
Time‐Optimal Trajectory Generation for 5‐
Axis On‐the‐Fly Laser Drilling 

 

by 

 

Ammar Alzaydi 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Mechanical Engineering 

 

 

Waterloo, Ontario, Canada, 2011 

 

 

©Ammar Alzaydi 2011 

 



 

ii 

AUTHOR'S DECLARATION 
 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 
including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

Ammar Ayad Alzaydi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

Abstract 
 

On-the-fly laser drilling provides a highly productive method for producing hole clusters 

(pre-defined groups of holes to be laser drilled) on freeform surfaced parts, such as gas 

turbine combustion chambers. Although the process is capable of achieving high throughputs, 

current machine tool controllers are not equipped with appropriate trajectory functions that 

can take full advantage of the achievable laser drilling speeds. While the problem of contour 

following has received previous attention in time-optimal trajectory generation literature, on-

the-fly laser drilling presents different technological requirements, needing a different kind of 

trajectory optimization solution, which has not been studied prior to this thesis. 

The duration between consecutive hole locations, which corresponds to the laser pulsing 

period, has to be kept constant, ideally throughout the part program. However, the toolpath 

between the holes is not fixed and can be optimized to enable the shortest possible segment 

duration. To preserve the dynamic beam positioning accuracy and avoid inducing excessive 

vibrations on the laser optics, the axis velocity, acceleration, and jerk profiles need to be 

limited. Furthermore, to ensure that hole elongation does not violate the given part tolerances, 

the orthogonal component of part velocity relative to the laser beam needs to be capped. All 

of these requirements have been fulfilled in the trajectory optimization algorithm developed 

in this thesis. 

The hole locations are provided as pre-programmed sequences by the Computer Aided 

Design/Manufacturing software (CAD/CAM). A time-optimized trajectory for each sequence 

is planned through a series of time-scaling and unconstrained optimization operations, which 

guarantees a feasible solution. The initial guess for this algorithm is obtained by minimizing 

the integral square of the fourth time derivative (i.e. ‘snap’). The optimized trajectories for 

each cluster are then joined together or looped onto themselves (for repeated laser shots) 

using a time-optimized looping/stitching (optimized/smooth toolpath to repeat/loop a cluster 

or connect/stitch between consecutive clusters) algorithm. This algorithm also minimizes the 

integral square of jerk in the faster axes. The effectiveness of the overall solution has been 

demonstrated in simulations and preliminary experimental results for on-the-fly laser drilling 

of a hole pattern for a gas turbine combustion chamber panel. It is shown that the developed 

algorithm improves the cycle time for a single pass by at least 6% (from kinematic analysis 
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of the motion duration), and more importantly reduces the integral square of jerk by 56%, 

which would enable the process speed to be pushed up further. 
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Chapter 1 

Introduction 

1.1 Laser Drilling Overview 

Manufacturers of turbine engines for aircraft propulsion and for power generation have 

benefited from the productivity of lasers for drilling small (0.3–1 mm diameter) cylindrical 

holes at 15-90º to the surface in cast, sheet metal and machined components. Their ability to 

drill holes at shallow angles to the surface at high rates per second has enabled new designs 

incorporating film-cooling holes for improved fuel efficiency, reduced noise, and lower 

Nitric Acid (NO), Nitrogen Dioxide (NO2) and CO emissions. 

Incremental improvements in laser process and control technologies have led to 

substantial increases in the number of cooling holes used in turbine engines. Fundamental to 

these improvements and increased use of laser drilled holes is an understanding of the 

relationship between process parameters and hole quality and drilling speed. 

Laser drilling is a successful manufacturing solution for many industries due to its 

advantages over conventional drilling techniques. Advantages include non-contact 

processing, low heat input into the material, flexibility to drill a wide range of materials, 

accuracy and consistency. Other benefits include drilling sub-micron holes and small holes 

with large aspect ratios and drilling at angles. 

The common techniques used in drilling are percussion hole drilling, on-the-fly drilling 

and trepanning. Percussion drilling is a process where multiple pulses are applied per hole to 

achieve the desired results. High speed on-the-fly drilling is a percussion type drilling 

process where the holes are drilled with a single shot (or multiple shots at multiple passes) 

per hole while machine axes are moving, if multiple shots are needed per hole, then multiple 

passes are considered during on-the-fly drilling. Trepanning is a process by cutting large 

holes or contouring shaped holes.  

Lasers can be focused to spot sizes as small as 10 – 20 microns. The high peak power 

coupled with short pulse widths, a perfect beam offers very good drilling capabilities in thin 

sheets, ceramics and silicon. The optics configuration is changed to achieve a different spot 



Chapter 1 Introduction    

2 

size, required for drilling various hole diameters. High power lasers are also currently used 

for rock drilling applications, drilling of flow filters and strainers, sub-micron drilling in 

flexography ceramic rolls, high speed drilling of guide vanes, hole drilling of silicon, drilling 

diamonds for removing imperfections and on-the-fly drilling of cooling holes. The high peak 

and energy/pulse are also used for drilling thick metals.  

This thesis focuses on laser drilling of cylindrical holes in turbine engine components, 

which generally occurs through melting and vaporization (also referred to as ‘ablation’) of 

the workpiece material through absorption of energy from a focused laser beam. 

Manufacturers are applying results of process modeling and experimental methods to 

better understand and control the laser drilling process. The result is higher quality and more 

productive processes that in turn lead to better end products such as more fuel efficient and 

cleaner aircraft and power generating turbine engines. 

 

1.2 Introduction 

On-the-fly laser drilling provides a highly productive method for producing hole clusters 

on freeform surfaced parts, such as gas turbine combustion chambers [1]. Although the 

process is capable of achieving high throughputs, current machine tool controllers are not 

equipped with the appropriate trajectory functions that can take full advantage of the 

achievable laser drilling speeds. This thesis presents a new and time-optimized trajectory 

generation algorithm which addresses this problem. 

Time-optimized trajectory generation has previously received attention in robotics and 

machine tool literature for contour following applications [2, 3, 4, 5]. There have also been 

successful works for following way-point data by modulating the time intervals in between 

the points [6]. However, the nature of on-the-fly laser drilling requires the motion duration 

between consecutive holes, which corresponds to the laser firing period, to be kept constant 

and minimized. In between the holes, the motion path is not fixed and can be modulated to 

achieve the maximum possible time reduction. This presents a new type of trajectory 

optimization problem, specific to on-the-fly laser drilling, which is studied for the first time 

in this thesis. 



Chapter 1 Introduction    

3 

 
Figure 1.1: Configuration of 5-Axis Laser Drilling Machine Tool 

 

Figure 1.1 shows a 5-axis laser drilling setup actuated by direct drive motors. Linear 

motors are used for motion in the x-, y-, and z-axes directions, and the trunion has a 

formation with two rotary axes (for rotary motions in the a- and c-axes). This machine was 

built for drilling gas turbine combustion chamber panel hole patterns like the one shown in 

Figure 1.2. Figure 1.2 also shows the numbered collections or groups of holes (clusters) that 

need to be drilled, in this specific example; there are 12 different clusters to be drilled by 

means of an optimized smooth trajectory. It is obvious that on-the-fly drilling of such a 

pattern requires full coordination of all 5-axes. The hole clusters are determined in the 

Computer Aided Design and Manufacturing software and each cluster needs to be drilled at a 

fixed laser pulsing frequency. After drilling a single cluster the connection between the 

clusters also has to be seamless with continuous smooth motion instead of decelerating and 

stopping at end of one cluster, repositioning at the beginning of the next cluster and 

accelerating at start of the drilling process for the consecutive clusters. The seamless cluster 

connection is performed in order to avoid unwanted vibrations on the machine and laser 

optics induced by aggressive and repetitive stopping and starting motions during the process. 

Hence, minimizing the duration of both cluster drilling and repositioning, while respecting 
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the physical limitations of the machine and process, is key to achieving high productivity in 

this operation. Currently, there exists no commercial interpolator or published technique 

prior to this study, which generates time-optimized trajectories for on-the-fly laser drilling. 

The remainder of this chapter presents a brief cycle time analysis related to on-the-fly 

laser drilling, followed by an outline of the remaining chapters in this thesis.  

 

1.3 On-the-Fly Laser Drilling Vs. Percussion Drilling 

During the process of drilling a turbine engine panel, on-the-fly laser drilling is highly 

desirable over percussion drilling. During on-the-fly drilling, the laser beam fires a single 

pulse at the hole location, removing a limited amount of material from the panel, and moves 

to fire at a different location (consecutive holes in a cluster). This allows the previous hole 

locations which already experiences a single laser shot to cool down before it experiences a 

second and third laser drilling shots. This produces cleaner drilled holes. In percussion 

drilling the laser optics are positioned at the hole location and all desired number of shots are 

fired to fully drill the hole before moving to drill the consecutive holes. This melting and 

vaporization (Ablation) of material is considered to be a less cleaner process than on-the-fly 

drilling, as material overheating might occur, deforming the hole shapes, and if a cool down 

 
Figure 1.2: Hole Clusters and Orientations for a Turbine Combustion Chamber Panel 
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time is allowed between percussion laser shots, this will end up increasing the overall drilling 

cycle time significantly.  

 

1.4 Feasibility of On-the-Fly Laser Drilling 

On-the-fly laser drilling may not always be the most productive solution, especially 

when precision drilling requires each hole to be drilled with multiple laser shots. In this case, 

percussion drilling (i.e., coming to a full stop at each hole and firing a sequence of shots) 

may be a more productive solution. In percussion drilling, the drilling frequency can also be 

increased to speed up the process. However, a drop in the laser power, due to higher pulsing 

frequency, can also be expected. In practice this is compensated by firing more shots per hole. 

The following analysis investigates the time efficiency of both methods and shows the 

condition for which on-the-fly drilling produces a shorter cycle time: 

N  : Number of holes in a single cluster

Flyn  : Number of shots per hole for on-the-fly drilling 

Pern  : Number of shots per hole for percussion drilling 

FlyT  : Average segment travel duration for on-the-fly drilling 

PerT  : Average duration for hole repositioning in percussion drilling 

LT  : Laser firing period in percussion drilling (while axes are at rest)

FlyD  : Total process duration when on-the-fly drilling is used 

PerD  : Total process duration when percussion drilling is used 

The total duration required for each operation can be expressed as:  

Fly Fly FlyD N n T=  (1.1)

Per Per Per LD N T N n T= +  (1.2)

For on-the-fly drilling to be more time efficient than percussion drilling, Eq. (1.3) must 

hold: 

Fly PerD D<  (1.3)

Substituting Eqs. (1.1) and (1.2) into (1.3): 

Fly Fly Per Per LN n T N T N n T< +  
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Resulting in: 

 Per Per
Fly L

Fly Fly

T nT T
n n

< +  (1.4)

Considering a simple example where PerFly nn =  (i.e., no power drop due to higher 

frequency laser pulsing) and LPerFly TTT ==  (i.e., the machine tool’s feed drives are fast 

enough to re-position the holes at the pulsing rate of the laser), it can be verified that: 

 Per
Fly

Fly T
n

T )11( +<  (1.5)

For a case involving 8 laser shots per hole, it can be verified that on-the-fly drilling will 

be at least 11% faster than percussion drilling. For 2 shots per hole, the speed increase 

becomes 33%. 

However, in practical cases, the laser frequency is faster than the hole repositioning speed 

of the feed drives, which is the main motivation behind developing a time-optimized 

trajectory generation algorithm for on-the-fly laser drilling. Such an algorithm should ideally 

satisfy the condition in Eq. (1.4), which makes on-the-fly laser drilling more time-efficient 

than the alternative method of percussion drilling. 

