
Math.Comput.Sci. (2021) 15:499–534
https://doi.org/10.1007/s11786-021-00515-2 Mathematics in Computer Science

Algorithmic Reduction of Biological Networks with Multiple
Time Scales

Niclas Kruff · Christoph Lüders ·
Ovidiu Radulescu · Thomas Sturm ·
Sebastian Walcher

Received: 16 October 2020 / Revised: 2 March 2021 / Accepted: 16 March 2021 / Published online: 8 July 2021
© The Author(s) 2021

Abstract Wepresent a symbolic algorithmic approach that allows to compute invariant manifolds and correspond-
ing reduced systems for differential equations modeling biological networks which comprise chemical reaction net-
works for cellular biochemistry, and compartmental models for pharmacology, epidemiology and ecology. Multiple
time scales of a given network are obtained by scaling, based on tropical geometry. Our reduction is mathematically
justified within a singular perturbation setting. The existence of invariant manifolds is subject to hyperbolicity
conditions, for which we propose an algorithmic test based on Hurwitz criteria. We finally obtain a sequence of
nested invariant manifolds and respective reduced systems on those manifolds. Our theoretical results are generally
accompanied by rigorous algorithmic descriptions suitable for direct implementation based on existing off-the-
shelf software systems, specifically symbolic computation libraries and Satisfiability Modulo Theories solvers.
We present computational examples taken from the well-known BioModels database using our own prototypical
implementations.
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1 Introduction

Biological network models describing elements in interaction are used in many areas of biology and medicine.
Chemical reaction networks are used as models of cellular biochemistry, including gene regulatory networks,
metabolic networks, and signaling networks. In epidemiology and ecology, compartmental models can be described
as networks of interactions between compartments. Both in chemical reaction networks and in compartmental
models, the probability that two elements interact is assumed proportional to their abundances. This property, called
mass action law in biochemistry, leads to polynomial differential equations in the kinetics.

For differential equations that describe the development of such networks over time, a crucial question is con-
cerned with reduction of dimension. We illustrate such a reduction and the steps involved for the classic Michaelis–
Menten system, an archetype of enzymatic reactions. This system is described by the chemical reactions

E + S
k1�
k−1

ES
k2−→E + P,

where E, S, ES, and P are the enzyme, substrate, enzyme-substrate complex, and product, respectively. The mech-
anism has two conserved quantities [E] + [ES] = c1 and [S] + [ES] + [P] = c2, where c1 and c2 are constant
functions representing the respective total concentrations. Let us choose the concentration units such that c2 = 1,
and furthermore rename c1 = ε. In the ordinary differential equations describing the kinetics of [E], [S], [ES], and
[P] according to [24, Sect. 2.1.2] we eliminate the variable [E] = ε − [ES]. This yields a reduced system made of
variables y1 = [S] and y2 = [ES] as follows:

ẏ1 = −εk1y1 + (k1y1 + k−1)y2
ẏ2 = εk1y1 − (k1y1 + k−1 + k2)y2.

Notice that ˙[P] is already determined by the algebraic conservation constraint [P] = 1− y1 − y2. The parameter ε

represents the ratio of total concentrations c1 to c2. The general idea is that ε is small.
In a first step toward reduction, a scaling transformation y1 = x1 and y2 = εx2 yields

ẋ1 = ε(−k1x1 + (k1x1 + k−1)x2)
ẋ2 = k1x1 − (k1x1 + k−1 + k2)x2.

In a second step, one uses singular perturbation theory to obtain the famous Michaelis–Menten equation. It consists
of two components: First, we obtain a one dimensional invariant manifold given approximately by the quasi-steady
state condition k1x1 − (k1x1 + k−1 + k2)x2 = 0. This considers the fast variable x2 to be at the steady state and
lowers dimension from two to one. Second, we obtain a reduced system for the slow variable:

ẋ1 = −ε
k1k2x1

k1x1 + k−1 + k2
.

With our example, we paraphrased the approach in a seminal paper by Heineken et al. [34], which was the
first one to rigorously discuss quasi-steady state from the perspective of singular perturbation theory. Realistic
network models may have many species and differential equations. Considerable effort has been put into model
order reduction, i.e., finding approximate models with a smaller number of species and equations, where the reduced
model can be more easily analyzed than the full model [58].

The scaling of parameters and variables by a small parameter ε and the study of the limit ε → 0 is central
in singular perturbation theory. It is rather obvious that arbitrary scaling transformations are unlikely to provide
useful information about a given system. Successful scalings, in contrast, are typically related to the existence of
nontrivial invariant manifolds. Applications of scaling rely on the observation that, loosely speaking, any result that
holds asymptotically for ε → 0 remains valid for sufficiently small positive ε∗, provided some technical conditions
are satisfied. To determine scalings of polynomial or rational vector fields that model biological networks, tropical
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equilibration methods were introduced and developed in a series of papers by Noel et al. [55], Radulescu et al. [59],
Samal et al. [62,63], and others. These methods open a feasible path for biological networks of high dimension. For
a given system they provide a list of possible slow-fast systems, which may or may not yield invariant manifolds
and reduced equations. Other methods due to Goeke et al. [31], and recently extended to multiple time scales by
Kruff and Walcher [40], determine critical parameter values and manifolds for singular perturbation reductions.

The principal purpose of the present paper is to complement scaling with an algorithmic test for the existence of
invariantmanifolds and the computation of thosemanifolds alongwith corresponding reduced systems of differential
equations. In the asymptotic limit, methods from singular perturbation theory, principally developed by Tikhonov
[74] and Fenichel [25], are available. A recent extension to multiscale systems by Cardin and Teixeira [11] turns
out to be a valuable tool for the systematic computation of reductions with nested invariant manifolds and allows
an algorithmic approach.

In the language of dynamical systems, the behavior of systems with multiple time scales can be described as
follows. All variables evolve towards the steady state of the ordinary differential equation that they follow, but not
with the same speed, in other words, not within the same time scale. Slow variables correspond to long time scales,
and fast variables correspond to short time scales. The steady state of a subset of the ordinary differential equations
is called quasi-steady state, and the evolution of a variable or group of variables towards its quasi-steady state is
called relaxation. At a given time scale, a group of variables relaxes towards one of their quasi-steady states. The set
of all quasi-steady states of variables relaxing within the same time scale forms a critical manifold, which provides
the lowest order approximation to the corresponding invariant manifold. In this article, we do not distinguish
between critical and invariant manifolds, since we do not discuss higher order approximations. All slower variables
can be considered fixed, and all faster variables have already relaxed and satisfy quasi-steady state conditions. As
the number of relaxed variables increases and thus the set of quasi-steady state conditions grows, the respective
invariant manifolds get nested so that later manifolds are contained in earlier ones. Local linear approximations of
these manifolds were proposed by Valorani and Paolucci [75] using numerical methods based on the local Jacobian.
However, to the best of our knowledge, constructive approaches providing nonlinear descriptions of these manifolds
and reduced models are still missing.

Froma computer science point of view,wepropose a novel symbolic computation-based algorithmicworkflow for
the reduction process outlined above. This includes in particular the automatic verification of certain hyperbolicity
conditions required for the validity of the reductions. We restrict ourselves to the case of polynomial differential
equations that covers mass action chemical reaction networks and compartmental models. We present a series of
algorithms that takes as input a system of polynomial autonomous ordinary differential equations together with
numerical information related to the desired coarse graining of the scaling. As output one finally obtains a collection
of nested invariant manifolds for the input system, associated with smaller dimensional systems that govern the
dynamics on those manifolds. This output establishes the reduced systems discussed above.

The computationally hard parts of our methods are reduced to decision problems in interpreted first-order logic
over various theories. It turns out that quantifier alternation can be entirely avoided, so that the Satisfiability Modulo
Theories (SMT) framework by Nieuwenhuis et al. [52] can be applied. Several corresponding SMT solvers are
freely available and professionally supported [1,13,17,51]. It is remarkable that we arrive with our comprehensive
algorithmic work here at SMT sub-problems for several different logics, viz. linear integer arithmetic, linear real
arithmetic, and non-linear real arithmetic. The algorithms presented here are suitable for straightforward implemen-
tation provided that a symbolic computation library, or computer algebra system, and an SMT solver are available.
We created two independent prototypical realizations in software ourselves, one in Python using freely available
libraries, and one in Maple.

The plan of the paper is as follows: In Sect. 2.1 we introduce an abstract scaling procedure, which assumes, for
given0 < ε∗ < 1, the existenceof families of exponents ck,J anddk for scalingpolynomial coefficients andvariables,
respectively. From the scaled system, higher order terms are truncated, and the obtained system is partitioned into
several time scales, ordered from fastest to slowest. A corresponding generic algorithm uses black-box functions c
and d. In Sect. 2.2, we make precise one possible way to realize c and d, based on tropical geometry. So far, our
transformations are mostly of formal nature. On these grounds, we algorithmically determine in Sect. 3 invariant
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manifolds and corresponding reduced systems, which makes the formal scaling meaningful in a mathematically
precise way. In general, this is possible only for a certain number � of time scales, where � is explicitly found and—
in contrast to existing alternative approaches—often larger than 2. Technically, we apply recent results by Cardin
and Teixeira [11] based on Fenichel theory. In Sect. 4, we employ symbolic computation techniques, specifically
Gröbner basis theory, to equivalently simplify our reduced systems, which are still scaled in terms of ε∗, c, and
d. In Sect. 5, we finally transform back to the principal scale of the original system while preserving the obtained
multiple time scales and the structure of the corresponding reduced systems. In particular, the various time scale
factors remain explicit. In Sect. 6, we summarize what we have gained from the overall procedure for our original
input. At this point, the mathematical development of our framework has been accompanied by nine algorithms,
and we give a tenth top-level algorithm, which makes precise how various modules are combined and interact with
one another. In Sect. 7 we discuss computational examples with our prototypical software mentioned above. We
consider models from the BioModels database, a repository of mathematical models of biological processes [57].
The focus is on successful reductions for biologically interesting examples. This is counterbalanced in Appendix
A by further examples to support the understanding of our algorithms. This also provides some examples where
we do not obtain meaningful reductions. In Sect. 8 we highlight some computational steps in our algorithms from
the point of view of asymptotic worst-case complexity. In Sect. 9, we wrap up and point at possible future research
directions.

2 Scaling of Polynomial Vector Fields

In what follows, we adopt a rather general scaling formalism that has been used recently in [54,55,58,59,63] and
is recurrent in the literature on singular perturbations, see for instance [53, Sect. 3]. We use the convention that the
natural numbers N include 0.

2.1 An Abstract Scaling Procedure

Our starting point is a parameter dependent system S of polynomial differential equations

ẏk := dyk
dt

=
∑

J

γk,J y
J , 1 ≤ k ≤ n, (1)

where the summation ranges over multi-indices J = ( j1, . . . , jn) ∈ N
n , γk,J ∈ R, and only finitely many γk,J are

non-zero. We abbreviate y J = y j1
1 . . . y jn

n , as usual. In terms of network models, yk represents the concentration of
either a chemical species or a type of individual in a compartment. Note that we use positive integers as indices,
insteadof concrete names for species and compartments. The real coefficientsγk,J describe actions of other species or
individuals on the species or individual k. If these actions are activations one has γk,J > 0, whereas for repressions
one has γk,J < 0. Several species may interact to produce an action on a given species k. This information is
contained in the number of non-zero components of J , which is called the order of the action. This terminology is
inspired from chemical reactions, where the order represents essentially the number of reactant species.

Throughout this paper, we require that positive yk remain positive as time progresses. In other words, the positive
first orthant U = (0,∞)n ⊆ R

n is positively invariant for system (1), which is the case, e.g., in chemical reaction
networks when γk,J y J ≥ 0 on all intersections of hyperplanes { (y1, . . . , yn) ∈ R

n | yk = 0 } with U .
We fix some small ε∗ ∈ (0, 1), and we impose that

γk,J = ε
ck,J∗ γ̄k,J , (2)
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with rational numbers ck,J . The tacit understanding is that only nonzero γk,J are being considered. The intuitive
idea, which will be made more precise in Sect. 2.2, is that the γ̄k,J are close to one. Moreover, we introduce a
positive parameter ε and consider the system

ẏk =
∑

J

εck,J γ̄k,J y
J , 1 ≤ k ≤ n, (3)

with ε-dependent coefficients. Notice that (3) matches (1) at ε = ε∗. By renormalizing yk = εdk xk , dk ∈ Q, one
obtains a system in scaled variables

ẋk =
∑

J

εck,J+〈D,J 〉−dk γ̄k,J x
J , 1 ≤ k ≤ n, (4)

with D = (d1, . . . , dn) and the dot product in R
n denoted by 〈·, ·〉. This transformation preserves the positive

invariance of U . The scaling comes with the implicit assumption that for i , j ∈ {1, . . . , n}, the relative order of yi
with respect to y j is bounded by yi/y j = �(εdi−d j ) for ε → 0, so that all xk get the same order of magnitude.
Continuing, we set νk = min{ ck,J + 〈D, J 〉 − dk | γ̄k,J �= 0 } to obtain

ẋk = ενk
∑

J

εck,J+〈D,J 〉−dk−νk γ̄k,J x
J , 1 ≤ k ≤ n, (5)

where now all exponents of ε inside the sums are nonnegative. Finally one may perform a preliminary time scaling
τ = εμt , μ = min {ν1, . . . , νn} to arrive at

x ′k :=
dxk
dτ

= ενk−μ
∑

J

εck,J+〈D,J 〉−dk−νk γ̄k,J x
J , 1 ≤ k ≤ n, (6)

with all exponents nonnegative. We are interested in system (6) for variable ε > 0, in the asymptotic limit ε → 0.
We restructure (6) by collecting all variables with equal νi − μ in vectors z1, . . . , zm , where zk ∈ R

nk for
k ∈ {1, . . . ,m}, in ascending order of exponents and such that n1+ · · · + nm = n. We obtain a system of the form

z′k = εak f̃k(z, ε) = εak
(
f̃k(z, 0)+ ε

a′k,2 pk,2 + · · · + ε
a′k,wk pk,wk

)
= εak

(
f̃k(z, 0)+ o(1)

)
, 1 ≤ k ≤ m, (7)

where ak , a′k, j ∈ Q, 0 = a1 < a2 < · · · < am , 0 < a′k, j , and pk, j are multivariate polynomials in z for 1 ≤ k ≤ m

and 2 ≤ j ≤ wk . Note that the case m = 1 is not excluded. By substituting δ := ε1/q with a sufficiently large
positive integer q, one ensures that only nonnegative integer powers of δ appear:

z′k = δbk f̂k(z, δ) = δbk
(
f̂k(z, 0)+ δ

b′k,2 pk,2 + · · · + δ
b′k,wk pk,wk

)
= δbk

(
f̂k(z, 0)+ o(1)

)
, 1 ≤ k ≤ m, (8)

where bk , b′k, j ∈ N, 0 = b1 < b2 < · · · < bm , 0 < b′k, j for 1 ≤ k ≤ m and 2 ≤ j ≤ wk .

