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Abstract: Grid maps are a common environment representation in mobile robotics. Many Simultaneous 
Localization and Mapping (SLAM) solutions divide the global map into submaps, forming some kind of 
graph or tree to represent the structure of the environment, while the metric details are captured in the 
submaps. This work presents a novel algorithm that is able to compute a physically feasible relative pose 
between two overlapping grid maps. Our algorithm can be used for correspondence search (data 
association), but also for integrating negative information in a unified way. This paper proposes a 
discrepancy measure between two overlapping grid maps and its application in a quasi Newton 
optimization algorithm, with the hypothesis that minimizing such discrepancy could provide useful 
information for SLAM. Experimental evidence is provided showing the high potential of the algorithm. 

Keywords: Mobile robots, Robot navigation, Optimization, Robotic mapping. 

 

1. INTRODUCTION 

Robotic mapping is a key component of autonomous mobile 
robots if true autonomy is desired. Many researchers have 
focused on the Simultaneous Localization and Mapping 
(SLAM) problem over the last couple of decades.  

The probabilistic approach has dominated the solution to the 
SLAM problem (Thrun, 2002). The Extended Kalman Filter 
has probably been the most extended approach to the SLAM 
problem but MonteCarlo particle filter based algorithms 
Expectancy Maximization, hybrid approaches and even 
topological SLAM are also other successful solutions to the 
problem.  

From the metric environment representation point of view 
two different paradigms can be found: occupancy grid 
mapping (Elfes 1987, Moravec and Elfes 1985) and feature 
based approaches. An occupancy grid divide the environment 
in cells, and computes the likelihood of occupancy of each 
individual cell, while feature based approaches represent the 
map as a set of individual entities with a geometric 
parameterization (points, segments). 

Occupancy grids have some interesting advantages: they are 
very easily computed, no prior structure is assumed so all 
obstacles can be easily represented being very useful for path 
planning and control tasks, and are widely used in the robotic 
community. On the other hand, occupancy grid maps do not 
maintain any knowledge about the full SLAM posterior, so 
they are not a complete solution by themselves, being 
referred as a “mapping with known poses” solution. Many 
full SLAM solutions overcome this limitation with the use 
some other kind of representing the full SLAM posterior over 

the robot path given the measurements with other techniques 
as particle filters (Hahnel et al 2003) while using grid maps 
as the environment representation associated to each particle. 

As the environment size increases, the computational burden 
of monolithic approaches can become a problem. The most 
common approach to large scale SLAM is the divide and 
conquer strategy in which the map is divided into smaller 
submaps, so the geometric information is efficiently handled 
locally inside the submaps, while the environment overall 
structure is captured in a graph or tree like representation. 
The Atlas framework by Bosse et al. (2004) is a good 
example of this strategy. Moreover, several recent algorithms 
as Olson et al. (2006) GraphSLAM and Grisetti et al. (2007) 
TORO have proved an even improved performance 
optimizing such graphs, while the problem of data association 
often remains an open issue. 

This paper deals with the problem of correspondence search 
between two different grid maps of limited size in which an 
initial estimation of the position between them is provided. 
We propose a novel minimization technique that computes a 
pose estimation that minimizes the discrepancy or negative 
overlap between such grid maps. Our algorithm differs in 
other existing approaches in the sense that it not only 
computes matching correspondences in which a positive 
association is found between the grid maps, but it is also able 
to deal with non matching correspondences, leading to a 
solution that provides a feasible physical position between 
the maps. Up to our knowledge this is the first algorithm that 
can handle positive data association and physically 
impossible configurations between grid maps in a unified 
way, which can be extremely useful for many of the above 
cited SLAM algorithms. 
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Section 2 presents the basics and required notation of robotic 
mapping with grid maps. Section 3 describes the cost 
function defined for establishing the discrepancy between 
overlapping grid maps, while Section 4 applies such cost 
function in a quasi Newton minimization algorithm. Section 
5 provides experimental evidence that our algorithm provides 
a feasible and robust solution for handling overlapping grid 
maps, not only finding correspondences but also finding 
feasible physical configurations without correspondences. 
Our conclusions are summarized in Section 6. 