In addition to cycle time, the vibration delivered to the machine structure, particularly 

the laser optics, also plays a vital role in determining the productivity of a laser drilling 

operation. Excessive vibrations can cause the optics to lose alignment quickly, thereby 

requiring extensive downtime for realignment. Rather than stopping at each hole, as is the 

case in percussion drilling, the continuous motion employed by on-the-fly drilling can 

dramatically reduce the high frequency content in the acceleration profiles, by reducing the 

jerkiness of the motion commands. This in turn can lead to a significant improvement in the 

overall productivity of the process. Hence, kinematic cycle time alone cannot be used as the 

sole deciding factor in choosing between on-the-fly and percussion drilling. The impact of 

the process parameters and trajectory used in each operation, on the overall productivity, 

cost-effectiveness, and part quality also needs to be considered. 

1.5 Thesis Outline 

In the remainder of this thesis, Chapter 2 presents a literature review of the state-of-the-

art in machine tool trajectory planning. Chapter 3 provides an overview of the optimization 
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problem and proposed solution. Chapter 4 presents details of hole cluster trajectory 

optimization. Chapter 5 presents a method to seamlessly stitch pre-optimized cluster 

trajectories in minimal time and with minimal jerk. Implementation results validating the 

effectiveness of the proposed algorithm are presented in Chapter 6. The conclusions of this 

thesis and future research steps are described in Chapter 7. Appendices A through C are 

provided to explain in detail and prove some of the mathematical derivations used in this 

thesis. 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter presents a review of literature and industrial state-of-the-art in the area of 

trajectory planning for robots and in particular, machine tools. In Computer Numerical 

Control (CNC) of machine tools, the toolpath geometry and progression along the geometry 

(i.e. feedrate) are typically planned as separate tasks, similar to the schematic in Figure 2.1.  

Figure 2.1 shows that computationally intensive tasks such as the toolpath 

parameterization and integration of the segment arc-length are generally handled by the 

CAM system in an offline environment, whereas feed generation and trajectory interpolation 

are realized in the CNC controller in real-time. Feedrate generation and optimization are 

interfaced subtasks of the trajectory generation module in the CNC controller.  

Nevertheless, they both influence the smoothness of the final interpolated trajectory. 

Considering that a point along a path defined in Cartesian space can be represented in vector 

form: Tsysxs z(s)] )( )([)( == rr  as a function of the path parameter s , coming up with the 

definition of )(srr =  constitutes the path planning task, and determining the progression 

along the path as a function of time (i.e., )(tss = ) is the feedrate planning task. The velocity, 

acceleration, and jerk profiles can be determined by applying the chain rule as follows: 

ssss

ss

s

ssssss

sss

s

&&&&&&&&&&

&&&&&

&&

rrrr

rrr

rr

++=

+=

=

33

2  (2.1)

Above, dsds /rr = , 22 / dsdss rr = , 33 / dsdsss rr = , dtdss /=& , 22 / dtsds =&& , 

33 / dtsds =&&& . It is clear that in order to get a smooth trajectory with continuous profiles up to 

acceleration level, and bounded profiles up to jerk level, the corresponding geometric ( sr , ssr , 

sssr ) and time derivatives ( s& , s&& , s&&& ) also need to satisfy similar conditions for continuity and 

boundedness. This has motivated extensive research in trajectory generation methods in 
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terms of toolpath planning, interpolation, and feedrate generation, as will be explained in 

Sections 2.2 and 2.3. 

When allowable, modulating the feedrate to achieve the shortest possible cycle time 

contributes to the productivity of the manufacturing operation being carried out. However, 

except for very simplistic cases, where only velocity and acceleration limits are considered, 

coming up with a time-optimal feed profile which limits the axis jerk values is a non-trivial 

task. The work conducted in this area has also been summarized in Section 2.3.  

 
Figure 2.1: Overview of Trajectory Generation in Machine Tools (From Heng [7]) 
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Compared to traditional machining operations, where the toolpath has to follow a 

continuous contour, on-the-fly laser drilling poses significantly different technological 

requirements. To the best of the author’s knowledge, trajectory optimization for on-the-fly 

laser drilling has not received extensive investigation prior to this thesis. On-the-fly laser 

drilling requires the travel duration between consecutive hole locations, which corresponds to 

the laser firing period, to be kept constant and minimized throughout the part program. The 

toolpaths between the holes, however, are not restricted in shape and can be modulated to 

allow the maximum possible reduction in the laser firing period. Since the drilling is realized 

while the part is in relative motion with respect to the beam, hole elongation needs to be 

considered and capped in order to avoid violating the part tolerances. The hole elongation 

constraint is explained in detail in Chapter 3. In addition, the machine tool’s 5-axis 

kinematics and velocity, acceleration, and jerk limits also need to be taken into account. 

These issues have been considered and incorporated into the trajectory optimization 

algorithm developed in this thesis. A brief review of the existing work related to laser drilling 

is presented in Section 2.4. The chapter ends with a summary in Section 2.5. 
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Figure 2.2: Time and Frequency Domain Comparison of 3 Different Trajectory Types 

 

2.2 Toolpath Planning and Interpolation 

It is well-known that discontinuities in the position commands can lead to large spikes in 

the velocity, acceleration, and jerk profiles. This, in turn, results in undesirable high-

frequency harmonics in the motor force or torque, which can excite the natural modes of the 

mechanical structure or servo control system.  Figure 2.2 provides a comparison between 

velocity-, acceleration-, and jerk-continuous motion. As the motion becomes smoother, the 

high frequency content in the acceleration harmonics diminishes dramatically, thus reducing 

the high frequency excitation delivered to the machine tool structure. 

High-frequency harmonics can also cause actuator saturations (by pushing the actuators 

beyond their functional limits) or axis tracking errors as a result of actuator saturation, 

meaning that the axes are incapable of following the reference position commands, thus 

causing deviations from desired trajectory, thereby resulting in violations of the part 



Chapter 2 Literature Review 
  

12 

manufacturing tolerances.  Considering this effect, employing only linear and circular 

interpolation techniques to machine complex shapes such as dies, molds, turbine blades, and 

aerospace parts has serious limitations in term of productivity, since the machine tool must 

decelerate/accelerate or stop between consecutive G codes [8, 9]. Therefore, a great deal of 

work has been done to overcome these problems by developing spline toolpath definitions 

for three [7, 10-22] and five axis machine tools [23-27], which yields paths with second order 

or higher levels of continuity. 

One of the main issues with spline toolpath planning is that the curve parameter (shown 

with u  in Figure 2.3) is not necessarily equal to the spline arc length (shown with s  in 

Figure 2.3). Since, in general 1/ ≠duds , the values of the spline parameter have to be 

carefully computed for each desired arc increment, in order to avoid inducing unwanted 

speed fluctuations. As measures to solve this problem, researchers have tried to either 

parameterize the spline toolpath to keep the value of duds /  as close to one as possible [12, 

13, 14], or they have devised Taylor series, feed correction polynomial-based, or iterative 

interpolation methods, which minimize unwanted feed fluctuations while interpolating the 

spline toolpaths [7, 9, 11, 14, 19, 28-35]. 

During on-the-fly laser drilling, since the toolpath is not fixed between the hole locations, 

maintaining constant feed is less of an issue, but coming up with an appropriate toolpath that 

will allow the highest travel speed while keeping the relevant kinematic profiles within the 

machine’s and process’ limits is crucial. 

 

:
:

:
:

Arc Displacement
Spline Parameter
Along Chord BetweenTwo Points
Chord Length
Segment Number

−
s
u

l
k

 

Figure 2.3: Parameter (u) and Actual Path (s) Increments in Spline Interpolation 
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2.3 Feed Motion Generation & Optimization 

In feed generation, it is essential to have continuous acceleration profiles, and bounded 

jerk, in order to avoid generating unwanted high frequency content in the motion commands. 

In this respect, various jerk bounded [11, 36, 37, 38] and jerk continuous [19, 39-43] feed 

generation techniques have been proposed in literature. In addition, when the manufacturing 

process allows, optimizing the feed profile to minimize the cycle time can result in 

significant cost savings and productivity increase. Some of the feed optimization work has 

been pioneered in the robotics and machine tool literature with [2] and [44, 45], which at 

initial stages resulted in acceleration discontinuous trajectories that were fast, but detrimental 

to the production machinery. Later, as jerk and torque rate limits and cutting process model 

were considered, various feed optimization methods have emerged which are highly effective 

[3-6, 19, 46- 54]. Some of these methods make some kind of optimality trade-off in favour of 

faster computational speed, which are often in the form of constraining the feed profile to 

well-known shapes for easy mathematical solution, or adopting conservative feed limits 

based on worst-case assessments. On the other hand, elaborate techniques like the one in [3], 

which utilizes full-blown sequential quadratic programming [55], yield the shortest cycle 

times. However, such complicated methods are still not practical for on-line implementation. 

Ideally, the solution sought in this thesis for on-the-fly laser drilling should be both easy and 

simple to implement, and also converge closely to a globally optimal solution (with minimal 

restriction on the trajectory profile shapes). Although off-line implementation is targeted, 

excessive processing times are not acceptable. 

There have also been studies to generate quick and smooth axis trajectories by 

minimizing the integral square of jerk [56-60], which has its roots in characterizing the 

movement of humans and primates [61]. In this thesis, this idea has been taken one level 

further, by investigating the outcome of minimizing the integral square of the fourth time 

derivative (i.e. ‘snap’), which has been found to yield an initial guess that is very close to the 

desired time-optimal trajectory for on-the-fly laser drilling. 
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2.4 Literature on Laser Drilling 

Laser drilling provides a highly productive method for producing hole clusters on 

freeform surfaced parts. While there have been detailed studies that characterize the process 

of laser drilling [62, 63] and evaluate various machine configurations [1], only a limited 

amount of prior work has been done related to trajectory planning in this area [64, 65, 66]. To 

the best of the author’s knowledge, trajectory optimization for on-the-fly drilling has not 

even been studied prior to this thesis. 

While the algorithm in [65] considers the optimal sequencing of hole locations based on 

travel distance, the trajectory generation technique in this thesis assumes that the holes are 

already sequenced by the Computer Aided Design/Manufacturing (CAD/CAM) software, 

and solves the time-optimal solution for traversing these holes on-the-fly. [66] solves a 

general time-optimal trajectory problem in the presence of obstacles, but does not take into 

account the process constraints related to on-the-fly laser drilling, such as the fixed laser 

pulsing frequency, or the hole elongation problem. It deals with the problem of determining 

the optimum route for an end effector that visits a number of task points in a similar but not 

identical fashion to the well-known travelling salesman problem (TSP). The authors suggest 

that the measure to be optimized is time instead of distance, and the travel time between two 

points is significantly affected by the manipulator configuration. Therefore, solutions of the 

inverse kinematics problem need to be taken into consideration. [67] provides process 

models and trajectory planning techniques for preserving sharp cornered geometries during 

laser cutting. 

This thesis presents the time-optimized trajectory solution for the case where clusters of 

holes are pre-sequenced, and they need to be drilled at a constant laser pulsing frequency. In 

order to ensure that hole elongation does not cause tolerance violations, the 5-axis kinematics 

of the machine tool are also considered [68, 69, 70]. Axis level velocity, acceleration, and 

jerk limits are considered throughout the part program. Rather than following the traditional 

method used in machine tool trajectory planning, by planning the toolpath and feed profile 

separately, the kinematic profile for each axis is directly formulated as a function of time. 

