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Abstract: We present the design, fabrication, and characterization of single and antagonistic SMA
microactuators allowing for uni- and bi-directional self-folding of origami-inspired devices, respec-
tively. Test devices consist of two triangular tiles that are interconnected by double-beam-shaped
SMA microactuators fabricated from thin SMA foils of 20 µm thickness with memory shapes set to
a 180◦ folding angle. Bi-directional self-folding is achieved by combining two counteracting SMA
microactuators. We present a macromodel to describe the engineering stress–strain characteristics
of the SMA foil and to perform FEM simulations on the characteristics of self-folding and the cor-
responding local evolution of phase transformation. Experiments on single-SMA microactuators
demonstrate the uni-directional self-folding and tunability of bending angles up to 180◦. The finite
element simulations qualitatively describe the main features of the observed torque-folding angle
characteristics and provide further insights into the angular dependence of the local profiles of the
stress and martensite phase fraction. The first antagonistic SMA microactuators reveal bi-directional
self-folding in the range of −44◦ to +40◦, which remains well below the predicted limit of ±100◦.

Keywords: self-folding origami; microactuation; shape memory alloy foils; micro technology

1. Introduction

The increasing demand on the functionality of microsystems requires new approaches
for active control of mechanical, optical, and fluidic components. Most microactuator
concepts are limited to one- or two-dimensional workspaces. The concept presented here
uses the technique of self-folding, following the ancient art of paper folding, known as
origami, by which flat sheets transform into numerous three-dimensional (3D) shapes.
The shape change can be achieved by bimorph structures [1], smart composites [2,3], or
smart materials such as shape memory alloys (SMAs), responding to an external stimulus
such as the environmental temperature or an electrical current. The advantage of origami-
inspired designs in engineering is their compact and deployable setup, which has proven
its versatility in various macroscopic applications, e.g., airbags [4], wings [5], or tools for
minimally invasive surgery [6]. In addition, the actual 3D function could be assigned
after the fabrication of the initially flat 2D structures. An overview of the designs and
mechanisms of self-folding structures can be found in recent reviews, e.g., [7–9].

SMAs provide high bending moments, low corrosion, and low fatigue. SMA wires
have been used to produce a folding motion [10–12] and furthermore can be transformed
into SMA coils to generate larger displacements and bending angles [6,13]. The use of
SMA sheets or foils can simplify the design and fabrication of folding actuators at the
miniature scale [14]. Previous concepts of origami-inspired self-folding SMA sheets have
been published in [10,15]. Further relevant research has been performed, e.g., in the field of
robogami [16]. Alternative mechanisms for satellite deployment using SMA hinges were
presented in [17]. While previous developments focused on the macro scale, we intend
to transfer the concept of origami-inspired SMA folding actuation to the micro scale by
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combining state-of-the-art methods of SMA film engineering and micromachining. The aim
of this study is to design, fabricate, and analyze the performance of single and antagonistic
SMA microactuators, allowing for uni- and bidirectional folding at miniature scales.

2. Materials and Methods
2.1. Materials Characterization

The outstanding property of SMAs is their thermally induced solid-state phase trans-
formation, from a low-temperature phase (martensite) to a high-temperature phase (austen-
ite) [18]. When an SMA material is deformed in its martensitic state, it undergoes a
diffusionless and reversible phase transformation. Restoring its memory shape requires
heating above its phase transformation temperature (austenite finish temperature Af). In
this investigation, the base material is a cold-rolled NiTi foil of 20 µm thickness. Aiming at
multi-physical simulation of the folding actuation, the material is characterized with regard
to its mechanical, thermal, and electrical properties. The differential scanning calorimetry
(DSC) measurement shown in Figure 1 provides information on the martensitic trans-
formation temperatures of the as-received material. The phase transformation regime is
roughly located between 5 and 62 ◦C. On cooling, the material undergoes an intermediate
R-phase transformation before the transformation to martensite begins at approximately
19 ◦C. Therefore, at room temperature, the material is in R-phase condition as long as no
external load is applied. The reverse transformation from R-phase to austenite is associated
with low thermal hysteresis and excellent fatigue life [19,20]. This behavior is reflected
in the electrical resistance characteristic in Figure 1b showing the temperature range of
folding actuation above room temperature. After the first load cycle, phase transformation
is highly reversible.
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mation stress increases linearly following the Clausius Clapeyron relation with coefficient 

Figure 1. (a) Differential scanning calorimetry measurement of a cold-rolled NiTi foil of 20 µm
thickness; (b) four-point-probe electrical resistivity measurement in the temperature regime of
actuation above room temperature.

