

AN ABSTRACT OF THE DISSERTATION OF

Shingo Tajima for the degree of Doctor of Philosophy in Robotics and Mechanical

Engineering presented on June 7, 2019.

Title: Smooth Trajectory Generation for Machine Tools and Industrial Robots.

Abstract approved: __

Burak Sencer

This thesis presents accurate and time-optimal smooth reference trajectory generation

techniques for manufacturing equipment such as high-speed machine tools (MT) and

industrial robots (IR). Typical machining tool-paths for MTs and IRs are defined as a series

of discrete linear moves. Although Point-to-Point (P2P) feed motion can be generated by

interpolating each linear segment with high-order velocity profiles, the continuous and

accurate transition between consecutive segments is necessary to realize a non-stop

contouring motion for efficient manufacturing. To generate continuous feed motion along

sharp cornered tool-paths, most numerical control (NC) systems blend (smooth) corners

locally using various curves and splines. The feed (speed) is reduced around the blend

sections so that the motion system’s kinematic limits are respected. This thesis proposes 2

novel techniques to enable modern MT and IR to generate non-stop rapid motion along

discrete tool-paths. Firstly, a Kinematic Corner Smoothing (KCS) technique has been

proposed to generate time-optimal (minimum time) motion trajectories in a real-time

within axis kinematic limits. A novel real-time interpolation technique based on Finite

Impulse Response (FIR) filtering has also been proposed to suppress residual vibrations

for high positioning accuracy of machine tools and motion systems as well. These two

techniques are tailored for Cartesian structured motion systems such as 2-3 axis machine

tools. Finally, a decoupled FIR filtering technique has been developed to synchronously

interpolate tool position and orientation for accurate motion generation for 5-axis MTs and

IRs. These techniques are computationally lightweight and suitable for real-time

implementation on modern NC systems. Simulation and experimental validation on

Cartesian and 5-axis machine tools are presented to validate the effectiveness of the

developed algorithms to interpolate along with discrete commands for high-speed and

high-accuracy motion.

©Copyright by Shingo Tajima

June 7, 2019

All Rights Reserved

Smooth Trajectory Generation for Machine Tools and Industrial Robots

by

Shingo Tajima

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented June 7, 2019

Commencement June 2019

Doctor of Philosophy dissertation of Shingo Tajima presented on June 7, 2019.

APPROVED:

Major Professor, representing Robotics and Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my dissertation to

any reader upon request.

Shingo Tajima, Author

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my adviser, Dr. Burak Sencer, for

providing guidance and support throughout my studies. His hardworking and enthusiastic

approach to his work is inspiring, and it has been a pleasure working with him.

I wish to thank my colleagues at Manufacturing Process Control Laboratory, as

well as the faculty and staff of School of Mechanical, Industrial and Manufacturing

Engineering.

Finally, I would like to gratefully acknowledge the support of my family and friends

in my graduate studies.

CONTRIBUTION OF AUTHORS

Dr. Eiji Shamoto assisted as supervising of writing of Chapter 4.

TABLE OF CONTENTS

Page

1. Introductions ... 1

2. Kinematic Corner Smoothing for high speed machine tools 5

2.1. Introduction .. 6

2.2. Kinematic corner smoothing problem .. 8

2.2.1. Jerk Limited Acceleration Profile ... 10

2.2.2. Kinematic corner smoothing (KCS) with interrupted acceleration 15

2.2.3. Kinematic corner smoothing (KCS) with uninterrupted acceleration 20

2.3. Illustrative example and experimental validation .. 24

2.3.1. Illustrative example ... 24

2.3.2. Experimental results.. 30

2.4. Conclusions .. 36

3. Global tool-path smoothing for CNC machine tools with uninterrupted acceleration .

 ... 37

3.1. Introduction .. 38

3.2. One-step local corner smoothing with acceleration uninterrupted kinematics .. 42

3.3. Global feed planning along short-segmented tool-paths with uninterrupted

acceleration ... 49

3.3.1. Motion planning along separated corners ... 50

3.3.2. Motion planning along overlapping corners ... 59

3.4. Illustrative examples .. 62

3.5. Experimental results ... 64

3.6. Conclusions .. 74

TABLE OF CONTENTS (Continued)

Page

4. Accurate interpolation of machining tool-paths based on FIR filtering 75

4.1. Introduction .. 76

4.2. Online trajectory generation based on FIR filtering ... 79

4.2.1. Generation of high order kinematic profiles ... 79

4.2.2. Frequency shaping of interpolated trajectories ... 86

4.2.3. FIR based interpolation of linear and circular paths 88

4.3. Multi-segmented tool-path interpolation strategy .. 92

4.3.1. Contour error control during non-stop linear interpolation 95

4.3.2. Control of contour errors during non-stop linear and circular interpolation ..

 ... 98

4.4. Illustrative example .. 101

4.5. Experimental validation ... 104

4.5.1. Setup and implementation... 104

4.5.2. Experimental results.. 105

4.6. Conclusions .. 111

5. Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing 113

5.1. Introduction .. 114

5.2. Point-to-point (P2P) linear interpolation of 5-axis tool-paths 118

5.2.1. FIR filtering based real-time interpolation ... 119

5.2.2. Real-time point to Point (P2P) interpolation of 5-axis toolpaths 121

5.2.3. Illustrative example ... 125

TABLE OF CONTENTS (Continued)

Page

5.3. Non-stop linear interpolation of 5-axis tool-paths with local corner blending 126

5.3.1. Non-stop interpolation based on dwell-time controlled blending (NS-DCB)

 ... 127

5.3.2. Non-stop interpolation based on Velocity Controlled blending (NS-VCB) ...

 ... 135

5.3.3. Illustrative examples ... 140

5.4. Experimental results ... 144

5.5. Conclusions .. 151

6. Conclusions ... 153

Bibliography ... 155

LIST OF FIGURES

Figure Page

1.1: Interpolation of linear segments with corner smoothing technique. 2

1.2: Frequency response model... 3

1.3: Discrete tool pose motion interpolation of 5-axis CNC machines. 4

2.1: Sharp corner smoothing of discrete tool-paths. ... 10

2.2: Kinematic corner smoothing (KCS) strategy with interrupted acceleration. 10

2.3: Jerk limited acceleration profile (JLAP). ... 15

2.4: Kinematic corner smoothing with uninterrupted acceleration. 24

2.5: Right-handed Sharp Corner Smoothing using KCS method with Interrupted

acceleration. .. 26

2.6: Right-handed Sharp Corner Smoothing using KCS method with Uninterrupted

acceleration. .. 27

2.7: Obtuse corner smoothing using KCS with interrupted and uninterrupted acceleration

profiles... 28

2.8: Acute corner smoothing based on KCS with interrupted and uninterrupted acceleration

profiles... 29

2.9: Cycle time performance of KCS with interrupted and uninterrupted acceleration

profiles... 30

2.10: Experimental setup. ... 31

2.11: Experimental multi-segmented tool-path... 32

2.12: Kinematic profiles along corner smoothened tool-path. .. 33

2.13: Experimentally recorded contouring performance. ... 35

3.1: Interpolation of discrete tool-paths with corner smoothing. 39

3.2: Acceleration uninterrupted kinematic corner smoothing (AU-KCS) strategy. 43

3.3: Obtuse and acute corner smoothing using AU-KCS. .. 48

3.4: Look-ahead windowing (LAW) based motion planning strategy. 50

3.5: Separate (Local) and overlapping cornering geometries. .. 51

3.6: Jerk limited acceleration profile (JLAP). ... 51

3.7: Feed adjustment in-between local corners. .. 56

LIST OF FIGURES (Continued)

Figure Page

3.8: Overlapping corner smoothing strategy. .. 62

3.9: Right-Handed Consecutive Corner Smoothing Using Local and Overlapping

Cornering Interpolation Techniques. .. 64

3.10: Experimental Planar Motion Platform. .. 65

3.11: Short-segmented Spiral tool-path. ... 67

3.12: Kinematic profiles along spiral tool-path. .. 68

3.13: Experimentally recorded contouring errors. .. 68

3.14: “Heart” Shaped Short-Segmented Tool-Path. ... 70

3.15: Kinematic profiles along heart shaped tool-path. .. 72

3.16: Contour error analysis. ... 73

4.1: Impulse response of a 1st order FIR filter.. 80

4.2: FIR filtering based smooth trajectory generation. ... 81

4.3: Trapezoidal velocity profile generated by single FIR filter. 83

4.4: Trapezoidal acceleration profile generated by 2 FIR filters. 86

4.5: Frequency response of FIR filter. .. 88

4.6: Multi-axis interpolation based on FIR filtering. .. 89

4.7: Circular interpolation and corresponding velocity profiles. 92

4.8: Overall path interpolation strategy. ... 93

4.9: Kinematic profiles during contouring motion. ... 94

4.10: Axis kinematic profiles during segment transition. ... 98

4.11: Linear to circular interpolation transition. ... 99

4.12: Feed direction during circular and linear transitions. .. 101

4.13: FIR based interpolation of multi-segmented path.. 103

4.14: Experimental XY motion platform. ... 104

4.15: Clover shaped tool-path. .. 106

4.16: Interpolated kinematic profiles along clover shaped tool-path. 107

4.17: Contour errors during clover tool-path. ... 107

4.18: Starfish shaped tool-path. ... 109

LIST OF FIGURES (Continued)

Figure Page

4.19: Interpolated kinematic profiles along starfish shaped tool-path. 110

4.20: DFT of interpolated axis acceleration profiles. .. 110

4.21: Experimentally measured beam accelerations. .. 111

4.22: DFT of beam accelerations. ... 111

5.1: 5-Axistool-pathinterpolation. ... 117

5.2: Jerk limited trajectory generated by FIR filtering. .. 121

5.3: Point to Point (P2P) tool-motion interpolation. ... 124

5.4: P2P interpolation example. .. 126

5.5: Overall Non-stop Interpolation of 5-axis Tool-paths based on Dwell-time Control

Strategy. .. 128

5.6: TCP blending error control. ... 131

5.7: ORI blending error control. ... 135

5.8: TCP and ORI blending kinematics based on velocity control. 136

5.9: Blending velocity calculation flow chart. .. 140

5.10: Non-stop interpolation illustrative example. ... 142

5.11: Benchmark between NS-DCB and NS-VCB schemes. ... 144

5.12: Experimental 5-axis machine tool. .. 145

5.13: Star shaped tool-path. .. 146

5.14: Interpolated kinematic profiles along star shaped tool-path. 149

5.15: Interpolated tool motion kinematic profiles along star shaped tool-path. 149

5.16: Interpolated axis kinematic profiles along star shaped tool-path. 150

5.17: Experimental contouring errors. .. 151

LIST OF TABLES

Table Page

2.1: Cycle time and contouring performance comparison. ... 35

3.1: Cycle time and contouring performance comparison along spiral tool-path. 69

3.2: Cycle time and contouring performance comparison. ... 73

5.1: Single corner tool-path pose points. .. 142

5.2: Shaped tool-path points. .. 147

1

1. Introductions

Rapid and accurate interpolation of machining tool paths is a broad problem for

modern production machinery such as machine tools (MTs) and industrial robots (IRs).