This greatly simplifies the solution of the optimization problem. 

Following the problem definition stated in Chapter 3, Cycle time optimized trajectories 

for each cluster are solved using the technique devised in Chapter 4. These trajectories are 
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stitched together, or looped back onto themselves (for repeated laser shots), using the 

algorithm in Chapter 5. The intermediate and final results obtained during this master’s 

research have been published in [71] and [72]. Currently, the algorithm is being integrated at 

the industrial partner’s premises, for use in the production of gas turbine combustion 

chambers. 

 

2.5 Summary  

 This chapter has presented a survey of the academic literature and industrial practice 

relevant to multi-axis laser toolpath planning, feed generation for machine tools, and some of 

the issues specific to laser drilling. The challenges related to spline toolpath generation, 

interpolation, and feedrate optimization have been discussed. The proposed solution in this 

thesis differs from the traditional machine tool trajectory generation architecture, and lends 

itself to an easier mathematical formulation and solution by formulating all of the kinematic 

profiles directly as a function of time. Details of the proposed algorithm are discussed in the 

proceeding chapters. 
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Chapter 3 

Optimization Problem and Proposed Solution Strategy 

3.1 Problem Definition 

Unlike a 3-axis system, 5-axis machining center has a non-Cartesian kinematic structure 

that, in some applications, requires transformation of the tool tip position and tool axis 

orientations programmed in the CAM systems into reference joint position commands using 

the inverse kinematics. In this thesis, 5-axis machine forward kinematics are used to translate 

hole locations from an NC file (where joint positions are given with respect to time) into part 

coordinates with respect to a laser focal point and with respect to the fixed drilled part. The 

machine inverse kinematics were not needed, as all joint positions at given instances in time 

are given for each hole location. In return, using 5-axis laser drilling allows the achievement 

of holes drilled at desired angles on a flat or curved surface for aerospace applications, which 

is the focus of this thesis.  

The overall objective is to generate 5-axis acceleration-continuous trajectories that 

minimize the cycle time required to produce on-the-fly laser drilled parts subject to machine 

tool and process constraints. Defining the joint vector for the machine’s translating ( , ,x y z ) 

and rotating ( ,a c ) axes: 

[ ]Tx y z a c=q  (3.1)

the machine constraints considered (in addition to each axis translational and rotational 

displacement limits) are that axis velocity ( &q ), acceleration ( &&q ), and jerk (&&&q ) be kept within 

their limits. Velocity limits ( max max max[ ]Tx c= & &Kv ) are provided by the machine tool 

manufacturer in accordance with the stroke and acceleration capabilities and guide-way life 

characteristics. Acceleration limits ( max max max[ ]Tx c= && &&Ka ), along with velocity limits, 

help indirectly limit the maximum force or torque requirement. This ensures that the drives 

operate within their linear range without saturation. Acceleration limits may also be replaced 

by force or torque limits, should a dynamic model of the machine be available along with 

experimentally identified inertia and damping values [2, 3]. Although this approach results in 

less conservative cycle times, full identification of a machine’s dynamics may not always be 
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practical. In this case, acceleration limits readily provided by the manufacturer, or adopted by 

the end user, may be used as done in [5] and also in this work. Figure 3.1 shows a 3D model 

of the machine being used for this thesis. 

The jerk limits ( max max max[ ]Tx c= &&& &&&Kj ) help constrain the high frequency content in 

the commanded motion, which indirectly limits the instantaneous value of tracking error. 

This helps retain the beam positioning accuracy during high traverse rates. Limiting jerk also 

reduces the amount of vibration induced on the machine structure, in particular the laser 

optics. Since excessive vibration causes the optical assembly to lose alignment after a 

relatively short production run, which requires extensive downtime for realignment, limiting 

the jerk also has a positive influence on the productivity of the laser drilling operation. 

 
Figure 3.1: 3D Representation of 5-Axis Laser Drilling Machine 
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There is also a process constraint that needs consideration. The part is in relative motion 

with respect to the beam during drilling and this causes elongation of holes, as illustrated in 

Figure 3.2. If this velocity component exceeds a certain limit, then the hole elongation may 

violate the part tolerances. The laser is aligned with the z-axis of the machine. Hence, the x-y 

component of the workpiece velocity at the hole location ( xyv ) relative to the laser optics 

needs to be limited. Considering the 5-axis configuration shown in Figure 1.1, and following 

the kinematic analysis presented in Appendix A, this velocity component can be computed 

as: 

2 2    where:   
( sin cos )

( cos sin )cos

         ( sin cos )sin cos

xy x y
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y h h

h h h

v v v
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= + −

− + +
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 (3.2)

Above, ( , , )h h hx y z  represents the hole location in the part coordinate system (C.S.4 in 

Appendix A). Using the knowledge that the laser focus (i.e., drilling) point is programmed to 

coincide with the origin (i.e., (0,0,0)) of the machine’s coordinate system, the hole location  

( , , )h h hx y z  can be computed from commanded axis motion as: 

 
Figure 3.2: Hole Elongation Due to X-Y Component of Part Velocity 
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derivation of Eq. (3.3) can also be found in Appendix A.  

The process of trajectory generation in this thesis is open loop (without joint feedback from 

the machine controller) and assumes that the machine positioning controller is functioning 

properly at all times. Therefore, in Appendix A, only the forward kinematics is calculated. 

The inverse kinematics is handled inside the CAD/CAM system and the calculations of joint 

or axis values during operation are not necessary for this work. 

While the machine related velocity, acceleration, and jerk constraints need to be 

respected at all times, the hole elongation constraint needs to hold only at the hole locations, 

thereby allowing higher x-y plane velocities to be reached in between the holes. This yields 

less conservative cycle time compared to enforcing this constraint throughout the motion. 

Hence, the constraints can be formally stated as: 

max max

max max

max max

,max ,max

Velocity
Acceleration:
Jerk:
Hole Elongation: xy xy xyv v v

⎫
⎪
⎪
⎬
⎪
⎪⎭

− ≤ ≤
− ≤ ≤
− ≤ ≤
− ≤ ≤

&

&&

&&&

v q v
a q a
j q j  (3.4)

 

 
Figure 3.3: Overall Strategy Comprising of: 1) Optimizing Each Cluster Separately, 

2) Looping/Stitching of Individual Clusters with Time-Optimal Segments. 
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3.2 Overview of Proposed Solution 

The solution developed in this trajectory optimization work comprises of two main steps, 

as illustrated in Figure 3.3: 

 

Step #1: Find a time-optimized on-the-fly drilling trajectory for each cluster (pre-

determined and defined group of holes to be laser drilled) which minimizes the laser pulsing 

period T : 

minT  (3.5)

Since the toolpath can be freely modulated between the holes, the objective in this step is 

to find the optimized path geometry that will enable the shortest possible traverse time 

between the consecutive holes inside a cluster. This trajectory must have at least acceleration 

level ( 2C ) continuity and it must also be bounded in jerk. A four sub-step technique has 

been developed in Chapter 4, as the solution to this problem. 

 

Step #2: Determine time-optimized looping and stitching (optimized/smooth path to 

repeat/loop a cluster or connect/stitch between consecutive clusters) segments to allow 

seamless repetition and connection of clusters: 

The idea of looping and stitching is to make a seamless connection with given position 

and velocity boundary conditions while finding the minimal motion cycle time. This is used 

for looping a cluster during multiple laser drilling passes, or making a connection between 

consecutive clusters in the part program. In this thesis, a procedure is presented that first 

solves the time-optimized trajectory for each axis, and then synchronizes the total motion 

duration among multiple axes by slowing down the faster axes to accommodate the slowest 

one(s). While doing so, the kinematic solutions for the faster axes are also optimized to 

minimize the integral square of jerk. The full details of the solution are presented in Chapter 

5. 
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3.3 Conclusion 

This chapter has provided the problem definition and an overview of the proposed 

solution for time-optimized laser drilling trajectory optimization. At this stage, the overall 

laser drilling trajectory cycle time optimization problem is divided into two main steps; 1. 

Time-optimized trajectory for laser drilled clusters. 2. Smooth and time-optimized stitching 

motion for repeated cluster drills or connection between consecutive clusters. Each step is 

optimized independently. Therefore, it is assumed that a best scenario in both steps will 

provide an overall time-optimized solution. In future work, an optimization function can 

consider different scenarios from both main steps to determine the appropriate optimal or 

sub-optimal combination of both steps that guarantees the global optimality of the combined 

solutions of both steps. The following chapters will detail the individual methods developed 

and results obtained in this thesis.  
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Chapter 4 

Cluster Trajectory Optimization 

4.1 Introduction 

In cluster trajectory optimization (with pre-defined groups of holes that were clustered 

according to an existing algorithm in the CAD/CAM software), the quintic spline has been 

chosen as the basis curve due to its simplicity and sufficient degrees of freedom, enabling 

different 2C parameterizations all passing through the same way-points (i.e., hole locations). 

Assuming there are 1N +  holes in the cluster, and the travel duration between consecutive 

holes is equal to the laser firing period T , which is constant, the kth segment describing the 

x-axis motion connecting holes k to k+1 can be expressed as: 
5 4[ ( )]    ,   0k xk xk xkx A B F Tτ τ τ τ= + + + ≤ ≤K  (4.1)

 

 
Figure 4.1: A Single Quintic Segment Parameterized By Its Boundary Conditions  

 

The motion in the other axes can be parameterized similarly. Considering Figure 4.1, if 

position ( 1,k kX X + ), velocity ( 1,k kX X +
& & ), and acceleration ( 1,k kX X +

&& && ) boundary conditions 

at the hole locations are known, then the spline coefficients can be uniquely determined 

through Eq. (4.2) [70], and vice-versa with Eq. (4.1). 
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 (4.2)

The optimized trajectory for a cluster is found by applying the four sub-steps in Figure 

4.2, which are detailed in the following.  
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Figure 4.2: Overview of Cluster Trajectory Optimization. 
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4.2 Step 1: Minimum Snap Quintic Spline  

First, a smooth trajectory is fit which traverses through the holes assuming a nominal 

segment duration T . This serves as an initial guess towards finding the final time-optimized 

solution. Through trials and using different objective functions for the shape optimization 

step (explained in Appendix B), it was found that minimizing the integral square of the fourth 

time derivative (i.e., ‘snap’) while enforcing jerk level continuity constraints resulted in an 

initial guess reasonably close to the final optimized solution. Therefore, this approach is 

adopted here. Considering that the parameters for a single segment can be grouped as 

[ ]T
xk xk xkA F= Kθ  ( 1,2, ,k N= K ), the overall parameter vector for a cluster of N  segments 

becomes: 1[ ]T T T
x xNx= Kθ θ θ . The minimum snap objective is expressed as:  

4
2

4
0

1min [ ( )] min
2x x

NT
T

x x
d x t dt
dt

=∫ K
θ θ

θ θ  (4.3)

For the quintic trajectory in Eq. (4.1), equivalence of the above integral to the quadratic 

form on the right hand side of Eq. (4.3) is shown in Appendix B, following an approach 

similar to the one in [3]. Here 1 2{ , , , }Ndiag= KK K K K  such that: 
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= = K
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K 0
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 (4.4)

N  segments require the solution of 6N  coefficients. The way point constraints (i.e., 

segment initial and final positions) are determined by the hole locations; providing 2N  

equations. Velocity, acceleration, and jerk continuity make up 3( 1)N −  equations. Also, 

zero acceleration and jerk constraints are imposed at the very first and last holes, to allow 

easy solution of the looping and stitching trajectories. This yields another 4 equations. The 

initial and final velocity boundary conditions are left free, in order to allow connection at 

nonzero velocities. This leaves the problem of accelerating into and decelerating out of the 

cluster to the looping and stitching trajectories, which enables shorter segment durations (i.e., 

higher laser frequencies) to be achieved. In each axis, these constraints provide 5 1N +  

equations which may be clustered in Eq. (4.5), as shown in Appendix B: 

  ,   where:   , , , ,i i i x y z a c= =Lθ ξ  (4.5)
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Above,  ((5 1) 6 )N N+ ×L  is solely a function of T  and identical in all axes. 

