5,963 research outputs found

    Validating a network hub in leukaemia stem cells

    Get PDF
    No abstract available

    Global Functional Atlas of \u3cem\u3eEscherichia coli\u3c/em\u3e Encompassing Previously Uncharacterized Proteins

    Get PDF
    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans’ biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a “systems-wide” functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins

    Prediction of β-barrel membrane proteins by searching for restricted domains

    Get PDF
    BACKGROUND: The identification of beta-barrel membrane proteins out of a genomic/proteomic background is one of the rapidly developing fields in bioinformatics. Our main goal is the prediction of such proteins in genome/proteome wide analyses. RESULTS: For the prediction of beta-barrel membrane proteins within prokaryotic proteomes a set of parameters was developed. We have focused on a procedure with a low false positive rate beside a procedure with lowest false prediction rate to obtain a high certainty for the predicted sequences. We demonstrate that the discrimination between beta-barrel membrane proteins and other proteins is improved by analyzing a length limited region. The developed set of parameters is applied to the proteome of E. coli and the results are compared to four other described procedures. CONCLUSION: Analyzing the beta-barrel membrane proteins revealed the presence of a defined membrane inserted beta-barrel region. This information can now be used to refine other prediction programs as well. So far, all tested programs fail to predict outer membrane proteins in the proteome of the prokaryote E. coli with high reliability. However, the reliability of the prediction is improved significantly by a combinatory approach of several programs. The consequences and usability of the developed scores are discussed

    Proteomics in the Light of Integral Value Transformations

    Get PDF
    In this paper, Proteomics have been studied in the light of Integral Value Transformations (IVTs) which was introduced by Sk. S. Hassan et al in 2010. For case study, a Human olfactory receptor OR1D2 protein sequence has been taken and then different IVTs have been used to evolve OR1D2 into some other proteomic like sequences. It has been observed that some of the generated sequences have been mapped to another olfactory receptor in Human or in some other species. Also it has been corroborated through fractal dimension that some of the fundamental protein properties have been nearly intact, even after the mapping. This study will help to comprehend the proteomic evolutionary network with the help of IVTs

    Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation

    Get PDF
    Protein phosphorylation and membrane proteins play an important role in the infection of plants by phytopathogenic fungi, given their involvement in signal transduction cascades. Botrytis cinerea is a well-studied necrotrophic fungus taken as a model organism in fungal plant pathology, given its broad host range and adverse economic impact. To elucidate relevant events during infection, several proteomics analyses have been performed in B. cinerea, but they cover only 10% of the total proteins predicted in the genome database of this fungus. To increase coverage, we analysed by LC-MS/MS the first-reported overlapped proteome in phytopathogenic fungi, the “phosphomembranome” of B. cinerea, combining the two most important signal transduction subproteomes. Of the 1112 membrane-associated phosphoproteins identified, 64 and 243 were classified as exclusively identified or overexpressed under glucose and deproteinized tomato cell wall conditions, respectively. Seven proteins were found under both conditions, but these presented a specific phosphorylation pattern, so they were considered as exclusively identified or overexpressed proteins. From bioinformatics analysis, those differences in the membrane-associated phosphoproteins composition were associated with various processes, including pyruvate metabolism, unfolded protein response, oxidative stress response, autophagy and cell death. Our results suggest these proteins play a significant role in the B. cinerea pathogenic cycl

    Networks from gene expression time series: characterization of correlation patterns

    Full text link
    This paper describes characteristic features of networks reconstructed from gene expression time series data. Several null models are considered in order to discriminate between informations embedded in the network that are related to real data, and features that are due to the method used for network reconstruction (time correlation).Comment: 10 pages, 3 BMP figures, 1 Table. To appear in Int. J. Bif. Chaos, July 2007, Volume 17, Issue
    corecore