limit of ±100°
    corecore