 (6 1)i N ×ξ , however, depends on the hole coordinates, which is typically different for each 

axis. Quadratic minimization of Eq. (4.3) subject to the constraints in Eq. (4.5) yields the 

following set of linear equations: 

  ,   for   , , , ,
T

i

i i
i x y z a c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
⋅ = =
θ 0K L
Λ ξL 0

 (4.6)

Above, iΛ  contains the Lagrange Multipliers to enforce continuity and boundary 

condition constraints. The minimum snap trajectory is obtained by solving , , ,x y z aθ θ θ θ  and 

cθ .  

The full mathematical derivation of the minimum-snap quintic trajectory can be found in 

Appendix B. 

 

4.3 Step 2: Time Scaling 

If the initial guess for T  results in too short a travel time between consecutive hole 

locations, then the axis velocity, acceleration, jerk, or x-y component of the part velocity at 

the hole location may become excessive and ultimately violate the limits in Eq. (3.4). On the 

other hand if T  is chosen too large, then magnitudes of the kinematic profiles will be too 

small, thus under-utilizing the machine’s true capabilities and process tolerances. In order to 

avoid either undesirable case, the second sub-step performs time scaling to bring all of the 

kinematic profiles within their limits, while minimizing the value of T . 

Considering that the position profile can be expressed as a function of time (i.e., 

( )x f t= ), scaling the time variable by α  will modify the position profile to become 

( ) ( / )g t f t α= . It can be analytically verified, as shown in Appendix C, that this will also 

scale the velocity, acceleration, and jerk profiles by 1/α , 21 /α , and 31/α : 

2 3
1 1 1( ) ( / ) , ( ) ( / ) , ( ) ( / )g t f t g t f t g t f tα α α
α α α

= = =& && &&&& && &&&  (4.7)

Hence, the time scaling required to ensure that all velocity profiles remain within their 

limits in Eq. (3.4) can be obtained as: 
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Above, || [ ] ||∞•  denotes the infinity norm (i.e., peak value) of the normalized velocity 

vector [ ]• , considering all of its entries (i.e., normalized joint velocity values) over their 

time history [73]. A value for velα  that is larger than 1 indicates that a velocity limit is 

violated in at least one of the axes, which can be corrected by scaling the segment duration 

by velα  ( velT Tα′ = ). 

Considering the impact of time scaling on the acceleration and jerk profiles, as indicated 

in Eq. (4.7), the time scaling required to bring the acceleration ( accα ) and jerk ( jerkα ) 

profiles within their limits can be obtained as: 
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 (4.9) 

Hence, the overall time scaling required to hold all of the constraints in Eq. (3.4), with at 

least one of the kinematic profiles reaching its maximum allowed magnitude, can be obtained 

as: 

Time scaling factor: [ ]accvel jerkα α α α
∞

=  (4.10)

After fitting the minimum snap trajectory, the profiles ( , , , xyv& && &&&q q q ) are evaluated, using 

typically 5 points per segment, and the required time scaling α  is computed from Eqs. (4.8)-

(4.10). The segment duration and quintic coefficients are then updated as: 
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 (4.11)

By the end of this sub-step, a feasible initial guess is guaranteed which satisfies all of the 

conditions in Eq. (3.4). The value of α  calculated at this point will be ‘1’, indicating that the 
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shortest possible segment duration has been reached for the trajectory shape parameterized so 

far. 

 

4.4 Step 3: Profile Shape Optimization  

The basic idea in this sub-step is to modify the shape of the quintic segments to enable 

the maximum possible reduction in the value of α  (i.e. below ‘1’), which means that the 

segment duration T  can be shortened further. This is done by modulating the axis velocity 

and acceleration boundary conditions at the hole locations, while keeping the segment 

duration constant. Since xyv  is influenced by simultaneous motion of x, y, a, and c-axes (Eq. 

(3.2)), the hole elongation constraint couples the optimization of profiles in these axes 

together. The z-axis can be either optimized independently, or alongside the other axes. The 

latter approach was taken here, mainly for programming convenience. 

Given 0th, 1st and 2nd order boundary conditions at hole k: [   ]T
k k kX C= KQ , 

[ ]T
k k kX C=& && KQ , [ ]T

k k kX C=&& &&&& KQ ,  the objective is mathematically stated in Eq. (4.12), 

using the definition of α  from Eqs. (4.8)-(4.10): 
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As previously noted in Section 4.2, the initial and final velocity boundary conditions 

( 1 1, N +
& &Q Q ) are left as free variables to allow entry into and exit out of the cluster at high 

speeds. The acceleration boundary conditions ( 1 1, N +
&& &&Q Q ) are set to zero and excluded from 

the optimization to simplify the solution of the connecting looping and stitching trajectories, 

by relieving the requirement to match nonzero acceleration boundary conditions. Trials 

conducted by also optimizing these boundary conditions revealed no significant improvement 

in the achievable time reduction. In the practical implementation, &Q and &&Q  are also 

normalized by their maximum allowable magnitudes to facilitate better convergence. 

The most significant merit of Eq. (4.12) is that the nonlinear constrained optimization 

problem originally stated in Eqs. (3.4)-(3.5) is now transformed into an unconstrained 

problem, using the definition of α  which implicitly contains the constraints. Hence, the 
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optimization can be efficiently carried out using well-proven techniques for unconstrained 

problems, such as the Quasi-Newton method [55]. The objective function weighs each 

constraint based on its relative impact on the achievable time reduction and focuses the on 

the most critical parts of the trajectory. One difficulty, however, is that the ∞-norm operator 

picks out the single worst case (i.e., peak magnitude) value among all of its entries. Hence, 

when there are multiple critical points in the profiles that yield similarly high values for α , 

such discriminatory behaviour can result in these points being chosen as the ‘worst-case’ one 

after another. Obviously, this can cause discontinuity when evaluating the gradient of the 

objective during successive iterations, thereby hampering convergence. As a practical work 

around, the ∞-norm is replaced with the more general p-norm, defined as [73]: 

[ ]
1/

1
1 1

1

 ,   
pndef p xn

n n kp p
k

b b b×
=

⎡ ⎤= = ∈ℜ⎢ ⎥⎣ ⎦
∑Kb b  (4.13)

Hence, the expression for α  in the objective function now becomes smooth, which can 

be verified by combining Eqs. (4.8)-(4.10) and (4.13) to be: 
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Above, k  is the discrete sample index and n  denotes the total number of samples used 

in evaluating each profile. Just as α  is a smooth function of the velocity, acceleration, and 

jerk profiles, these profiles are also smooth functions of the spline coefficients, and therefore 

the 0th, 1st, and 2nd order boundary conditions, per Eqs. (4.1)-(4.2). Shape optimization is 

conducted in 3 runs, during which the value of p  evolves from 10 to 100 to 1000. Each run 

uses the result of the previous one as its initial guess. The first run tries to push the kinematic 

profiles away from their limits as a whole, while placing greater emphasis on the critical 

portions close to the limits. The gradients are continuous and convergence to a sub-optimal 

solution is quick. Afterwards, consecutive runs focus on the critical portions. It was observed 

that applying this gradual transition rather than directly using the ∞-norm from the beginning 

reduces the computational time by typically 30% for clusters with 100 or more way points. 
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Once the optimized 1st and 2nd order boundary conditions are determined, the 

corresponding quintic spline coefficients can be calculated using Eq. (4.2). By the end of this 

sub-step, the maximum amount of ‘wiggle room’ is recovered in the profiles, which enables 

further reduction of the segment travel period. Although globality of this minimum is not 

guaranteed, this step typically provides a substantial improvement in the achievable cycle 

time reduction.  

 

4.5 Step 4: Final Time Adjustment  

After shape optimization, the achieved value of α  is used to scale the quintic segments 

again using Eq. (4.11). Although each cluster allows a different laser frequency to be 

achieved, it may not always be practical to alter the pulsing period amid the part program. 

Especially latencies in the laser control circuitry, which can be as large as tens of seconds 

when performing a recipe change, can negate any cycle time improvement gained by careful 

trajectory optimization. Hence, after all of the clusters are optimized, the lowest achievable 

laser pulsing frequency is adopted throughout the part program and all of the spline segments 

are updated one last time using Eq. (4.11). 

 

4.6 Conclusion 

This chapter has provided the details of the proposed trajectory optimization algorithm 

for hole clusters. The technique guarantees a feasible solution and uses a novel re-

formulation of the optimization problem, which transforms it from a constrained 

minimization problem to an unconstrained one. In numerical implementation, this approach 

was found to converge significantly (up to 80%) faster, and also yield 40-50% shorter cycle 

time compared to applying direct constrained optimization using sequential quadratic 

programming.  

The following chapters will present the proposed time-optimized solution for connecting 

optimized cluster trajectories together.  
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Chapter 5 

Time-Optimal Looping and Stitching 

5.1 Introduction 

This chapter presents a stitching algorithm for looping the same cluster trajectory (for 

multiple drilling passes) and stitching between consecutive clusters. For point to point 

motion the ‘s-curve’ profile shown in Figure 5.1 is known to be the time-optimal one. Here, 

this approach has been adopted with some modification, which generates the quickest 

possible motion for each axis with guaranteed kinematic feasibility, as presented in Section 

5.2. Then, all axes need to be synchronized so that the total motion duration is equal to that 

of the slowest axis, and an integer multiple of the laser pulsing period, which is explained in 

Section 5.3. This is done to avoid turning the laser off while repositioning the beam, which 

can result in tens of seconds in the laser control circuitry. Instead, a quick shutter is used in 

the optics path, which diverts the beam away from the workpiece. Slowing down the profiles 

in the faster axes allows for a wide range of feasible solutions to choose from, which is 

utilized to the advantage of reducing the vibrations induced by minimizing the motion jerk in 

the individual axes, as explained in Section 5.4. The trajectories that are planned for each 

axis with different switching times are then assembled and re-parameterized, so they can be 

executed as a single continuous stream. Details of this step are presented in Section 5.5, 

which also shows a sample result for the overall stitching algorithm developed in this chapter. 

Finally, the conclusions are presented in Section 5.6. 