Our idea is that the indices k correspond to different time scales δbk τ . For m > 1, system (8), as δ → 0, may be
thought of as separating fast variables from increasingly slow ones. It will turn out in Sect. 3 that the exact number
of time scales finally obtained by our overall approach can actually be smaller than m.

Given certain conditions, which will be made explicit in Theorem 1 and with its application in Sect. 3.1, we may
formally truncate the right hand sides of (8) and keep only terms of lowest order in δ:

z′k = δbk f̂k(z, 0), 1 ≤ k ≤ m. (9)
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In the following, we refer to the transformation process from (1) to (8) as scaling. Strictly speaking, this comprises
scaling in combination with partitioning. We refer to the step from (8) to (9) as truncating.

Algorithm1 reflects our discussions so far. It takes as input a list S of differential equations representing system (1)

Algorithm 1 ScaleAndTruncate

Input: 1. A list S = [ dy1
dt = f1, . . . ,

dyn
dt = fn

]
of autonomous first-order ordinary differential equations where f1, …, fn ∈

Q[y1, . . . , yn];
2. c : {1, . . . , n} × {1, . . . , n}n → Q;
3. d : ()→ Q

n ∪ {⊥};
4. ε∗ ∈ (0, 1) ∩Q

Output: 1. A list [T1, . . . , Tm ]where, abbreviating d
dτ by a prime, Tk = (z′k = δbk fk)with z′k ⊆ [x ′1, . . . , x ′n],

⋃
k z
′
k = [x ′1, . . . , x ′n],

z′1, …, z′m pairwise disjoint, b1 < · · · < bm ∈ N, and fk ⊆ Q[x1, . . . , xn], or the empty list;
2. A list [P1, . . . , Pm ] of lists with Pk ⊆ Q[x1, . . . , xn][δ] and |Pk | = |Tk | for k ∈ {1, · · · ,m};
3. A substitution σ for x1, …, xn , τ , δ, and ε

The first output [T1, . . . , Tm ] contains differential equations z′k = δbk f̂k(z, 0) for k ∈ {1, . . . ,m} in terms of system (8). The second

output [P1, . . . , Pm ] contains the higher order terms in (8) as polynomials pk = δ
bk+b′k,2 pk,2+· · ·+ δ

bk+b′k,wk pk,wk . The last output
is a substitution that undoes all substitutions applied for obtaining (8) from (1).

This gives the following invariant: Denote S̃ = (⋃m
k=1 Tk ⊕ Pk

)
σ , where (x ′ = g) ⊕ p stands for x ′ = g + p and is applied

elementwise. Then S̃ is equal to S up to multiplication of the differential equation ẏi =∑
J γi,J y J in S with a positive scalar factor

1/εμ+di∗ .

For q ∈ Q[x1, . . . , xn](δ) we use degδ(q) for the univariate degree of q in δ. Similarly, tmonδ(q) is the trailing monomial in δ.

1: if d() = ⊥ then
2: return [ ], [ ], [ ]
3: end if
4: μ := ∞
5: q := 1
6: (d1, . . . , dn) := d() ∈ Q

n

7: for k := 1 to n do
8: hk := 0
9: for all monomials γ y J in fk do
10: γ̄ := γ /ε

c(k,J )∗ ∈ Q

11: η := c(k, J )+ 〈(d1, . . . , dn), J 〉 − dk ∈ Q

12: μ := min(μ, η) ∈ Q

13: q := lcm(q, denom η) ∈ N \ {0}
14: hk := hk + εηγ̄ x J

15: end for
16: end for
17: for k := 1 to n do
18: hk := hk/εμ

19: hk := hk [ε ← δq ] ∈ Q[x1, . . . , xn][δ]
20: gk := tmonδ hk
21: pk := hk − gk
22: end for
23: L := [ dx1

dτ = g1, . . . ,
dxn
dτ = gn

]

24: [b1, . . . , bm ] := sort(degδ g1, . . . , degδ gn), ascending and removing duplicates
25: for k := 1 to m do
26: Tk := [ dxdτ = g ∈ L | degδ g = bk ]
27: Pk := [ p j ∈ {p1, . . . , pn} | degδ g j = bk ]
28: end for
29: σ := [x1 ← y1/εd1 , . . . , xn ← yn/εdn ] ◦ [τ ← εμt] ◦ [δ ← ε1/q ] ◦ [ε ← ε∗]
30: return [T1, . . . , Tm ], [P1, . . . , Pm ], σ

and a choice of 0 < ε∗ < 1 for (2). For our practical purposes, the polynomial coefficients in S as well as ε∗ are
taken from Q. Our algorithm is furthermore parameterized with a function c mapping suitable indices to rational



Algorithmic Reduction of Biological Networks 505

numbers and a constant function d yielding either a tuple D = (d1, . . . , dn) of rational numbers or ⊥. The black-
box functions c and d reflect the mathematical assumptions around (2) and (4) that suitable ck,J and dk exist,
respectively. Suitable instantiations for the parameters c and d can be realized, e.g., using tropical geometry, which
will be the topic of the next section. It will turn out that instantiations of d can fail on the given combination of S
and ε∗, which is signaled by the return value ⊥ of d, and checked right away in l.1 of Algorithm 1.

2.2 Scaling via Tropical Geometry

So far, the above transformations leading to (4) are a formal exercise. No particular strategywas applied for choosing
ε∗ ∈ (0, 1). Early model reduction studies used dimensional analysis to obtain ε∗ as a power product in model
parameters [34,66].

Here we discuss a different approach, based on tropical geometry, also called max-plus or idempotent algebra.
This is a relatively recent field of mathematics that draws its origins from fields as diverse as algebraic geometry,
optimization, and physics [46]. In all these fields, tropical geometry appears as a technique to simplify non-linear
objects. Polynomials are replaced by piecewise-linear functions, and geometric problems are transformed into
combinatorial problems [50].

Tropical geometry is natural for any computation with orders of magnitude. In physics, it occurs as Litvinov–
Maslov dequantization of real numbers leading to degeneration of complex algebraic varieties into tropical vari-
eties [45,77]. The name dequantization originates from the formal analogy between this limiting process and
Schrödinger’s dequantization that turns quantum physics into classical physics when the Planck constant is consid-
ered a small parameter ε that tends to zero. Closer, in the physical world, to Litvinov–Maslov dequantization are the
vanishing viscosity phenomena, well known in problems of wave propagation. In mathematics, tropical varieties
and prevarieties establish a modern tool in the theory of Puiseux series [4].

In contrast to the dimensional analysis approach mentioned above, the value ε∗ is now not dictated by physico-
chemistry. Instead, it is freely chosen to provide “power” parametric descriptions of all the quantities occurring in the
differential equations (parameters, monomials, time scales), in a similar way to describing curves by continuously
varying real parameters.

Next, we explain how to obtain the orders ck,J and D introduced in the previous section with (2) and (4),
respectively. The orders ck,J are computed from ε∗ ∈ (0, 1) and γk,J as

ck,J =
round(p logε∗ |γk,J |)

p
. (10)

The function round : R → Z rounds to nearest, ties to even, in the sense of IEEE 754 [37]. The positive integer
p controls the precision of the rounding step. Using γ̄k,J = γk,J /ε

ck,J∗ as defined in (2), our definition satisfies

the constraint ε
1/(2p)∗ ≤ |γ̄k,J | ≤ ε

−1/(2p)∗ . The orders D = (d1, . . . , dn) satisfy certain constraints as well. Those
constraints result heuristically from the idea of compensation of dominant monomials [54]. Slow dynamics is
possible if for each dominant, i.e., much larger than the other, monomial on the right hand side of (6), there is at
least one other monomial of the same order but with opposite sign. This condition, named tropical equilibration
condition [54,55,58,59,62,63], reads
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min
γk,J>0

(ck,J + 〈D, J 〉) = min
γk,J ′<0

(ck,J ′ +
〈
D, J ′

〉
). (11)

On these grounds, given system (1), the choice of ε∗ boils down to defining orders ofmagnitude.Model parameters
are coarse-grained and transformed to orders of magnitude in order to apply tropical scaling. The result depends on
which parameters are close and which are very different as dictated by the coarse-graining procedure, i.e., by the
choice of ε∗. Decreasing ε∗ destroys details, and parameters tend to have the same order of magnitude. Increasing
ε∗ refines details, and parameters range over several orders of magnitude. For instance, using (10) and p = 1,
parameters k1 = 0.1 and k2 = 0.01 have orders c1 = 1 and c2 = 2 for ε∗ = 1/10 but c1 = c2 = 1 for ε∗ = 1/50.
This is the perspective taken in [54,55,63].

On the one hand, we have just seen that smaller choices of ε∗ possibly hide details. On the other hand, in the
following section we are going to review singular perturbation methods, which provide asymptotic results as a
small parameter δ approaches zero. Following the construction in Sect. 2.1, small choices of ε∗ lead to small δ,
which gives a heuristic argument for choosing ε∗ rather small. Thus in practice one has to reconcile two competing
requirements, which unfortunately, still requires some human intuition.

We are now ready to instantiate the black-box functions c and d in our generic Algorithm 1 with tropical versions
as given in Algorithm 2 and Algorithm 3, respectively. Algorithm 2 explicitly uses, besides the parameters k and
J specified for c in Algorithm 1, also the right hand sides of the input system (1) and the choice of ε∗. As yet
another parameter it takes the desired precision p for rounding in (10). Notice that the use of this extra information
is compatible with the abstract scaling procedure in Sect. 2.1. Currying [18] allows to use Algorithm 2 in place of
c in a formally clean manner.

Algorithm 2 TropicalC
Input: 1. k ∈ {1, . . . , n};

2. J ∈ {1, . . . , n}n ;
3. A list S = [ẏ1 = f1, . . . , ẏn = fn] of autonomous first-order ordinary differential equations where f1, …, fn ∈ Q[y1, . . . , yn];
4. ε∗ ∈ (0, 1) ∩Q.
5. p ∈ N \ {0}

Output: c ∈ Q

1: γ := coeff( fk , y J ) ∈ Q

2: c := round(p logε∗ |γ |)/p ∈ Q

3: return c

Algorithm 3 TropicalD
Input: 1. A list S = [ẏ1 = f1, . . . , ẏn = fn] of autonomous first-order ordinary differential equations where f1, …, fn ∈

Q[y1, . . . , yn];
2. ε∗ ∈ (0, 1) ∩Q.
3. p ∈ N \ {0}

Output: (d1, . . . , dn) ∈ Q
n ∪ {⊥}

1: �(a1, . . . , an) := TropicalEquilibration(S, ε∗, p)
2: if not R |� ∃a1 . . . ∃an� then
3: return ⊥
4: end if
5: (d1, . . . , dn) := one possible choice for a1, …, an
6: return (d1, . . . , dn)

Similarly, Algorithm 3 takes parameters ε∗ and p, while d is specified in Algorithm 1 to have no parameters at
all. In l.1 we use Algorithm 4 as a subalgorithm for tropical equilibration. One obtains a disjunctive normal form
�, which explicitly describes a set P = { p ∈ Q

n | �(p) } as a finite union of convex polyhedra, as known from
tropical geometry. Every (d1, . . . , dn) ∈ P satisfies (11). The satisfiability condition in l.2 tests whetherP �= ∅. We
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Algorithm 4 TropicalEquilibration
Input: 1. A list S = [ẏ1 = f1, . . . , ẏn = fn] of autonomous first-order ordinary differential equations where f1, …, fn ∈

Q[y1, . . . , yn];
2. ε∗ ∈ (0, 1) ∩Q;
3. p ∈ N \ {0}.

Output: A formula �(a1, . . . , an) describing a finite union of convex polyhedra in R
n .