 

2. ROBOTIC MAPPING 

2.1 Grid maps 

In grid mapping, the map M is a rectangular regular grid 
divided into small size square cells that accumulates all the 
sensor information tz and robot poses tx  up to time step t , 
representing in probabilistic terms the posterior 

( | , )t tp M x z , where the conditioning is known as mapping 
with known poses, i.e. the poses of the robot along its 
trajectory are assumed to be correct (typically being 
estimated by other means). To handle the high dimensionality 
of the problem, each cell occupancy mc is supposed to be 
independent, so the posterior can be factorized as: 

 ( | , ) ( | , )t t t tp M x z p m x z= ∏ c
c

 (1) 

Where ( ) 2Ti j ∈c I represents the natural indices of a 

cell, with ,i j taking all possible values in the rectangular 

grid so that m M∈c . The resolution of the grid is defined 

by the size of each square cell, which we will note as δ . 

Without loss of generality, the grid map is defined to be 
attached to a reference frame with axis X and Y aligned with 
,i j indices respectively, and the origin displaced by an offset 

( ) 2T

x y∆ ∆ ∈∆ R . Thus, a scale function λ  that 

converts map indices into real positions (relative to the map 

frame) ( ) 2Tx y= ∈v R can be defined as: 

 ( )λ δ= = × −v c c ∆  (2) 

Conversely, the inverse relation can be defined (the brackets 
represent the floor() operation), to computes map indices 
corresponding to the cell in which a point real coordinates 
fall in: 

 1( )λ
δ

− + = =   

∆ vc v  (3) 

 

2.2 Relative transformations 

The relative position and orientation (pose) of a reference 
frame B  respect another frame A  can be defined by a 
vector ( , , )T

AB x y θ=r with translation ,x y and rotation θ . 

Given a point Bv expressed in reference B , the computation 

of the coordinates of that point in frame A is done by: 

 
cos sin

T( )
sin cosA AB B B

x
y

θ θ
θ θ

−   
= × = +   

   
v r v v  (4) 

Where T( )ABr is a compact representation of the change of 
base operation. 

Note that in the SLAM graph and tree approaches cited in the 
introduction, the nodes are commonly defined by the 
reference frames of the submaps, and edges are consequently 
roto-translations as established above. Even if the relative 
pose of two nodes is not defined in the graph by the 
corresponding edge, it can be easily computed by 
compounding relative transformations along the shortest path 
connecting those nodes. 

3. DISCREPANCY BETWEEN GRIDS 

The key idea of the work presented in this paper is that an 
objective measure of the difference or discrepancy between 
two (totally or partially) overlapping grid maps can be easily 
defined and computed, and subsequently used in a 
optimization algorithm in order to minimize such 
discrepancy. The discrepancy is seen as an error measure, a 
non negative number.  

Three scenarios are possible. In the simplest case, there are 
no cells labelled as obstacles in a map that fall into non 
occupied cells (free space) in the other one. In such a case the 
discrepancy measure should be equal to zero, it is already at 
its minimum and there is nothing to minimize. In the more 
general case shown in Fig. 1, obstacle cells of a map will fall 
in free space of the other one, in a clear discrepancy under the 
common assumption of a static world. In the second possible 
scenario, there exists a relatively close to the initial position 
correspondence between the maps in which the discrepancy 
should be theoretically zero, and that should be found in the 
minimization procedure. The third scenario is encountered 
when there is discrepancy between two maps, but there exists 
no correspondence between them. As the relative pose is not 
physically possible, the minimization should ideally lead to 
the closest configuration with a more feasible discrepancy. 

3.1 Discrepancy of overlapping grid maps 

Let one map be denoted as MA, in which the probability of a 
cell defined by its indices cA in that map, has probability of 
occupancy ( )

AAp mc  in which the conditioning has been 

omitted for clarity. Similarly, ( )
BBp mc defines the 

probability of occupancy of cell with indices cB of map MB.  



 

 

     

 

 

Fig. 1. Two overlapping grid maps. Occupied cells are shown 
in dark, free space in white. Blue are non explored 
(unknown) areas. Map B is showed translucent, so the 
discrepancy (dark cells of B falling in free space of A and 
vice versa) becomes visible. 