Tensile tests are carried out in a heating chamber in order to determine the temperature-
dependent mechanical parameters including Young’s modulus, maximum transformation
strain, and critical stress for inter-martensitic transformation. Figure 2a shows experimental
and simulated engineering stress–strain characteristics for different temperatures. Typical
features are the increase in stiffness and of the critical transformation stress, which is
apparent by the shift of the stress plateau toward higher values. The stiffness increase
is attributed to the rule of mixture of the involved phase fractions, including the ‘soft’
R-phase and ‘hard’ austenite that change with temperature. The critical transformation
stress increases linearly following the Clausius Clapeyron relation with coefficient CAM.
The experimental characteristic at room temperature exhibits a rather large slope of the
stress plateau due to strain hardening caused by sample fabrication. The obtained material
parameters are summarized in Table A1 in the Appendix A.
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Figure 2. (a) Experimental and simulated stress–strain characteristics at different temperatures as
indicated; (b) temperature-dependent effective modulus used in the present model to describe the
mechanical response in the temperature regime of co-existing R- and A-phase.

2.2. Constitutive Modeling

The model used to describe the thermomechanical behavior of the SMA material has
been adopted from Jaber et al. [21]. Contrary to other polycrystalline model approaches, it
is based upon the strain tensor and temperature as control variables for the transformation
process. In combination with the finite element method for finite strains and large displace-
ments, this model has a very good convergence behavior. The change from a (σ, T)- to an
equivalent (ε, T)-phase diagram is necessary to determine the transformation rates directly
expressed by the strain rate. Skipping the stress calculation in the adopted algorithm
reduces computation time. Similar to other phenomenological material models for SMAs,
the present model consists of two laws: a thermomechanical and a kinetic law. Here, we
present the general equations and refer the reader to references [21–23] for further details.

During the thermomechanical formulation, hypo-elastic plasticity modeling is con-
ducted to describe the non-linear but reversible stress–strain behavior [24]. Here, the strain
rate tensor is additively decomposed, as in the equation below,

.
ε =

.
εel +

.
εtr (1)

.
ε is the rate of the total strain,

.
εel is the rate of the elastic strain, and

.
εtr is the rate of

the transformation strain. Considering the Jaumann rate of the Cauchy stress as the stress
measure, the thermomechanical law is stated as below,

.
σ = R :

.
εel + k

.
T = R :

( .
ε− .

εtr
)
+ k

.
T (2)

T is the current temperature, k is the thermal modulus tensor, and R is the fourth-order
elastic modulus.

The martensite volume fraction ξ and transformation strain tensor εtr are selected
as the internal state variables. These averaged quantities give a global account of the
material behavior during thermomechanical loading. The kinetic law, therefore, describes
the evolution of the internal state variables as below,

.
εtr =

.
ξE, (3)

where E is the transformation direction tensor that controls the orientation of created
or recovered transformation strain for both forward and reverse transformations. E is
defined as,

E = εmax
tr

σ′

‖σ′‖ for
.
ξ > 0 (forward transformation) (4)
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E = εmax
tr

εtr

‖εtr‖
for

.
ξ < 0 (reverse transformation) (5)

here, ‖ε′‖ =
√

3
2(1+ν)2 ε′ : ε′ indicates the tensor norm.

In forward transformation, the created strain follows the direction of the deviator
σ′, which controls shape change in the materials. In reverse transformation, the strain
decrease follows the direction of the existing transformation strain εtr. With this constitu-
tive relation, a tangent stiffness tensor is calculated, which relates local stress and strain
increments. In the finite element implementation, an elastic predictor–transformation
corrector return mapping algorithm is adopted. Geometric nonlinearity is treated with an
updated Lagrangian formulation [25].

