19,988 research outputs found

    Static and dynamic characteristics of protein contact networks

    Full text link
    The principles underlying protein folding remains one of Nature's puzzles with important practical consequences for Life. An approach that has gathered momentum since the late 1990's, looks at protein hetero-polymers and their folding process through the lens of complex network analysis. Consequently, there is now a body of empirical studies describing topological characteristics of protein macro-molecules through their contact networks and linking these topological characteristics to protein folding. The present paper is primarily a review of this rich area. But it delves deeper into certain aspects by emphasizing short-range and long-range links, and suggests unconventional places where "power-laws" may be lurking within protein contact networks. Further, it considers the dynamical view of protein contact networks. This closer scrutiny of protein contact networks raises new questions for further research, and identifies new regularities which may be useful to parameterize a network approach to protein folding. Preliminary experiments with such a model confirm that the regularities we identified cannot be easily reproduced through random effects. Indeed, the grand challenge of protein folding is to elucidate the process(es) which not only generates the specific and diverse linkage patterns of protein contact networks, but also reproduces the dynamic behavior of proteins as they fold. Keywords: network analysis, protein contact networks, protein foldingComment: Added Appendix

    Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins

    Get PDF
    Water molecules and molecular chaperones efficiently help the protein folding process. Here we describe their action in the context of the energy and topological networks of proteins. In energy terms water and chaperones were suggested to decrease the activation energy between various local energy minima smoothing the energy landscape, rescuing misfolded proteins from conformational traps and stabilizing their native structure. In kinetic terms water and chaperones may make the punctuated equilibrium of conformational changes less punctuated and help protein relaxation. Finally, water and chaperones may help the convergence of multiple energy landscapes during protein-macromolecule interactions. We also discuss the possibility of the introduction of protein games to narrow the multitude of the energy landscapes when a protein binds to another macromolecule. Both water and chaperones provide a diffuse set of rapidly fluctuating weak links (low affinity and low probability interactions), which allow the generalization of all these statements to a multitude of networks.Comment: 9 pages, 1 figur

    The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components

    Get PDF
    G protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks. To provide insight into the overall topology of the GPCR heteromers and identify key players, a collective interaction network was constructed. Experimental interaction data for each of the individual human GPCR protomers was obtained manually from the STRING and SCOPUS databases. The interaction data were used to build and analyze the network using Cytoscape software. The network was treated as undirected throughout the study. It is comprised of 156 nodes, 260 edges and has a scale-free topology. Connectivity analysis reveals a significant dominance of intrafamily versus interfamily connections. Most of the receptors within the network are linked to each other by a small number of edges. DRD2, OPRM, ADRB2, AA2AR, AA1R, OPRK, OPRD and GHSR are identified as hubs. In a network representation 10 modules/clusters also appear as a highly interconnected group of nodes. Information on this GPCR network can improve our understanding of molecular integration. GPCR-HetNet has been implemented in Java and is freely available at http://www.iiia.csic.es/similar to ismel/GPCR-Nets/index.html

    Evolution signatures in genome network properties

    Get PDF
    Genomes maybe organized as networks where protein-protein association plays the role of network links. The resulting networks are far from being random and their topological properties are a consequence of the underlying mechanisms for genome evolution. Considering data on protein-protein association networks from STRING database, we present experimental evidence that degree distribution is not scale free, presenting an increased probability for high degree nodes. We also show that the degree distribution approaches a scale invariant state as the number of genes in the network increases, although real genomes still present finite size effects. Based on the experimental evidence unveiled by these data analyses, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated, with a duplication probability that linearly grows with gene degree and decreases with its clustering coefficient. The results show that topological distributions are better described than in previous genome evolution models. This model correctly predicts that, in order to produce protein-protein association networks with number of links and number of nodes in the observed range, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. If this scenario is true, it implies a universal mechanism for genome evolution

    A generative model for protein contact networks

    Full text link
    In this paper we present a generative model for protein contact networks. The soundness of the proposed model is investigated by focusing primarily on mesoscopic properties elaborated from the spectra of the graph Laplacian. To complement the analysis, we study also classical topological descriptors, such as statistics of the shortest paths and the important feature of modularity. Our experiments show that the proposed model results in a considerable improvement with respect to two suitably chosen generative mechanisms, mimicking with better approximation real protein contact networks in terms of diffusion properties elaborated from the Laplacian spectra. However, as well as the other considered models, it does not reproduce with sufficient accuracy the shortest paths structure. To compensate this drawback, we designed a second step involving a targeted edge reconfiguration process. The ensemble of reconfigured networks denotes improvements that are statistically significant. As a byproduct of our study, we demonstrate that modularity, a well-known property of proteins, does not entirely explain the actual network architecture characterizing protein contact networks. In fact, we conclude that modularity, intended as a quantification of an underlying community structure, should be considered as an emergent property of the structural organization of proteins. Interestingly, such a property is suitably optimized in protein contact networks together with the feature of path efficiency.Comment: 18 pages, 67 reference

    An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.

    Get PDF
    Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks
    corecore