 

5.2 Time Optimal Solution for Individual Axes 

In the general case, s-curve motion may contain up to 7 segments comprising of 2 

acceleration regions - , -  and possibly a constant velocity region . Although the 

initial and final boundary conditions ( 1 1( , )x v  and 8 8( , )x v ) are given, the intermediate 

velocity ( 4v ) is not known ahead of time. The overall profile also has to satisfy the following 

displacement condition ( 8 1x x xΔ = − ): 
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( ) { ( )4 81 4
5 71 2 3 4 4 6

Const.
Segments (1)-(3) Segments (5)-(7)Vel. (4)

2 2
v vv vx T T T v T T T T++Δ = + + + + + +

144424443 144424443

 
(5.1)

 

 
Figure 5.1: Trapezoidal Acceleration Profile for a Single Axis used in Generating the 

Looping and Stitching Trajectories 
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Figure 5.2: Transition Times in x- and y- Axes  

 

The time-optimal trajectory is solved by scanning 4v  within its limits, while also 

considering the cases 4 1v v=  and 4 8v v= . The acceleration demand for each solution is 

evaluated from,  

max max1 3 4 1 4 1 1 3 1 3

max max5 7 5 7 5 78 4 8 4

sgn( )     /

sgn( )    /

A v v J v v T T A J

A v v J v v T T A J

− −

− −

⎫
⎪
⎬
⎪⎭

= − − → = =

= − − → = =
 (5.2)

Above, maxJ is the axis jerk limit. If the magnitudes of 1 3A −  or 5 7A −  exceed their limit 

( maxA ), they are capped by this value and the necessary constant acceleration duration ( 2T  and 

6T ) is computed (which would otherwise be zero), while also updating the jerk durations: 

max max4 1
2 1 3

max max max

8 4 max max
5 76

max max max

| |    ,   

| |    ,   

v v A AT T T
A J J

v v A AT T T
A J J

⎫
⎪
⎪
⎬
⎪
⎪⎭

−= − = =

−= − = =

 (5.3)

From the above calculations, if 4 0v ≠ , the constant velocity duration 4T  can be 

computed using Eq. (5.1) as, 

( ) ( )4 81 4
5 74 1 2 3 6

4

1
2 2

v vv vT x T T T T T T
v
⎧ ⎫⎛ ⎞⎛ ⎞
⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

++= Δ − + + − + +  (5.4)

Otherwise, 4T  is set to zero. The total motion time required for a single axis is then 

calculated as 
7

1tot kk
T T

=
=∑ . The solution that yields the smallest value for totT  while holding 

4 0T ≥  is chosen as the time-optimal one for the axis under consideration. 

 

5.3 Synchronization of Multiple Axes 

After computing the fastest profile for each axis, all axes are synchronized so that the 

total looping or stitching duration is equal to that of the slowest axis, and is an integer 

multiple of the laser pulsing period. This concept is illustrated for the x- and y-axes in Figure 
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5.2, which shows that in spite of different switching times for the jerk transition periods, the 

two axes complete the motion at the same time (i.e. 77 YX tt = ). However, it is not possible to 

just scale the time variable for the faster axes, as this would also shift the velocity boundary 

conditions. Instead, the profiles need to be re-solved to satisfy both the travel displacement 

and motion duration conditions, in addition to satisfying the given position and velocity 

boundary conditions and velocity, acceleration and jerk limits. This is done by re-planning 

the faster axes to minimize the integral square of jerk, as explained in Section 5.4. 

 

5.4 Motion Re-planning for Minimal Jerk 

The motion in the faster axes is re-planned to have the same total duration with the 

slowest axis: totT . Considering the given boundary conditions, and velocity, acceleration, and 

jerk limits, three are four possible kinematic solutions in each axis, which take the forms 

illustrated in Figure 5.3. 

For each case, the feasible solutions are investigated by scanning different values for the 

intermediate velocity value ( 4v ). Afterwards, the feasible solution that yields the lowest 

value for the integral square of jerk is chosen. The objective to be minimized can be 

expressed as: 
3 5 71

2 2 2 2 2
1 3 5 7

0 0 0 0 0

totT T T TT

J dt J dt J dt J dt J dt= + + +∫ ∫ ∫ ∫ ∫  (5.5) 

Considering that 1 3 5 7J J J J J= = = = , and also 31 TT =  and 75 TT = , the minimum jerk 

objective becomes,  
2 2

1 3 5 7 1 5( ) 2 ( )Min Jerk Objective J T T T T J T T= + + + = +  (5.6) 

The solutions for each case are detailed in the following: 

 

Case #1: In this case 2 0T = , 6 0T = , 1 maxA A≤ , and 5 maxA A≤ . It is necessary to hold 

xΔ  (Eq. (5.1)) and totT : 

1 2 3 4 5 6 7 1 4 52 2totT T T T T T T T T T T= + + + + + + = + +  (5.7) 

From the triangular shape of the acceleration transients, 1T  and 5T  can be expressed as:  
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Figure 5.3: Four Different Cases for Trapezoidal Acceleration Profile 

 

J
vv

J
ATT

J
vv

J
ATT

||||   ,   
|||| 485

75
141

31
−

===
−

===  (5.8) 

Substituting these into the total displacement and time expressions in Eq. (5.1) and (5.7), 

the values for J  and 4T  can be solved as: 
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( ) ( )
2

1 4 4 1 8 4 8 4

4 tot

v v v v v v v v
J

x v T

⎡ ⎤− − + − −
⎢ ⎥=

Δ −⎢ ⎥⎣ ⎦  

4 1 8 4
4

2 2
tot

v v v v
T T

J

− + −
= −  

(5.9) 

Simultaneous realization of 04 ≥T  and max0 JJ ≤≤  indicates the feasibility of the tried 

value for 4v . 

 

Case #2: In this case 2 0T >  ( 1 maxA A= ), 6 0T =  ( 5 maxA A≤ ). Again, Eqs. (5.1) and 

(5.7) need to hold. While the expression for 5T  in Eq. (5.8) still holds, due to the trapezoidal 

shape of the first acceleration transient, which assumes a maximum magnitude of maxA , 1T , 

2T , and 5T  take the form: 

8 44 1max max
1 3 2 5 7

max

v vv vA AT T T T T
J A J J

−−
= = = − = =  (5.10)

Substituting these into Eqs. (5.1) and (5.7) yields: 

8 44 1 max
4

max

2
tot

v vv v AT T
A J J

−−
= − − −  (5.11)

0)
2

||)((1||)(1
2

)(

max

1414
44848

2
max41 =Δ−

−−
−+−−+⎟

⎠

⎞
⎜
⎝

⎛−

γ
βα

444444 3444444 21
444 3444 214434421

x
A

vvvvTv
J

vvvv
J

Avv
tot (5.12)

The roots of the quadratic expression in Eq. (5.12) are inspected and the values for 4v  

which yield 04 ≥T  and max0 JJ ≤≤  (with ℜ∈J ) are considered as feasible solutions. 

 

Case #3: In this case 2 0T =  ( 1 maxA A≤ ), 6 0T >  ( 5 maxA A= ). While the expression for 

1T  in Eq. (5.8) holds, due to the trapezoidal shape of the second acceleration transient, which 

assumes a maximum magnitude of maxA , 1T , 5T , and 6T  take the form: 
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Figure 5.4: Integral Square of Jerk for Different Feasible 4v  Solutions 

 

4 1 8 4max max
1 3 5 7 6

max

v v v vA AT T T T T
J A JJ

− −
= = = = = −  (5.13)

Substituting these into Eqs. (5.1) and (5.7) yields: 

4 1 8 4 max
4
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2
tot

v v v v AT T
A JJ

− −
= − − −  (5.14)
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(5.15)

The feasibility of each solution, obtained by trying out a value of 4v  is checked in a 

manner similar to that of Case #2. 

 

Case #4: In this case 2 0T >  ( 1 maxA A= ), 6 0T >  ( 5 maxA A= ). Therefore the time 

interval expressions assume the form:  

4 1 8 4max max max max
1 3 2 5 7 6

max max

v v v vA A A AT T T T T T
J A J J A J

− −
= = = − = = = −  (5.16)

Substituting these into Eqs. (5.1) and (5.7) yields:  

( )
( ) ( ) ( )

2
1 4 8 max

max 4 4 1 4 1 4 8 8 4

2
2 tot

v v v A
J

A x v T v v v v v v v v
− +

=
Δ − + − − + − −

 (5.17)
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4 1 8 4 max
4

max

2
tot

v v v v AT T
A J

− + −
= − −  (5.18)

Simultaneous realization of max0 JJ ≤≤  and 04 ≥T  indicates the feasibility of the tried 

value for 4v . 

Figure 5.4 shows an example of the sorted the values for the integral square of jerk 

calculated at different intermediate velocity ( 4v ) values. As can be seen, applying the 

minimum jerk criterion, when re-solving the trajectories for the faster axes, can lead to an 

order of magnitude reduction in the integral square of jerk, thereby resulting in smoother 

motion on the machine in overall. 

After determining the overall time-optimal, and axis level jerk-optimal trajectory, the 

corresponding acceleration and jerk magnitudes are updated as follows: 

 : then,0 if ,1 >χT 4, 1,
1,

1, 2,

v v
A

T T
χ χ

χ
χ χ

−
=

+
, 1,

1,
1,

v
J

T
χ

χ
χ

=  otherwise,   1, 0A χ =  , 1, 0J χ =  (5.19)

 : then,0 if ,5 >χT 8, 4,
5,

5, 6,

v v
A

T T
χ χ

χ
χ χ

−
=

+
, 5,

5,
5,

v
J

T
χ

χ
χ

=  otherwise,   5, 0A χ =  , 5, 0J χ =
 

(5.20)

 

5.5 Assembly of the Trajectories Generated for Different Axes 

It should be noted that the segment boundaries (i.e., jerk switching times) will be 

different among the axes, as shown in Figure 5.2 for the x- and y-axes. This asynchronous 

behaviour is handled by chopping up the trajectory into smaller sub-segments with shorter 

durations marked by the switching times, resulting in a vector of switching instances that are 

sorted in sequence. (e.g. for Figure 5.2, { }1 1 2 2 3 3 4 4 5 5 6 6y x x y x y y x y x x yT t t t t t t t t t t t t= ). 

Duplicate instances are eliminated, which can occur if two or more axes need to switch at the 

same time. Then, each new trajectory segment is parameterized to replicate the original 

optimized trajectory. Considering the illustration in Figure 5.5, the trajectory, starting at the 

beginning of the original segment can be expressed as: 

FEtDtCttx +++= 23)( (5.21)

Considering the relationship between the time variable ( t ) starting from the beginning of 

the original segment, and ( τ ), starting from the beginning of the newly formed segment:  
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Figure 5.5: Trajectory Re-parameterization by Shifting the Beginning of the Segment 
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(5.22)

The same trajectory can be written in cubic form according to the beginning of the new 

segment as '''')( 23 FEDCx +τ+τ+τ=τ , where: 

( ) ( ) ( )
( ) ( ) ( )

{ ( ) ( ) ( )
'

'
' '

3 2

3 2 2 3 2 2

3 2 2 3 2
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C D E

x C D E F

x C D E F

x C C D C D E C D E F

τ η τ η τ η τ

τ η η τ ητ τ η ητ τ η τ

τ τ η τ η η τ η η η

= + + + + + +

= + + + + + + + + +

= + + + + + + + + +
14243 144424443 144424443

 

(5.23)

Afterwards, if a conversion to quintic polynomials is necessary, the fourth and fifth order 

coefficients ( 'A  and 'B  terms) can be padded with zeros.  

Sample results for the overall stitching/looping algorithm developed in chapter are 

shown in Figure 5.6. Here, the z-axis is the limiting axis, where the velocity, acceleration, 

and jerk limits are all reached while generating the time-optimal solution. Since the 

capabilities of the other axes do not need to be fully utilized, their solutions have been 

individually optimized to minimize the integral square of jerk. The motion starts and ends in 

all axes at the same time, and the given position and velocity boundary conditions are also 

respected, while achieving zero acceleration values at the beginning and end of the trajectory. 
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5.6 Conclusion 

This chapter has presented the solution for generating time- and jerk-optimal looping 

and stitching segments. The time optimal solution in each axis is individually obtained and 

the slowest axis, which requires the longest motion duration, becomes the bottleneck. Motion 

in the faster axes is re-planned to start and end simultaneously with the trajectory of the 

slowest axis. This re-planning also allows for an extra degree of optimization to be applied, 

which has been chosen as the minimization of the integral square of jerk, in order to facilitate 

smoother motion on the laser drilling machine, with less vibration on the laser optics. 