The phase diagram in Figure 3 has been obtained from evaluating the tensile loading
data (see Table A1). In the model, we take a simplified view: In forward transformation, we
assume the co-existence of R- and A-phase, which we combine to a single parent phase and
describe by a temperature-dependent effective modulus determined from experimental
material characterization. Above Af, the stiffness of the unloaded material is constant,
and we estimate the modulus of the starting phase to be 10 GPa below room tempera-
ture. Figure 2b depicts both the experimental and fitted effective modulus for different
temperatures. The present model assumes the same mechanical behavior for tension and
compression. In various NiTi alloys, a pronounced tension–compression asymmetry was
found with typically higher transformation stress levels and lower transformation strain
under compressive load [26]. An adaption of the model parameters will be possible in the
future when experimental bending tests have been carried out.
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Figure 3. (a) Classical phase diagram obtained from experimental values (red dots); (b) conversion
into modified phase diagram as adapted from [21].

2.3. Design and Engineering

The basic components of the origami-inspired microdevices are two triangular tiles
that are interconnected by SMA folding microactuators. Each microactuator is designed
as a double-beam structure as depicted in Figure 4a, which allows for resetting the mem-
ory shape by Joule heating and thereby localizing the heat to the folding region. While
eliminating the need for an additional heating element, the double-beam structure also
serves as a flexible active hinge connecting the individual tiles. The dimensions of the
folding microactuator are mainly limited by the SMA foil thickness tSMA. If εmax denotes
the maximum allowable tensile and compressive strain, which is located on the outer
surfaces of the folding area, we can calculate the minimum admissible bending radius r
as follows:

r > tSMA
1− |εmax|

2 |εmax|
(6)
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Figure 4. Fabrication and assembly of the folding microactuators: (a) microscope images of the
micromachined NiTi foil before and after shape setting. (b) Schematic of laser micromachining and
shape setting in a vacuum oven and (c) of electrical connection by gap welding and bonding to tiles.
(d) Schematic of combining a protagonist and an antagonist microactuator for bi-directional folding.

For the given NiTi foil thickness of 20 µm and a strain limit of around 6%, the minimum
bending radius is 157 µm. For our samples, we chose a bending radius of 250 µm to stay
safely below the strain limit. We thereby obtained a minimum separation of the tiles of
π(r + tSMA) = 0.82 mm. The beam width was set to 1 mm and the beam separation to
2.5 mm. Additionally, two centering holes were designed, which are required later in the
heat treatment procedure.

2.4. Fabrication

The manufacturing process of the folding microactuators is shown in Figure 4b–d).
First, the NiTi foil is structured by laser cutting. The obtained structure is covered with
titanium foils to prevent oxidation during the annealing step. By means of a pin and the
centering holes, we can bring the stack of Ti and NiTi foils into the desired fold of 0◦ and
a folding diameter of 500 µm. Then, shape setting is performed by heat treatment in a
vacuum furnace at 460 ◦C for 45 min. In the next step (Figure 4c), the NiTi microactuators
have to be attached to the polyimide tiles, which is performed here by adhesive bonding.
Two nickel sheets are used as electrical connections, which are welded to the legs of the NiTi
structure. The second tile is finally bonded to the NiTi structure to obtain the base element
of the folding microactuator. Combining a protagonist microactuator with memory shape at
0◦ with an antagonist with memory shape at 360◦ (Figure 4d) enables bi-directional folding.

3. Characterization of Folding Actuation

The SMA folding actuator deforms quasi-plastically upon loading due to intermarten-
sitic transformation. As shown in Figure 5, the shape-set folding microactuator has been
mechanically unfolded beyond 360◦ at room temperature to achieve a visible deformation
of approximately 210◦. If the structure is then placed on a hot plate, the memory shape can
be recovered by heating above Af temperature. On subsequent cooling, the structure opens
up again to about 45◦ due to internal stress induced by the large bending angle. Repeatable
performance is achieved after five training cycles. However, no systematic investigation
has been made into the fatigue life.