Reference tool-paths for those manufacturing equipment are planned by discrete linear

moves, or set of waypoints [1], [2]. Once this polygonal tool-path is commanded, modern

numerical control (NC) systems try to interpolate continuous tool motion. Nevertheless,

discrete nature of the tool-path limits generation of smooth and accurate motion trajectories,

and it is a major bottleneck in achieving higher manufacturing efficiency and productivity.

3 major challenges are tacked in this thesis on the interpolation of discrete tool-paths;

namely, time optimal blending of polygonal tool-paths, mitigation of unwanted vibrations,

and development of computationally efficient real-time algorithms.

High-speed and high-accuracy are the two key targets in modern manufacturing.

Corner smoothing (path blending) is one way to generate non-stop smooth tool motion

along discrete linear machining tool-paths. Figure 1.1 illustrates application of corner

smoothing. The interpolation of consecutive Point-to-Point (P2P) moves must be

controlled precisely within the manufacturing tolerances. Furthermore, since most part

programs in die-and-mold and aerospace industrial consist of thousands of discrete points,

time-optimal path-blending is critical for productivity. In robotics literature, path-blending

problem is addressed with spline interpolation techniques [3], [4]. Although, spline

interpolation can provide smoother kinematic profiles, control of path errors is difficult and

generation of time optimal feed profiles is computationally expensive for real-time

implementation. Hence, the use of spline interpolation in limited. Instead, manufacturing

and machine tool literature has been focusing on computationally lightweight time-optimal

corner smoothing techniques [5]–[8].

2

Figure 1.1: Interpolation of linear segments with corner smoothing technique.

In addition to controlling geometric path blending errors, vibrations that originate

due to the structural flexibilities in the manufacturing equipment is another source of errors

[9]. Figure 1.2 illustrates frequency response model in the time domain (t) and frequency

domain (ω). Forced vibrations are either induced by process forces due to interaction of

machine with the manufacturing process, or by the reference trajectory as the machine

accelerates and decelerates along the tool-path. Typically, high-speed motion trajectories

demand high acceleration from axes in motion [10]. This, in return, generates large inertial

reaction forces on the machine structure. Frequency content of inertial forces can excite

resonances on the machine and cause unwanted forced vibrations which can deteriorate

positioning accuracy of MTs or the IRs, and hence the manufacturing quality [11].

3

Figure 1.2: Frequency response model.

Accurate blending of discrete moves for 5-axis CNC machines is another

challenging problem [12]. Figure 1.3 illustrates interpolation of the discrete tool pose

motion of 5-axis CNC machines. As compared to the 3-axis Cartesian machine tools, 5-

axis machines can alter tool orientation in synch with the tool-tip during simultaneous 5-

axis machining. This functionality enables them to machine complex sculptured surfaces

faster and achieve significantly better finish quality. The tool-path contains both

translational motion of the tool center point (TCP) and the rotational motion of the tool

axis orientation (ORI). Both the translational motion of the tool in Cartesian coordinates

and the tool orientation in spherical coordinates [13] must be blended continuously [14] in

a synchronized matter [15].

4

Figure 1.3: Discrete tool pose motion interpolation of 5-axis CNC machines.

The thesis deals with accurate and time-optimal smooth reference trajectory

generation and is organized as follows: The kinematic corner smoothing (KCS) technique

for optimal accurate motion planning are presented in Chapter 2. This KCS technique is

extended in Chapter 3 to generate a smooth motion planning along short-segmented tool-

paths. The FIR filtering based trajectory generation technique for non-vibration is accurate

motion are presented in Chapter 4. The FIR filtered based tool orientation blending

technique for tool pose motion blending is presented in Chapter 5. Finally, conclusions are

expressed in Chapter 6.

5

Kinematic Corner Smoothing for high speed machine tools

Shingo Tajima and Burak Sencer

International Journal of Machine Tools & Manufacture

Volume 108, September 2016, Pages 27-43

6

2. Kinematic Corner Smoothing for high speed machine tools

This paper presents a novel kinematic corner smoothing technique for high-speed CNC

machine tools. Typically, reference tool-paths compromised of short G01 moves are

geometrically smoothed by means of arcs and splines within the NC system. In this study,

a continuous feed motion is generated by directly planning jerk limited velocity transitions

for the drives in the vicinity of sharp corners of the tool-path. This approach completely

eliminates the need for geometry based path smoothing and feed planning. Contouring

errors at sharp corners are controlled analytically by accurately calculating cornering speed

and duration. Since proposed approach bases on kinematically planning axis motion

profiles, it exploits acceleration and jerk limits of the drives and delivers a near-time

optimal motion. Experimental validation and comparisons are presented to show

significant improvement in the cycle time and accuracy of contouring Cartesian tool-paths.

2.1. Introduction

CAD systems are utilized to design complex geometries based on smooth curves

such as NURBS or B-splines [16]. Direct interpolation of these curves is proven to be

superior in terms of providing smoother and faster motion in high-speed machining [17],

[18]. However, most CNC machines are not capable of efficiently interpolating higher

order parametric curves in real-time. Accurate calculation of curve lengths [19], planning

of time efficient feed profiles [20]–[22] suppression of feed fluctuations [4] and control of

chord errors during real-time interpolation are major bottlenecks still being addressed both

by academia and NC builders. Instead, CAM systems are aided to discretize original

smooth part geometry with numerous short line segments, and NC systems are fed with

linear “point-to-point” motion commands. Interpolating paths compromised of linear

segments limits productivity. Since linear moves are not continuous, motion has to stop at

junction points of linear segments, i.e. corners, leading elongated cycle times and

generating rough, cornered surface finishes [23].

7

Local “corner blending (smoothing)” techniques have been proposed to achieve

non-stop continuous motion [5], [24]. The idea is well-known and straightforward. In order

to realize a continuous transition between consecutive linear segments, sharp corner is

replaced with a smooth blending curve by the NC system. As a result, the corner is no

longer sharp, and reference path deviates from the original geometry. As a matter of fact,

this deviation is not detrimental during high-speed machining since sharp corners are rarely

executed in roughing or semi finishing operations. Instead, corners are programmed to be

traversed continuously, subject to manufacturing tolerance constraints and kinematic limits

of the machine [25]. Thus, key requirements in continuous cornering are continuity [23],

accuracy [26] and speed [27].

Current literature solves corner smoothing problem in two steps, namely; curve

fitting followed by feed profile planning. First, corner geometry is smoothed by fitting a

highly continuous curve under user specified cornering tolerances. Jouaneh et. al. [5]

replaced the corner with a circular arc for fast cornering. However, a circular arc only

delivers velocity continuous (C1) motion transition. Later they used two clothoid curves to

realize acceleration continuous (C2) motion transition [24]. Yutkowitz and Chester [6]

utilized two quartic splines to generate curvature continuous cornering geometry within

user-specified tolerances. Sencer et al. [8] solved curve fitting problem with a single

Quintic Bezier curve and others [7], [28], [29] used B-spline curves to control both corner

geometry and the continuity. Beudaert et. al. [15] extended sharp corner smoothing in five-

axis machining paths.

Once sharp corners are smoothened, it becomes a mixture of linear segments

continuously blended with splines. Thus, the second step is scheduling of a feed profile.

Due to curved corner profile, tangential speed (feedrate) must be lowered so that axis

velocity and acceleration limits are not violated at corner sections [23]. Jerk limited

acceleration profile (JLAP) is widely used in high-speed machining [30], [31]. It generates

trapezoidal acceleration transitions with piecewise constant jerk segments, which helps

avoiding excitement of inertial vibrations of feed drive system and provides a practical

balance between smoothness and time-optimality. Erkorkmaz and Altintas [32] planned

8

JLAP based trajectories along spline tool-paths. Others generated JLAP based feed profiles

along corner smoothed tool-paths [7], [8], [29].

Nevertheless, separation of corner smoothing problem into curve fitting and feed

planning is an inefficient approach. Since smoothened corner geometry is essentially a

parametric curve, it suffers from bottlenecks related to real-time interpolation [4], [8], [26].

In addition, planning of a time optimal feed profile along corner blend is computationally

stringent [21]. As a result, conservative cornering speeds are selected in real-time

implementation [23]. Recent approaches are towards development of kinematic corner

blending techniques, which eliminate the need for para-metric curve fitting. Okwudire and

Ding [27] used optimal control to generate time-optimal cornering trajectories. Weck and

Ye [33] and recently, Sencer et al. [34] investigated on filtering techniques to accurately

travel along sharp corners. Tsai and Huang [35] investigated incorporation of servo

dynamics into cornering trajectory generation to improve dynamic contouring accuracy.