1: A0 := (1, a1, . . . , an) ∈ Q[a1, . . . , an]n+1
2: for j := 1 to n do
3: c := 0
4: for all monomials γ yα1

1 · · · yαn
n in f j do

5: α0 := round(p logε∗ |γ |)/p ∈ Q

6: c := c + 1
7: c := sgn γ ∈ {−1, 1}
8: Ac := (α0, α1, . . . , αn) ∈ Q× Z

n ⊆ Q
n+1

9: end for
10: Bj := ∅

11: for k := 1 to c do
12: for � := k + 1 to c do
13: if k� < 0 then
14: P := {〈Ak − A�, A0〉 = 0} 〈Ak − A�, A0〉 ∈ Q[a1, . . . , an]
15: for m := 1 to c do
16: P := P ∪ {〈Am − Ak , A0〉 ≥ 0} 〈Am − Ak , A0〉 ∈ Q[a1, . . . , an]
17: end for
18: Bj := Bj ∪ {P} set of sets of constraints
19: end if
20: end for
21: end for
22: end for
23: � := DisjunctiveNormalForm(

∧n
j=1

∨
P∈Bj

∧
P)

24: return �

employ Satisfiability Modulo Theories (SMT) solving [52] using the logic QF_LRA [2] for quantifier-free linear real
arithmetic. The set P can get empty, e.g, when all monomials on the right hand side of some differential equation
have the same sign. Such an exceptional situation is signaled with a return value⊥ in l.3. In the regular caseP �= ∅,
the choice (d1, . . . , dn) in l.5 is provided by the SMT solver. From a practical point of view, the disjunctive normal
form computation in Algorithm 4 is a possible bottleneck and requires good heuristic strategies [48].

With applications in the natural sciences one often wants to make in l.5 an adequate choice for (d1, . . . , dn) lying
in a specific convex polyhedron P ⊆ P , which technically corresponds to one conjunction in �. Such choices are
subtle and typically require human interaction. For instance, when the chain of reduced dynamical systems ends
with a steady state, it is interesting to consider the polyhedron P that is closest to that steady state. Such strategies
are not covered by our algorithms presented here.

At this stage we have obtained a scaled system as defined in Sect. 2.1, including partitioning. The focus of the
next section is to utilize this scaling for analytically substantiated reductions.

3 Singular Perturbation Methods

The theory of singular perturbations is used to compute and justify theoretically the limit of system (8) when δ → 0.
There are several types of results in this theory. The results of Tikhonov, further improved by Hoppensteadt, show
the convergence of the solution of system (8) to the solution of a differential-algebraic system in which the slowest
variables zm follow differential equations, and the remaining fast variables follow algebraic equations [35,74]. The
results of Fenichel are known under the name of geometric singular perturbations. He showed that the algebraic
equations in Tikhonov’s theory define a slow invariant manifold that is persistent for δ > 0 [25]. For geometric
singular perturbations, differentiability in δ is needed in system (8).
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Samal et al. have noted that Tikhonov’s theorem is applicable to tropically scaled systems [63]. For instance,
with δ1 = δb2 , system (8) may be rewritten as

z′1 = ĝ1(z, δ1), z′2 = δ1ĝ2(z, δ1), . . . , z′m = δ1ĝm(z, δ1). (12)

However, this approach comes with certain limitations. To start with, it allows only two time scales. Furthermore,
in case b2 > 1, there may be differentiability issues with respect to δ1, and some care has to be taken when one
tries to apply to (12) also Fenichel’s results [25]. In this section, we are going to generalize geometric singular
perturbations, and compute invariant manifolds and reduced models for more than two time scales, introducing
further δ2, …, δ�−1. Our generalization is based on a recent paper by Cardin and Teixeira [11].

Section 3.1 presents relevant results from [11] adapted to our purposes here and applied to our system (8). In
contrast to the original article, which is based on a series of hyperbolicity conditions, we introduce the notion
of hyperbolic attractivity, which is stronger but still adequate for our purposes. In Sect. 3.2 we describe efficient
algorithmic tests for hyperbolic attractivity. Section 3.3 gives sufficient algorithmic criteria addressing the above-
mentioned differentiability issues.

3.1 Application of a Fenichel Theory for Multiple Time Scales

We consider our system (8) over the positive first orthant U = (0,∞)n ⊆ R
n . A recent paper by Cardin and Teixeira

[11] generalizes Fenichel’s theory to provide a solid foundation to obtainmore than one nontrivial invariantmanifold.
This allows, in particular, the reduction of multi-time scale systems such as system (8). Technically, the approach
considers a multi-parameter system using time scale factors δ1, δ1δ2, … instead of increasing powers of one single
δ.

We let � ∈ {2, . . . ,m} and define

β1 = b2 − b1 = b2, . . . , β�−1 = b� − b�−1, (13)

and furthermore δ1 = δβ1 , …, δ�−1 = δβ�−1 , and δ̄ = (δ1, . . . , δ�−1).
These definitions allow us to express also all δ

b′k, j occurring in (8) as products of powers of δ1, …, δ�−1, with
nonnegative but possibly non-integer rational exponents, via expressing each b′k, j as a nonnegative rational linear
combination of β1, …, β�−1. This yields

ĝk(z, δ1, . . . , δ�−1) = f̂k(z, δ), 1 ≤ k ≤ m. (14)

Moreover, we express δb�+1 = δ1 · · · δ�−1 · η�+1, …, δbm = δ1 · · · δ�−1 · ηm , via

ηk(δ1, . . . , δ�−1) = δbk−b� , �+ 1 ≤ k ≤ m, (15)

which is obtained by writing each bk − b� as a nonnegative rational linear combination of β1, …, β�−1. In these
terms our system (8) translates to
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z′1 = ĝ1(z, δ̄)

z′2 = δ1ĝ2(z, δ̄)

...

z′� = δ1 · · · δ�−1ĝ�(z, δ̄)

z′�+1 = δ1 · · · δ�−1η�+1(δ̄)ĝ�+1(z, δ̄)
...

z′m = δ1 · · · δ�−1ηm(δ̄)ĝm(z, δ̄). (16)

In terms of the right hand sides of (16) the application of relevant results in [11] requires that ĝ1, …, ĝ�

and η�+1ĝ�+1, …, ηmĝm are smooth on an open neighborhood of U × [0, ϑ1) × · · · × [0, ϑ�−1) with ϑ1 > 0,
…, ϑ�−1 > 0. We are going to tacitly assume such smoothness here and address this issue from an algorithmic
point of view in Sect. 3.3.

We are now ready to transform our system into � time scales as follows, where possibly � > 2:

τ1 = τ, τ2 = δ1τ, . . . , τ� = δ1 · · · δ�−1τ.

In time scale τk , with 1 ≤ k ≤ �, system (16) then becomes

δ1 · · · δk−1 dz1
dτk

= ĝ1(z, δ̄)

...

δk−1
dzk−1
dτk

= ĝk−1(z, δ̄)

dzk
dτk

= ĝk(z, δ̄)

dzk+1
dτk

= δk ĝk+1(z, δ̄)

...

dz�
dτk

= δk · · · δ�−1 ĝ�(z, δ̄)

dz�+1
dτk

= δk · · · δ�−1η�+1(δ̄)ĝ�+1(z, δ̄)

...

dzm
dτk

= δk · · · δ�−1ηm(δ̄)ĝm(z, δ̄). (17)

For k = 1 and k = � we obtain empty products, which yield the neutral element 1, as usual.
Similarly to Sect. 2.1, we are interested in the asymptotic behavior for δ̄ → 0, which is approximated by the

elimination of higher order terms. We are now going to introduce a construction required for a justification of this
approximation, which also clarifies the greatest possible choice for � ≤ m above. Define F0 = 0 and

Zk =
⎛

⎜⎝
z1
...

zk

⎞

⎟⎠ , Fk(z, δ) =
⎛

⎜⎝
f̂1(z, δ)

...

f̂k(z, δ)

⎞

⎟⎠ , 1 ≤ k ≤ m.
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With system (8) in mind, we are going to use f̂k(z, 0) in favor of ĝk(z, 0, . . . , 0). It is easy to see that both are
equal. We define furthermore

Mk =
(
Fk(z

∗, 0) = 0
)
, Mk =

{
z∗ ∈ U | Fk(z∗, 0) = 0

}
, 0 ≤ k ≤ m. (18)

The setsMk are obtained from varieties defined by the systems Mk via intersection with the first orthant. Further-
more,

U =M0 ⊇M1 ⊇ · · · ⊇Mm (19)

establishes a chain of nested subvarieties, again intersected with the first orthant.
We define that M1 is hyperbolically attractive on M0, if M1 �= ∅, and for all z ∈ M1 all eigenvalues

of the Jacobian Dz1 f̂1(z, 0) have negative real parts. Therefore M1 is a manifold. For k ∈ {2, . . . ,m}, Mk is
hyperbolically attractive onMk−1, ifMk �= ∅, and the following holds. Recall that using the defining polynomials
Fk−1 of Mk−1, the implicit function theorem yields a unique local resolution of Zk−1 as functions of zk , …, zm ,
provided that DZk−1Fk−1 has no zero eigenvalues. We thus obtain

f̂k(z, 0) = f̂ ∗k (zk, . . . , zm, 0) on Mk−1.
For our definition we now require that for all z ∈Mk all eigenvalues of Dzk f̂

∗
k (zk, . . . , zm, 0) have negative real

parts. Again,Mk is a manifold. WhenMk is hyperbolically attractive onMk−1 we writeMk−1 �Mk , where Zk

will be clear from the context.
If we find for some � ∈ {1, . . . ,m} that M0 � M1, M1 � M2, …, M�−1 � M�, then we simply write

M0 � . . . �M�, and call this a hyperbolically attractive �-chain. Such a chain is called maximal if either � = m
or M� � M�+1.

Let M0 � . . . � M� be a hyperbolically attractive �-chain. Consider for each k ∈ {1, . . . , �} the following
differential-algebraic system:

0 = Fk−1(z, 0),
dzk
dτk

= f̂k(z, 0),
dzk+1
dτk

= 0, . . . ,
dzm
dτk

= 0. (20)

In the limiting case δ̄ = 0, this corresponds to system (17). Recall that

τk = δ1 · · · δk−1τ = δb2−b1 · · · δbk−bk−1τ = δbk−b1τ = δbk τ,

and equivalently rewrite (20) as a triplet (Mk−1, Tk, Rk) with entries as follows:

Fk−1(z, 0) = 0,
dzk
dτ

= δbk f̂k(z, 0),
dzk+1
dτ

= · · · = dzm
dτ

= 0. (21)

For a given index k, we call (Mk−1, Tk, Rk) a reduced system onMk−1, where the relevant hyperbolic attractivity
relation is Mk−1 � Mk . In order to indicate the relevance of M0 � . . . � M� we write (M0, T1, R1) � . . . �
(M�−1, T�, R�) also for reduced systems, where M� is not made explicit but relevant for the last triplet. Slightly
abusing language, we speak of a hyperbolically attractive �-chain of reduced systems, which is maximal if M0 �
. . . �M� is.

The following theorem is a consequence of [11, Theorem A and Corollary A], specialized to the situation at
hand.

Theorem 1 Let � ≥ 2. Assume that (M0, T1, R1) � . . . � (M�−1, T�, R�) is a hyperbolically attractive �-chain
of reduced systems for system (16). Let K ⊆ U be compact. Then for sufficiently small δ̄ and all k ∈ {1, . . . , �},
system (16) admits invariant manifoldsNk−1 that depend on δ̄ and are (δ1 + · · · + δk−1)-close toMk−1 ∩ K with
respect to the Hausdorff distance. Moreover, there exists T > 0 such that solutions of system (16) onNk−1 in time
scale τk converge to solutions of (Mk−1, Tk, Rk), uniformly on any closed subinterval of (0, T ), as δ̄ → 0. ��
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For k ∈ {1, . . . , �}, theMk−1 are critical manifolds, which contain only stationary points. The systems (Tk, Rk)

of ordinary differential equations onMk−1 approximate invariant manifoldsNk−1 in the sense of the theorem. They
furthermore approximate solutions in time scale τk of system (16), which is equivalent to our system (8). In other
words, system (8) admits a succession of invariant manifolds, on which the behavior in the appropriate time scale
is approximated by the respective reduced equations (20) and, equivalently, (21). Note that only the δbk f̂k(z, 0)
without the higher order terms enter the reduced systems (Mk−1, Tk, Rk).

Algorithm 5 now starts with the output [T1, . . . , Tm] of Algorithm 1, which represents the scaled system (9).
Notice that each Tk already meets the specification in (21). In l.1 we define U to contain defining inequalities of
the first orthant U . Starting with k = 1, the for-loop in l.4–15 successively constructs Mk and Rk such that in
combination with Tk from the input, (Mk−1, Tk, Rk) forms a reduced system as in (21). The loop stops when either
k = m + 1 or a test for hyperbolic attractivity in l.8 finds that Mk−1 � Mk . We are going to discuss this test
in detail in the next section. Note that we maintain a matrix A for storing information between the subsequent
calls of our test. In either case we arrive at a maximal hyperbolically attractive (k − 1)-chain of reduced systems
given as a list [(M0, T1, R1), . . . , (Mk−2, Tk−1, Rk−1)]. Following the notational convention used throughout this
section we set � to k − 1 in l.17. The test in l.18–20 reflects the choice of � ∈ {2, . . . ,m} at the beginning of this
section. Finally, l.21 uses the second input [P1, . . . , Pm] of the algorithm to address the smoothness requirements
for system (16). We are going to discuss the corresponding procedure in detail in Sect. 3.3. It will turn out that this
procedure provides only a sufficient test. Therefore we issue in case of failure only a warning, allowing the user
to verify smoothness a posteriori, using alternative algorithms or human intelligence. One might mention that it is
actually sufficient to consider weaker, finite differentiability conditions instead of smoothness, which can be seen
by inspection of the proofs in [11].