3.1. Uni-Directional Self-Folding

In the following, we present the results of the folding performance of a single SMA
microactuator, which is quasi-plastically deformed to 180◦ and subsequently restored to
its memory shape by Joule heating. The motion and temperature of the microactuator
are tracked by an infrared camera. Different load cases are considered, ranging from free
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recovery, whereby no tiles are used, to the cases of Kapton and ceramic tiles, generating
different gravitational forces. Figure 6 depicts the corresponding folding characteristics
as a function of heating power, which correlates with the average temperature of the
microactuator. For increasing load, the critical power to start the transformation shifts
from about 150 to 500 mW. In all cases, full transformation is reached at a heating power
of 600 mW. The corresponding critical temperatures increase from about 32 to 48 ◦C
for the ceramic tile, which is due to the stress-induced increase of phase transformation
temperatures. At the same time, the folding angle drops more steeply. Upon cooling, the
memory shape is recovered completely due to the gravitational load of the ceramic tile.
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Figure 6. (a) Folding angles as a function of heating power and average temperature of the self-
folding microactuator determined by camera tracking; (b) IR image taken during shape recovery.

These measurements prove the concept of folding and the tunability of the angular
range by introducing a suitable additional load. However, at a small load, incomplete
shape recovery is observed as a consequence of residual plastic deformation. Additional
experiments prove that samples with an increased folding radius of 0.5 and 1 mm show
less residual strain and, thus, a smaller difference between the folding angles in a hot and
cold state. On the other hand, shape setting results in smaller folding angles in this case,
as higher bending radii are associated with smaller strain during mechanical unfolding,
causing reduced shape recovery [27].

In addition, we investigate the torque of the SMA microactuator through the blocking
force that is generated during shape recovery. For this purpose, the SMA microactuator is
positioned in two configurations (90◦ and 180◦) below a load cell with one end fixed onto a
substrate (see Figure 7a). The shape recovery during heating is blocked by the load cell, and
the acting force is measured. The torque is calculated by multiplying the measured blocking
force of the load cell with the distance L with respect to the fixation. Figure 7b shows
the heating and cooling characteristics for each configuration. The observed hysteresis
is attributed to the difference between the forward and reverse phase transformation
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temperatures. The maximum generated torque is determined to be 0.085 and 0.11 Nmm
for the folding angles of 90◦ and 180◦, respectively.

Actuators 2021, 10, x FOR PEER REVIEW 7 of 12 
 

 

as higher bending radii are associated with smaller strain during mechanical unfolding, 

causing reduced shape recovery [27]. 

In addition, we investigate the torque of the SMA microactuator through the blocking 

force that is generated during shape recovery. For this purpose, the SMA microactuator is 

positioned in two configurations (90° and 180°) below a load cell with one end fixed onto 

a substrate (see Figure 7a). The shape recovery during heating is blocked by the load cell, 

and the acting force is measured. The torque is calculated by multiplying the measured 

blocking force of the load cell with the distance L with respect to the fixation. Figure 7b 

shows the heating and cooling characteristics for each configuration. The observed hyste-

resis is attributed to the difference between the forward and reverse phase transformation 

temperatures. The maximum generated torque is determined to be 0.085 and 0.11 Nmm 

for the folding angles of 90° and 180°, respectively. 

 

 

(a) (b) 

Figure 7. Measurement of blocking force versus folding angle of a single self-folding microactuator: 

(a) Schematic of experimental setup for the case of 90° and 180° folding angle; the resulting torque 

is obtained by the product of measured force F and distance L with respect to the fixation; (b) torque 

versus heating power characteristics upon heating and cooling. 

3.2. Bi-Directional Self-Folding 

By combining two counteracting microactuators, a protagonist and an antagonist, bi-

directional self-folding can be achieved. Thereby, selective heating of only one microactu-

ator at a given time is mandatory to avoid plastic deformation in the austenitic state. While 

the active actuator is heated, the antagonist in a cold state will be deformed. First, we 

determine the torque-folding angle characteristics of a single SMA microactuator at room 

temperature and under Joule heating. As in the previous experiment on single microactu-

ators, the load cell is positioned above the actuator (Figure 8a), and the fixation of the tile 

is gradually rotated to adjust different folding angles. Using digital image processing, we 

evaluate the folding angle and the distance from the pin to fixation in order to derive the 

corresponding torque to the recorded blocking force. Figure 8b shows torque-folding an-

gle characteristics for different average temperatures of the microactuators. The experi-

mental setup allows for limited accuracy at small folding angles. In the initial elastic range, 

the stiffness increases for increasing average temperature. Joule heating up to 60 °C using 

a heating power of 110 mW causes only partial phase transformation. In this case, stress-

induced formation of martensite causes a characteristic change in slope above a critical 

torque of about 0.55 Nmm and a plateau-like course of torque. Further heating to 80 °C 

results in full transformation to austenite, which is reflected by the quasi-linear loading 

Figure 7. Measurement of blocking force versus folding angle of a single self-folding microactuator:
(a) Schematic of experimental setup for the case of 90◦ and 180◦ folding angle; the resulting torque is
obtained by the product of measured force F and distance L with respect to the fixation; (b) torque
versus heating power characteristics upon heating and cooling.