This paper proposes a novel approach where continuous cornering is achieved

without fitting a parametric curve. Instead, we solve the problem “kinematically” by

smoothly blending axis velocities from one segment to the other based on the JLAP. Fastest

cornering speed, which respects axis velocity, acceleration and jerk limits, and at the same

time generates a cornering trajectory within user-specified cornering tolerance computed

analytically. Since one of the axis kinematic limits is primarily saturated, proposed

“kinematic corner blending” technique provides near time-optimal cornering motion.

Section 2 presents the proposed kinematic corner smoothing method based on the JLAP.

Section 3 shows illustrative examples, experimental validations and comparisons to past

literature. Lastly, Section 4 provides conclusions and discussions.

2.2. Kinematic corner smoothing problem

Majority of NC tool-paths contain series of linear segments as shown in Figure 2.1a.

A single planar (x,y) cornering scenario encountered on a Cartesian manufacturing machine

is shown in Figure 2.1b. The two consecutive linear segments intersect each other to

9

generate the sharp corner,  ,c c cP x y= . The angles θ1 and θ2 define orientation of linear

segments, and 1 1[cos(),sin()]T

st and 1 2 1 2[cos(),sin()]T

et are the unit

vectors defining feed directions along them. As observed, the geometry is position (G0)

continuous, which allows continuous interpolation of axis position commands. However,

the feed direction changes discontinuously from ts to te at sharp corner point, Pc. As a result,

if sharp corner is to be traveled at constant speed, infinite amount of acceleration is

necessary to alter axis velocities at corner point, which saturates the drives. The machine

simply has to come to a full-stop at the sharp corner before continuing to the consecutive

linear segment. This approach severely elongates cycle time of a manufacturing operation.

Therefore, current techniques focus on smoothening sharp corner geometry within

specified cornering tolerance so that the machine could traverse non-stop along linear

segmented tool-path.

This paper proposes a novel technique where instead of smoothing the path

geometry, a smooth and controlled cornering trajectory is generated by designing motion

profiles of the axes. Figure 2.2 shows proposed smoothened sharp corner profile. The tool

approaches vicinity of the corner at a cornering speed of Vc and an acceleration Ac. As

shown in Figure 2.2a–b, the idea is to smoothly blend axis kinematic motion profiles from

entry and to the exit of corner so that feed direction can be changed continuously. In order

to stay within kinematic limits of the drives, axis kinematic profiles are interpolated at a

finite cornering duration of Tc, which in return introduces deviation from original path

geometry. Selecting identical Vc and Ac at both ends of the corner generates a symmetrical

corner profile around the bisector of the unit tangent vectors, and the maximum deviation

from the original sharp cornered geometry occurs at the center (see Figure 2.2a). The

problem is to determine the maximum cornering velocity and accelerations, which keeps

cornering trajectory within user specified cornering tolerance, ε and utilizes drive's

acceleration Amax and jerk Jmax limits to minimize total cornering cycle time.

10

Figure 2.1: Sharp corner smoothing of discrete tool-paths.

Figure 2.2: Kinematic corner smoothing (KCS) strategy with interrupted acceleration.

2.2.1. Jerk Limited Acceleration Profile

Jerk limited acceleration profile (JLAP) is a widely used trajectory generation

scheme in modern CNC machine tools [23], [30], [36]. It is used to accelerate or decelerate

the tool from an initial velocity and acceleration, to a final velocity and acceleration within

pre-determined acceleration and jerk limits. Figure 2.3 shows the jerk limited acceleration

11

profile. It consists of 3 phases. In phase 1, acceleration is increased at constant rate

controlled by the piecewise constant jerk, J1. This is followed by a constant (cruise)

acceleration phase A, and acceleration is decelerated at a constant rate of J3 in phase 3.

Through this 3-phased acceleration profile, both initial velocity of Vs and acceleration As

are smoothly blended with the final velocity Ve and acceleration Ae. If the initial conditions

for displacement Ss, velocity Vs and acceleration As are known, and the jerk profile is known,

acceleration a(t), velocity v(t) and displacement s(t) profiles can be obtained by integrating

the jerk j(t) as,

0 0 0

() () , () () , () ()

t t t

s s sa t A j d v t V a d s t S v d . (2.1)

The jerk profile during acceleration/deceleration durations in Figure 2.3 can be

written as,

1 1

1 2

3 2 3

,

() 0,

,

J t t

j t t t

J t t t

 (2.2)

where t denotes absolute time, t1, t2, t3 denote the time boundaries of each phase; J1 and J3

are jerk values in phases 1 and 3. Integrating Eq. (2.2) with respect to time, reveals the

trapezoidal acceleration profile

1 1 1

1 2

3 3 2 3

,

() ,

,

sA J t t

a A t t t

A J t t t

 (2.3)

where A is the acceleration amplitude, and τk is the relative time parameter, which starts at

the beginning of the kth phase as shown in Figure 2.3. Similarly, integrating Eq. (2.3) with

respect to time generates the velocity profile as,

2 2

1 1 1 1 1 1 1 1

1 2 1 2 2 1 2

2 2

2 3 3 3 2 3 2 3 3 3

1 1
, 0

2 2
,

1 1
,

2 2

s s s s

e

V A J t t V V A T J T

v V A t t t V V AT

V A J t t t V V AT J T

 (2.4)

12

where Vs is the initial velocity, and Ve denotes the final velocity reached at the end of the

motion. Tk (k=1,2,3) is the duration of the kth phase, and Vk is the velocity reached at the

end of each corresponding phase. Again, integrating Eq. (2.4) with respect to time yields

the displacement profile,

2 3 2 3

1 1 1 1 1 1 1 1 1 1

2 2

1 1 2 2 1 2 2 1 1 2 2

2 3 2 3

2 2 3 3 3 3 2 3 2 2 3 3 3 3

1 1 1 1
, 0

2 6 2 6
1 1

,
2 2
1 1 1 1

,
2 6 2 6

s s s s s

e

S V A J t t S V T A T J T

s S V A t t t S S VT AT

S V A J t t t S S V T AT J T

 (2.5)

where sk (k=1,2,3) is the displacement reached at the end of each kth phase.

In most general usage, jerk limited acceleration profile can be employed to generate

smooth velocity and acceleration transition between given kinematic boundaries, i.e. Vs, Ve

and As, Ae. Owing to the nature of the trapezoidal shape of the profile, acceleration

amplitude A can be expressed as:

1 1 3 3s eA A J T A J T , (2.6)

and correct signs for acceleration and jerk values can be determined from velocity and

acceleration boundary conditions:

 1 1

3 3

sgn

sgn

sgn

e sA V V A

J A J

J A J

 . (2.7)

Note that a negative A indicates deceleration instead of acceleration in the motion.

The signs of jerk amplitudes are modified accordingly. If the value of A is zero, this

indicates absence of an acceleration phase.

The jerk limited acceleration profile is constructed by determining durations of all

the three phases, T1, T2 and T3. If a constant acceleration phase exists in the motion,

maximum acceleration A=Amax is reached at the end of phase 1. The maximum allowable

jerk, Jmax is used to minimize the total motion duration. Therefore, durations for phases 1

and 3 can be computed from Eq. (2.6) as:

13

max max

1 3

max max

,
s eA A A A

T T
J J

 . (2.8)

Knowing that both Ve and Ae are reached at the end of velocity transition, T2 is

computed from Eq. (2.4) to be:

max max
2 1 3

max

2 2 2

max

max max max

1

2 2

1

2

s e
e s

s e
e s

A A A A
T V V T T

A

A A A
V V

A J J

 . (2.9)

On the other hand, if the velocity transition ΔV is small, and acceleration capacity

of the drives is large, T2 computed from Eq. (2.9) may yield a negative value, T2 < 0. In

this case, T2 = 0 is set, which eliminates any constant acceleration phase, and acceleration

amplitude is adjusted from Eq. (2.9):

2 2

maxsgn
2

s e
e s e s

A A
A V V J V V (2.10)

The non-zero jerk durations are then updated accordingly,

 1 3

max max

,
s eA A A A

T T
J J

 . (2.11)

Once all the segment durations are obtained from Eq. (2.8), (2.9) and (2.11), jerk

limited acceleration profile can be constructed to realize smooth velocity and acceleration

transitions. The total distance traveled during the transition is obtained as:

22

1 2 3 1 1 2 3 2 3

2
3 3 2

max 1 3 max 1 2 3

3 3

1 3 1 3 max 1 3 max 1 3 1 3 2

1 1

2 2 if 0
1 1

6 2
1 1 1

 if 0
2 6 2

s s s

s s

V T T T A T A T T T A T T

T

L J T T J T T T

V T T A T T J T T J TT T T T

. (2.12)

Please note that, although the most general form of the JLAP is given in above

equations, typically the profile is used to generate smooth speed transition between two

cruise velocities. In other words, initial and final accelerations are generally zero, As = Ae

14

= 0, and construction of the profile becomes simpler. For instance, the acceleration profile

becomes symmetrical from Eq. (2.3),

 1 1 3 3

1 3

sgn()
 where

sgn() and

e sA V V A
A J T J T

J A J J J
 (2.13)

and durations of phases 1 and 3 can be become:

 max
1 3

max

A
T T

J
 . (2.14)

Knowing that only Ve is reached at the end of velocity transition, T2 can be

computed from Eq. (2.4) to be

 max
2

max max

e sV V A
T

A J
 (2.15)

and the non-existence of constant acceleration phase, T2 < 0, is handled by setting T2 = 0

and acceleration amplitude is calculated as:

 maxsgn()e s e sA V V J V V , (2.16)

and constant jerk durations are adjusted accordingly from Eq. (2.14):

 1 3

max

A
T T

J
 . (2.17)

Finally, total distance traveled during a velocity transition yields

2

max max max

2

max max

max

2

max

if 0
2

if 0

e s e s

e s e s

V V A J V J V
T

A J
L

V V J V V
T

J

 . (2.18)

 The acceleration phase of the JLAP is presented above, and it can be constructed to

either interpolate constant velocity transitions, or velocity transitions with initial

accelerations. The deceleration phase can be planned by replacing acceleration amplitudes

with negative deceleration values. Therefore, it is omitted here. Following sections present

15

the proposed kinematic corner smoothing (KCS) algorithm designed based on the jerk

limited acceleration profile.