Froman application point of view, attracting invariantmanifolds are relevant in the context of biological networks,
and our notion of hyperbolic attractivity holds for large classes of such networks [24]. This is our principalmotivation
for using hyperbolic attractivity here. From a computational perspective, hyperbolic attractivity can be tested based
on Hurwitz criteria, as we are going to make explicit in the next section.

The relevant results in [11], in contrast, are based on a series of hyperbolicity conditions, which are somewhat
weaker than hyperbolic attractivity. Hyperbolicity can be tested algorithmically as well, albeit with more effort. For
approaches based on Routh’s work see, e.g., [27, Chapter V, §4], which checks the number of purely imaginary
eigenvalues of a real polynomial via the Cauchy index of a related rational function.

3.2 Verification of Hyperbolic Attractivity

Our definition of hyperbolic attractivity Mk−1 � Mk refers to the eigenvalues of the Jacobians of the f̂ ∗k , which
cannot be directly obtained from the Jacobians of the f̂k [11,12]. Generalizing work on systems with three time
scales [40], we take in this section a linear algebra approach to obtain the relevant eigenvalues without computing
the f̂ ∗k .

To start with, recall the well-known Hurwitz criterion [36]:

Theorem 2 (Hurwitz, 1895). Consider f = a0xn + a1xn−1 + · · · + an ∈ R[x], a0 > 0. For i ∈ {1, . . . , n} define

Hi =

⎛

⎜⎜⎜⎜⎝

a1 a3 a5 . . . a2i−1
a0 a2 a4 . . . a2i−2
0 a1 a3 . . . a2i−3
. . . . . . . . . . . . . . . . .

0 . . . . . . . . ai

⎞

⎟⎟⎟⎟⎠
, �i = det Hi .

Then all complex zeros of f have negative real parts if and only if �1 > 0, …, �n > 0. Notice that �n = an�n−1,
and therefore �n > 0 can be equivalently replaced with an > 0.

We call Hn the Hurwitz matrix and �i the i-th Hurwitz determinant of f . Furthermore, we refer to � = (�1 >

0 ∧ · · · ∧�n−1 > 0 ∧ an > 0) as the Hurwitz conditions for f .
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Algorithm 5 ComputeReducedSystems
Input: Output of Algorithm 1:

1. [T1, . . . , Tm ], a list of lists z′k = δbk fk ;
2. [P1, . . . , Pm ], a list of lists of polynomials in Q[x1, . . . , xn][δ];
We denote ξk := |Tk |, �k :=∑k

i=1 ξi , and X = (x1, . . . , xn).

Output: A list [(M0, T1, R1), . . . , (M�−1, T�, R�)] of triplets where � ∈ {2, . . . ,m}, or the empty list. For k ∈ {1, . . . , �}, Mk−1 is a
list of real constraints defining Mk−1 ⊆ R

n ; Tk is a list of differential equations; Rk is a list of trivial differential equations x ′ = 0
for all differential variables from Tk+1, …, Tm .

The triplets (Mk−1, Tk , Rk) represent reduced systems according to (21).

1: U := [x1 > 0, . . . , xn > 0]
2: M0, Z , F := [ ]
3: A := ( )

4: for k := 1 to m do
5: z := [ x | x ′ = δbk g ∈ Tk ] ⊆ X , |z| = ξk
6: f := [ g | x ′ = δbk g ∈ Tk ] = f̂k(z, 0) ∈ Q[X ]ξk
7: Mk := Mk−1 ◦ [ f = 0] = M0 ◦ [F = 0] ◦ [ f = 0]
8: ϕ, A := IsHyperbolicallyAttractive(U ◦ Mk , Z , z, F, f, k, A)

9: if not ϕ then
10: break
11: end if
12: Rk := [ x ′ = 0 | x ′ = h ∈ Tk+1 ∪ · · · ∪ Tm ] �k−1 + ξk + |Rk | = n
13: Z := Z ◦ z ⊆ X , |Z | = �k
14: F := F ◦ f ∈ Q[X ]�k

15: end for
16: # We either broke in line 10 preserving k, or we have k = m + 1.
17: � := k − 1
18: if � < 2 then
19: return ()

20: end if
21: if TestSmoothness([T1, . . . , Tm ], [P1, . . . , Pm ], �) = failed then
22: print “Warning: differentiability requires further verification”
23: end if
24: return [(M0, T1, R1), …, (M�−1, T�, R�)]

Our first result generalizes [40, Proposition 1 (ii)]. The proof is straightforward by induction using the argument
in [40, Lemma 3] and its proof.

Lemma 3 For k ∈ {1, . . . ,m} define

Jk =
(

1
. . .

�1···�k−1

)
· DZk Fk(z, 0) =

⎛

⎜⎜⎝

Dz1 f̂1(z, 0) . . . Dzk f̂1(z, 0)
�1Dz1 f̂2(z, 0) . . . �1Dzk f̂2(z, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�1 · · · �k−1Dz1 f̂k(z, 0) . . . �1 · · · �k−1Dzk f̂k(z, 0)

⎞

⎟⎟⎠ .

Let � ∈ {1, . . . ,m}. Then M0 � . . . �M� if and only if M� �= ∅ and for all k ∈ {1, . . . , �}, all sufficiently small
�∗1 > 0, …, �∗k−1 > 0, and all z∗ ∈Mk , all eigenvalues of Jk(�∗1, . . . , �∗k−1, z∗) have negative real parts.

In particular, one can choose �∗1 = · · · = �∗k−1 = �∗ with sufficiently small �∗ and consider J ′k =
diag(1, . . . , �k−1) · DZk Fk(z, 0).

Let �k denote the Hurwitz conditions for the characteristic polynomial of J ′k . Then Lemma 3 allows to state
hyperbolic attractivityM0 � . . . �M� as a first-order formula over the reals as follows:

(
∃(0 < z) : F�(z, 0) = 0

)
∧

(
�∧

k=1
∃(0 < σ)∀(0 < � < σ)∀(0 < z) : Fk(z, 0) = 0⇒ �k(�, z)

)
. (22)



Algorithmic Reduction of Biological Networks 513

On these grounds, any real decision procedure [14,73,80] provides an effective test for hyperbolic attractivity.
However, our formulation (22) uses a quantifier alternation ∃σ∀� in its second part. We would like to use this
in order to use SMT solving over a quantifier-free logic. Our next result allows a suitable first-order formulation
without quantifier alternation. Its proof combines [40, Lemma 3] with our Lemma 3.

Proposition 4 (Effective Characterization of Hyperbolically Attractive �-Chains).Define A1 = Dz1 f̂1(z, 0). For
k ∈ {2, . . . ,m} define
(
Ak−1 Bk

Ck Vk

)
=

(
DZk−1Fk−1(z, 0) Dzk Fk−1(z, 0)
DZk−1 f̂k(z, 0) Dzk f̂k(z, 0)

)
,

and note that
(

Ak−1 Bk
Ck Vk

)
= Ak.

Let � ∈ {1, . . . ,m}. Then M0 � . . . �M� if and only if

(i) M� �= ∅,
(ii) For all z∗ ∈M1 all eigenvalues of W1(z∗), where W1 = A1, have negative real parts,
(iii) For all k ∈ {2, . . . , �} and all z∗ ∈ Mk , Ak−1(z∗) is regular and all eigenvalues of Wk(z∗), where Wk =

Vk − Ck A
−1
k−1Bk, have negative real parts.

Proof AssumeM0 � . . . �M�. By Lemma 3 we haveM� �= ∅. For all z∗ ∈M1, all eigenvalues of the Jacobian
W1(z∗) have negative real parts by the definition of hyperbolic attractivity. Let now k ∈ {2, . . . , �}, z∗ ∈Mk , and
define P = diag(1, . . . , �k−2). Using Lemma 3 we fix 0 < τ ∗ < 1 such that for all 0 < �∗ < τ ∗ all eigenvalues of
J ′k−1(�∗, z∗) = P(�∗)Ak−1(z∗) have negative real parts. It follows that P(�∗)Ak−1(z∗), P(�∗), and Ak−1(z∗) are
all regular. Next, consider

J ′k =
(
PAk−1 PBk

�k−1Ck �k−1Vk

)
.

Using Lemma 3 once more, we find 0 < σ ∗ < τ ∗ such that for all 0 < �∗ < σ ∗ also all eigenvalues of
J ′k(�∗, z∗) have negative real parts. Now J ′k(�∗, z∗) satisfies condition (ii) of [40, Lemma 3] with δ = σ ∗ and
ε = (�∗)k−1, which allows us to conclude that all eigenvalues of (Vk − Ck(PAk−1)−1PBk)(�

∗, z∗) = (Vk −
Ck A

−1
k−1P−1PBk)(�

∗, z∗) = Wk(z∗) have negative real parts as well.
Assume, vice versa, that (i)–(iii) hold. We use induction on k to showM0 � . . . �Mk for 1 ≤ k ≤ �. For k = 1

we have M0 � M1 by definition of hyperbolic attractivity. Assume that 2 ≤ k ≤ � and M0 � . . . � Mk−1. By
Lemma 3 there exists 0 < τ ∗ such that for all 0 < σ ∗ < τ ∗ and all z∗ ∈Mk−1 all eigenvalues of P(σ ∗)Ak−1(z∗)
have negative real parts, where P = diag(1, . . . , (σ ∗)k−2). We rewriteWk = Vk −Ck(PAk−1)−1PBk . ThenWk(z∗)
satisfies condition (i) of [40, Lemma 3] with A = P(σ ∗)Ak−1(z∗), B = P(σ ∗)Bk(z∗),C = Ck(z∗) and D = Vk(z∗).
Thus there exists 0 < δ such that for all 0 < ε < δ all eigenvalues of
(
P(σ ∗)Ak−1(z∗) P(σ ∗)Bk(z∗)

εCk(z∗) εVk(z∗)

)

have negative real parts. Choosing �∗ = min{σ ∗, k−1√ε} in Lemma 3 yields M0 � . . . �Mk . ��
From now on let �k denote the Hurwitz conditions for the characteristic polynomial of Wk , which—in contrast

to the ones used in (22)—do not depend on � anymore.

Corollary 5 (Logic-Based Test for Hyperbolically Attractive �-Chains). For k ∈ {1, . . . ,m} define

ϕk =
(∃(0 < z) : Fk(z, 0) = 0)

)
,

ψk =
(∀(0 < z) : Fk(z, 0) = 0⇒ �k(z)

)
.

Let � ∈ {1, . . . ,m}. Then M0 � . . . �M� if and only if R |� ϕ� ∧∧�
k=1 ψk .
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Proof AssumeM0 � . . . �M�. Then Proposition 4 yields its conditions (i)–(iii). Now, ϕ� holds as a formalization
of (i). Furthermore, ψ1 holds as a formalization of (ii), and the validity of ψ2, …, ψ� follows directly from (iii).
Hence R |� ϕ� ∧∧�

k=1 ψk .
Assume, vice versa, that R |� ϕ� ∧∧�

k=1 ψk . We show M0 � . . . � M� by induction on �. If � = 1, then ϕ1

formalizes (i) andψ1 formalizes (ii) in Proposition 4, and we obtainM0 �M1. Let now � > 1. Then ϕ� formalizes
Proposition 4 (i). Our induction hypothesis yieldsM0 � . . . �M�−1. By Lemma 3 there exists 0 < τ ∗ such that for
all 0 < σ ∗ < τ ∗ and all z∗ ∈M�−1 ⊇M� all eigenvalues of P(σ ∗)A�−1(z∗), where P = diag(1, . . . , (σ ∗)�−2),
have negative real parts. In particular, P(σ ∗)A�−1(z∗) is regular and so is A�−1(z∗). Furthermore, the Hurwitz
conditions in ψ� guarantee for all z∗ ∈ M� that all eigenvalues of W�(z∗) have negative real parts. Taking these
observations together, Proposition 4 (iii) is satisfied, hence M0 � . . . �M�. ��

In contrast to (22), our first-order characterization

(
∃(0 < z) : F�(z, 0) = 0

)
∧

(
�∧

k=1
∀(0 < z) : Fk(z, 0) = 0⇒ �k(z)

)
(23)

inCorollary 5 has no quantifier alternation. Note that the two top-level components of (23) establish two independent
decision problems, addressing non-emptiness of the manifold and our requirement on the eigenvalues, respectively.

It is easy to see that for all � ∈ {1, . . . ,m} and all k ∈ {1, . . . , �−1}, ϕ� entails ϕk . Thus (23) can be equivalently
rewritten as

∧�
k=1(ϕk ∧ ψk), explicitly:

�∧
k=1

(∃(0 < z) : Fk(z, 0) = 0 ∧ ∀(0 < z) : Fk(z, 0) = 0⇒ �k(z)
)
. (24)

Our approach tests the conjunction in (24) using a for-loop over k in Algorithm 5. Technically, this construction
ensures with the test for Mk−1 �Mk in Algorithm 6 that M0 � · · · �Mk−1 already holds, and exploits the fact
that ψk and ϕk do not refer to smaller indices than k.