For each cell of a map it is necessary to compute the 
overlapping cell of the other one. For this purpose it is very 
convenient to define a function f that maps the cell indices 
of map MB to overlapping cell indices of map MA. Using (2), 
(3) and (4), such function can be defined as: 

 ( )( )1( ) T( )B A AB B Bf λ λ−= ×c r c  (5) 

With the use of (5), the error e or discrepancy between maps 
MA and MB with relative position defined by TAB could be 
computed as: 

( )
    
  ( )

( , , ) ( ) ( )
B B

B B
B A

A B AB A f B
M

f M

e M M p m p m
∈

∧ ∈

= −∑ c c
c

c

r  (6) 
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Fig. 2.  Discrepancy between two grid maps of the same 
corridor with different relative positions 

When defining a cost function for minimization purposes, it 
is interesting to have a look at it first, in order to check its 
suitability. A grid map of 12 m width with a cell resolution of 
0.025 m of a 6 meters wide straight corridor is used as the 
base map MA and exactly a copy of it is used as MB (Fig. 1). 

The error is computed with (6) for many different 
displacements x,y ∈(-12, 12) with θ equal to zero and is 
plotted in the Fig 2. 

Figure 2 shows a deep flat valley with zero discrepancy for  
y=0. This setting obviously represents the perfect alignment 
of the X axis of both maps, and a perfect correspondence. 
The flat areas for values y∉[-6 6]correspond to translations 
along the Y axis larger than the corridor width, and so are 
feasible physical configurations with zero discrepancy. So 
far, the behaviour of the error function is adequate. The 
problem is that many common optimization algorithms 
assume that the function can be locally approximated by a 
quadratic function. This is absolutely false for our function, 
resembling two triangular prisms with sharp edges. The 
problem of such edges is that a relative pose between the 
maps can be very close to the minimum and desired solution, 
as close to the edges of the prisms, for example for values 
x=0,y=1. Moving just 1 meter along Y leads to zero 
discrepancy (a close and desired solution). Instead, any 
gradient based minimization approach will evolve along the 
slope, displacing y more than 12 meters. It seems reasonable 
trying to find a smoother error function.  

3.2 Blurring the submaps 

The first idea could be to compute the full error function 
values, then filter or smooth it. It has to be taken into account 
that the evaluation of (6) is a costly operation, because it has 
to handle thousands of cells. If an excessive number of 
evaluations were required, the computational burden would 
render our approach useless. Minimization algorithms do not 
require the evaluation of the full search space, but only at 
certain (hopefully few) points. So instead of trying to modify 
the error function, they are applied to a modified map. From 
the original grid map, a new one is computed applying a 
standard blurring algorithm that introduces a gradient of grey 
from black (occupied) to white (free) cells. This is a quite fast 
operation that has to be computed only once for each grid 
map. 

           

Fig. 3.  Original (left) and blurred (right) grid maps. 

Applying exactly the same settings as in Fig 2, the error 
function is computed and plotted in Fig. 4. It can be easily 
appreciated that it has been gently smoothed, thus being more 
suitable for optimization purposes.  
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Fig. 4.  Discrepancy between two grid maps of the same 
corridor with different relative positions, using the blurred 
maps. 

Please recall that although the original grid maps are shown 
in the remaining figures, all the evaluation of discrepancies is 
carried out using the computed blurred versions. 

3.3 The cost function 

There is still a last problem with the discrepancy function as 
defined so far. The flat areas are a problem for most 
optimization algorithms. Especially in our case, a large slope 
of the discrepancy suddenly ends in a flat area, which can 
easily produce an overshot in the solution search, finding a 
local (and most importantly, global) minimum very far away 
from the initial relative pose. 

The problem is that the distance to the initial pose 0
ABr has not 

been taken into account. Put verbally, a solution relatively 
close to the initial position is desired. This is important if the 
overall SLAM framework is considered, because the initial 
relative pose will typically be the best currently available 
estimation (the minimum energy one), and consequently 
solutions closer to the initial pose will have a larger 
likelihood. 

Thus, a distance measure between two reference frames has 
to be established. Note that Euclidean distance between the 
frames origins is not an option, as it doesn’t take into account 
the rotation. We propose as in to use a weighted distance that 
conveniently scales with a factor L the effect of rotations 
compared with translations: 

 2 2 2 2
AB x y L θ+ +r  (7) 

Our final cost function h  used in the minimization described 
in next section is defined as a weighted sum of (6) and (7): 

 
0

0

( , , , )

                    ( , , )
A B AB AB

A B AB AB AB

h M M

e M M K

=

= + −

r r
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Fig. 5.  Cost function h evaluation between two grid maps of 
the same corridor with different relative positions, using 
blurred maps and taking into account the distance to the 
initial pose. 