Handling of the asynchronous switching behaviour between different axes is also realized, by 

chopping up the trajectory into smaller segments, and parameterizing each segment 

according to the time offset from its original starting instance. Effectiveness of the overall 

stitching algorithm has been demonstrated with a numerical example. 

 
Figure 5.6: Kinematic Profiles Generated with the Stitching Algorithm Developed in this 

Chapter  
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The following chapter will utilize the cluster optimization algorithm and time-optimal 

looping/stitching algorithms developed in the previous and current chapters, to generate an 

on-the-fly laser drilling trajectory for an aerospace component, which is time-optimal for the 

given machine and process limits. 
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Chapter 6 

Implementation Results 

6.1 Introduction 

The developed algorithms in this thesis have been applied on different gas turbine 

combustion chamber panels. The major result comparison in this chapter is between on-the-fly 

laser drilling and percussion drilling (stopping at each hole location to fully drill by pulsing a set 

number of times and complete the hole drilling process). To simplify the findings, only three 

panels to be laser drilled are explained in detail. The time-optimized trajectory behaviour is also 

shown for the three different aerospace panels. Figure 6.1 shows the three different hole patterns 

to be laser drilled. 

  

6.2 Results 

Sample implementation results for a gas turbine combustion chamber are shown in Figures 

6.2-6.4. The developed algorithm has been used to generate a time-optimized trajectory for on-

the-fly laser drilling of the hole locations in Clusters #1-#10 in Figure 1.2. The process and 

machine limits considered are also depicted in Figures 6.2-6.4. The trajectory was planned to 

allow each cluster to be repeated once before connecting to the next one. Among all clusters, the 

slowest segment period was obtained for Cluster #1, which corresponded to 8.1 Hz laser pulsing 

frequency (Table 6.1). Since the laser is programmable in integer frequencies, this was rounded 

down to 8 Hz (T = 0.125 s) and applied throughout the part program.  

From the kinematic profiles, it can be seen that the velocity, acceleration, and jerk 

capabilities of x-, y-, z-, and c-axes are well utilized. Limits for axis-c are reached several times. 

The zoomed views, which show Cluster #2, indicate that the commands are indeed continuous up 

to acceleration level and limited in jerk. The x-y component of the part velocity shows that the 

hole elongation constraint is always respected, while in between the holes much higher velocities 

can be reached for speeding up the process (This limit is given by the manufacturer, or can be 

obtained using the duration of laser pulse and hole elongation limit). For a single pass, compared 

to linear interpolation which stops at the holes, the proposed technique provides over 6% 
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reduction in cycle time (Table 6.1-6.6), and more importantly 56% reduction in the integral 

square of jerk, which allows the process speed to be pushed up further without vibrating the 

optics. The optimized trajectories are streamed as fine point data to the Fanuc 30i controller in 

inverse time feed mode to preserve timing information. Preliminary experiments conducted on 

the laser machine tool at Pratt & Whitney Canada have validated the practicality and 

effectiveness of this scheme and further testing and integration is now underway. Such 

preliminary tests showed that the developed time-optimized trajectories did reduce the drilling 

time significantly (as tabulated in this Chapter) and reduced machine and laser optics vibrations 

noticeably, to the personnel’s perception. This minimization in vibrations transmitted to laser 

optics significantly reduces the maintenance time required to realign the laser optics. Therefore, 

this thesis also reduces the overall drilling cost of turbine engine combustion chamber panels 

through minimizing the overall downtime of the drilling machine.   
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Figure 6.1: Three Different Examples of Turbine Engine Combustion Chamber Panels to 

Be Laser Drilled [Examples #1 - #3]
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Figure 6.2: Implementation Results for a Gas Turbine Combustion Chamber Panel [Example #1] 
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Table 6.1: Cycle Time Comparison between the Optimized Spline Trajectory and 
Linear Interpolation with Full Stops through Consecutive Holes (assuming 1 laser shot 

per hole) [Example #1] 

Cluster # No. Of Points Achievable Laser 

Frequency [Hz] 

Used Laser 

Frequency [Hz] 

Motion Duration 

[s] 

1 208 8.1035 8.00 25.875 

2 21 9.9831 8.00 2.500 

3 73 11.6446 8.00 9.000 

4 96 10.3931 8.00 11.875 

5 9 152.9022 8.00 1.000 

6 4 10.6034 8.00 0.375 

7 10 133.5358 8.00 1.125 

8 111 11.4109 8.00 13.750 

9 32 10.8403 8.00 3.875 

10 3 11.1027 8.00 0.250 

Total: 567  69.625 

 

Stitching 

Between 

Clusters 

Motion Duration 

[s] 

 
Total Duration for Clusters & 

Stitching [s]: 

1→2 0.375  69.625 + 3.500 = 73.125 

2→3 0.375   

3→4 0.375  Total Duration for Linear 

Interpolation (w/ full stops) [s] 4→5 0.375  

5→6 0.250  77.250 

6→7 0.625   

7→8 0.500  [%] Time Reduction over Applying 

Linear Interpolation 8→9 0.250  

9→10 0.375  5.34% 

Total: 3.500    
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Table 6.2: Integral Square of Acceleration and Jerk Comparison between the 
Optimized Spline Trajectory and Linear Interpolation with Full Stops [Example #1] 

Time Integral Square of Acceleration 

 X-Axis 

[mm2/s3] 

Y-Axis  

[mm2/s3] 

Z-Axis  

[mm2/s3] 

A-Axis  

[deg2/s3] 

C-Axis 

[deg2/s3] 

Linear Interp. 1.34E+08 1.07E+08 2.17E+08 8.23E+06 3.43E+08 

Spline Interp. 9.92E+07 7.02E+07 1.18E+08 1.36E+07 2.96E+08 

Ratio 

(spline/linear) 
74% 66% 54% 165% 86% 

RMS Ratio (between the 

axes) 
98% Reduction 2% 

 

Time Integral Square of Jerk 

 X-Axis 

[mm2/s5] 

Y-Axis 

[mm2/s5] 

Z-Axis 

[mm2/s5] 

A-Axis 

[deg2/s5] 

C-Axis  

[deg2/s5] 

Linear Interp. 3.21E+11 2.60E+11 5.52E+11 1.96E+10 7.56E+11 

Spline Interp. 6.41E+10 3.97E+10 5.94E+10 1.81E+10 1.69E+11 

Ratio 

(spline/linear) 
20% 15% 11% 92% 22% 

RMS Ratio (between the 

axes) 
44% Reduction 56% 
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Figure 6.3: Implementation Results for a Gas Turbine Combustion Chamber Panel [Example #2]
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Table 6.3: Cycle Time Comparison between the Optimized Spline Trajectory and 
Linear Interpolation with Full Stops through Consecutive Holes (assuming 1 laser shot 

per hole) [Example #2] 

Cluster # No. Of Points Achievable Laser 

Frequency [Hz] 

Used Laser 

Frequency [Hz] 

Motion Duration 

[s] 

1 52 12.5354 7.00 7.286 

2 187 7.0331 7.00 26.571 

3 4 12.8865 7.00 0.428 

4 3 8.8729 7.00 0.286 

5 5 8.9156 7.00 0.571 

6 6 11.4755 7.00 0.714 

7 21 14.0305 7.00 2.857 

Total: 278  39.253 

 

Stitching 

Between 

Clusters 

Motion Duration 

[s] 

 
Total Duration for Clusters & 

Stitching [s]: 

1→2 0.750  39.253 + 2.875 = 42.128 

2→3 0.750   

3→4 0.500  Total Duration for Linear 

Interpolation (w/ full stops) [s] 4→5 0.375  

5→6 0.250  43.250 

6→7 0. 250   

Total: 2.875  [%] Time Reduction over Applying 

Linear Interpolation    

   2.59% 
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Table 6.4: Integral Square of Acceleration and Jerk Comparison between the 
Optimized Spline Trajectory and Linear Interpolation with Full Stops [Example #2] 

Time Integral Square of Acceleration 

 X-Axis 

[mm2/s3] 

Y-Axis  

[mm2/s3] 

Z-Axis  

[mm2/s3] 

A-Axis  

[deg2/s3] 

C-Axis 

[deg2/s3] 

Linear Interp. 7.47E+07 3.28E+07 9.74E+07 8.70E+05 4.25E+08 

Spline Interp. 3.64E+07 1.86E+07 5.07E+07 2.81E+06 2.28E+08 

Ratio 

(spline/linear) 
49% 57% 52% 323% 54% 

RMS Ratio (between the 

axes) 
152% Reduction -52% 

 

Time Integral Square of Jerk 

 X-Axis 

[mm2/s5] 

Y-Axis 

[mm2/s5] 

Z-Axis 

[mm2/s5] 

A-Axis 

[deg2/s5] 

C-Axis  

[deg2/s5] 

Linear Interp. 1.71E+11 7.45E+10 2.23E+11 2.10E+09 8.96E+11 

Spline Interp. 1.68E+10 1.11E+10 2.10E+10 4.02E+09 1.25E+11 

Ratio 

(spline/linear) 
10% 15% 9% 191% 14% 

RMS Ratio (between the 

axes) 
86% Reduction 14% 
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Figure 6.4: Implementation Results for a Gas Turbine Combustion Chamber Panel [Example #3]
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Table 6.5: Cycle Time Comparison between the Optimized Spline Trajectory and 
Linear Interpolation with Full Stops through Consecutive Holes (assuming 1 laser shot 

per hole) [Example #3] 

Cluster # No. Of Points Achievable Laser 

Frequency [Hz] 

Used Laser 

Frequency [Hz] 

Motion Duration 

[s] 

1 31 9.7696 8.00 3.750 

2 47 17.7263 8.00 5.750 

3 14 15.3273 8.00 1.625 

4 18 15.9436 8.00 2.125 

5 10 17.9208 8.00 1.125 

6 22 21.2392 8.00 2.625 

7 17 18.1845 8.00 2.000 

8 13 25.8700 8.00 1.500 

9 10 11.5334 8.00 1.125 

10 89 16.3960 8.00 11.000 

11 98 12.7519 8.00 12.125 

12 71 10.4779 8.00 8.750 

13 13 11.4290 8.00 2.750 

14 8 8.5072 8.00 0.875 

Total: 461  57.125 

 

Stitching 

Between 

Clusters 

Motion Duration 

[s] 

 
Total Duration for Clusters & 

Stitching [s]: 

1→2 0.125  57.125 + 2.625 = 59.750 

2→3 0.250   

3→4 0.250  Total Duration for Linear 

Interpolation (w/ full stops) [s] 4→5 0.250  

5→6 0.250  63.625 

6→7 0.125   
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7→8 0.250  
 

8→9 0.125  

9→10 0.250  [%] Time Reduction over 

Applying Linear Interpolation 10→11 0.125  

11→12 0.250  6.09% 

12→13 0.125   

13→14 0.250   

Total: 2.625    
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Table 6.6: Integral Square of Acceleration and Jerk Comparison between the 
Optimized Spline Trajectory and Linear Interpolation with Full Stops [Example #3] 

Time Integral Square of Acceleration 

 X-Axis 

[mm2/s3] 

Y-Axis  

[mm2/s3] 