In l.1–3 we test the validity of ϕk . Using from the input the defining inequalities and equations M = U ◦ Mk

of Mk along with Z = Zk−1, z = zk , F = Fk−1, f = fk , and A = Ak−1, we construct in l.4–13 A′ = Ak

as noted in Proposition 4. In l.14–19 we construct the Hurwitz conditions � = �k according to Theorem 2. On
the grounds of the validity of ϕk tested in l.1, we finally test in l.20 the validity of ψk and return a corresponding
Boolean value. We additionally return A′ = Ak for reuse with the next iteration. The validity tests for ϕk and ψk in
l.1 and l.20, respectively, again amount to SMT solving, this time using the logic QF_NRA [2] for quantifier-free
nonlinear real arithmetic. Recall the positive integer parameter p used for the precision with both Algorithm 2
and Algorithm 3. For p > 1 symbolic computation possibly yields fractional powers of numbers in the defining
equations for manifolds as well as in the vector fields of the differential equations. Such expressions are not covered
by QF_NRA. When this happens, we catch the corresponding error from the SMT solver and restart with floats.

3.3 Sufficient Smoothness Criteria

Let us get back to the requirement in Sect. 3.1 that ĝ1, …, ĝ� and η�+1ĝ�+1, …, ηmĝm occurring on the right hand
sides of system (16) are all smooth on an open neighborhood of U × [0, ϑ1) × · · · × [0, ϑ�−1) with ϑ1 > 0,
…, ϑ�−1 > 0. A first sufficient criterion for smoothness is that all those expressions are polynomials in z and δ̄.

Recall the definitions of ĝk for k ∈ {1, . . . ,m} in (14) and of ηk for k ∈ {�+1, . . . ,m} in (15). For k ∈ {1, . . . ,m}
and j ∈ {1, . . . , wk} one finds nonnegative r1, …, r�−1 ∈ Q such that

〈(β1, . . . , β�−1), (r1, . . . , r�−1)〉 = b′k, j ,
and for k ∈ {�+ 1, . . . ,m} one finds nonnegative r1, …, r�−1 ∈ Q such that

〈(β1, . . . , β�−1), (r1, . . . , r�−1)〉 = bk − b�.
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Algorithm 6 IsHyperbolicallyAttractive
Input: 1. M , 2. Z , 3. z, 4. F , 5. f , 6. k, 7. A, as in the calling Algorithm 5

Knowing that M0 � . . . � Mk−1, we check here whether also Mk−1 � Mk . We denote ξ := | f | = |z|, � := |F | = |Z |, and
X = {x1, . . . , xn}. In these terms, A ∈ Q[X ]�×�.

Output: 1. Boolean, 2. A′ ∈ Q[X ](�+ξ)×(�+ξ)

1: if not R |� ∃∧
M then

2: return false,
( )

3: end if
4: V := Jacobian( f, z) ∈ Q[X ]ξ×ξ

5: if k = 1 then
6: W := V
7: A′ := V
8: else
9: B := Jacobian(F, z) ∈ Q[X ]�×ξ

10: C := Jacobian( f, Z) ∈ Q[X ]ξ×�

11: W := V − CA−1B ∈ Q[X ]ξ×ξ

12: A′ :=
(
A B
C V

)
∈ Q[X ](�+ξ)×(�+ξ)

13: end if
14: χ := λξ + · · · + aξ := CharacteristicPolynomial(W ) ∈ Q[X ][λ]
15: H := HurwitzMatrix(χ) ∈ Q[X ]ξ×ξ

16: for j := 1 to ξ − 1 do
17: � j := det

(
Hr,s

)
1≤r,s≤ j ∈ Q[X ]

18: end for
19: � := {�1 > 0, . . . , �ξ−1 > 0, aξ > 0}
20: return R |� ∀(∧ M −→∧

�), A′

Such representations always exist but are not unique in general. If one even finds suitable nonnegative integers r1,
…, r�−1 ∈ N, which do not always exist, then one obtains ĝ1, …, ĝm as polynomials in z and δ̄, and η�+1, …, ηm
as polynomials in δ̄, which is sufficient for our first criterion above.

An improved but still only sufficient criterion uses similar constructions to directly verify the existence of
polynomial representations of the products η�+1ĝ�+1,…, ηmĝm , in contrast to considering the factors independently.
From an algorithmic point of view, we furthermore have to take into account that P1,…, Pm obtained in Algorithm 1
do not contain b′k, j but bk + b′k, j . For k ∈ {1, . . . , �} and j ∈ {1, . . . , wk} we try to find r1, …, r�−1 ∈ N such that

〈(β1, . . . , β�−1), (r1, . . . , r�−1)〉 = b′k, j = (bk + b′k, j )− bk > 0, (25)

and for k ∈ {�+ 1, . . . ,m} we try to find r1, …, r�−1 ∈ N such that

〈(β1, . . . , β�−1), (r1, . . . , r�−1)〉 = (bk − b�)+ b′k, j = (bk + b′k, j )− b� > 1. (26)

Notably, such representations exist whenever 1 ∈ {β1, . . . , β�−1}.
On these grounds, we introduce Algorithm 7,
which specifies the sufficient test applied in l.21 of Algorithm 5. The first two parameters [T1, . . . , Tm] and

[P1, . . . , Pm] originate from Algorithm 1, while the last parameter � originates from the calling Algorithm 5.
In l.1–8 of Algorithm 7 we compute β1, …, β�−1 as defined in (13) and simultaneously obtain b1, …, b�. In

l.9–14 we compute the right hand sides of the conditions in (25) or (26), depending on the current index k. For
checking those conditions in l.16 we once more employ SMT solving, this time using the adequate logic QF_LIA
[2] for quantifier-free linear integer arithmetic. Since we are aiming at nonnegative integer solutions, we introduce
explicit non-negativity conditions r1 ≥ 0, …, r�−1 ≥ 0. In case of unsatisfiability Algorithm 7 returns “failed”
in l.17. Recall that is this case the calling Algorithm 5 issues a warning but continues. In case of satisfiability, in
contrast, smoothness is guaranteed, we reach l.20, and return “true.” We remark that the computation time spent
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Algorithm 7 TestSmoothness
Input: [T1, . . . , Tm ], [P1, . . . , Pm ], � as in the calling Algorithm 5:

1. [T1, . . . , Tm ], a list of lists z′k = δbk fk ;
2. [P1, . . . , Pm ], a list of lists of polynomials in Q[x1, . . . , xn][δ];
3. � ∈ N, � ≥ 2;

We check here a sufficient criterion for smoothness as required for (16).

Output: “true” or “failed” in terms of a 3-valued logic;

1: b1 := 0
2: for k := 2 to � do
3: bk := the unique exponent of δ in Tk
4: βk−1 := bk − bk−1
5: if βk−1 = 1 then
6: return true
7: end if
8: end for
9: E := ∅

10: for k = 1 to m do
11: for all p in Pk do
12: E := E ∪ { degδ m − bmin(k,�) | m monomial of p } ⊆ N \ {0}
13: end for
14: end for
15: for all e ∈ E do
16: if not Z |� ∃r1 . . . ∃r�−1(r1 ≥ 0 ∧ · · · ∧ r�−1 ≥ 0 ∧ 〈(β1, . . . , β�−1), (r1, . . . , r�−1)〉 = e) then
17: return failed
18: end if
19: end for
20: return true

on E is negligible compared to the SMT solving later on. The construction of the entire set E beforehand avoids
duplicate SMT instances.

4 Algebraic Simplification of Reduced Systems

In the output (M0, T1, R1),…, (M�−1, T�, R�) of Algorithm 5, the Tk are taken literally from the input, and theMk−1
and Rk are obtained via quite straightforward rewriting of the input. As amatter of fact, the computationally hard part
of Algorithm 5 consists in the computation of the upper index �. We now want to rewrite the triplets (Mk−1, Tk, Rk)

once more, aiming at less straightforward but simpler and, hopefully, more intuitive representations. The principal
idea is to heuristically eliminate on the right hand side of the differential equations in Tk those variables whose
derivatives have already occurred as left hand sides in one of the T1, …, Tk−1. Of course, our simplifications will
preserve all relevant properties of (M0, T1, R1), …, (M�−1, T�, R�), such as hyperbolic attractivity and sufficient
differentiability. Technically, our next Algorithm 8 employs Gröbner basis techniques [3,10].

Recall that zk are the variables occurring on the left hand sides of differential equations in Tk , and Zk−1 =
(z1, . . . , zk−1). In l.1–5 we construct a block term order ω on all variables {x1, . . . , xn} so that variables from
Zk−1 are larger than variables from zk . This ensures that all multivariate polynomial reductions with respect to ω

throughout our algorithm will eliminate variables from Zk−1 in favor of variables from zk rather than vice versa.
Prominent examples for such block orders are pure lexicographic orders, but ordering by total degree inside the
z1, …, z�, y will heuristically give more efficient computations.

Recall that the radical ideal
√〈F〉 is the infinite set of all polynomials with the same common complex roots as

F . In l.8, we compute a finite reduced Gröbner basis G with respect to ω of that radical. If radical computation is
not available on the software side, then the algorithm remains correct with a Gröbner basis of the ideal 〈F〉 instead
of the radical ideal, but might miss some simplifications.
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Algorithm 8 SimplifyReducedSystems
Input: A list [(M0, T1, R1), . . . , (M�−1, T�, R�)], the output of Algorithm 5, with entries corresponding to (21)

Output: A list [(M ′
0, T

′
1, R1), . . . , (M ′

�−1, T ′�, R�)]; M ′
k−1 describes the same manifold as Mk−1 in a canonical form; the system T ′k

is equivalent to Tk modulo M ′
k−1, its right hand sides are in a canonical normal form modulo M ′

k−1, possibly with fewer different
differential variables than Tk

1: for k := 1 to � do
2: zk := { x | x ′ = g ∈ Tk }
3: end for
4: y := { x | x ′ = 0 ∈ R� }
5: ω := a block term order with z1 � · · · � z� � y
6: for k := 1 to � do
7: F := [ f | f = 0 ∈ Mk−1 ]
8: G := GroebnerBasis(Radical(F), ω)

9: M ′
k−1 := [ g = 0 | g ∈ G ]

10: T ′k := [ ]
11: for x ′ = g in Tk do
12: T ′k := T ′k ◦ [x ′ = h] where g −→∗

G h and h is irreducible mod G
13: end for
14: end for
15: return [(M ′

0, T
′
1, R1), . . . , (M ′

�−1, T ′�, R�)]

In l.9, the polynomials in G equivalently replace the left hand side polynomials of the equations in Mk−1. In
l.12, reduction with respect to ω, which comes with heuristic elimination of variables, applies once more to the
reduction results h obtained from right hand sides g of differential equations in Tk . Since G is a Gröbner basis, the
reduction in l.11–13 furthermore produces unique normal forms with the following property: if two polynomials
g1, g2 coincide on the manifoldMk−1 defined by Mk−1, then they reduce to the same normal form h. In particular,
if g1 vanishes on Mk−1, then it reduces to 0. We call the output of Algorithm 8 simplified reduced systems.

5 Back-Transformation of Reduced Systems

Let � ∈ {2, . . . ,m} and k ∈ {1, . . . , �}. Recall that a triplet (Mk−1, Tk, Rk) obtained from Algorithm 5 describes a
reduced system according to (21):

Fk−1(z, 0) = 0,
dzk
dτ

= δbk f̂k(z, 0),
dzk+1
dτ

= · · · = dzm
dτ

= 0.

A corresponding simplified system (M ′
k−1, T ′k , Rk) can be obtained from Algorithm 8 via an equivalence transfor-

mation on the set of equations Mk−1 and further equivalence transformations modulo Mk−1 on the right hand sides
of the differential equations in Tk , while the left hand sides of those differential equations remain untouched. It is
not hard to see that for both these outputs scaling can be reversed using the substitution

σ = [x1 ← y1/ε
d1 , . . . , xn ← yn/ε

dn ] ◦ [τ ← εμt] ◦ [δ ← ε1/q ] ◦ [ε ← ε∗]
obtained with Algorithm 1.

UsingnamesMk−1,Tk , Rk as in theunsimplified system, this yields a rawback-transformation (Mk−1σ, Tkσ, Rkσ).
We define M∗

k−1 = Mk−1σ . The system Tkσ can be written as

dy j

dε
μ+d j∗ t

= ε
bk/q∗ ( f̂k(z, 0) jσ), x j ∈ zk .

Wemultiply by ε
μ+d j∗ in order to arrive at differential equations in

dy j
dt . Furthermore, recall that the explicit factor δbk

in the original Tk corresponds to a time scale δbk τ . The corresponding time scale in t is given by (δbk τ)σ = ε
bk/q+μ∗ t ,
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which we make explicit by equivalently rewriting Tkσ as T ∗k as follows:

dy j
dt

= ε
bk/q+μ∗ (ε

d j∗ f̂k(z, 0) jσ), x j ∈ zk .

Similarly, Rkσ can be rewritten as R∗k as follows:

dy j
dt

= 0, x j ∈ zk+1 ∪ · · · ∪ zm .

Recall that Mk−1 describes a manifoldsMk−1 over the positive first orthant U , which is defined by inequalities
U = {x1 > 0, . . . , xn > 0} not explicit in Mk−1. Following our construction above, this translates into Uσ =
{y1/εd1∗ > 0, . . . , yn/ε

dn∗ > 0}, which describes again the positive first orthant. Furthermore, the nestedness (19) is
preserved:

U =M∗
0 ⊇M∗

1 ⊇ · · · ⊇M∗
�−1.