3.2. Bi-Directional Self-Folding

By combining two counteracting microactuators, a protagonist and an antagonist,
bi-directional self-folding can be achieved. Thereby, selective heating of only one microac-
tuator at a given time is mandatory to avoid plastic deformation in the austenitic state.
While the active actuator is heated, the antagonist in a cold state will be deformed. First, we
determine the torque-folding angle characteristics of a single SMA microactuator at room
temperature and under Joule heating. As in the previous experiment on single microac-
tuators, the load cell is positioned above the actuator (Figure 8a), and the fixation of the
tile is gradually rotated to adjust different folding angles. Using digital image processing,
we evaluate the folding angle and the distance from the pin to fixation in order to derive
the corresponding torque to the recorded blocking force. Figure 8b shows torque-folding
angle characteristics for different average temperatures of the microactuators. The exper-
imental setup allows for limited accuracy at small folding angles. In the initial elastic
range, the stiffness increases for increasing average temperature. Joule heating up to 60 ◦C
using a heating power of 110 mW causes only partial phase transformation. In this case,
stress-induced formation of martensite causes a characteristic change in slope above a
critical torque of about 0.55 Nmm and a plateau-like course of torque. Further heating
to 80 ◦C results in full transformation to austenite, which is reflected by the quasi-linear
loading characteristic. Yet, the folding microactuator is deformed plastically upon loading.
Therefore, residual strain occurs upon unloading, which cannot be recovered.

The FE model is applied to the bending of a single self-folding microactuator to
understand the folding motion and examine the torque in the range of small folding
angles. For the 3D structure (Figure 9a), a zero-displacement boundary condition is
applied to fix the two legs (green) to the tile below. For the blue part connecting the two
beams to the second tile, a rigid body constraint is used, and unfolding is simulated by
linearly increasing the moment on this part. Figure 9b depicts two different configurations
(180◦ and 270◦) and the corresponding volume distribution of martensite phase fraction
at a homogeneous temperature of 24 ◦C. We can observe that the phase transformation
does not occur uniformly along the folding axis but starts on the outer surfaces of the
microactuator. For a folding angle of 270◦, the maximum von Mises stress is 217 MPa and
the maximum principal strain is 4.3%.
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Simulations of torque-folding angle characteristics are carried out for different homo-
geneous temperatures, as shown in Figure 10a. Close to 160◦, a kink occurs, which indicates
a buckling effect that becomes increasingly pronounced for increasing temperature when
the structure becomes stiffer. Figure 10b depicts the corresponding changes in martensite
volume fraction in the bending region, covering the section between the fixation of the tiles
and the connection of the two beams, see Figure 9. At 80 ◦C, the microactuator remains
in an austenitic state, even for folding angles up to 180◦. For larger deformation loads,
stress-induced formation of oriented martensite occurs, which is fully reset upon unloading.
At lower temperatures, stress-induced transformation to oriented martensite is initiated
at lower folding angles between 90◦ and 180◦. Thus, higher fractions of martensite occur
for a given folding angle in this range. Below about 60 ◦C, oriented martensite can no
longer be fully reset and, thus, folding angles are no longer recovered upon unloading. An
animation of unfolding as well as the corresponding evolution of martensite phase fraction
and von Mises stress for the cases of 24 and 80 ◦C can be found in videos S1–S4 of the
Supplementary Materials, respectively.