Z-Axis  

[mm2/s3] 

A-Axis  

[deg2/s3] 

C-Axis 

[deg2/s3] 

Linear Interp. 8.68E+07 6.65E+07 1.86E+08 5.73E+06 2.37E+08 

Spline Interp. 6.59E+07 3.57E+07 8.23E+07 7.61E+06 2.12E+08 

Ratio 

(spline/linear) 
76% 54% 44% 133% 89% 

RMS Ratio (between the 

axes) 
85% Reduction 15% 

 

Time Integral Square of Jerk 

 X-Axis 

[mm2/s5] 

Y-Axis 

[mm2/s5] 

Z-Axis 

[mm2/s5] 

A-Axis 

[deg2/s5] 

C-Axis  

[deg2/s5] 

Linear Interp. 2.01E+11 1.68E+11 4.83E+11 1.36E+10 5.29E+11 

Spline Interp. 6.16E+10 4.51E+10 7.64E+10 1.29E+10 2.32E+11 

Ratio 

(spline/linear) 
31% 27% 16% 95% 44% 

RMS Ratio (between the 

axes) 
51% Reduction 49% 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis has presented a new and time-optimized trajectory generation technique for 

5-axis on-the-fly laser drilling operations. Axis level velocity, acceleration, and jerk limits of 

the feed drives have been considered, along with a cap on the x-y component of part velocity 

at each hole location, in order to limit hole elongation. Time-optimized trajectories were 

generated for pre-sequenced hole clusters using the algorithm developed in Chapter 4, and 

the individual clusters were joined together or looped onto themselves using the stitching 

algorithm explained in Chapter 5. Both the cluster trajectory optimization, and 

looping/stitching algorithms guarantee a feasible solution and provide a substantial 

improvement (~56%) in the motion smoothness compared to using direct linear interpolation 

between the target hole locations. This helps reduce the vibrations induced onto the laser 

optics, which also enables higher processing speeds to be realized. There is also a modest 

reduction in the cycle time (~%6), due to the avoidance of unnecessary accelerations and 

decelerations between the hole locations. The overall trajectory optimization algorithm has 

been validated on three different sample aerospace parts with 567, 278 and 461 holes, which 

need to be drilled on-the-fly while all 5-axes are moving in coordination. The simulation 

results and preliminary experiments conducted on-site at Pratt & Whitney Canada have 

validated the success of the algorithm. Currently, further testing and integration is underway 

to incorporate this algorithm into the manufacturing process for gas turbine combustion 

chamber panels. 

The solution sought in this thesis for on-the-fly laser drilling should be both easy and 

simple to implement, and also converge closely to an optimal solution, even if only local, 

with minimal restriction on the trajectory profile shape. 

The open loop laser drilling technique relies on the ability of the machine axis encoders 

and closed loop positioning controllers to follow given trajectories within error tolerances. 

Each machine axis is controlled individually and the tracking errors need to be well within 

hole drilling procedure tolerances.  Drilled parts are inspected after initial experiments and 
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tests are then approved for final drills and part duplications. Future work may incorporate a 

closed loop error tracking techniques to eliminate the uncertainty of propagating errors 

during the drilling process and increase the robustness of the used trajectory generation 

algorithm.  

Current industrial machine tool controllers do not provide any specialized optimal 

trajectory generation algorithms that are suitable for 5-axis on-the-fly laser drilling. 

Furthermore, trajectory optimization techniques published in literature prior to this work 

have mainly focused on contour following applications or point-to-point motion (with 

variable intervals in between), and have not tackled the trajectory optimization problem for 

on-the-fly laser drilling. Hence, this thesis has clearly advanced the state-of-the-art in this 

field. As verified in simulation results, the resulting trajectories not only allow shorter motion 

cycles times to be achieved, by also reduce the integral square of jerk by typically 50-60%, 

thereby allowing the process speed to be pushed up even further without vibrating the laser 

optics. 

  

7.2 Research Summary 

The objective of this research was to generate optimized 5-axis acceleration continuous 

trajectories to produce on-the-fly laser drilled parts in minimal time, i.e. at maximum firing 

frequency. Hole cluster data is provided by the CAD/CAM software as different drilling 

zones. Each cluster should ideally be produced at a constant laser pulsing frequency. The 

constraints in this research are the axes velocity, acceleration, jerk limits and the X-Y 

component of part velocity at hole locations (to limit hole elongation).  

Trajectory optimization for each cluster is achieved by formulating the time-optimal 

trajectory as quintic segments:  
5 4 3 2x At Bt Ct Dt Et F= + + + + +  

and following four optimization steps:  

1. Fitting a minimum-snap (i.e. 4th derivative) quintic profile through the given points 

to obtain an initial sub-optimal guess:  
24 2

( )
40 0

,  ,  , ( )     ( )
,  ,  

T T IVA B C d x tFind to Minimize dt x t dt
D E F dt

∑ ∑⎡ ⎤⎧ ⎫
⎡ ⎤⇒ =⎨ ⎬ ⎢ ⎥ ⎣ ⎦

⎩ ⎭ ⎣ ⎦
∫ ∫
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2. Applying appropriate time scaling to bring all profiles into their given limits.  

3. Optimizing velocity and acceleration boundary conditions (1st and 2nd derivative 

boundary conditions) at hole locations to allow for further time compression by 

finding the lower possible value of α , the time scaling factor: 
1/1/2

1 1
max max ,max max max

1/3

1
max max

,

( )( ) ( ) ( ) ( )

( ) ( )

p
pp p p p

n nxy
k k

xy

p p
n

k

as p

v kx k c k x k c k
x c v x c

x k c k
x c
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= =

=

⎧ ⎫⎛ ⎞ ⎡ ⎤⎛ ⎞⎪ ⎪⎜ ⎟ ⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟ ⎢ ⎥⎜ ⎟
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4. Applying the new time scaling indicated by α . 

Looping and stitching of clusters is realized with nonzero position and velocity 

connections using jerk and acceleration limited time-optimal segments.   

 

7.3 Future Work 

The developed algorithm solves each cluster as a whole (by optimizing each cluster of 

holes as one complete set). Future work needs to focus on achieving the solution in moving 

windows, so that trajectories for clusters with larger numbers of holes can be efficiently 

broken down into smaller sub-clusters and optimized without requiring excessive off-line 

computation time. 

 In addition, the hole sequencing currently applied in the CAD/CAM software was found 

to be one of the major bottlenecks that limited the achievable laser pulsing frequency. New 

sequencing techniques need to be investigated, similar to the Traveling Salesman approach, 

which will work concurrently with the trajectory optimization algorithm developed in this 

study to yield further cycle time reduction compared to what was achieved with the pre-set 

hole sequence used in this thesis. 

Incorporating dynamics will be necessary when incorporating algorithms that need to 

determine joint values (for rotary axes) and linear positions (for prismatic axes) and track 

position accuracies through closed loop controls after reading positions from the optimized 

trajectories.  
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Future optimization approaches will also include finding the optimal hole clusters (group 

of holes) to be drilled. This variable clustering of holes constrained by machine kinematics, 

coupled with finding the appropriate and optimized sequence of holes per cluster while 

considering other groups of holes, will be explored and is expected to provide further laser 

drilling cycle time reductions.  

Furthermore, there is significant interest in the exploration of the theoretical globality of 

the solution. This is a very significant academic challenge, therefore, methods such as 

interval analysis, will be considered, which have been shown useful in finding global 

minimums. 

 

7.4 Other Laser Drilling Applications 

The high laser drilling peak power coupled with short pulse widths creates a perfect 

beam, which offers very good drilling capabilities in thin sheets, ceramics and silicon. The 

optics configuration can also be changed to achieve a different spot size, required for drilling 

various hole diameters. Thus, the high power drilling laser can be used for on-the-fly rock 

drilling applications, drilling of flow filters and strainers, sub-micron drilling in flexography 

ceramic rolls, high speed drilling of guide vanes, hole drilling of silicon, drilling diamonds 

for removing imperfections and on-the-fly drilling of cooling holes. The high peak and 

energy/pulse can also be used for drilling thick metals.  
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Appendix A:  

5-Axis Laser Drilling Machine Kinematic Analysis 

A.1 Kinematic Transformation 

A diagram of the 5-axis kinematics is shown in Figure A.1.  

 
Figure A.1: 5-Axis Machine Coordinate Transfer Frames 

 

The following coordinate systems (C.S's) are considered:  

C.S.0 ( 0 0 0 0O x y z ): This frame is fixed to the machine base, its axes are parallel to the 

translating joints of the machine. 
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C.S.1 ( 1 1 1 1O x y z ): Attached to the moving X-Y stage, 1x and 1y  are parallel to the 0x  

and 0y  axes. The center of frame ( 1O ) is located at mid-point of the 

tilt axis. 

C.S.2 ( 2 2 2 2O x y z ): 2O  and 2z  are identical to 1O  and 1z . C.S.2 is obtained by rotating 

C.S.1 around its x-axis ( 1x ) by Aθ . 

C.S.3 ( 3 3 3 3O x y z ): 3x , 3y  and 3z  are identical to 2x , 2y , and 2z . This frame is 

obtained by translating C.S.2 by "d" along its z-axis ( 2z ). The value 

for "d" can be negative or positive depending on the workpiece 

fixture being used.  

C.S.4 ( 4 4 4 4O x y z ): 4O  and 4z  are identical to 3O  and 3z . This frame is obtained by 

rotating C.S.3 around its z-axis ( 3z ) by Cθ . 

C.S.5 ( 5 5 5 5O x y z ): This frame is parallel to C.S.4. Its origin ( 5O ) is translated to 

coincide with the hole being drilled on the workpiece. 

C.S.6 ( 6 6 6 6O x y z ): This frame is parallel to C.S.0 ( 0 0 0 0O x y z ) and is fixed at the laser 

focal point. 

Vector 4P : Position vector of current hole location on the workpiece defined in 

reference to C.S.4.  

 

The transformation from C.S.1 to C.S.4 is as follows: 

14 12 23 34 , ,,

:
:

A Cx zz dH H H H Rot Trans Rot

Rot Rotational Matrix
Trans Translational Matrix

θ θ= =

 

Calculating each transformation matrix from 0O  to 5O  yields:  

4

2301 4512 34

05 , , ,,A Cx y Px zz d

HH HH H

H Trans Rot Trans Rot Transθ θ=
1424314243 14243123 123

 

In order to solve for the transformation matrix 05H , the in-between transformations 01H , 

12H , 23H , 34H  and 45H  need to be calculated. In the following calculations { , , }X Y Z  

represent X, Y and Z values read from the NC file. Also, 4 sin AS θ= , 4 cos AC θ= , 

(A.1) 

(A.2) 
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5 sin CS θ= , 5 cos CC θ=  and { , , }h h hx y z  represent hole coordinates ( 4P ) in C.S.4. 