Finally, the system (T ∗k , R∗k ) defines differential equations on M∗
k−1.

We call (M∗
0 , T ∗1 , R∗1), …, (M∗

�−1, T ∗� , R∗� ) back-transformed reduced systems. In terms of the definitions after
(9) in Sect. 2.1 we have reverted the scaling but not the partitioning and not the truncating. Furthermore, we have
preserved all information obtained with the computation of the reduced systems in Sect. 3, where we keep the time
scale factors explicit, and with their algebraic simplification in Sect. 4.

Our back-transformation is realized in Algorithm 9. In l.3 we compute the time scale factor ε
(bk/q)+μ∗ for T ∗k as

described above, and in l.6 we compute its co-factor ε
d j∗ f σ as (y j f/x j )σ .

Algorithm 9 TransformBack
Input: 1. [(M0, T1, R1), . . . , (M�−1, T�, R�)], the output of either Algorithm 5 or Algorithm 8;

2. σ , the output of Algorithm 1

Output: A list [(M∗
0 , T ∗1 , R∗1 ), . . . , (M∗

�−1, T ∗� , R∗� )].
1: for k := 1 to � do
2: M∗

k−1 := Mk−1σ
3: v := (

(δbk τ)σ
)
/t , extracting δbk from Tk = ε

(bk/q)+μ∗
4: T ∗k := [ ]
5: for all x ′j = δbk f j ∈ Tk do

6: h := (y j f j/x j )σ = ε
d j∗ ( f jσ)

7: T ∗k := T ∗k ◦ [ẏ j = vh] = ε
bk/q+μ+d j∗ ( f jσ)

8: end for
9: R∗k := [ ẏ j = 0 | x ′j = 0 ∈ Rk ]
10: end for
11: return [(M∗

0 , T ∗1 , R∗1 ), . . . , (M∗
�−1, T ∗� , R∗� )]

6 The Big Picture

Let us discuss what has been gained in (M∗
0 , T ∗1 , R∗1), …, (M∗

�−1, T ∗� , R∗� ) for our original system S in (1). We are
faced with a discrepancy. On the one hand, we fix ε = ε∗. On the other hand, the requirement that δ̄ be sufficiently
small in Theorem 1 entails that ε be sufficiently small. It is of crucial importance whether invariant manifolds of
(3), which do exist for sufficiently small ε, persist at ε = ε∗. We are not aware of any algorithmic results addressing
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this question. In particular, singular perturbation theory is typically concerned with asymptotic results, which are
not helpful here.

In case of persistence, there exist nested invariant manifolds N ∗
k−1 which are Hausdorff-close to M∗

k−1 for
system (1). Moreover, the differential equations T ∗k associated withM∗

k−1 correspond to the kth level in a hierarchy
of time scales and approximate the flow onN ∗

k−1.We have achieved a decomposition of (1) into � systems of smaller
dimension. At the very least, one obtains a well-educated guess about possible candidates for invariant manifolds
and reductions. For the investigation of those candidates one may check the N ∗

k for approximate invariance using,
e.g., numerical methods, or by applying criteria proposed in [56].

Algorithm 10 provides a wrapper combining all our algorithms to decompose input systems like (1) into several
time scales. The underlying tropicalization is not made explicit, and the result is presented on the original scale.
Figure 1 explains the functional dependencies and principal data flow between our algorithms graphically.

Algorithm 10 TropicalMultiReduce
Input: 1. A list S = [ẏ1 = f1, . . . , ẏn = fn] of autonomous first-order ordinary differential equations where f1, …, fn ∈

Q[y1, . . . , yn];
2. ε∗ ∈ (0, 1) ∩Q;
3. p ∈ N \ {0}

Output: A list [(M∗
0 , T ∗1 , R∗1 ), . . . , (M∗

�−1, T ∗� , R∗� )] of triplets where � ∈ {2, . . . ,m}, or the empty list. For k ∈ {1, . . . , �}, M∗
k−1 is a

list of real constraints defining M∗
k−1 ⊆ R

n ; T ∗k is a list of differential equations; R∗k is a list of trivial differential equations ẏ = 0
for all differential variables from T ∗k+1, …, T ∗m .
The relevance of the output in terms of the input is discussed in Sect. 5.

1: TropicalCS,ε∗,p := curry(TropicalC, S, ε∗, p) TropicalCS,ε∗,p is a binary function

2: TropicalDS,ε∗,p := curry(TropicalD, S, ε∗, p) TropicalDS,ε∗,p is a constant function
3: T, P, σ := ScaleAndTruncate(S,TropicalCS,ε∗,p,TropicalDS,ε∗,p, ε∗)
4:  := ComputeReducedSystems(T, P) = [(M0, T1, R1), . . . , (M�−1, T�, R�)]
5: ′ := SimplifyReducedSystems() = [(M ′

0, T
′
1, R1), . . . , (M ′

�−1, T ′�, R�)]
6: ∗ := TransformBack(′, σ ) = [(M∗

0 , T ∗1 , R∗1 ), . . . , (M∗
�−1, T ∗� , R∗� )]

7: return ∗

7 Computational Examples

Based on our explicit algorithms in the present work, we have developed two independent software prototypes
realizing all methods described here. The first one is in Python using SymPy [49] for symbolic computation, pySMT
[28] as an interface to the SMT solver MathSAT5 [13], and SMTcut for the computation of tropical equilibrations
[48]. The second one is a Maple package, which makes use of Maple’s built-in SMTLIB package [26] for using the
SMT solver Z3 [51]. For our computations here we have used our Python code. Computation results are identical
with both systems, and timings are similar. We have conducted our computations on a standard desktop computer
with a 3.3 GHz 6-core Intel 5820K CPU and 16 GB of main memory. Computation times listed are CPU times.

In the next section, we discuss in detail the computations for one specific biological input system from the
BioModels database, a repository of mathematical models of biological processes [57]. The subsequent sections
showcase several further such examples in a more concise style. The focus here is on biological results. For an
illustration of our algorithms, we discuss in Appendix A examples where reduction stops at � < m for various
reasons.

7.1 An Epidemic Model of Avian Influenza H5N6

We consider BioModel 716, which is related to the transmission dynamics of subtype H5N6 of the influenza A virus
in the Philippines in August 2017 [42]. The model specifies four species: Susceptible birds (S_b), Infected birds
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Algorithm 10
TropicalMultiReduce

Algorithm 1
ScaleAndTruncate

Algorithm 5
ComputeReducedSystems

Algorithm 8
SimplifyReducedSystems

Algorithm 9
TransformBack

Algorithm 4
TropicalEquilibration

Algorithm 3
TropicalD

Algorithm 2
TropicalC

Algorithm 7
TestSmoothness

Algorithm 6
IsHyperbolicallyAttractive

S, ε∗, p

S, ε∗, p

P1, . . . , Pm

σ

1. S = [ẏ1 = g1, . . . , ẏn = gn]
2. ε∗
3. p

1. S
2. TropicalCS,ε∗,p

3. TropicalDS,ε∗,p

4. ε∗

T1, . . . , Tm,
where Tk is zk = δbk ̂fk(z, 0)
and b1 < · · · < bm

(M0, T1, R1) � · · · � (M�−1, T�, R�)

(M ′
0, T

′
1, R1) � · · · � (M ′

�−1, T
′
� , R�)

(M∗
0 , T ∗

1 , R∗
1) � · · · � (M∗

�−1, T
∗
� , R∗

� )

Fig. 1 Functional dependencies (thin arrows) and principal data flow (thick arrows) between our algorithms

(I_b), Susceptible humans (S_h), and Infected humans (I_a), the concentrations of which over time we map to
differential variables y1, …, y4, respectively. The input system is given by

S = [ d
dt y1 = − 9137

2635182 y1y2 − 1
730 y1 + 412

73 ,

d
dt y2 = 9137

2635182 y1y2 − 4652377
961841430 y2,

d
dt y3 = − 1

6159375000 y2y3 − 1
25258 y3 + 40758549

3650000 ,

d
dt y4 = 1

6159375000 y2y3 − 112500173
2841525000000 y4

]
.
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We choose ε∗ = 1
5 , p = 1, and Algorithm 3 non-deterministically selects D = (−1,−4,−7,−3) from the

tropical equilibration. Algorithm 1 then yields the following scaled and truncated system with three time scales:

T1 =
[ d
dτ x1 = 1 ·

(
− 5710625

2635182 x1x2 + 412
365

)]
,

T2 =
[ d
dτ x2 = δ3 ·

(
5710625
2635182 x1x2 − 116309425

192368286 x2
)]

,

T3 =
[ d
dτ x3 = δ6 ·

(
− 15625

25258 x3 + 40758549
18250000

)
,

d
dτ x4 = δ6 ·

(
15625
15768 x2x3 − 112500173

181857600 x4
)]

.

Notice that the lexicographic order of the differential variables is coincidence. From this input, Algorithm5 produces
the following reduced systems:

M0 =
[ ]

, T1 =
[ d
dτ x1 = 1 ·

(
− 5710625

2635182 x1x2 + 412
365

)]
,

R1 =
[ d
dτ x2 = 0,
d
dτ x3 = 0,
d
dτ x4 = 0

]
,

M1 =
[
2084378125x1x2 − 1085694984 = 0

]
, T2 =

[ d
dτ x2 = δ3 ·

(
5710625
2635182 x1x2 − 116309425

192368286 x2
)]

,

R2 =
[ d
dτ x3 = 0,
d
dτ x4 = 0

]
,

M2 =
[
2084378125x1x2 − 1085694984 = 0, T3 =

[ d
dτ x3 = δ6 ·

(
− 15625

25258 x3 + 40758549
18250000

)
,

16675025x1x2 − 4652377x2 = 0
]
, d

dτ x4 = δ6 ·
(
15625
15768 x2x3 − 112500173

181857600 x4
)]

,

R3 =
[ ]

.

In that course, Algorithm 6 confirms hyperbolic attractivity according to Sect. 3.2 for all three scaled systems.
Furthermore, Algorithm 7 applies the sufficient smoothness test from Sect. 3.3 with

� = 3, b1 = 3, b2 = 3, P1 = 1 · (−δ4 · 125146 x1), P2 = δ6 · (−δ4 · 1562515768 x2x3).

This yields E = {4}, where 4 cannot be expressed as an integer multiple of 3. Thus the test fails, which causes a
warning in Algorithm 5.

Algebraic simplification through Algorithm 8 yields the simplified reduced systems

M ′
0 =

[ ]
, T ′1 =

[ d
dτ x1 = 1 ·

(
− 5710625

2635182 x1x2 + 412
365

)]
,

R′1 =
[ d
dτ x2 = 0,
d
dτ x3 = 0,
d
dτ x4 = 0

]
,

M ′
1 =

[
x1x2 = 1085694984

2084378125

]
, T ′2 =

[ d
dτ x2 = δ3 ·

(
− 116309425

192368286 x2 + 412
365

)]
,

R′2 =
[ d
dτ x3 = 0,
d
dτ x4 = 0

]
,

M ′
2 =

[
x1 = 4652377

16675025 , T ′3 =
[ d
dτ x3 = δ6 ·

(
− 15625

25258 x3 + 40758549
18250000

)
,
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x2 = 1085694984
581547125

]
, d

dτ x4 = δ6 ·
(
1884887125
1018870563 x3 − 112500173

181857600 x4
)]

,

R′3 =
[ ]

.

Notice that our implementations conveniently rewrite equational constraints as monomial equations with numerical
right hand sides when possible. This supports readability but is not essential for the simplifications applied here,
which are based on Gröbner basis theory. Comparing T ′2 with T2, we see that the equation for x1x2 in M ′

1 is plugged
in. Similarly, M2 is simplified to M ′

2, which is in turn used to reduce T3 to T ′3.
The back-transformed reduced systems as computed by Algorithm 9 read as follows:

M∗
0 =

[ ]
, T ∗1 =

[ d
dt y1 = 1 · (− 9137

2635182 y1y2 + 412
73

)]
,

R∗1 =
[ d
dt y2 = 0,
d
dt y3 = 0,
d
dt y4 = 0

]
,

M∗
1 =

[
y1y2 = 1085694984

667001

]
, T ∗2 =

[ d
dt y2 = 1

125 ·
(
− 116309425

192368286 y2 + 51500
73

)]
,

R∗2 =
[ d
dt y3 = 0,
d
dt y4 = 0

]
,

M∗
2 =

[
y1 = 4652377

3335005 , T ∗3 =
[ d
dt y3 = 1

15625 ·
(
− 15625

25258 y3 + 203792745
1168

)
,

y2 = 5428474920
4652377

]
, d

dt y4 = 1
15625 ·

(
15079097
5094352815 y3 − 112500173

181857600 y4
)]

,

R∗3 =
[ ]

.

We compare T ∗1 , …, T ∗3 to the input system S: In the equation for d
dt y1, the monomial in y1 is identified as a higher

order term with respect to δ and discarded by Algorithm 1. In the equation for d
dt y2, the monomial in y1y2 has

been Gröbner-reduced to a constant modulo the defining equation in M ′
1. Similarly, the equation for d

dt y3 loses
its monomial in y2y3 by truncation of higher order terms, and in the equation for d

dt y4, the monomial in y2y3 is
Gröbner-reduced to a monomial in y3.