Figure 2.3: Jerk limited acceleration profile (JLAP).

2.2.2. Kinematic corner smoothing (KCS) with interrupted acceleration

This section presents the proposed kinematic corner smoothing (KCS) scheme

applied to corners formed by the intersection of long straight lines. For such long line

segments, smoothing is highly localized to a corner region that is typically a small fraction

of the total length of the line. Thus, we assume that corners do not overlap each other,

programmed feedrate along linear segments can be reached, and the machine has capacity

to decelerate to a specified cornering speed, Vc. Here, we assume that the cornering motion

starts from a constant cornering speed Vc with zero initial acceleration Ac = 0. Therefore,

we call this method “KCS with interrupted acceleration”. As shown in Figure 2.2b, Vc

16

controls axis velocity boundary conditions at the start (Vsx, in Vsy) and end (Vex, in Vey) of a

cornering trajectory. The objective is to determine the fastest cornering speed, Vc feasible

so that axis velocity transitions can be planned, and resultant cornering trajectory deviates

from original sharp corner profile by a predetermined geometric tolerance value, ε (See

Figure 2.2a).

Assuming that the cornering motion starts and ends at identical tangential cornering

velocity Vc, individual x–y axis velocity profiles are planned based on the JLAP from Eq.

(2.4) as:

2 2

1 1 1 1 1 1

1 2 1 2 2 1 2

2 2

2 3 3 3 2 3 2 3 3 3

2

1 1

1 1
, ,

2 2

() , , ,

1 1
, ,

2 2

1

2

()

sx x x sx x

x x x x x x

x x x ex x x x

sy y

y

V J t t V V J T

v V A t t t V V A T

V A J t t t V V A T J T

V J

v

2

1 1 1 1

1 2 1 2 2 1 2

2 2

2 3 3 3 2 3 2 3 3 3

1
, ,

2

, ,

1 1
, ,

2 2

y sy y

y y y y y

y y y ey y y y

t t V V J T

V A t t t V V A T

V A J t t t V V A T J T

 (2.19)

where starting and ending velocity boundary conditions are calculated form Eq. (2.19) and

corner geometry (See Figure 2.3):

()

()

() ()

() ()

2 21 1
2 21 1 2 2 3 1 1 3 3

2 21 1
2 21 1 2 2 3 1 1 3 3

Starting Velocity Constraints Ending Velocity Constraints

cos cos
,

sin sin

sx c ex c sx x x x

sy c ey c sy y y y

V V V V V A T T J T J T

V V V V V A T T J T J T

  

  

 = = + = + + + +    
   

= = + = + + + +      

 (2.20)

where J1x = -J3x, J1y = -J3y are axis jerk, and Ax, Ay are axis cornering acceleration amplitudes.

For a Cartesian motion system, identical jerk and acceleration limits are generally selected,

i.e. Jmax = Jxmax = Jymax and Amax = Axmax = Aymax. The total velocity transition for each axis

during a cornering trajectory can be obtained from Eq. (2.20),

1 2 1

1 2 1

cos cos

sin sin

x c

y c

V V

V V
 (2.21)

17

Next, displacement boundary conditions are imposed to control the smoothened

corner geometry. Since tangential velocity and acceleration are identical at start and end of

the motion, cornering trajectory is symmetrical around the bisector of the unit tangent

vectors, ts and te, and hence maximum geometrical deviation from the sharp corner point

occurs in the middle of the cornering trajectory. Cartesian coordinates of the mid-point can

be computed by integrating Eq. (2.19) and evaluating it at t = T1+1/2T2 as:

2

3 22 2 2
1 1 1 1 1 1

2

3 22 2 2
1 1 1 1 1 1

1 1 1
cos

2 2 2 6 2 2

1 1 1
sin

2 2 2 6 2 2

mid c x x x

mid c y y y

T T T
x V T A J T J T

T T T
y V T A J T J T

 . (2.22)

The original sharp corner location Pc = [xc, yc] is considered relative from the start

of the cornering motion, and it can be defined from the cornering geometry (see Figure

2.2a) as:

1

1

cos

sin

c c

c c

x L

y L
 (2.23)

where Lc is the Euclidian length used for corner smoothing. Lc can be calculated based on

the corner geometry and total displacement traveled by the drives. For instance,

considering X-axis's motion, Lc can be obtained from Eq. (2.18) with the boundary velocity

conditions given in Eq. (2.20) as:

3 2

1 1 2 1 1 1 1 1 1 1 2

2 2 2 3

2 1 1 1 2 3 3 3 3

1 1
cos cos cos cos

6 2

1 1 1 1
cos

2 2 2 6

c c x c x

x c x x x x

L V T J T V J T T

A T V J T A T T A T J T

 (2.24)

and the displacement constraints for the cornering motion is imposed from Eqs. (2.22)-

(2.24):

18

2

3 22 2 2 2
1 1 1 1 1 1 1 1

2

3 22 2 2
1 1 1 1 1 1 1

1 1 1
cos cos

2 2 2 6 2 2 2

1 1 1
sin sin

2 2 2 6 2 2

x mid c

c x x x c

y mid c

c x x x c

x x

T T T T
V T A J T J T V T

y y

T T T
V T A J T J T V 2

1
2

T
T

 (2.25)

where εx = ε cos(θε), εy = ε sin(θε) are Cartesian projections of cornering tolerance ε, and θε

= π/2+θ1+θ2/2 is the bisector of the corner (See Figure 2.2a).

Maximum cornering velocity, Vc is sought to generate the fastest cornering speed,

which saturates at least one of the axis acceleration or jerk limits. Therefore, Vc is

constrained based on the axis, which experiences the largest velocity transition identified

from Eq. (2.21). For instance, if ΔVx > ΔVy, X-axis becomes the “limiting axis”. Velocity

and displacement kinematic conditions are combined from Eqs. (2.20) and (2.25) for the

x-axis as:

1 2

2 2

2 3 1 1 3 3

2

32 2
1 1 1 1

2 2 2
1 1 1 1

Velocity Constraint : cos

1 1

2 2

1 1
Displacement Constraint : cos

2 2 2 6

1
cos

2 2 2

ex c

sx x x x

x c x x

x c

V V

V A T T J T J T

T T
V T A J T

T T
J T V T

 (2.26)

and motion durations T1, T2 and T3 are identified with respect to axis acceleration and jerk

limits as follows.

Firstly, the algorithm assumes that a constant acceleration phase exists during

cornering motion. This implies that the acceleration and jerk limits of X axis are fully

exploited by setting Ax = Amax, J1x = Jmax = -J3x, and the duration of constant jerk phase, T1

and T3 are computed by the trapezoidal nature of JLAP as:

19

 max
1 3

max

A
T T

J
 . (2.27)

 Duration of the constant acceleration phase, T2 is then obtained from Eq. (2.20):

 max
2

max max

xV A
T

A J
 , (2.28)

and the maximum cornering velocity, Vc is solved from displacement boundary condition

given in Eq. (2.26) as:

4

2 max
max 1 2

max

1 2 1

8 sin
2 3

cos cos
c

A
A

J
V . (2.29)

On the other hand, if the velocity transition is small and acceleration capacity of

the drives is large, T2 computed from Eq. (2.28) may become negative T2 < 0. In this case,

constant acceleration phase becomes unnecessary, and it is eliminated by setting T2 = 0.

Eq. (2.26) is used to re-calculate maximum axis acceleration as

 23
max6 cos()xA J , (2.30)

and the durations of constant jerk section, T1 and T3 are updated to:

1 3

max

xA
T T

J
= = . (2.31)

As a result, the fastest cornering velocity can be obtained from Eq. (26) as:

2 2 23
max 1

1 2 1

36 sin
2

cos cos
c

J

V . (2.32)

For some applications where feedrate is slow and the corner geometry is severely

obtuse, cornering velocity Vc computed from Eq. (2.29) or (2.32) may exceed the

commanded feedrate. In this case, the cornering velocity is set to the programmed feedrate

of the linear segment. Cornering acceleration and jerk profiles are solved from Eq. (2.26)

to satisfy the desired cornering tolerance. Please note that since cornering velocity is

20

lowered, maximum acceleration and jerk limits of the drives may not be saturated leading

to a near time-optimal cornering motion.

The total cornering duration is calculated by sum of all durations of the JLAP:

1 2 3cT T T T (2.33)

On the other hand, if Y-axis experiences the largest velocity transition, then

maximum cornering speed, Vc is computed by replacing cosine terms with sine in Eqs.

(2.29) and (2.32). Please note that the JLAP for less demanding, so-called the “trailing”,

axis is planned with identical segment durations computed from Eqs. (2.27), (2.28) and

(2.31). As a result, the trailing axis is not driven at its kinematic limits, but overall cornering

motion is synchronized.

2.2.3. Kinematic corner smoothing (KCS) with uninterrupted acceleration

Previous section presented the kinematic corner smoothing (KCS) approach based

on blending constant axis velocities at the entry and exit of a cornering motion. In that

algorithm tangential velocity is reduced to the fastest cornering Vc, and cornering motion

starts and ends with zero initial acceleration (See Figure 2.2b). In an effort to further reduce

overall cornering duration, this section extends the approach presented in Section 2.2.2 by

introducing cornering acceleration boundary conditions, Ac. The objective is to realize an

uninterrupted tool motion as it is decelerated from segment's programmed feedrate to the

cornering velocity and accelerated back to the next segment's feed without interrupting

acceleration. Thus, the KCS with uninterrupted acceleration method presented in this

section imposes non-zero cornering boundary acceleration conditions to further reduce

overall cornering cycle time.