It can be seen that the second term of (8) produces a 
quadratic that makes the cost higher as the pose gets further 
from the origin. The final result is a smooth cost function that 
can be locally approximated by quadratics and with clear 
minima that an adequate minimization algorithm should find. 

4. DISCREPANCY MINIMIZATION 

A quasi Newton minimization algorithm is employed, so the 
explicit computation of the Hessian matrix is not required. 
The numeric computation of the Hessian matrix requires 
many (8) evaluations and, as explained above, this is 
undesirable as such evaluations are relatively costly. Put 
mathematically, the problem can be defined as: 

 * 0arg min ( , , , )
AB

AB A B AB ABh M M=
r

r r r  (9) 

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm 
(Nocedal, 2006) is well known to perform well in many 
situations. We have employed the open source 
implementation of Bochkanov, (2010). At each iteration the 
value and the gradient of the function have to be computed. 
The four points formula is used as shown in (10) for x (y and 
θ are analogous). MA, MB, y, θ, 0

ABr  parameters are omitted 

for clarity, and ( 0 0)Tε=ε : 

 
(

)

( ) 1 ( 2 ) 8 ( )
12

                        +8 ( ) ( 2 )

AB
AB AB

AB AB

h h h
x

h h
ε

∂
= − − −

∂
+ − +

r r ε r ε

r ε r ε
 (10) 

As proved in next section, such cost function and 
minimization algorithm provides excellent results. Further 
analysis of the discrepancy defined in (6), shows that useful 
information can be extracted from the minimum found. 
Consider the flat valley of Fig. 4. Displacements along the X 



 

 

     

 

axis provide no change of discrepancy, but displacements 
along the Y axis quickly increase the error. Thus, the 
curvature of the discrepancy function is a measure of the 
information provided by the new relative pose computed by 
the minimization algorithm: 

 ( ) 1*cov( ) ( )AB e −
∝r H  (11) 

When the algorithm arrives at a minimum, the Hessian matrix 
H  is computed numerically at that point. Note that this 
evaluation is done only once, at the end of the minimization. 
Next equation shows the computation of one diagonal and 
one off diagonal component, in which MA,MB parameters 
have been omitted for clarity 

( 0 0) , (0 0)T T
x yε ε= =ε ε . 

(

)

(

)

2

2 2

2

2

( ) 1 ( 2 ) 16 ( )
12

              30 ( ) 16 ( ) ( 2 )

( ) 1 ( ) ( )
4

                      ( ) ( )

AB
AB x AB x

AB AB x AB x

AB
AB x y AB x y

AB x y AB x y

e e e
x

e e e

e e e
x y

e e

ε

ε

∂
= − − + −

∂
− + + − +

∂
= − − − − +

∂ ∂

− + − + + +

r r ε r ε

r r ε r ε

r r ε ε r ε ε

r ε ε r ε ε

(12) 

5. EXPERIMENTS 

The first experiment analyzes the ability of the algorithm to 
find a positive correspondence solution. A grid map 12 
meters square, with a resolution of 0.025 m is used. It 
corresponds to an environment with a straight corridor 6 
meters wide. The other map is a copy of it, but it is initially 
located in a random pose in the vicinity of the origin, as 
shown in Fig. 6. The minimization procedure should get a 
solution in which the X axes of the maps are aligned, but not 
necessarily aligning the Y axes. This is an obvious 
consequence of the environment symmetry. Basically any 
matching algorithm should provide corrections only in the 
transversal and angular directions, as no information is 
available along the corridor axis, i.e. the discrepancy is the 
same for all configurations with the X axes aligned, 
irrespective of their longitudinal relative position. Our 
discrepancy definition (6) accounts for this symmetry as 
shown in Fig. 6, while the cost function (8) takes into account 
the relative distance, thus finding the closest pose along the 
corridor axis. Furthermore, this symmetry is captured by the 
solution covariance, also represented in Fig. 6. 