Notice the explicit constant factors on the right hand sides of the differential equations in T ∗1 , …, T ∗3 . They
originate from factors δbk in the respective scaled systems T1, …, T3, corresponding to (8). They are left explicit to
make the time scale of the differential equations apparent. We see that the system T ∗2 ◦ R∗2 is 125 times slower than
T ∗1 ◦ R∗1 , and T ∗3 ◦ R∗3 is another 125 times slower.

Figure 2 visualizes the direction fields of T ∗1 ◦ R∗1 , …, T ∗3 ◦ R∗3 on their respective manifoldsM∗
0, …,M∗

2 along
with their respective critical manifoldsM∗

1, …,M∗
3, whereM∗

3 can be derived fromM∗
2 by additionally equating

the vector field of T ∗3 ◦ R∗3 to zero:

M∗
3 =

[
y1 = 4652377

3335005 , y2 = 5428474920
4652377 , y3 = 7051228977

25000 , y4 = 441466240042010928888
327120760850763125

]
.

This list M∗
3 does not explicitly occur in the output. However, its preimage M3 is constructed in Algorithm 5 and

justifies the presence of (M2, T3, R3) in the output there. The total computation time was 0.906 s.
This multiple-time scale reduction of the bird flu model emphasizes a cascade of successive relaxations of model

variables. First, the population of susceptible birds relaxes. This relaxation is illustrated in Fig. 2(b). Then, the
population of infected birds relaxes as shown in Fig. 2(c). Finally, the populations of susceptible and infected
humans relax to a stable steady state as shown in Fig. 2(d), following a reduced dynamics described by T ∗3 .
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Fig. 2 Criticalmanifolds and direction fields of our reductions of BioModel 716. (a)The surface is the criticalmanifoldM∗
1 ⊆M∗

0 = U
projected from R

4 into real (y1, y2, y3)-space. The line located at (y1, y2) ≈ (1.4, 1166.8) is the critical submanifoldM∗
2 ⊆M∗

1. The
dot located at (y1, y2, y3) ≈ (1.4, 1166.8, 282049.2) is the critical submanifold M∗

3 ⊆M∗
2. Both M∗

1 and M∗
2 extend to ±∞ in both

y3 and y4 direction, andM∗
3 is located near (1.4, 1166.8, 282049.2, 1349.6). (b) The direction field of T ∗1 ◦ R∗1 onM∗

0 = U projected
from R

4 into real (y1, y2)-space. The curve is the critical submanifoldM∗
1 ⊆M∗

0. (c) The direction field of T ∗2 ◦ R∗2 onM∗
1 projected

from R
4 into real (y3, y2)-space. The line is the critical submanifold M∗

2 ⊆ M∗
1. The system here is slower than the one in (b) by a

factor of 125. (d) The direction field of T ∗3 ◦ R∗3 on M∗
2 projected from R

4 into real (y3, y4)-space. The dot is the critical submanifold
M∗

3 ⊆M∗
2. The system here is slower than the one in (c) by another factor of 125

7.2 TGF-β Pathway

BioModel 101 is a simple representation of the TGF-β signaling pathway that plays a central role in tissue home-
ostasis and morphogenesis, as well as in numerous diseases such as fibrosis and cancer [76]. Concentrations over
time of species Receptor 1 (RI), Receptor 2 (RII), Ligand receptor complex-plasma membrane (lRIRII), Lig-
and receptor complex-endosome (lRIRII_endo), Receptor 1 endosome (RI_endo), and Receptor 2 endosome
(RII_endo), are mapped to differential variables y1, …, y6, respectively. The original BioModel 101 has a change
of ligand concentration at time t = 2500. For our computation here, we ignore this discrete event. The input
system is given by

S = [ d
dt y1 = − 1

100 y1y2 − 90277
250000 y1 + 33333

1000000 y4 + 33333
1000000 y5 + 8,

d
dt y2 = − 1

100 y1y2 − 90277
250000 y2 + 33333

1000000 y4 + 33333
1000000 y6 + 4,
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d
dt y3 = 1

100 y1y2 − 152777
250000 y3,

d
dt y4 = 33333

100000 y3 − 33333
1000000 y4,

d
dt y5 = 33333

100000 y1 − 33333
1000000 y5,

d
dt y6 = 33333

100000 y2 − 33333
1000000 y6

]
.

We choose ε∗ = 1
5 , p = 1, and select D = (0,−4,−1,−2,−1,−5) from the tropical equilibrium. Our

back-transformed reduced systems read as follows:

M∗
0 =

[ ]
, T ∗1 =

[ d
dt y1 = 5 · (− 1

500 y1y2 + 8
5

)]
,

R∗1 =
[ d
dt y2 = 0, d

dt y3 = 0, d
dt y4 = 0, d

dt y5 = 0,
d
dt y6 = 0

]
,

M∗
1 =

[
y1y2 = 800

]
, T ∗2 =

[ d
dt y3 = 1 ·

(
− 152777

250000 y3 + 8
)]

,

R∗2 =
[ d
dt y2 = 0, d

dt y4 = 0, d
dt y5 = 0, d

dt y6 = 0
]
,

M∗
2 =

[
y1y2 = 800, T ∗3 =

[ d
dt y2 = 1

5 ·
(− 90277

50000 y2 + 33333
200000 y6

)]
,

y3 = 2000000
152777

]
, R∗3 =

[ d
dt y4 = 0, d

dt y5 = 0, d
dt y6 = 0

]
.

The total computation time was 0.906 s.
The multiple-time scale reduction of the TGF-β model emphasizes a cascade of successive relaxations of con-

centrations of different species. First, the concentration of receptor 1 relaxes rapidly. Then follows the membrane
complex, and, even slower, the relaxation of receptor 2.

7.3 Caspase Activation Pathway

BioModel 102 is a quantitative kinetic model that examines the intrinsic pathway of caspase activation that is
essential for apoptosis induction by various stimuli including cytotoxic stress [43]. Species concentrations over
time are mapped to differential variables y1, …, y13 as described in Table 1.

The input system is given by

S = [ d
dt y1 = − 1

500 y1y2 − 1
500 y1y3 − 1

500 y1y10 − 1
500 y1y11 − 1

1000 y1 + 1
10 y5 + 1

10 y6 + 1
10 y12

+ 1
10 y13 + 1

50 ,

d
dt y2 = − 1

500 y1y2 − 1
1000 y2y4 − 1

5000 y2y8 − 1
1000 y2 + 1

1000 y3 + 1
10 y6 + 1

50 ,

d
dt y3 = − 1

500 y1y3 + 1
1000 y2y4 − 1

500 y3 + 1
10 y5,

d
dt y4 = − 1

1000 y2y4 + 1
1000 y3 − 1

1000 y4y6 − 3
1000 y4y8 − 1

1000 y4y11 − 1
1000 y4y12 − 1

1000 y4

+ 1
1000 y5 + 1

1000 y9 + 1
1000 y10 + 1

1000 y13 + 1
25 ,

d
dt y5 = 1

500 y1y3 + 1
1000 y4y6 − 51

500 y5,
d
dt y6 = 1

500 y1y2 − 1
1000 y4y6 + 1

1000 y5 − 1
5000 y6y8 − 101

1000 y6,
d
dt y7 = − 1

200000 y2y7 − 7
20000 y6y7 − 1

20000 y7y11 − 7
2000 y7y12 − 1

1000 y7 + 1
5 ,

d
dt y8 = 1

200000 y2y7 − 3
1000 y4y8 + 7

20000 y6y7 + 1
20000 y7y11 + 7

2000 y7y12 − 1
1000 y8 + 1

1000 y9,
d
dt y9 = 3

1000 y4y8 − 1
500 y9,

d
dt y10 = − 1

500 y1y10 + 1
1000 y4y11 − 1

500 y10 + 1
10 y13,
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Table 1 Mapping of species concentrations to differential variables for BioModel 102

Species Species variable Differential variable

APAF-1 A y1

Caspase 9 C9 y2

Caspase 9-XIAP complex C9X y3

XIAP X y4

APAF-1-Caspase 9-XIAP complex AC9X y5

APAF-1-Caspase 9 complex AC9 y6

Caspase 3 C3 y7

Caspase 3 cleaved C3_star y8

Caspase 3 cleaved-XIAP complex C3_starX y9

Caspase 9 cleaved-XIAP complex C9_starX y10

Caspase 9 cleaved C9_star y11

APAF-1-Caspase 9 cleaved complex AC9_star y12

APAF-1-Caspase 9 cleaved-XIAP complex AC9_starX y13

d
dt y11 = − 1

500 y1y11 + 1
5000 y2y8 − 1

1000 y4y11 + 1
1000 y10 − 1

1000 y11 + 1
10 y12,

d
dt y12 = 1

500 y1y11 − 1
1000 y4y12 + 1

5000 y6y8 − 101
1000 y12 + 1

1000 y13,
d
dt y13 = 1

500 y1y10 + 1
1000 y4y12 − 51

500 y13
]
.

We choose ε∗ = 1
2 , p = 1, and select D = (−4, 2, 3, 5, 5, 4,−6,−8,−4,−2,−2, 0, 0) from the tropical

equilibration. Our back-transformed reduced systems read as follows:

M∗
0 =

[ ]
, T ∗1 =

[ d
dt y4 = 1 · (− 3

1000 y4y8 + 1
25

)]
,

R∗1 =
[ d
dt y5 = 0, d

dt y6 = 0, d
dt y12 = 0, d

dt y13 = 0,
d
dt y2 = 0, d

dt y3 = 0, d
dt y10 = 0, d

dt y11 = 0,
d
dt y1 = 0, d

dt y7 = 0, d
dt y9 = 0, d

dt y8 = 0
]
,

M∗
1 =

[
y4y8 = 40

3

]
, T ∗2 =

[ d
dt y5 = 1

8 ·
( 2
125 y1y3 − 102

125 y5
)
,

d
dt y6 = 1

8 ·
( 2
125 y1y2 − 101

125 y6
)
,

d
dt y12 = 1

8 ·
( 2
125 y1y11 − 101

125 y12
)
,

d
dt y13 = 1

8 ·
( 2
125 y1y10 − 102

125 y13
)]

,

R∗2 =
[ d
dt y2 = 0, d

dt y3 = 0, d
dt y10 = 0, d

dt y11 = 0,
d
dt y1 = 0, d

dt y7 = 0, d
dt y9 = 0, d

dt y8 = 0
]
,

M∗
2 =

[
y4y8 = 40

3 , T ∗3 =
[ d
dt y2 = 1

16 ·
(− 2

625 y2y8 + 8
25

)]
,

y1y3 − 51y5 = 0, R∗3 =
[ d
dt y3 = 0, d

dt y10 = 0, d
dt y11 = 0, d

dt y1 = 0,

2y1y2 − 101y6 = 0, d
dt y7 = 0, d

dt y9 = 0, d
dt y8 = 0

]
.

2y1y11 − 101y12 = 0,

y1y10 − 51y13 = 0
]
,

The total computation time was 8.547 s, of which Algorithm 4 took 6.188 s.
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Themultiple-time scale reduction of the caspase activationmodel emphasizes a cascade of successive relaxations.
First, the inhibitor of apoptosis XIAP binds rapidly to the cleaved caspase. Then, the four APAF complexes are
formed. Finally, the Caspase 9 is recruited to the apoptosome.

7.4 Avian Influenza Bird-to-Human Transmission

BioModel 709 describes bird-to-human transmission of different strains of avian influenza A viruses, such as H5N1
and H7N9 [47]. Species concentrations over time of Susceptible avians (S_a), Infected avians (I_a), Susceptible
humans (S_h), Infected humans (I_h), and Recovered humans (R_h) are mapped to differential variables y1,
…, y5, respectively. The input system is given by

S = [ d
dt y1 = − 1

8000000000 y
3
1 + 127

20000000 y
2
1 − 9

500000000 y1y2 − 1
200 y1,

d
dt y2 = 9

500000000 y1y2 − 37123
50000000 y2,

d
dt y3 = − 3

500000000 y2y3 − 391
10000000 y3 + 30,

d
dt y4 = 3

500000000 y2y3 − 4445391
10000000 y4,

d
dt y5 = 1

10 y4 − 391
10000000 y5

]
.

We choose ε∗ = 1
5 , p = 1, and select D = (−7, 0,−8, 3,−2) from the tropical equilibration. Our back-

transformed reduced systems read as follows:

M∗
0 =

[ ]
, T ∗1 =

[ d
dt y1 = 1 · (− 1

8000000000 y
3
1 + 127

20000000 y
2
1

)]
,

R∗1 =
[ d
dt y4 = 0, d

dt y2 = 0, d
dt y3 = 0, d

dt y5 = 0
]
,

M∗
1 =

[
y31 − 50800y21 = 0

]
, T ∗2 =

[ d
dt y4 = 1

5 ·
(

3
100000000 y2y3 − 4445391

2000000 y4
)]

,

R∗2 =
[ d
dt y2 = 0, d

dt y3 = 0, d
dt y5 = 0

]
.

The total computation time was 0.578 s.
The multiple-time scale reduction of this avian influenza model emphasizes a cascade of successive relaxations

of different model variables. First, the susceptible bird population relaxes rapidly. The reduced equation T1 and
manifold M1 suggest that the bird population dynamics is of the Allee type and evolves toward the stable extinct
state. It follows the relaxation of infected human population that also evolves toward the extinct state, the end of
the epidemics.