Figure 2.4 presents the approach to blend both axis velocity and accelerations in an

uninterrupted manner. Instead of employing all 3 phases of the JLAP as proposed in

Section 2.2.2, only the acceleration ramp phase, i.e. phase 1, is employed to smoothly

interpolate axis velocity and accelerations from start to the end of the corner. The cornering

motion kinematics can be written for X and Y axes as:

21

1

2 2

2 3 2 3

()()

() ()

1 1 and () ()
2 2

1 1 1 1
() ()

2 6 2 6

y yx x

x sx x y sy y

x sx x x y sy y y

x sx x x y sy y y

X axis Y axis

j Jj J

a A J a A J

v V A J v V A J

s V t A J s V A J



   

     

      

− −

= = 
  = + = +
     

= + +   = + +
   
   = + + = + +      

10 t t  . (2.34)

Firstly, identical tangential acceleration magnitudes at the start and end of the

cornering motion Ac = -As = Ae, are imposed to generate a symmetric cornering trajectory,

()
()

()
()

1 1 2 1

1 1 2 1

Starting Acceleration Constraints Ending Acceleration Constraints

cos cos
,

sin sin
sx c ex c sx x

sy c ey c sy y

A A A A A J T

A A A A A J T

  

  

= − = + = +   
   

= − = + = +   
 . (2.35)

Similarly, velocity boundary conditions are imposed as:

()
()

()
()

21
21 1 2 1 1

21
21 1 2 1 1

Starting Velocity Constraints Ending Acceleration Constraints

cos cos
,

sin cos

sx c ex c sx sx x

sy c ey c sy sy y

V V V V V A T J T

V V V V V A T J T

  

  

 = = + = + +   
   

= = + = + +    
 . (2.36)

Lastly, displacement boundary conditions are introduced. Planning cornering

motion with identical start and ending tangential velocity and accelerations ensures that the

trajectory is symmetric around the bisector of the corner, hence maximum cornering error

occurs at the mid-point of the trajectory. The mid-point position can be computed from Eq.

(2.34) as

2 3

1 1 1

2 3

1 1 1

1 1

2 2 2 6 2

1 1

2 2 2 6 2

mid sx sx x

mid sy sy y

T T T
x V A J

T T T
y V A J

   
= + +    

   


    = + +        

 , (2.37)

and location of the sharp corner point is computed from cornering geometry (See Figure

2.4a) as:

 1

1

cos

sin
c c

c

c c

x L
P

y L
 (2.38)

where Lc is calculated based on the distance x-axis traveled from Eq. (2.34):

22

2 3

1 1 1

1 1 2

1 1

2 6

cos cos

sx sx x

c

V T A T J T
L (2.39)

The displacement boundary condition for cornering trajectory is imposed to control

cornering tolerance from Eqs. (2.38) and (2.37). For the X-axis it can be written as:

2

1 1 2 1 1 1 2 1

3

1 1 2 1

1 1 2

cos()

1 1 1 3
cos cos cos cos

2 2 4 4

1 1 7
cos cos

6 8 8

cos cos

x mid c

sx sx

x

x x

V T A T

J T

 (2.40)

Please note that Y-axis component is simply obtained by replacing cosine terms

with sine and axis acceleration and jerk amplitudes.

Similar to Section 2.2.2, maximum cornering velocity, Vc is sought to generate the

fastest cornering speed, which tries to saturate at least one of the axis’ acceleration or jerk

limits. The limiting axis is identified as the axis with the largest acceleration transition ΔAx

= |Aex - Asx| or ΔAy = |Aey - Asy|. For instance, identifying X-axis as the limiting axis, ΔAx >

ΔAy, acceleration, velocity and position constraints for cornering motion are written from

Eqs. (2.35), (2.36) and (2.40) as:

1 2 1 1

2

1 2 1 1 1 1

2 3

2 1 1 1
1 1 1

1 1

Acc. Const. : cos cos

1
Vel. Const. : cos cos cos

2

1 1
Disp. Const. : cos cos cos

2 2 2 2 2 6 2

cos

c c x

c c c x

c c x

c

A A J T

V V A T J T

T T T
V A J

V T 2 3

1 1 1

1

1 1 2

1 1
cos

cos2 6

cos cos

c xA T J T

. (2.41)

Feasible cornering velocity trajectory is then sought by saturating either one of the

kinematic limits. For instance, setting cornering jerk, Jx = Jmax allows computation of the

unknown cornering velocity, Vc as

23

2

max

3 2, max 2
1 1 2

9

2
sin cos cos

2

c J

J

V . (2.42)

Similarly, the fastest cornering velocity that saturates acceleration limit of the axis

is computed by setting Ax = Amax:

max

, max 2

6

sin
2

c A

A

V . (2.43)

In order to satisfy both kinematic limits, Vc is selected from Eqs. (2.42) and (2.43)

as:

, max , maxmin ,c c J c AV V V . (2.44)

The cornering acceleration is then computed from Eq. (2.43). Finally, duration of

the cornering motion is solved from Eq. (2.41):

 1

2

12

sin
2

c

T

V

 . (2.45)

Based on the cornering velocity and acceleration, fastest cornering motion duration

is computed, which saturates kinematic limits one of the drives. The “trailing” axis motion

is planned for identical cornering duration T1 to ensure that the motion is synchronized.

The trailing axis’ acceleration and jerk amplitudes, Jy and Ay are computed by re-writing

Eq. (2.41), accordingly.

Please note that in case if the cornering velocity computed from Eq. (2.44) exceeds

programmed feedrate of the linear block, it is lowered and set to the linear segment’s

feedrate. The acceleration and jerk amplitudes are computed from Eq. (2.41), and the

motion is re-planned.

24

Figure 2.4: Kinematic corner smoothing with uninterrupted acceleration.

2.3. Illustrative example and experimental validation

This section evaluates performance of the proposed kinematic corner blending

techniques on various high-speed cornering case scenarios. Experimental results and

benchmarks to widely used geometric corner smoothing technique are also presented to

validate effectiveness of the proposed cornering smoothing method.

2.3.1. Illustrative example

Firstly, Figure 2.5 and Figure 2.6 show application of the proposed corner

smoothing techniques on a right-handed sharp corner, i.e. θ1 = 0°, and θ2 = 90° with two

different,10 [μm] and 100 [μm], cornering tolerances. The acceleration and jerk limitations

of the drives (X and Y axes) are set to Amax = 2.5×103 [mm/sec2] and Jmax = 2×105

[mm/sec3]. Figure 2.2 illustrated the kinematic corner smoothing (KCS) with interrupted

acceleration presented in Section 2.2.2. Figure 2.5a shows smoothened cornering geometry

with ε = 100 [μm] and ε = 10 [μm] cornering tolerances. Figure 2.5b shows generated axis

25

and path velocity profiles. As shown, when approached to the corner, tangential velocity is

reduced from the programmed feedrate of 100 [mm/sec] to the specified cornering velocity.

Depending on the cornering tolerance, the fastest cornering velocity is computed from Eqs.

(2.29) or (2.32). For large contouring error, ε = 100 [μm], the resultant cornering velocity

is Vc = 32.9 [mm/sec], and total motion time to finish the path is TΣ = 0.296 [sec]. In contrast,

tighter corner tolerance dictates slower cornering speed. When ε = 10 [μm] cornering

velocity is calculated as Vc = 7.07 [mm/sec], and resulting cycle time is TΣ = 0.310 [sec].

Notice from axis motion profiles, when approached to a right hand corner, X-axis simply

decelerates to a full stop and Y-axis starts accelerating. The timing of this

deceleration/acceleration transition determines the cornering tolerance. Both drives use

their full acceleration and/or jerk limits. Particularly, if cornering error is large, acceleration

limits of the drives can be saturated. This delivers a faster cornering motion. When

cornering tolerance is small, the acceleration limits of the drives cannot be saturated within

the allowed jerk bounds.

Figure 2.6, on the other hand, presents results of the kinematic corner smoothing

(KCS) algorithm with uninterrupted acceleration presented in Section 2.2.3. As observed

from Figure 2.6b, cornering motion has non-zero acceleration at the start and end.

Maximum cornering velocities are computed to be Vc = 45.9 and Vc = 14.1, for ε = 100

[μm] and ε = 10 [μm], respectively. The resultant total cycle times are TΣ = 0.290 [sec] and

TΣ = 0.293 [sec]. Although, KCS with uninterrupted acceleration requires more time during

cornering motion, the total cycle time to travel the tool-path is slightly faster. As shown in

Figure 2.6c–d, drives decelerate at maximum rate to the corner in an effort to reduce the

cycle time. Therefore, the cornering entry and exit acceleration are saturated, i.e. Ac = Amax

= 2500 [mm/sec2]. As shown in Figure 2.6d, if cornering tolerance is small, this requires

maximum jerk to be utilized to finish the cornering trajectory. However, if the cornering

tolerance is large, the motion does not need to utilize full jerk capability to alter its

acceleration and velocity. Thus, setting cornering error to ε = 100 [μm] (See Figure 2.6d)

only saturates acceleration limits of the drives but does not fully exploit jerk limits, which

makes the KCS with uninterrupted acceleration near-time optimal. Figure 2.9 shows a

26

cycle time comparison between KCS algorithms with interrupted and uninterrupted

acceleration profiles.

Figure 2.5: Right-handed Sharp Corner Smoothing using KCS method with Interrupted

acceleration.

27

Figure 2.6: Right-handed Sharp Corner Smoothing using KCS method with

Uninterrupted acceleration.

