751 research outputs found

    Investigation of Short Permanent Magnet and Stator Flux Bridge Effects on Cogging Torque Mitigation in FSPM Machines

    Get PDF
    Flux-switching permanent magnet (FSPM) machines are gaining in popularity due to their robustness, wide speed range, high torque, and high power density. However, their strong cogging torque can lead to vibration and noise due to the double-saliency structure. This paper investigates the effects of the short permanent magnet (PM) and stator flux bridge (FB) on the cogging torque reduction of three-phase 12/10-pole FSPM machines. Four different FSPM machines, including an inner-inner topology, an inner-outer topology, an outer-inner topology, and an outer-outer topology, are developed and analyzed with both short PM and stator FB. The configurations are obtained by placing the FB at inner/outer stator lamination and reducing the PM towards inner/outer directions. The cogging torque, average output torque, and PM utilization ratio of different topologies are extensively studied and compared by the finite element method (FEM). Finally, prototype machines are manufactured and tested. The experimental results have validated the numerical models and the effectiveness of the developed machine in reducing the cogging torque. The results also suggest that the outer-inner topology is more effective to reduce the cogging torque, which not only reduces the utilization of the PM materials, but also mitigates the cogging torque at only slight cost of torque performance

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    Novel stator wound field synchronous machines with permanent magnets on slot openings

    Get PDF

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Switched Flux Permanent Magnet Brushless Machines for Electric Vehicles

    Get PDF
    This thesis investigates different topologies of switched flux permanent magnet (SFPM) machines and variable flux (VF) methods for high speed applications. Although several novel topologies of SFPM machines have been proposed and investigated recently, their torque-speed capability has not been studied systematically. Therefore, the torque-speed capability as well as the open circuit and electromagnetic performance of conventional SFPM machines with three different stator/rotor pole combinations, i.e. 12/10, 12/13 and 12/14, and three novel SFPM machine topologies, i.e. multi-tooth, E-core and C-core are analysed and investigated by the finite element (FE) method and experiments. Moreover, in order to improve the flux-weakening capability of these machines a variable flux method using flux adjusters (FAs) is employed and the corresponding electromagnetic performance of the machines are investigated, analysed and compared. Both FE and measured results show when the FAs are used the torque-speed capability of the three conventional machines can be improved significantly, while no improvement is shown in the three novel topologies primarily due to the large winding inductances. The technique of using flux adjusters has been improved by reducing the number of FAs. Thus, a new mechanical variable-flux machine topology, which uses only half of FAs outside the stator at alternative stator poles, is proposed, developed and analysed. Open circuit results, electromagnetic performance and torque- and power-speed curves of the 12/10, 12/13 and 12/14 stator/rotor pole SFPM machines with alternative FAs are predicted and compared by 2D and 3D-FE, and experimentally validated. Furthermore, a novel SFPM machine topology with radial and circumferential PMs is proposed, investigated and optimized. This topology reduces the stator flux leakage and offers high magnetic utilization. Moreover, this topology can also be developed as a mechanical variable flux machine. Finally, three SFPM machines with variable flux techniques, i.e. mechanically movable flux adjusters (MMFA), mechanically rotatable permanent magnet set (MRMS) and hybrid excitation with backside DC coils (HEBC) are analysed. Their open circuit results and electromagnetic performance with emphasis on torque-speed characteristic are investigated and compared. Additionally, the required power to switch between flux weakening and strengthening states, flux weakening capability and permanent magnet demagnetization withstand capability are predicted, analysed and compared. The influence of end-effect on the torque-speed capability in the conventional, multi-tooth, E-core and C-core SFPM machines is investigated. Measurements and 3D-FE are performed to obtain the torque-speed curve in order to validate the findings of the research. The 3D-FE predicted results match well with the measured results, while the 2D-FE predicted results are lower due to the high end-effect in the SFPM machines

    Investigation on Multi-Physics Modelling of Fault Tolerant Stator Mounted Permanent Magnet Machines