Based on the torque-folding angle characteristics, the motion range of antagonistic
self-folding microactuators can be predicted. Figure 11 shows torque versus folding angle
of bi-directional microactuation for the case of 180◦ pre-deflection of protagonist and
antagonist, thus a total of 360◦ with respect to each other. Zero position corresponds
to a flat state (Position 1). The intersections of the characteristics of protagonist and
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antagonist correspond to the equilibrium positions obtained when selectively heating one
microactuator at a given time. When the protagonist is heated exclusively, the folding
angle α changes to Position 2 at −100◦, while selective heating of the antagonist results in a
folding angle at +100◦ (Position 3). Thus, the equilibrium positions mark the maximum
possible range of folding angles that could be achieved by antagonistic actuation. In an
ideal case, bi-directional actuation allows covering the range of −100◦ < α < 100◦. The
experimental results on real antagonistic devices, however, reveal lower folding angles due
to additional forces in the devices depending on the details of fabrication. Figure 11 shows
an example of bi-directional self-folding microactuation by infrared microcopy, showing
reversible folding between −44◦ and +40◦. The folding motion during heating and cooling
of the protagonist and antagonist can be found in videos S5 and S6 of the Supplementary
Materials, respectively.
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4. Conclusions

We present the design, fabrication, and characterization of uni- and bi-directional
origami-inspired self-folding microactuators based on micromachined SMA foils. The basic
design consists of two triangular tiles that are interconnected by double-beam-shaped SMA
microactuators, forming active hinges that are controlled by Joule heating. A macromodel
describing the engineering stress–strain characteristics of the SMA foil is set up and imple-
mented in an FEM tool to simulate the torque and bending angles of corresponding SMA
microactuators in the temperature range of actuation. For fabrication, we follow a rapid
prototyping approach using laser cutting, separate heat treatment, and hybrid integration.
Upon further miniaturization, these process steps will be replaced by a monolithic fabri-
cation scheme. Characterization concentrates on uni-directional as well as bi-directional
self-folding. Experiments on folding angles versus heating power on single microactuators
demonstrate the self-folding and tunability of the angular range between 30◦ up to 180◦, de-
pending on the gravitational force of the tiles. The finite element simulations qualitatively
describe the main features of the observed torque-folding angle characteristics including
the temperature dependence of stiffness, critical stress for intermartensitic transformation,
and stress-induced formation of martensite. Based on this information, the performance of
antagonistic microactuators including maximum torque and bi-directional folding range is
predicted. First demonstrator devices reveal bi-directional actuation in the range of −44◦

and +40◦. This range remains well below the predicted limit of ±100◦, which indicates
that there is considerable room for design improvements. Possible design extensions could
include cascaded designs of folding microactuators and, e.g., additional magnetic forces to
support self-folding. Further downscaling and increasing the number of tiles will enable a
variety of functional shapes and motions based on programmable folding patterns. Possible
applications are foreseen, e.g., in programmable adaptive microoptics and microfluidics.

Supplementary Materials: The following videos S1–S6 are available online at https://www.mdpi.
com/article/10.3390/act10080181/s1. Video S1: Animation of unfolding and martensite phase
fraction at 24 ◦C (24d-martensitefraction.mp4); Video S2: Animation of unfolding and von Mises
stress in the bending region at 24 ◦C (24d-vonMises.mp4); Video S3: Animation of unfolding and
martensite phase fraction at 80 ◦C (80g-martensitefraction.mp4); Video S4: Animation of unfolding
and von Mises stress in the bending region at 80 ◦C (80g-vonMises.mp4); Video S5: Video of the
folding motion during heating of the protagonist (protagonist-heating+cooling.mp4); Video S6: Video
of the folding motion during heating of the antagonist (antagonist-heating+cooling.mp4).
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Appendix A

Table A1. List of parameters for finite element simulations.

Parameter Abbreviation Value

Martensite Start Temperature Ms 19 ◦C
Martensite Finish Temperature M f 9 ◦C

Austenite Start Temperature As 52 ◦C
Austenite Finish Temperature A f 62 ◦C

R-phase Peak Temperature Rp 45 ◦C

Young’s Modulus (starting phase) EA

12.9 GPa (at 24 ◦C)
21.4 GPa (at 40 ◦C)
24.3 GPa (at 55 ◦C)
32.5 GPa (at 80 ◦C)

Clausius Clapeyron coefficient CM 6.6 MPa/K

Maximum uniaxial transformation strain εmax
tr

0.035 (at 24 ◦C)
0.025 (40 ◦C, 55 ◦C, 80 ◦C)

Critical transformation start stress (A→M) σSCR ~50 MPa
Poisson ratio ν 0.33
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