Figure 2.7 and Figure 2.8 show kinematic corner smoothing applied to obtuse and acute

corners. In both cases cornering tolerance is set to ε = 20 [μm]. Proposed algorithms with

interrupted and uninterrupted accelerations can smoothen corners within given cornering

28

tolerance. In case of the acute corner, resultant cornering velocities are much smaller. This

is simply due to fact that X-axis must alter it motion direction, and has to undergo larger

velocity traverse. In the obtuse case, Y-axis undergoes similar amount of velocity transition

but does not change its motion direction. Notice that since total velocity traverses are

similar, total cornering cycle times are actually comparable.

Figure 2.7: Obtuse corner smoothing using KCS with interrupted and uninterrupted

acceleration profiles.

29

Figure 2.8: Acute corner smoothing based on KCS with interrupted and uninterrupted

acceleration profiles.

Next, cycle time performance of the KCS with interrupted and uninterrupted acceleration

techniques is compared in Figure 2.9. A single corner is smoothened by two L = 10 [mm]

long linear segments. The desired feedrate along the tool-path is set to 100 [mm/sec]. As

shown in Figure 2.9a, cornering angle is altered from acute to obtuse to compare the

performance of KCS algorithms for different cornering geometries. Figure 2.9b shows total

cycle time for different cornering tolerances. As noticed, for very obtuse corners, i.e.

cornering angle θ2 < 20, the KCS algorithm with interrupted acceleration delivers faster

cycle time. In contrast, as the corner gets acute the un-interrupted acceleration provides

30

faster cycle times. This can be attributed to the fact that as the corner gets sharper, cornering

velocity becomes smaller. In this case, KCS with uninterrupted acceleration can plan

efficient acceleration profiles and minimize the cycle time. Combination of the KCS

algorithms with and without uninterrupted acceleration should be used to attain the fastest

cycle time.

Figure 2.9: Cycle time performance of KCS with interrupted and uninterrupted

acceleration profiles.

2.3.2. Experimental results

Lastly, experimental validation and benchmark comparisons are performed. The

experimental Cartesian X–Y motion system is shown in Figure 2.10. The planar motion

table is driven by 3 linear motors. The heavier X-axis is designed as gantry and carries the

lighter Y-axis. In order to implement proposed algorithms servo amplifiers are set to

operate in torque (current) control mode. Closed loop control is implemented in the Dspace

DS1103® real time control system by reading linear encoder feedback at a resolution of

0.7125 [µm] and commanding torque signal to the servos at a closed loop sampling interval

of Ts = 0.1 [msec]. Both X and Y drives are controlled by P–PI cascade [37] motion

controllers with velocity feed-forward action. The position feedback control bandwidths of

the axes are roughly matched at ωn = 35 [Hz] to ensure good motion synchronization and

path tracking.

31

Figure 2.10: Experimental setup.

3 algorithms are implemented and compared to each other on smoothing the tool-

path shown in Figure 2.11. Proposed KCS algorithms with interrupted and uninterrupted

accelerations are implemented separately. They are compared against a geometric corner

smoothing algorithm by Sencer et.al. [8], which fits curvature optimal Beziers around sharp

corners and plans jerk limited feedrate profile for minimum cycle time. This method is

called as the “Bezier” method. All the algorithms are computed off-line, sampled and

commanded in real-time to the motion controllers. Reference motion commands are

discretized by rounding the motion durations so that number of samples is integer while

keeping the total displacement unchanged.

32

Figure 2.11: Experimental multi-segmented tool-path.

Figure 2.11 shows smoothened tool-path clearly. The cornering error is set to ε =

50 [micron] for all the corners, and all the algorithms successfully smooth corners within

given tolerance. Figure 2.12 depicts motion profiles along the tool-path. The feedrate is set

to f = 100 [mm/sec], axis acceleration and jerk limits are set to Amax = 2×103, Jmax = 1×105.

Figure 2.12a shows tangential velocity profiles. As shown, proposed KCS technique with

uninterrupted acceleration achieves the fastest cycle time amongst all the other methods.

This is mainly due to the fact that most corners are acute. Acceleration and jerk profiles for

all the methods are compared in Figure 2.12d–g. As shown, all the methods respect

acceleration limits of the drives. The Bezier corner-smoothing method fits a curvature

optimal Bezier around the corner and selects the fastest cornering speed with respect to

acceleration limits of the drives. Therefore, it is able to saturate acceleration limits of drives,

33

but cannot respect jerk limits. As a matter of fact, if the algorithm is modified to utilize jerk

bounds cornering velocity must be reduced greatly. In contrary, the proposed KCS

algorithms clearly respect jerk limits of the drives (See Figure 2.12f–g). As will be

observed in the contouring errors, this functionality allows generation of a traceable

smoother motion.

Figure 2.12: Kinematic profiles along corner smoothened tool-path.

34

It is known that jerk content of the trajectory affects tracking errors and vibratory

behavior of feed drive system [36]. Figure 2.13 shows experimentally measured contouring

errors along the corner smoothened tool-path. Since the X and Y-axis closed loop

bandwidths are matched, contour errors along linear segments are negligible. Largest

contouring errors occur at the cornering sections where static friction impacts drives, and

acceleration and jerk profiles show large changes when drives alter their motion direction.

Table 2.1 summarizes contouring performance of cornering algorithms and overall contour

performances. Proposed KCS algorithms and Bezier corner smoothing method deliver

similar overall contouring performances. To be exact, proposed KCS methods deliver

slightly better RMS and maximum contour errors. The KCS with interrupted acceleration

can provide ∼20% reduction in maximum contour errors while staying within acceleration

and jerk limits of the drives and still deliver faster cycle times. Furthermore, if error profiles

are inspected closely Bezier method [8] shows severe error fluctuations around the

cornering durations. This is simply due to extremely high jerk amplitude commanded to

the drives. Since jerk is not limited to a suitable level, large jerk spikes excite the feedback

control system and induce vibrations. These vibrations are visible on the actual trajectory.

As noted from Figure 2.13, resultant tool-path fluctuates severally around the cornering

sections. These fluctuations will be imprinted on the part surface during an actual

manufacturing operation and destroy process tolerances. Proposed technique can limit the

jerk and provide a smoother motion with faster cycle time. As noted from Table 2.1,

proposed KCS method with uninterrupted acceleration can reduce cycle time around 6–7%

for this simple tool-path. For a longer tool-path, which consists large number of corners

the effect would be much more pronounced.

35

Figure 2.13: Experimentally recorded contouring performance.

Table 2.1: Cycle time and contouring performance comparison.

Algorithms
Cycle Time

[sec]

Contour Error

RMS [µm] Max [µm]

KCS with Uninterrupted Acc.

(Proposed)
2.3510 3.0637 21.2576

KCS with Interrupted Acc.

(Proposed)
2.4644 2.8062 16.1245

Bezier Smoothing ([16]) 2.5015 3.1517 22.5685

36

2.4. Conclusions

This paper proposes novel kinematic corner smoothing (KCS) techniques, which

eliminate the need for two-step geometry based corner rounding methods. The proposed

algorithms blend axis velocities around sharp corners with jerk limited acceleration

transitions and generate symmetric rounded corner profiles with precisely controlled

geometric tolerances. The cornering duration is calculated based on the cornering tolerance,

axis kinematic limits and sharp corner profile to minimize overall cycle time. Proposed

algorithm is fully analytical and provides fast and efficient real-time implementation on 2

to 3 axis Cartesian CNC machine tools. Extensive illustrative examples along obtuse and

acute corner profiles validate accuracy and performance of the proposed algorithms.

Experimental benchmarks against spline based corner smoothing technique show that

proposed algorithms provide better contouring performance while reducing overall cycle

time 6–7% for a tool-path with six corners. Considering that longer tool-paths, such as the

ones used in high speed die and mold manufacturing, may contain hundred and thousands

of sharp corners, proposed techniques provide significant potential to reduce overall cycle

times.

37

Global tool-path smoothing for CNC machine tools with

uninterrupted acceleration machine tools

Shingo Tajima and Burak Sencer

International Journal of Machine Tools & Manufacture

Volume 121, October 2017, Pages 81-95

38

3. Global tool-path smoothing for CNC machine tools with uninterrupted

acceleration

Majority of tool-paths for high-speed machining is composed of series of short linear

segments, so-called G01 moves. This discrete tool-path format limits the achievable speed

and accuracy of CNC machines. To generate continuous feed motion along sharp cornered

tool-paths, most NC systems smooth corners locally using a prespecified curve or a spline

and slow down to be able to change the feed direction within machine kinematic limits.

Path speed is dramatically reduced for accuracy if sharp corners are within close vicinity.

This paper proposes a new real-time interpolation algorithm for NC systems to generate

continuous rapid feed motion along short segmented linear tool-paths by smoothing local

and adjacent corners that are within close vicinity. Instead of locally modifying the corner

geometry with a spline, the proposed algorithm directly blends axis velocities between

consecutive linear segments based on the jerk limited acceleration profile (JLAP) and

generates cornering trajectories within user-specified contour errors and kinematic limits

of the drives. A novel Look-Ahead Windowing (LAW) technique is developed to plan

tangential feed profile with uninterrupted acceleration to continuously smooth the path.

The feed profile is optimized to generate rapid motion along overlapping adjacent corners.

Simulation and experimental results demonstrate effectiveness of the proposed method to

interpolate accurate Cartesian high-speed motion along short-segmented tool-paths for

machining free-form surfaces found in dies, molds and aerospace parts.

3.1. Introduction

Parts for aerospace, and die-and-mould industries contain complex sculptured

geometries that are designed on CAM systems using smooth parametric curves such as

splines and NURBS [16]. It has been reported that direct interpolation of these curves on

CNC (computer numerical controlled) machine tools can provide the smoothest, fastest and

accurate motion, and thereby most suitable for high-speed machining [16], [19], [38].

