10,715 research outputs found

    The Configurable SAT Solver Challenge (CSSC)

    Get PDF
    It is well known that different solution strategies work well for different types of instances of hard combinatorial problems. As a consequence, most solvers for the propositional satisfiability problem (SAT) expose parameters that allow them to be customized to a particular family of instances. In the international SAT competition series, these parameters are ignored: solvers are run using a single default parameter setting (supplied by the authors) for all benchmark instances in a given track. While this competition format rewards solvers with robust default settings, it does not reflect the situation faced by a practitioner who only cares about performance on one particular application and can invest some time into tuning solver parameters for this application. The new Configurable SAT Solver Competition (CSSC) compares solvers in this latter setting, scoring each solver by the performance it achieved after a fully automated configuration step. This article describes the CSSC in more detail, and reports the results obtained in its two instantiations so far, CSSC 2013 and 2014

    Algorithmic Reduction of Biological Networks With Multiple Time Scales

    Get PDF
    We present a symbolic algorithmic approach that allows to compute invariant manifolds and corresponding reduced systems for differential equations modeling biological networks which comprise chemical reaction networks for cellular biochemistry, and compartmental models for pharmacology, epidemiology and ecology. Multiple time scales of a given network are obtained by scaling, based on tropical geometry. Our reduction is mathematically justified within a singular perturbation setting using a recent result by Cardin and Teixeira. The existence of invariant manifolds is subject to hyperbolicity conditions, which we test algorithmically using Hurwitz criteria. We finally obtain a sequence of nested invariant manifolds and respective reduced systems on those manifolds. Our theoretical results are generally accompanied by rigorous algorithmic descriptions suitable for direct implementation based on existing off-the-shelf software systems, specifically symbolic computation libraries and Satisfiability Modulo Theories solvers. We present computational examples taken from the well-known BioModels database using our own prototypical implementations

    Algorithmic Reduction of Biological Networks With Multiple Time Scales

    Get PDF

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Probabilistic Inference Using Partitioned Bayesian Networks:Introducing a Compositional Framework

    Get PDF
    Probability theory offers an intuitive and formally sound way to reason in situations that involve uncertainty. The automation of probabilistic reasoning has many applications such as predicting future events or prognostics, providing decision support, action planning under uncertainty, dealing with multiple uncertain measurements, making a diagnosis, and so forth. Bayesian networks in particular have been used to represent probability distributions that model the various applications of uncertainty reasoning. However, present-day automated reasoning approaches involving uncertainty struggle when models increase in size and complexity to fit real-world applications.In this thesis, we explore and extend a state-of-the-art automated reasoning method, called inference by Weighted Model Counting (WMC), when applied to increasingly complex Bayesian network models. WMC is comprised of two distinct phases: compilation and inference. The computational cost of compilation has limited the applicability of WMC. To overcome this limitation we have proposed theoretical and practical solutions that have been tested extensively in empirical studies using real-world Bayesian network models.We have proposed a weighted variant of OBDDs, called Weighted Positive Binary Decision Diagrams (WPBDD), which in turn is based on the new notion of positive Shannon decomposition. WPBDDs are particularly well suited to represent discrete probabilistic models. The conciseness of WPBDDs leads to a reduction in the cost of probabilistic inference.We have introduced Compositional Weighted Model Counting (CWMC), a language-agnostic framework for probabilistic inference that partitions a Bayesian network into subproblems. These subproblems are then compiled and subsequently composed in order to perform inference. This approach significantly reduces the cost of compilation, yet increases the cost of inference. The best results are obtained by seeking a partitioning that allows compilation to (barely) become feasible, but no more, as compilation cost can be amortized over multiple inference queries.Theoretical concepts have been implemented in a readily available open-source tool called ParaGnosis. Further implementational improvements have been found through parallelism, by exploiting independencies that are introduced by CWMC. The proposed methods combined push the boundaries of WMC, allowing this state-of-the-art method to be used on much larger models than before
    • 

    corecore