8 Some Remarks on Complexity

A detailed complexity analysis of our approach is beyond the scope of this article. We collect some remarks on the
asymptotic worst-case complexity of various computational steps required by our algorithms:

(i) The existential decision problem over real closed fields, for which we use SMT solving over QF_NRA in
Algorithm 6;

(ii) Linear programming, for which we used SMT solving over QF_LRA in Algorithm 3;
(iii) Integer linear programming, for which we used SMT solving over QF_LIA in Algorithm 7.

Problem (i) is in single exponential time [32]. Problem (ii) is in polynomial [38] time. Problem (iii) is NP-complete;
a proof can be found in [65, Theorem 18.1], where it is essentially attributed to [16]. With all these problems, the
dominant complexity parameter is the number of variables, which in our context corresponds to the number n of
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differential variables. Biological models impose reasonable upper bounds on n, which corresponds to the number
of species occurring there. When n is bounded, problem (i) becomes polynomial [32]. The same holds for problem
(iii); a proof based on Lenstra’s algorithm [44] can be found in [65, Corollary 18.7a].

When characterizing the decision in l.2 of Algorithm 3 as linear programming in (ii) above, we tacitly assume
that it is not applied to the tropical equilibration � as a whole but to each contained polyhedron independently. The
number of contained polyhedra is in turn exponential in n, in the worst case. The motivation for the computation
of a disjunctive normal form in Algorithm 4 is to support the choice of a suitable point (d1, . . . , dn) in Algorithm 3
by providing information on the geometry of the tropical equilibration as a union of polyhedra. It is possible to
omit this and accordingly drop the computation of the disjunctive normal form in l.23 of Algorithm 4 altogether. In
that case, solving in l.2 of Algorithm 3 is applied to the formula

∧ ∨ ∧
P instead of �. This is a linear decision

problem over ordered fields, which is NP-complete [29], and solutions can be found in single exponential time [79].
Efficient implementations do not necessarily use theoretically optimal algorithms. At the time of writing, SMT

solving and corresponding decision procedures are a very active field of research and thus subject to constant change.
We deliberately refrain from going into details about the current state of the art at this point.

Beyond the examples and computation times discussed here, we currently have no systematic empirical data that
would allow substantial statements on the practical performance and limits of our implementations.

9 Concluding Remarks

We provided a symbolic method for automated model reduction of biological networks described by ordinary
differential equations with multiple time scales. Our method is applicable to systems with two time scales or more,
superseding traditional slow-fast reduction methods that can cope with only two time scales. We also proposed,
for the first time, the automatic verification of hyperbolicity conditions required for the validity of the reduction.
Our theoretical framework is accompanied by rigorous algorithms and prototypical implementations, which we
successfully applied to real-world problems from the BioModels database [57].

We would like to list some open points and possible extensions of our research here. Our reduction algorithm
is based on a fixed scaling (8) leading to a fixed ordering of the time scales of different variables. In our reduction
scheme, different variables relax hierarchically, first the fastest ones, then the second fastest, and finally the slowest
ones, which justifies our geometric picture of nested invariant manifolds. However, there are situations, e.g. in
models of relaxation oscillations, when the ordering of time scales changes with time: variables that were fast can
become slow at a later time, and vice versa. In order to cope with such situations, one would like to use different
scalings for different time segments. One attempt to implement such a procedure has been provided in [68].

Although our proposed method identifies the full hierarchy of time scales, the subsequent reduction may stop
early in this hierarchy when hyperbolic attractivity is not satisfied at some stage. One possible reason is the presence
of conservation laws, also known as first integrals, at the given reduction stage. Such conservation laws force an
eigenvalue zero for the Jacobian. A theorem by Schneider and Wilhelm [64] can be employed to reduce such a
setting to the hyperbolically attractive case. As for the behavior of first integrals when proceeding to the reduced
system, see the discussion of the non-standard case in [41] for two time scales; an extension to multiple time scales
should be straightforward. Work in progress is concerned with the introduction of new slow variables, one for each
independent conservation law of the fast subsystem. This is applied to networks with multiple time scales and
approximate linear and polynomial conservation laws.

More generally, it is of interest to consider cases when hyperbolic attractivity fails but hyperbolicity still holds:
In such cases, Cardin and Teixeira show there still exist invariant manifolds [11]. Testing for hyperbolicity is more
involved than testing for hyperbolic attractivity, but in theory it is well understood, and there exists an algorithmic
approach due to Routh [27]. In the case of hyperbolicity, but not attractivity, the ensuing global dynamics may be
quite interesting; for instance slow-fast cycles may appear.

Concerning differentiability requirements, we check in Sect. 3.3 for smoothness of the full system. However,
Fenichel’s results, and in principle also those by Cardin and Teixeira, require only sufficient finite differentiability.
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Therefore, given a differential equation systemand a scaling, invariantmanifolds and corresponding reduced systems
exist for C p functions with fixed p < ∞. Going through the details will involve intricate analysis that is left to
future work.

In the introduction we sketched aMichaelis–Menten system abstracting from the known numerical values for the
reaction rate constants k1, k−1, k2. It would be indeed interesting to work on such parametric data. In the presence
of parameters, one would consider effective quantifier elimination over real closed fields [15,20,39,69,70,80] as
a generalization of SMT solving. Robust implementations are freely available [9,19] and well supported. They
have been successfully applied to problems in chemical reaction network theory during the past decade [7,8,21–
23,33,67,71,72,78]. Such a generalization is not quite straightforward. With the tropical scaling in Sect. 2.2,
Algorithm 2 would introduce logarithms of polynomials in the parametric coefficients, which is not compatible
with the logic framework used here. Similar tropicalization methods, which are unfortunately not compatible with
our abstract view on scaling in Sect. 2.1, require only logarithms of individual parametric coefficients [63]. Such a
more special form would allow the use of abstraction in the logic engine.

From a point of view of user-oriented software, it would be most desirable to develop automatic strategies for
determining good values for ε∗ and for choices of (d1, . . . , dn) from the tropical equilibration in Algorithm 3.
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Appendix A. Further Computational Examples

Recall that in Sect. 7 we have discussed computations for several systems from the BioModels database [57]. While
the focus there was on biological results, we discuss here examples where reduction stops at � < m for various
reasons. Again, we have conducted our computations on a standard desktop computer with a 3.3 GHz 6-core Intel
5820K CPU and 16 GB of main memory. Computation times listed are CPU times.

A.1. Hypertoxiticy of a Painkiller

BioModel 609 describes the metabolism and the related hepatotoxicity of acetaminophen, a pain killer [60]. The
species concentrations over time of Sulphate PAPS, GSH, NAPQI, Paracetamol APAP, and Protein adducts are
mapped to differential variables y1, …, y5, respectively. The input system is given by

S = [ d
dt y1 = −226000000000000y1y4 − 2y1 + 53

2000000000000000 ,

d
dt y2 = −1600000000000000000y2y3 − 2y2 + 687

50000000000000000 ,

d
dt y3 = −1600000000000000000y2y3 − 220063

2000 y3 + 63
200 y4,

http://creativecommons.org/licenses/by/4.0/
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Table 2 Mapping of species concentrations to differential variables for BioModel 726

Species Species variable Differential variable

Susceptible dogs S_d y1

Exposed dogs E_d y2

Infectious dogs I_d y3

Recovered dogs R_d y4

Susceptible humans S_h y5

Exposed humans E_h y6

Infectious humans I_h y7

Recovered humans R_h y8

d
dt y4 = −226000000000000y1y4 + 63

2000 y3 − 661
200 y4,

d
dt y5 = 110y3

]
.

Since there is only one monomial on the right hand side of the equation for d
dt y5, equilibration is impossible. This

causes Algorithm 4 to return in l.23 a disjunctive normal form � equivalent to “false,” which describes the empty
set. Hence Algorithm 3 returns ⊥, and Algorithm 1 returns the empty list. The total computation time was 0.006 s.

A.2. Transmission Dynamics of Rabies

BioModel 726 examines the transmission dynamics of rabies between dogs and humans [61]. Species concentrations
over time are mapped to differential variables y1, …, y8 as described in Table 2.

The input system is given by

S = [ d
dt y1 = − 79

500000000 y1y3 − 17
100 y1 + 18

5 y2 + y4 + 3000000,
d
dt y2 = 79

500000000 y1y3 − 617
100 y2,

d
dt y3 = 12

5 y2 − 27
25 y3,

d
dt y4 = 9

100 y1 + 9
100 y2 − 27

25 y4,
d
dt y5 = − 229

100000000000000 y3y5 − 3
1000 y5 + 18

5 y6 + y8 + 15400000,
d
dt y6 = 229

100000000000000 y3y5 − 6543
1000 y6,

d
dt y7 = 12

5 y6 − 1343
1000 y7,

d
dt y8 = 27

50 y6 − 1003
1000 y8

]
.

We choose ε∗ = 1
5 , p = 1, andAlgorithm 3 selects D = (−10,−10,−11,−9,−14,−7,−8,−7) from the tropical

equilibration. Algorithm 1 then yields the following scaled and truncated system with three time scales:

T1 =
[ d
dτ x1 = 1 ·

(
− 395

256 x1x3 + 18
25 x2

)
,

d
dτ x2 = 1 ·

(
395
256 x1x3 − 617

500 x2
)
,

d
dτ x6 = 1 ·

(
28625
16384 x3x5 − 6543

5000 x6
)]

,

T2 =
[ d
dτ x3 = δ · ( 1225 x2 − 27

25 x3
)
,
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d
dτ x4 = δ · ( 9

20 x1 + 9
20 x2 − 27

25 x4
)
,

d
dτ x7 = δ · ( 1225 x6 − 1343

1000 x7
)
,

d
dτ x8 = δ · ( 2750 x6 − 1003

1000 x8
)]

,

T3 =
[ d
dτ x5 = δ5 ·

(
4928
3125 − 15

8 x5
)]

.

Equating the right hand sides F1 of the differential equations in T1 to zero equivalently yields

M1 = [−9875x1x3 + 4608x2 = 0, 49375x1x3 − 39488x2 = 0, 17890625x3x5 − 13400064x6 = 0].
In l.1 of Algorithm 6, U ◦ M1 is tested for satisfiability. This fails, which means that the corresponding manifold
M1 is empty over the positive first orthant. Consequently, Algorithms 5, 8, and 9 return empty lists. The total
computation time was 0.921 s.

A.3. Negative Feedback Loop Between Tumor Suppressor and Oncogene

BioModel 156 describes the dynamics of a negative feedback loop between the tumor suppressor protein p53 and
the oncogene protein Mdm2 in human cells [30]. The species concentrations over time for P53 (x),Mdm2 (y), and
Precursor Mdm2 (y0) are mapped to differential variables y1, …, y3, respectively. The input system is given by

S = [ d
dt y1 = − 37

10 y1y2 + 2y1,
d
dt y2 = − 9

10 y2 + 11
10 y3,

d
dt y3 = 3

2 y1 − 11
10 y3

]
.

We choose ε∗ = 1
2 , p = 1, and select D = (2, 1, 1). Algorithm 1 then yields the following scaled and truncated

system with two time scales:

T1 =
[ d
dτ x1 = 1 · (− 37

40 x1x2 + x1
)]

,

T2 =
[ d
dτ x2 = δ · (− 9

10 x2 + 11
10 x3

)
,

d
dτ x3 = δ · ( 34 x1 − 11

10 x3
)]

.

Analogously to the previous sectionwe obtainM1 = [−37x1x2+40x1 = 0], for whichwe findM1 to be non-empty
over the positive first orthant in l.1 of Algorithm 6. However in l.20, the test for hyperbolic attractivity fails with
M1 and the Hurwitz conditions

� = { 37
40 x2 − 1 > 0

}
,

so that “false” is returned. Therefore, Algorithm 5 breaks the for-loop in l.10 with k = 1 and returns the empty list
in l.19. Obviously, the simplified and back-translated systems are empty lists as well. The total computation time
was 0.453 s.

A.4. CD4 T-Cells in the Spread of HIV

BioModel 663 describes howCD4 T-cells can influence the spread of the HIV infection [81]. Species concentrations
over time for Infected T-cells (x), Uninfected T-cells (y), and Free viruses (v) are mapped to variables y1, …, y3,
respectively. The input system is given by

S = [ d
dt y1 = − 1

10 y
2
1 y3 − 1

10 y1y2y3 + 4
5 y1y3 − 1

10 y1,
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d
dt y2 = − 1

10 y1y2y3 + 1
5 y1y3 − 1

10 y
2
2 y3 + y2y3 − 1

5 y2,
d
dt y3 = y2 − 1

2 y3
]
.

We choose ε∗ = 1
2 , p = 5, and D = (1, 4, 3). The choice of p = 5 causes fractional powers of numbers in the

scaled and truncated system

T1 =
[ d
dτ x3 = 1 · (x2 − x3)

]
,

T2 =
[

d
dτ x2 = δ7 ·

(
4
5

5
√
4 x1x3 − 4

5
5
√
4 x2

)]
,

T3 =
[

d
dτ x1 = δ12 ·

(
4
5

5
√
4 x1x3 − 4

5
5
√
4 x1

)]
.

However, such input is not accepted with the SMT logic QF_NRA used in Algorithm 6. As discussed in Sect. 3.2,
we catch the corresponding error from the SMT solver, convert to floats, and restart, which solves the problem.

Similarly to the previous example, the Hurwitz test in l.20 of Algorithm 6 succeeds for k = 1 but fails for k = 2
in Algorithm 5. Since there are fewer than two reduced systems, we return the empty list. Consequently, the list
of simplified reduced systems and the corresponding list of back-transformed systems are empty as well. The total
computation time was 0.390 s.
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