    Get PDF
    This thesis investigates the stator mounted permanent magnet machines from the point of view of fault tolerant capability. The topologies studied are switched flux (and its derivatives C-Core, E-Core and modular), doubly salient and flux reversal permanent magnet machines. The study focuses on fault mode operation of these machines looking at severe conditions like short-circuit and irreversible demagnetization. The temperature dependence of the permanent magnet properties is taken into account. A complex multi-physics model is developed in order to assess the thermal state evolution of the switched flux machine during both healthy and faulty operation modes. This model couples the electro-mechanical domain with the thermal one, thus being able to consider a large range of operating conditions. It also solves issues such as large computational time and resources while still maintaining the accuracy. Experimental results are also provided for each chapter. A hierarchy in terms of fault tolerant capability is established. A good compromise can be reached between performance and fault tolerant capability. The mechanism of the magnet irreversible demagnetization process is explained based on magnetic circuit configuration. It is also found that the studied topology are extremely resilient against the demagnetizing influence of the short-circuit current and the magnet demagnetization is almost only affected by temperature

    A Review of Transverse Flux Machines Topologies and Design

    Get PDF
    High torque and power density are unique merits of transverse flux machines (TFMs). TFMs are particularly suitable for use in direct-drive systems, that is, those power systems with no gearbox between the electric machine and the prime mover or load. Variable speed wind turbines and in-wheel traction seem to be great-potential applications for TFMs. Nevertheless, the cogging torque, efficiency, power factor and manufacturing of TFMs should still be improved. In this paper, a comprehensive review of TFMs topologies and design is made, dealing with TFM applications, topologies, operation, design and modeling

    SRM drives for electric traction

    Get PDF
    "GAECE" -- PortadaDescripció del recurs: 11 maig 2020GAECE (Grup d’accionaments elèctrics amb commutació electrònica). The group of electronically commutated electrical drives is a research team of Universitat Politècnica de Catalunya (UPC BARCELONATECH), which conducts investigation in four areas: electrical drives, power electronics, mechanics and energy and sustainability. Regarding electrical drives, research focuses on the development of new reluctance, permanent magnet and hybrid electrical drives. The main goal of those electrical drives is the integration of the power converter/controller and the mechanical transmission, being specially intended for the traction of light electric vehicles. That research is carried out by using the analysis of finite elements, taking into account eco-design criteria, considering new materials and new control strategies.First editio

    Comparative Study of Fault Tolerant Switched Flux Permanent Magnet Machines

    Get PDF
    The fault tolerant capabilities are compared in this paper for the conventional double layer switched flux permanent magnet machine and its single layer counterparts, i.e. C-core, Ecore and modular. The comparison includes the inter-turn shortcircuit and irreversible demagnetization faults. A combination of Simulink and finite element models is used in the study. Based on the predictions, it is found that the modular topology produces the lowest short-circuit current and also has the best demagnetization withstand capability while the conventional one produces the highest short-circuit current and has the worst demagnetization withstand capability. The frozen permeability method is employed to separate the flux produced by armature current and magnets, and the results showed that, besides the influence of short-circuit current, the available magnet volume and magnetic circuit configuration play an important role in the demagnetization process. It is also found that removing half of the magnets, such as using C-core, E-core and modular topologies, generally improves the demagnetization withstand capability and also increases the torque per magnet volume. Measured results are also presented to validate the short-circuit current predictions and magnet demagnetization

    Magnetic Material Modelling of Electrical Machines

    Get PDF
    The need for electromechanical energy conversion that takes place in electric motors, generators, and actuators is an important aspect associated with current development. The efficiency and effectiveness of the conversion process depends on both the design of the devices and the materials used in those devices. In this context, this book addresses important aspects of electrical machines, namely their materials, design, and optimization. It is essential for the design process of electrical machines to be carried out through extensive numerical field computations. Thus, the reprint also focuses on the accuracy of these computations, as well as the quality of the material models that are adopted. Another aspect of interest is the modeling of properties such as hysteresis, alternating and rotating losses and demagnetization. In addition, the characterization of materials and their dependence on mechanical quantities such as stresses and temperature are also considered. The reprint also addresses another aspect that needs to be considered for the development of the optimal global system in some applications, which is the case of drives that are associated with electrical machines
    • …
    corecore