201 research outputs found

    Incremental vision-based topological SLAM

    No full text
    Published versio

    Computation of the optimal relative pose between overlapping grid maps through discrepancy minimization

    Get PDF
    Grid maps are a common environment representation in mobile robotics. Many Simultaneous Localization and Mapping (SLAM) solutions divide the global map into submaps, forming some kind of graph or tree to represent the structure of the environment, while the metric details are captured in the submaps. This work presents a novel algorithm that is able to compute a physically feasible relative pose between two overlapping grid maps. Our algorithm can be used for correspondence search (data association), but also for integrating negative information in a unified way. This paper proposes a discrepancy measure between two overlapping grid maps and its application in a quasi Newton optimization algorithm, with the hypothesis that minimizing such discrepancy could provide useful information for SLAM. Experimental evidence is provided showing the high potential of the algorithm

    Topological Mapping and Navigation in Real-World Environments

    Full text link
    We introduce the Hierarchical Hybrid Spatial Semantic Hierarchy (H2SSH), a hybrid topological-metric map representation. The H2SSH provides a more scalable representation of both small and large structures in the world than existing topological map representations, providing natural descriptions of a hallway lined with offices as well as a cluster of buildings on a college campus. By considering the affordances in the environment, we identify a division of space into three distinct classes: path segments afford travel between places at their ends, decision points present a choice amongst incident path segments, and destinations typically exist at the start and end of routes. Constructing an H2SSH map of the environment requires understanding both its local and global structure. We present a place detection and classification algorithm to create a semantic map representation that parses the free space in the local environment into a set of discrete areas representing features like corridors, intersections, and offices. Using these areas, we introduce a new probabilistic topological simultaneous localization and mapping algorithm based on lazy evaluation to estimate a probability distribution over possible topological maps of the global environment. After construction, an H2SSH map provides the necessary representations for navigation through large-scale environments. The local semantic map provides a high-fidelity metric map suitable for motion planning in dynamic environments, while the global topological map is a graph-like map that allows for route planning using simple graph search algorithms. For navigation, we have integrated the H2SSH with Model Predictive Equilibrium Point Control (MPEPC) to provide safe and efficient motion planning for our robotic wheelchair, Vulcan. However, navigation in human environments entails more than safety and efficiency, as human behavior is further influenced by complex cultural and social norms. We show how social norms for moving along corridors and through intersections can be learned by observing how pedestrians around the robot behave. We then integrate these learned norms with MPEPC to create a socially-aware navigation algorithm, SA-MPEPC. Through real-world experiments, we show how SA-MPEPC improves not only Vulcan’s adherence to social norms, but the adherence of pedestrians interacting with Vulcan as well.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144014/1/collinej_1.pd

    Efficiently learning metric and topological maps with autonomous service robots

    Get PDF
    Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topological maps model the structure of the environment using a graph. The contribution of this paper is an approach that learns a metric as well as a topological map based on laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robot solves the simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second step, it acquires semantic information about the environment using machine learning techniques. This semantic information allows the robot to distinguish between different types of places like, e. g., corridors or rooms. This enables the robot to construct annotated metric as well as topological maps of the environment. All techniques have been implemented and thoroughly tested using real mobile robot in a variety of environments

    Map Building and Monte Carlo Localization Using Global Appearance of Omnidirectional Images

    Get PDF
    In this paper we deal with the problem of map building and localization of a mobile robot in an environment using the information provided by an omnidirectional vision sensor that is mounted on the robot. Our main objective consists of studying the feasibility of the techniques based in the global appearance of a set of omnidirectional images captured by this vision sensor to solve this problem. First, we study how to describe globally the visual information so that it represents correctly locations and the geometrical relationships between these locations. Then, we integrate this information using an approach based on a spring-mass-damper model, to create a topological map of the environment. Once the map is built, we propose the use of a Monte Carlo localization approach to estimate the most probable pose of the vision system and its trajectory within the map. We perform a comparison in terms of computational cost and error in localization. The experimental results we present have been obtained with real indoor omnidirectional images

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Exploring Topological Environments

    Get PDF
    Simultaneous localization and mapping (SLAM) addresses the task of incrementally building a map of the environment with a robot while simultaneously localizing the robot relative to that map. SLAM is generally regarded as one of the most important problems in the pursuit of building truly autonomous mobile robots. This thesis considers the SLAM problem within a topological framework, in which the world and its representation are modelled as a graph. A topological framework provides a useful model within which to explore fundamental limits to exploration and mapping. Given a topological world, it is not, in general, possible to map the world deterministically without resorting to some type of marking aids. Early work demonstrated that a single movable marker was sufficient but is this necessary? This thesis shows that deterministic mapping is possible if both explicit place and back-link information exist in one vertex. Such 'directional lighthouse' information can be established in a number of ways including through the addition of a simple directional immovable marker to the environment. This thesis also explores non-deterministic approaches that map the world with less marking information. The algorithms are evaluated through performance analysis and experimental validation. Furthermore, the basic sensing and locomotion assumptions that underlie these algorithms are evaluated using a differential drive robot and an autonomous visual sensor
    • 

    corecore