Therefore,  

3
01 0

0 0 0 1

X
I Y

H

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦      

4 4
12

4 4

1 0 0 0
0 0
0 0
0 0 0 1

C S
H S C

⎡ ⎤
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦      

3
23

0
0

0 0 0 1

I
H d

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

5 5

5 5
34

0 0
0 0

0 0 1 0
0 0 0 1

C S
S C

H

−⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦      

3
45

0 0 0 1

h

h

h

x
I y

H z

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hence, 05H  can be composed as: 

3 4 4 4 4
02 01 12

4 4 4 4

1 0 0 0 1 0 0
0 0 0

0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1

X X
I Y C S C S Y

H H H S C S C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

4 4 4 4 4
03 02 23

4 4 4 4 4

1 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

X X
C S Y C S Y d S

H H H S C d S C d C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

5 5 5 5

4 4 4 5 5 4 5 4 5 4 4
04 03 34

4 4 4 4 5 4 5 4 4

1 0 0 0 0 0
0 0 0
0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

X C S C S X
C S Y d S S C C S C C S Y d S

H H H S C d C S S S C C d C

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

5 5 5 5 05

4 5 4 5 4 4 4 5 4 5 4 05
05 04 45

4 5 4 5 4 4 4 5 4 5 4 05

0 1 0 0 0
0 1 0
0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

h

h

h

C S X x C S X
C S C C S Y d S y C S C C S Y

H H H S S S C C d C z S S S C C Z

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥∴ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The position of the hole location ( 5O ) on the workpiece ( 05 05 05, ,X Y Z ) with respect to the 

machine reference frame ( 0 0 0 0O x y z ) can be calculated with the following equations: 
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05 5 5h hX X x C y S= + −  

05 4 4 5 4 5 4h h hY Y d S x C S y C C z S= − + + −  

05 4 5 5 4( ) ( )h h hY Y C x S y C S d z= + + − +  

05 4 5 4 5 4 4h h hZ x S S y S C z C d C= + + +  

405 5 5 4( ) ( )h h hS x S y C C dZ z= + + +  

Remembering that 4 cos AC θ= , 4 sin AS θ= , 5 cos CC θ= , 5 sin CS θ= ,  

05 cos sinh C h CX X x yθ θ= + −  

05 cos ( sin cos ) sin ( )A h C h C A hY Y x y d zθ θ θ θ= + + − +  

05 sin ( sin cos ) cos ( )A h C h C A hZ x y z dθ θ θ θ= + + +  

The z-axis motion with respect to machine base can be expressed as:  

3
06

0
0

0 0 0 1

z

I
H Trans Z

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Hence, the hole motion with respect to laser head focal point can be obtained as:  

( ) 1
65 60 05 06 05H H H H H−= =  

5 5 05 5 5 05

4 5 4 5 4 05 4 5 4 5 4 05
65

4 5 4 5 4 05 4 5 4 5 4 05

1 0 0 0 0 0
0 1 0 0
0 0 1
0 0 0 1 0 0 0 1 0 0 0 1

C S X C S X
C S C C S Y C S C C S Y

H Z S S S C C Z S S S C C Z Z

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

∴ 

 

65 05X X=  

65 05Y Y=  

65 05Z Z Z= −  

 

 

(A.3) 

(A.4) 
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A.2 Reconstruction of Hole Position Data from NC Code 

With the knowledge that every hole is to be drilled at the laser focus point ( 65 0X = , 

65 0Y = , 65 0Z = ), it is possible to re-construct the position of each hole ( )4 , ,h h hP x y z=  in 

the workpiece coordinate system, using hole data contained in the NC (Numerical Control) 

file:   

65 cos sin 0h C h CX X x yθ θ= + − =  

65 cos ( sin cos ) sin ( ) 0A h C h C A hY Y x y d zθ θ θ θ= + + − + =   

65 sin ( sin cos ) cos ( ) 0A h C h C A hZ x y z d Zθ θ θ θ= + + + − =  

Isolating unknown variables:  

cos sin 0
cos sin cos cos sin
sin sin sin cos cos

C C h

A C A C A h

A C A C A h

x X
y Y

d z Z

θ θ
θ θ θ θ θ
θ θ θ θ θ

•

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

{
65 05

5 5

4 5 4 5 4

4 5 4 5 4

0 h

h

h

KnownR R Unknown

C S x X
C S C C S y Y
S S S C C d z Z

=

•

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦144424443 14243

 

Noting that 1
05 05

TR R− =  (property of rotation matrices), also noting that 05 ( , )A CR θ θ , the 

unknowns can be calculated as: 

 

∴ 05

h
T

h

h

x X
y R Y

d z l Z

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

 

 

A sample implementation of this solution is shown in Figure A.2 and Figure A.3. Figure 

A.2 shows the x-y-z axes coordinates programmed in the NC code for the machine's axes and 

Figure A.3 show the re-constructed hole locations on the workpiece, by applying the 

transformation in Eq. (A.7). This transformation has also been used for visualizing the path 

of the laser focal point on the workpiece coordinates (C.S.4).  

 

(A.6) 

(A.7) 

(A.5) 
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Figure A.2: NC File X, Y, Z Data Denoting Hole Locations  

 

 

 
Figure A.3: Workpiece Hole Locations in C.S.4 
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A.3 Part Velocity Component at Hole Location Orthogonal to the Laser Beam 

 After successfully calculating the hole locations hx , hy and hz  with respect to C.S.4, it 

is possible to calculate the part velocity with respect to the laser focal point at hole locations.  

By differentiating Eq. (A.5) with respect to time, we obtain: 

65 sin cosh C C h C Cx X x yθ θ θ θ• •= − −& &&&  

{ ( )
* *

65

*

1 sin cosh C h C Cx X x yθ θ θ•= − − &&&
144424443

 

Note that *  and ** , in Eq. (A.8) represent terms in the 5-axis machine Jacobian matrix.   

Similarly for the y-axis: 

( )
( )
( )

65 cos cos sin

sin sin cos

cos
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A A h C h C

A A h

y Y x y

x y
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θ θ θ θ
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( ) ( )

65 cos cos sin

sin sin cos cos
A C h C h C

A A h C h C A h

y Y x y

x y d z

θ θ θ θ

θ θ θ θ θ

• •

•

= + −
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and for z-axis: 

( )
( ) ( )

65 sin cos sin

cos sin cos sin
A C h C h C

A A h C h C A h

z Z x y

x y d z

θ θ θ θ

θ θ θ θ θ

• •

•

= − + −

+ + − +⎡ ⎤⎣ ⎦

&&&

&
 

The X-Y plane velocity governing hole elongation during drilling the operation can be 

obtained as: 

2 2
65 65xyV x y= +& &  

 

(A.8) 

(A.9) 

(A.10) 

(A.11) 
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Appendix B:  

Minimum-Snap Quintic Spline Trajectory Generation 

The detailed mathematical derivation to achieve a minimum-snap trajectory is provided. 

Due to the flexibility and ease of parameterization, and for acceleration continuity, a quintic 

spline has been chosen as the basis curve. Subsequently, the laser position, velocity, 

acceleration, jerk and snap profiles for the kth segment in the x-axis are expressed in Eq. 

(B.1): 

( ) 5 4 3 2
k k k k k k kx t A t B t C t D t E t F= + + + + +  

( ) 4 3 25 4 3 2k k k k k kx t A t B t C t D t E= + + + +&  

( ) 3 220 12 6 2k k k k kx t A t B t C t D= + + +&&             ,       kTt ≤≤0  

( ) 260 24 6k k k kx t A t B t C= + +&&&  

( ) ( ) 120 24IV
k k k kx t x t A t B= = +&&&&  

(B.1)

Above, kT  is the segment duration. The objective function for minimizing the integral 

square of snap for the kth segment is given in Eq. (B.2): 
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(B.2)

Above, the vector [ ]Tk k k k k k kA B C D E F=θ  contains the parameters (segment 

quintic equation coefficients) of the kth segment. Considering that within a cluster, all 

segments will have the same duration which is equal to the laser pulsing period (i.e. 
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TTTT N ==== K21 ), the minimum-snap objective function for a cluster of N  segments 

can be expressed as,  
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The position profile has to pass through the hole locations { 1X , 2X ,..., 1+NX } at 

instances designated by the segment durations. For the kth segment, the following position 

boundary conditions need to hold: 

1)(   ,   )0( +== kkkk XTxXx  (B.4)

Using Eq. (B.1), this can be written in matrix from as,  
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The knot position constraints from all segments can be grouped together as,  
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(B.6)

The velocity, acceleration, and jerk continuity constraints at the knot joining the kth and 

k+1st segments can be written as: 

1 1

1 1

1 1
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Substituting the expressions for )(txk& , )(txk&& , and )(txk&&&  from Eq. (B.1) into (B.7) results 

in,  
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The derivative continuity conditions can be grouped together as, 
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(B.9)

If initial conditions of velocity ( 0X& ), acceleration ( 0X&& ), and jerk ( 0X&&& ) are provided at 

the beginning of the first segment, they can be included into the formulation as 01 )0( Xx && = , 

01 )0( Xx &&&& = , and 01 )0( Xx &&&&&& = . This can be expressed in matrix form using Eq. (B.1):  
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Similarly, if final conditions of velocity ( fX& ), acceleration ( fX&& ), and jerk ( fX&&& ) are 

provided at the end of the last segment, they can be included into the formulation as 

fN XTx && =)( , fN XTx &&&& =)( , and fN XTx &&&&&& =)( . In matrix form, using Eq. (B.1), this 

becomes:  
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The knot position, 1st, 2nd, and 3rd derivative continuity, and initial and final boundary 

condition constraints obtained in Eqs. (B.6), (B.9), (B.10), and (B.11) are stacked together in 

the form:  
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The minimum-snap trajectory optimization problem subject to the constraints in Eq. 

(B.12) can be written as,  
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Introducing the vector of Lagrange multipliers, T
N ],,,[ 3521 +ΛΛΛ= KΛ , the augmented 

objective function can be written as,  

))(()(
2
1),(' ξθLΛθKθΛθ −+= TTS TT  (B.14)

Equating the partial derivates to zero ( 0/' =∂∂ θS and 0/' =∂∂ ΛS ) yields the linear 

equation system,  
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which has full rank as long as the segment duration is nonzero. Solution of the above linear 

equation system yields the coefficients θ  of the minimum-snap profile complying with all of 

the imposed constraints. Following the solution of Eq. (B.15), the position, velocity, 

acceleration, and jerk profiles can be generated using Eq. (B.1).  

Other Profile-Optimized Trajectory Fittings: The mathematical derivation for the 

minimum-snap trajectory can also be applied for minimizing other similar objective 

functions. A different objective function that includes the integral square of normalized jerk, 

acceleration and velocity can expressed in the form: 
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By expanding the ( )2( )x t&&& , ( )2( )x t&& , ( )2( )x t&  terms in Eq. (B.16) and performing the 

integrals, jK , aK , vK  can be found as:   
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Appendix C:  

Effect of Uniform Time Scaling on the Derivative Profile 

 

 
Figure C.1: Effect of Time Scaling a Function on its Derivative Profile 

 

Considering that the position profile can be expressed as a function of time (i.e., 

( )x f t= ), scaling the time variable by α  will modify the position profile to become 

( ) ( / )g t f t α= . In the following, it is analytically verified that this will also scale the velocity, 

acceleration, and jerk profiles by 1α , 21 α , and 
31 α : 

2 3

1 1 1
( ) ( / ) , ( ) ( / ) , ( ) ( / )g t f t g t f t g t f tα α α

α α α
= = =& && &&&& && &&&  (C.1)

Given a function ( )f t , as shown in Figure C.1, define an input (time) scaled function:  

)/()( α= tftg (C.2)

for the scaling factor 0α > . At a particular value of time: t t∗= , it can be shown that: 

( ) ( / )g t f t α∗ ∗= . The objective is to find: 
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For any value of time ( tt =* ), verifying the velocity scaling identity in Eq. (C.1), we 

have:  
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Therefore,  

2 2 2( ) ( / ) ( ) ( / ) Acceleration scaling by 
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And, for the jerk profile: 
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Therefore,  

3 3 3( ) ( / ) ( ) ( / ) Jerk scaling by 
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