However, deficiencies in the accurate calculation of curve lengths, planning of time-

optimal feed profiles, and feed fluctuations hinder penetration of “direct spline

39

interpolation” in CNC machines [4], [18], [20], [22], [39]. Most CAM systems do not

export parametric spline tool-paths [19]. Instead, they discretize original smooth geometry

with a series of short line segments, and output a “polygonal” tool-path, which is to be

interpolated using basic G01 commands [1]. Based on chord-length specifications, the

point-to-points G01 moves range from 1 μm to 1 mm in length. As the curvature of the

tool-path increases discretization becomes finer and denser generating NC part programs

composed of thousands of lines. Although size of the NC (numerical control) part program

is not the bottleneck, its definition is. Polygonal tool-paths are only position continuous,

and they do not allow continuous interpolation of the feed motion at the junction points,

i.e. corners of consecutive line segments. As a result, motion must stop momentarily at

corners; otherwise, acceleration and jerk limits of the drives are violated, which can destroy

the surface finish. Regardless, this stop-and-go motion planning leads elongated cycle

times and generates rough, cornered surfaces with pronounced feed marks. This process is

depicted in Figure 3.1a and b.

Figure 3.1: Interpolation of discrete tool-paths with corner smoothing.

40

The well-known approach to generate continuous non-stop motion along polygonal

tool-path geometries is to blend consecutive line segments locally [5], [23], [24]. The idea

is straightforward. In order to realize a continuous feed motion, the sharp corner geometry

between two linear segments is replaced by a smooth blending curve in by the NC system

of the machine tool as shown in Figure 3.1b. The final corner profile is no longer sharp,

and the reference path deviates from the original corner geometry. As long as the deviation

from original corner geometry is controllable, this approach is conveniently applicable to

roughing and semi-finishing. Basic arcs, cubic, quadratic, quintic, B-splines or various

curves are used to generate a continuous motion transition around the corner profile well

documented in the literature [7], [8], [15], [25]–[27], [29], [40].

Geometric local smoothing is then followed by tangential feed planning to generate

the final trajectory. Due to curved corner profile, feedrate must be lowered so that axis

velocity and acceleration limits are not violated around corner blends [7], [8], [29], [40].

Jerk limited acceleration profile (JLAP) is known to be favorable to realize a smooth and

rapid motion for high-speed machining [30]. JALP generates trapezoidal acceleration

transitions with piecewise constant jerk segments, which helps avoiding excitement of

inertial vibrations of feed drive system and provides a good balance between smoothness

and time optimality w.r.t. machine's limits [18], [23], [30], [31]. Thus, most modern CNC

machine tools adapt the JALP to plan feed motion and interpolate linear and spline tool-

paths.

This 2-step, i.e. geometric path smoothing followed by feed planning based

approach, is inefficient. Since the smoothened corner geometry is essentially a parametric

curve, it suffers from bottlenecks related to real-time curve interpolation and causes severe

feed fluctuations [4], [22]. In addition, planning of a time optimal feed profile along the

smoothened path is computationally stringent [22], [24], [25], [32] and typically

approximations are employed in the real-time implementation on NC systems [8], [23].

Hence, recent developments have been focusing on 1-step cornering trajectory generation

methods. Command filtering [33], [34], the use of optimal control [27], or direct axis

velocity pro file blending techniques [35], [41] have recently been proposed. Filtering

techniques [33], [34] utilize Finite Impulse Response (FIR) filters [42] that introduce a

41

predetermined delay to the motion and do not incorporate full kinematic limits of the drives

to minimize machining cycle time [43]. Furthermore, currently available filtering

techniques are designed for local cornering and thus they are not capable of controlling

cornering errors along densely segmented linear paths. Optimal control and velocity profile

blending based corner smoothing techniques can generate rapid cornering techniques. But,

they are either computationally stringent for real-time implementation or only capable of

smoothing local corners that occur between long linear segments.

As mentioned, currently available techniques are mostly geared towards smoothing

local corners. They assume that linear moves (G01 lines) are long enough so that a corner

could be smoothened “locally” [7], [8], [15], [25]–[27], [29], [31], [33], [34], [40] without

interfering with the consecutive corner blend. However, for realistic tool-paths used in the

aerospace and die-and-mould industries this assumption is invalid. Typically, highspeed

machining tool-paths are composed of linear moves that are shorter than <1mm. If the user

selects large cornering error for high speed roughing or semi-finishing, locally smoothened

corner geometries overlap each other. As a result, either cornering error tolerance needs to

be reduced to eliminate any overlapping and so to plan feasible feed profiles [26], [29],

[34], [40], or the motion is simply forced to undergo a full-stop, both of which greatly

elongate overall cycle time and limit achievable productivity. Thus, a “global” corner

smoothing technique is necessary to handle short-segmented tool-paths with overlapping

corners and respect kinematic limits of the machine tool. Current machine tool literature

has not addressed this problem thoroughly. The only available 1-step global corner

smoothing solution [44] solves the trajectory generation problem with a bang-bang style

acceleration profile that is not suitable for modern high-speed machine tools.

Thus, this paper proposes a new real-time interpolation algorithm for NC systems

to generate continuous rapid feed motion along short segmented linear tool-paths by

smoothing local and adjacent corners that are within close vicinity to generate a global jerk

limited high speed motion trajectory. Firstly, the proposed algorithm introduces the 1-step

direct corner smoothing technique by blending axis velocities and acceleration between

consecutive linear segments based on the JLAP. A novel Look-Ahead Windowing (LAW)

technique is then presented to plan tangential jerk limited feed profile with uninterrupted

42

acceleration to continuously smooth the path. A novel transition algorithm is developed to

generate uninterrupted motion along overlapping adjacent corners. Simulation and

experimental results demonstrate effectiveness of the proposed method to generate accurate

Cartesian high-speed motion along short-segmented tool-paths.

3.2. One-step local corner smoothing with acceleration uninterrupted kinematics

As introduced in Section 3.1, 2-step corner smoothing techniques modify path

geometry with parametric curves to enable acceleration continuous feed planning. This

section presents the 1-step acceleration-uninterrupted kinematic corner smoothing (AU-

KCS) method, which bases on the foundations of the kinematic cornering technique (KCS)

presented in [42]. The AU-KCS strategy is depicted in Figure 3.2. As opposed to replacing

the sharp corner with a smooth spline and planning the feed profile, the proposed method

directly interpolates axis velocities and accelerations around the corner profile to realize a

smooth cornering trajectory (Figure 3.2b). Boundary acceleration constraints are

introduced so that an acceleration-uninterrupted motion can be planned in and out of the

corner, and hence the total cornering cycle time can be reduced.

43

Figure 3.2: Acceleration uninterrupted kinematic corner smoothing (AU-KCS) strategy.

Firstly, we assume that cornering motion starts and ends with identical cornering

velocity and accelerations, Vc and Ac. This allows us to generate corner profiles that are

symmetric around the corner bisector as shown in Figure 3.2a. Note that, generating

symmetric corners is critical for the surface quality. Conventional die and mould parts are

composed of back-and-forth parallel rastering paths, and symmetric corners allow

generation of smooth surfaces with lower average surface roughness. Kinematics of the

axes during corner transition is dictated by the jerk limited acceleration profile (JLAP) [30]

to generate a smooth and traceable motion. Based on the above conditions, the objective is

to compute a cornering velocity Vc and acceleration Ac that yields the minimum cornering

duration, Tc.

Typically, tool motion needs to be decelerated from path speed for cornering

transition and accelerated back to the commanded feed of the consecutive linear segment

44

[8], [29]. As shown in Figure 3.2b, a piecewise constant jerk transition can ensure that tool

motion decelerates to a cornering transition and accelerates back to the subsequent segment

without interrupting its acceleration. In other words, the motion should decelerate in-and-

out of the corner without crossing a zero acceleration so that overall cycle time can be

reduced. For a planar case, X and Y axis position s(t), velocity v(t), acceleration a(t), and

jerk j(t) profiles can be written from Figure 3.2b as:

()
()

()

()

()
()

()

()

2 2

2 3 2 3

1 1 and 0
2 2

1 1 1 1

2 6 2 6

y yx x

y sy yx sx x

cx sx sx x y sy sy y

x sx sx x y sy sy y

j t Jj t J

a t A J ta t A J t

t Tv t V A t J t v t V A t J t

s t V t A t J t s t V t A t J t

= = 
   = += +   
  

 = + +   = + +
   
   

= + + = + +   
   

 (3.1)

where, t is relative cornering time, Tc is cornering duration, and Jx and Jy are jerk

magnitudes. Axis velocity (Vs, Ve) and acceleration (As, Ae) boundary conditions at the start

and end of cornering transition are computed from corner geometry and from Eq. (3.1) as:

cos cos

sin sin
 and

cos cos

sin sin

s esx ex
c c

s esy ey

sx exs e

c c
sy eys e

A A
A A

A A

V V
V V

V V

21
2

21
2

sx x c

sy y c

sx sx c x c

sy sy c y c

A J T

A J T

V A T J T

V A T J T

 (3.2)

where θs and θe are entry and exit angles to a corner, i.e. orientation of consecutive linear

segments. The maximum cornering error ε must be controlled by the user, which introduces

the displacement constraint. As shown in Figure 3.2a, cornering error occurs in the middle

of the cornering trajectory at t = Tc/2 due to symmetry and expressed as:

cos()

sin()
x m c

y m c

x x

y y
 (3.3)

where θε = (θs + θe)/2 + π/2 is obtained from geometry (See Figure 3.2a). The mid-point of

cornering trajectory is evaluated then from Eq. (3.1),

45

2 3

2 3

1 1

2 2 2 6 2

1 1

2 2 2 6 2

c c c
m sx sx x

c c c
m sy sy y

T T T
x V A J

T T T
y V A J

   
= + +    

   


    = + +        

 (3.4)

and the programmed corner point Pc = [xc, yc] location is expressed by the total distance

traveled by the axes as:

2 31 1
cos2 6
sincos cos

c

sx c sx c x c
sc

c
c ss e

L

V T A T J T
x

P
y

 (3.5)

where Lc is the linear displacement used during the cornering transition (See Figure 3.2a).

