9 research outputs found

    High-performance NC for high-speed machining by means of polynomial trajectories

    Get PDF
    International audienceThis paper summarises works carried out for defining tool trajectory formats well adapted to High Speed Machining (HSM). Advantages in using native polynomial formats, calculated directly from the CAD model, are highlighted. In particular, polynomial surface formats are presented as a generic format for tool trajectory. Illustrations show that surface formats represent a good compromise between smoothness machining time, and surface quality

    Modélisation et simulation des efforts de coupe en fraisage 2.5 axes

    Get PDF
    L'opération de fraisage est une opération d'usinage fondamentale dans l'industrie pour la production des pièces mécaniques et des moules. La productivité et la précision géométrique de la pièce fabriquée diminuent par les vibrations dues à la discontinuité du contact outil pièce et à la variation de la passe radiale provoquée par le choix de la stratégie d'usinage. L'objectif de cette communication est de proposer un modèle d'efforts de coupe en fraisage 2.5 axes qui tient compte de la variation de la passe radiale. La simulation d'usinage est appliquée sur une poche complexe avec plusieurs stratégies d'usinage afin de déterminer les variations des efforts de coupe et leurs répartitions en fonction des conditions d'usinage

    Tool path deformation in 5-axis flank milling using envelope surface

    No full text
    International audienc

    Time-Optimal Trajectory Generation for 5-Axis On-the-Fly Laser Drilling

    Get PDF
    On-the-fly laser drilling provides a highly productive method for producing hole clusters (pre-defined groups of holes to be laser drilled) on freeform surfaced parts, such as gas turbine combustion chambers. Although the process is capable of achieving high throughputs, current machine tool controllers are not equipped with appropriate trajectory functions that can take full advantage of the achievable laser drilling speeds. While the problem of contour following has received previous attention in time-optimal trajectory generation literature, on-the-fly laser drilling presents different technological requirements, needing a different kind of trajectory optimization solution, which has not been studied prior to this thesis. The duration between consecutive hole locations, which corresponds to the laser pulsing period, has to be kept constant, ideally throughout the part program. However, the toolpath between the holes is not fixed and can be optimized to enable the shortest possible segment duration. To preserve the dynamic beam positioning accuracy and avoid inducing excessive vibrations on the laser optics, the axis velocity, acceleration, and jerk profiles need to be limited. Furthermore, to ensure that hole elongation does not violate the given part tolerances, the orthogonal component of part velocity relative to the laser beam needs to be capped. All of these requirements have been fulfilled in the trajectory optimization algorithm developed in this thesis. The hole locations are provided as pre-programmed sequences by the Computer Aided Design/Manufacturing software (CAD/CAM). A time-optimized trajectory for each sequence is planned through a series of time-scaling and unconstrained optimization operations, which guarantees a feasible solution. The initial guess for this algorithm is obtained by minimizing the integral square of the fourth time derivative (i.e. ‘snap’). The optimized trajectories for each cluster are then joined together or looped onto themselves (for repeated laser shots) using a time-optimized looping/stitching (optimized/smooth toolpath to repeat/loop a cluster or connect/stitch between consecutive clusters) algorithm. This algorithm also minimizes the integral square of jerk in the faster axes. The effectiveness of the overall solution has been demonstrated in simulations and preliminary experimental results for on-the-fly laser drilling of a hole pattern for a gas turbine combustion chamber panel. It is shown that the developed algorithm improves the cycle time for a single pass by at least 6% (from kinematic analysis of the motion duration), and more importantly reduces the integral square of jerk by 56%, which would enable the process speed to be pushed up further

    Surface Design for Flank Milling

    Get PDF
    In this dissertation, a numerical method to design a curved surface for accurately flank milling with a general tool of revolution is presented. Instead of using the ruled surface as the design surface, the flank millable surface can better match the machined surface generated by flank milling techniques, and provide an effective tool to the designer to control the properties and the specifications of the design surface. A method using the least squares surface fitting to design the flank millable surface is first discussed. Grazing points on the envelope of the moving tool modeled by the grazing surface are used as the sample points and a NURBS surface is used to approximate the given grazing surface. The deviation between the grazing surface and the NURBS surface can be controlled by increasing the number of the control points. The computation process for this method is costly in time and effort. In engineering design, there is a need for fast and effortless methods to simplify the flank millable surface design procedure. A technique to approximate the grazing curve with NURBS at each tool position is developed. Based on the characteristics of the grazing surface and the geometries of the cutting tool, these NURBS representations at a few different tool positions, namely at the start, interior and end, are lofted to generate a NURBS surface. This NURBS surface represents the grazing surface and is treated as the design surface. Simulation results show that this design surface can accurately match the machined surface. The accuracy of the surface can be controlled by adding control points to the control net of the NURBS surface. A machining test on a 5-axis machine was done to verify the proposed flank millable surface design method. The machined surface was checked on a CMM and the obtained results were compared with the designed flank millable surface. The comparison results show that the machined surface closely matches the design surface. The proposed flank millable surface design method can be accurately used in the surface design

    Automated Process Planning for Five-Axis Point Milling of Sculptured Surfaces

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Predicción de fuerzas de corte y topografía superficial para la mejora de fresado de rotores de álabes integrados.

    Get PDF
    179 p.Los rotores de álabes integrados consisten en discos rotativos con álabes fabricados en una sola pieza, los cuales están siendo cada vez más utilizados en los motores aeronáuticos debido a sus ventajas en cuanto a fiabilidad, reducción del peso, eficiencia y reducción de ruido. Estos componentes plantean uno de los problemas más difíciles desde el punto de vista del mecanizador, ya que se combinan tres factores críticos: 1) el fresado de superficies complejas en 5 ejes continuos, 2) materiales de baja maquinabilidad que generan grandes fuerzas de corte y altas temperaturas durante el mecanizado y, por último, 3) presencia de paredes delgadas y estructuras poco rígidas que son propensas a deformarse o vibrar durante el mecanizado.En este trabajo se define una metodología fiable de diseño y verificación de operaciones de fresado en cinco ejes de IBR-s. En una primera fase experimental de fabricación de geometrías de impeller y blisk, se han estudiado y analizado los diferentes tipos de operaciones de desbaste y acabado, así como lasherramientas de geometría tradicional y las de nuevo diseño. En concreto, existe gran interés enintroducir las nuevas geometrías de fresa de barril en el sector aeronáutico en operaciones desemiacabado y acabado de álabes. El elevado radio de curvatura del contorno permite reducir el númerode pasadas, y por lo tanto el tiempo de mecanizado, sin aumentar el tamaño de la herramienta.Para completar la metodología propuesta se han desarrollado herramientas predictivas de la topografía yrugosidad superficial de la pieza, y de las fuerzas de corte del proceso. Por un lado, se ha validado unmodelo de predicción basado en la substracción de sólidos, para operaciones de fresado periférico confresa cilíndrica considerando la flexión estática de la pared. Por otro lado, se han desarrollado dosmodelos enfocados a las operaciones de cinco ejes con fresas de barril. El primero de ellos permite simular la topografía y rugosidad teniendo en cuenta el runout de la herramienta y la orientación de la fresa. El segundo modelo propuesto predice las fuerzas de corte en mecanizados utilizando fresas de barril, para condiciones de corte estacionarias y en las que no se producen de flexión de pieza o herramienta
    corecore