This setting is repeated 100 times, with random initial poses 
ranging in different intervals, as shown in Table 1. The 
percentage of solutions that fall into an interval is 
represented. Note that such solution interval is defined only 
in terms of y and θ, because of the symmetry of the corridor 
along X. 

 

Fig. 6.  Initial setting (left) and final solution (right) finding a 
positive correspondence with the maps correctly aligned. The 
covariance ellipsoid (just XY components) is shown in cyan. 
It can be easily seen that a very low covariance is obtained 
for the Y direction, while the information along the X axis 
(corridor axis) is extremely low (zero in the perfect case), and 
so a very large uncertainty along X is obtained. 

Table 1.  Accuracy, matching case 

 Accuracy (m,rad) 

Noise (m,rad) |y|<0.025,|θ|<0.045 |y|<0.05,|θ|<0.09
x,y,θ∈±0.5 99% 1% 

x,y∈±1.5, 
θ∈±0.38 98% 0% 

The average number of L-BFGS iterations is 35, with an 
average computation time for the whole minimization 
procedure of 6 seconds (Core 2 Duo @ 2 Ghz laptop).  

 

Fig. 7.  Initial setting (left) and final solution (right) finding a 
relative pose corresponding to a physically feasible 
configuration, although with a slightly poorer alignment and 
a displacement along X axis larger than expected 

It is important to highlight that the few minimizations leading 
to solutions out of the given intervals, does not necessarily 
mean an incorrect or unfeasible relative pose between the 
grid maps. Fig.7 shows one of those cases. 

One of the contributions of this work is that the presented 
algorithm is able to handle any overlap between grid maps, 
even if a correspondence does not exist between them. 
Consider the case of Fig. 8, in which the same grid maps as 
above have been used, but with a larger initial relative 
position. In this case, it is more likely that the real 
configuration of the environment is one with two parallel 
corridors, as shown in Fig. 8 (right). Table 2 summarizes the 
average results for 100 runs. 



 

 

     

 

 

Fig. 8.  Initial setting (left) and final solution (right) finding 
the closest relative pose corresponding to a physically 
feasible configuration in which the discrepancy in the overlap 
is minimized.  

Table 2.  Accuracy, parallel corridors case 

 Accuracy (m,rad) 

Noise 
(m,rad) 

|y|<0.025 
| θ |<0.045 

|y|<0.05 
| θ |<0.09 

|y|<0.2
| θ |<0.16 

x∈±1.5 
y∈5±1.5 
θ∈±0.38 

62% 73% 93% 

In this case our algorithm adequately manages the symmetry 
of the corridor, as can be seen in the covariance ellipsoid. The 
covariance in the Y direction is larger than in Fig. 6 because 
the configuration has less information; it is less constrained 
than that shown in Fig. 8. 

The average number of iterations is 23, with an average 
processing time of 3.6 seconds. These results are coherent. 
As the maps are repelled while minimizing the discrepancy, 
less information is available than in the matching case where 
the overlap is much larger, so the alignment of corridors is 
more difficult. Despite the lower accuracy the robustness of 
the method is as good as in the matching case. Consider that 
not being able to achieve an expected alignment does not 
mean that the obtained relative position is wrong. Fig. 9 
shows an example. Although the final solution does not 
present a perfect parallelism, it is a physically feasible 
configuration, and so it is more correct than the initial one. 

 

Fig. 9.  Initial setting (left) and final solution (right) finding a 
relative pose corresponding to a physically feasible 
configuration, although with a slightly poorer alignment than 
expected 

6. CONCLUSIONS 

This paper has presented a novel minimization algorithm that 
can compute a physically feasible relative pose between two 
overlapping grid maps given an initial estimation, by 
minimizing the discrepancy between them. Experimental 
results have proved that the approach is able to robustly and 
accurately find correspondences, but also (and this is an 
important contribution) to handle negative information under 
a unified approach. In either case the resulting pose and 
covariance are of extreme interest for SLAM algorithms. 
Although the experiments presented are based on simulations 
for simplicity and explanatory reasons, our preliminary tests 
show a similar performance for real data. Further work 
includes a deeper study of the typical discrepancy values, 
number of local minima and the division of the configuration 
space in areas corresponding to each minimum, in order to 
identify and model the full solution space.  
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