1,378 research outputs found

    Remanufacturing of precision metal components using additive manufacturing technology

    Get PDF
    Critical metallic components such as jet engine turbine blades and casting die/mold may be damaged after servicing for a period at harsh working environments such as elevated temperature and pressure, impact with foreign objects, wear, corrosion, and fatigue. Additive manufacturing has a promising application for the refurbishment of such high-costly parts by depositing materials at the damaged zone to restore the nominal geometry. However, several issues such as pre-processing of worn parts to assure the repairability, reconstructing the repair volume to generate a repair tool path for material deposition, and inspection of repaired parts are challenging. The current research aims to address crucial issues associated with component repair based on three research topics. The first topic is focusing on the development of pre-repair processing strategies which includes pre-repair machining to guarantee the damaged parts are ready for material deposition and pre-repair heat-treatment to restore the nominal mechanical properties. For this purpose, some damaged parts with varied defects were processed based on the proposed strategies. The second topic presents algorithms for obtaining the repair volume on damaged parts by comparing the damaged 3D models with the nominal models. Titanium compressor blades and die/mold were used as case studies to illustrate the damage detection and reconstructing algorithms. The third topic is the evaluation of repaired components through material inspection and mechanical testing to make sure the repair is successful. The current research contributes to metallic component remanufacturing by providing knowledge to solve key issues coupled with repair. Moreover, the research results could benefit a wide range of industries, such as aerospace, automotive, biomedical, and die casting --Abstract, page iv

    A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, and Material Testing for Component Remanufacturing

    Get PDF
    Metallic components can gain defects such as dents, cracks, wear, heat checks, deformation, etc., that need to be repaired before reinserting into service for extending the lifespan of these parts. In this study, a hybrid process was developed to integrate reverse engineering, pre-repair processing, additive manufacturing, and material testing for the purpose of part remanufacturing. Worn components with varied defects were scanned using a 3D scanner to recreate the three-dimensional models. Pre-repair processing methods which include pre-repair machining and heat-treatment were introduced. Strategies for pre-repair machining of defects including surface impact damage, surface superficial damage and cracking were presented. Pre-repair heat-treatment procedure for H13 tool steel which was widely used in die/mold application was introduced. Repair volume reconstruction methodology was developed to regain the missing geometry on worn parts. The repair volume provides a geometry that should be restored in the additive manufacturing process. A damaged component was repaired using the directed energy deposition process to rebuild the worn geometry. The repaired part was inspected in microstructure and mechanical aspects to evaluate the repair. The hybrid process solved key issues associated with repair, providing a solution for automated metallic component remanufacturing

    Liquid rocket metal tanks and tank components

    Get PDF
    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed

    Frontiers in Ultra-Precision Machining

    Get PDF
    Ultra-precision machining is a multi-disciplinary research area that is an important branch of manufacturing technology. It targets achieving ultra-precision form or surface roughness accuracy, forming the backbone and support of today’s innovative technology industries in aerospace, semiconductors, optics, telecommunications, energy, etc. The increasing demand for components with ultra-precision accuracy has stimulated the development of ultra-precision machining technology in recent decades. Accordingly, this Special Issue includes reviews and regular research papers on the frontiers of ultra-precision machining and will serve as a platform for the communication of the latest development and innovations of ultra-precision machining technologies

    Micro/Nano Manufacturing

    Get PDF
    Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    Microscale Metal Forming: Mesoscopic Size Effect, Extrusion and Molding

    Get PDF
    The continuing trend of metallic device and product miniaturization has motivated studies on microscale metal forming technologies. A better understanding of materials’ mechanical response and deformation behavior is of importance for the design and operation of micro metal forming processes. In this dissertation, uniaxial compression testing was conducted on Al ring and pillar specimens with characteristic dimensions at meso to micro scales. The experimental data reveal inadequacies of the existing surface layer model and provides a baseline for delineating deformation mechanisms in micro metal forming operations. Microscale reverse extrusion experiment was carried out on Cu and Al rod specimens with varying average grain sizes. Texture assessment on extruded Cu parts showed the texture components formed at tens of microns scale were consistent with those observed in macro scale extrusion. The grain size effect on both the mechanical response and deformation inhomogeneity was demonstrated and was further elucidated by a detailed comparison between the experimental results and the output of crystal plasticity finite element simulations. Another promising micro metal forming operation, namely microscale compression molding, was conducted on single crystal Al, using a series of rectangular double-punch sets with varying punch width and spacing in between. The characteristic molding pressure was observed to exhibit a significant dependence on both the spacing itself and the ratio of the spacing to the punch width. The molded features were characterized and the phenomenon of incomplete filling was observed and discussed. All these experimental results furnish new and basic knowledge for meso/micro scale metal forming technologies, as well as supplying data against which small scale plasticity theories/models can be tested

    Metal micro drilling combining high power femtosecond laser and trepanning head

    Get PDF
    Trepanning heads are well known to be efficient in high aspect drilling and to provide a precise control of the hole geometry. Secondly, femtosecond lasers enable to minimize the heat effects and the recast layer on sidewalls but are typically used on thin sheet. The combination of both present a high potential for industrial applications such as injector or cooling holes where the bore sidewall topology has a major influence on the dynamics of the gas flow. In this paper we present results using this combination. The effect of pulse energy, repetition rate and revolution speed of the head on both geometry and roughness are discussed. The quality of the sidewall is checked by roughness measurement and by metallographic analysis (SEM; chemical etching, micro hardness)
    • …
    corecore