X-axis component of cornering error can be expressed from Eqs. (3.3)-(3.5) as:

2

3

1 1 1 3
cos cos cos cos

2 2 4 4

1 1 7
cos cos

6 8 8

cos cos

sx c e s sx c e s

x c e s

x

s e

V T A T

J T

 (3.6)

Please note that the Y-axis component can be obtained by simply plugging

corresponding parameters. The minimum cornering duration Tc is sought by simply

saturating at least one of the axis’ acceleration or jerk limits. The limiting axis can be

identified from axis acceleration transitions, ΔAx = |Aex - Asx| and ΔAy = |Aey - Asy|. Assuming

that ΔAx > ΔAy, acceleration, velocity and position constraints for cornering motion are

collected from Eqs. (3.2) and (3.6) as:

() ()

() () ()

() ()

()

() ()

2

3

3

Acc. Constraint : cos cos

1
Vel. Constraint : cos cos cos

2

1 1
cos cos

2 2 2 6 2

Disp. Constraint : 1 1
cos

2 6

cos cos

c e c s x c

c e c s c s c x c

c c c
c c s x

c c c c s x c

s e

A A J T

V V A T J T

T T T
V A J

T V A T J T



 

  

  



 

= − +

= − +

    
= − +    
    

 
− + 

−  

+

()cos s

 (3.7)

46

Notice that Eq. (3.7) provides 3 constraints to compute the 4 unknowns of the

cornering trajectory, namely; Ac, Vc, Jx and Tc. The near time-optimal cornering trajectory

is obtained analytically by either saturating axis acceleration or the jerk limits, i.e. by

setting Jx = Jmax or Ax = Amax, and it yields from Eq. (3.7) as:

2

max
3 2

2 2 2

max
3 2

max

3

max

6 cos
2

cos cos cos cos

6 cos
2

cos cos cos cos
for

6 cos cos cos
2

cos cos

8 cos

cos cos

c

e s s e

c

e s s e
x

s e

c

e s

c

e s

J
A

J
V

J J

T
J

L

 (3.8)

23

max

max

max

max

cos cos cos cos

48 cos

3 cos
2

cos cos
 for

3 cos
4

cos cos

8 cos

cos cos

e s e s
x

c

e s

x

c

e s

c

e s

A
J

A
V

A A

T
A

L

 (3.9)

Eqs. (3.8) or (3.9) can be used to determine the fastest cornering motion duration

Tc, which saturates either acceleration or the jerk limits of one of the drives, e.g. X-axis.

Based on the smallest Tc, corresponding cornering velocity and acceleration Vc and Ac

boundary conditions are obtained analytically from Eqs. (3.8) and (3.9). The motion for the

non-saturated axis, e.g. Y-axis, is planned by calculating its jerk magnitude Jy by re-writing

Eq. (3.7) and plugging any of the precomputed Tc, Ac, or Vc. Notice that above equations

can be used interchangeably. For instance, for a given cornering velocity Vc, the largest

cornering error can be computed that saturates either jerk or acceleration limits of the drives.

47

On the other hand, there is no limit imposed on the cornering velocity Vc in this

formulation. Although it is rare, if the corner angle is very obtuse, Vc can become greater

than the set feedrate of the G01 command, Vc > F. In this case, cornering speed is capped

by the block's commanded feedrate, Vc = F and cornering acceleration is set to zero, Ac =

0. In this case, cornering motion planning requires 3-segments, e.g. deceleration increase,

constant deceleration and deceleration decrease to alter velocities of the drives from start

to the end of the cornering transition [42].

Effectiveness of the proposed local AU-KCS scheme is presented in simulations

before it is experimentally validated in Section 5. Figure 3.3 shows the AU-KCS technique

applied to smoothen local obtuse and acute corners. The cornering tolerance is set to ε =

30 μm in both cases and the programmed feedrate is F = 100mm/s. Acceleration and jerk

limitations of the drives (X and Y axes) are set to Amax = 3×103 mm/s2 and Jmax = 1×105

mm/s3, respectively. Eqs. (3.8) and (3.9) are used to compute the cornering velocities for

each case. For the obtuse corner, the cornering speed is calculated to be Vc = 48 mm/s and

for the acute corner Vc = 23 mm/s. JLAP is used to decelerate and accelerate from cornering

transitions. As shown, proposed 1-step AU-KCS technique can generate acceleration

continuous motion profiles around a local corner while saturating at least one axis

kinematic limit to attain the fastest cornering motion.

48

Figure 3.3: Obtuse and acute corner smoothing using AU-KCS.

49

3.3. Global feed planning along short-segmented tool-paths with uninterrupted

acceleration

Previous section introduced the 1-step kinematic corner-smoothing scheme with

acceleration uninterrupted motion profiles for smoothing of local corners. An actual high-

speed machining tool-path, however, contains dense linear segments and corners that are

in close vicinity of each other. This section presents high speed motion planning and

accurate interpolation schemes along short-segmented tool-paths based on a look-ahead-

windowing (LAW) technique.

Figure 3.4a shows a short-segmented linear tool-path with a series of locally

smoothened corners. As shown, when corners are locally smoothened by proposed

technique from Section 3.2, the path consists of linear segments and corner transitions.

Each corner transition has dedicated cornering velocity Vc and acceleration Ac computed

analytically from Eqs. (3.8) and (3.9). A LAW-ing technique is then developed, which

reads series of tool-path sections with associated kinematic boundary conditions, and plans

the kinematically feasible feed motion. Figure 3.4b shows the proposed LAW based motion

planning strategy. As shown, based on the LAW size, motion is planned for N number of

segments (G01 blocks) of the tool-path while assuming that a full-stop F = 0 is commanded

at the end of the LAW. The motion is then planned backwards from the end of LAW to the

beginning to reach current block's kinematic conditions. During planning, segment

velocities within the window are reduced so that they can be interpolated in a kinematically

feasible manner. Once the motion is planned within a LAW, the window is progressed one

block and current segment is accepted for interpolation. During planning, compatibility

conditions are checked only between consecutive, i.e. kth and k+1th segments. Notice that

since there is a full-stop planned at the end of the LAW, reducing feedrate of the kth

segment to plan a feasible motion towards the k+1th block is satisfactory. This type of feed

planning approach does not require any iteration, and the rest of the section presents

analytical methods to compute maximum speed and boundary conditions for consecutive

segments.

50

Figure 3.4: Look-ahead windowing (LAW) based motion planning strategy.

3.3.1. Motion planning along separated corners

The feed planning strategy starts with smoothing corners locally based on the AU-

KCS presented in Section 3.2. Corner transition distance Lc
k for each corner is computed

from Eq. (3.5), and the remaining linear distance between consecutive corner transitions is

calculated as:

 ()1 1k k k k k

l c c c cL P P L L+ += − − + (3.10)

As shown in Figure 3.5a if Ll
k > 0 consecutive corners are not overlapping, and thus

feed motion can be planned to stitch two local corners. This stitching motion is planned

based on the 7-segmented JLAP depicted in Figure 3.6, and explained as follows.

51

Figure 3.5: Separate (Local) and overlapping cornering geometries.

Figure 3.6: Jerk limited acceleration profile (JLAP).

52

The objective is to attain the maximum possible feedrate along straight sections in-

between consecutive corners with respect to velocity Vc
k, Vc

k+1 and acceleration Ac
k, Ac

k+1

boundary conditions. The jerk sequence to stitch the motion is planned with respect to

Figure 3.6 as:

1 max 1

2 1 2

3 max 2 3

4 3 4

5 max 4 5

6 5 6

7 max 6 7

, 0

0,

,

() 0,

,

0,

,

J J t t

J t t t

J J t t t

j J t t t

J J t t t

J t t t

J J t t t

 (3.11)

Integrating Eq. (3.11) with respect to time, t, reveals the trapezoidal acceleration

profile as,

1 1 1 1 1 1

1 2 2 1

3 3 2 3 3 3 3

3 4 4 3

5 5 4 5 5 5 5

5 6 6 5

1

7 7 6 7 7

, 0 ,

, ,

, , 0

() 0, , 0

, ,

, ,

, ,

k k

c c

k

c

A J t t A A J T A

A t t t A A A

A J t t t A A J T

a t t t A A

J t t t A J T D

D t t t A A D

D J t t t A D J T

 (3.12)

where A and D are acceleration and deceleration amplitudes, and τi is the relative time

parameter, which starts at the beginning of the ith phase of the profile (See Figure 3.6).

Similarly, integrating Eq. (3.12) generates the corresponding velocity profile as,

53

2 2

1 1 1 1 1 1 1 1

1 2 1 2 2 1 2

2 2

2 3 3 3 2 3 3 2 3 3 3

3 3 4 4 3

2 2

4 5 5 4 5 5 4 5 5

5 6 5 6 6 5 6

2

6 7 7 7

1 1
, 0 ,

2 2
, ,

1 1
, ,

2 2
, ,

1 1
, ,

2 2
, ,

1
,

2

k k

c s c sV A J t t V V A T J T

V A t t t V V AT

V A J t t t V V AT J T

V t t t V V Fv

V J t t t V V J T

V D t t t V V DT

V D J t 1 2

6 7 6 7 7 7

1
,

2

k

ct t V V DT J T

 (3.13)

Ti (i = 1…7) is the duration, Vi is the velocity reached at the end of the ith phase.

Consequently, integrating Eq. (3.13) with respect to time yields the displacement profile,

2 3 2 3

1 1 1 1 1 1 1 1 1 1

2 2

1 1 2 2 1 2 2 1 1 2 2

2

3 2 2 3 3
2 3

2 2 3 3 3 3 2 3
3

3 3

3 3 4 3 4 4 3 3 4

3

4 4 5 5 5 4 5

1 1 1 1
, 0 ,

2 6 2 6
1 1

, ,
2 2

1

1 1 2, ,
12 6

6
, ,

1
, ,

6

s s s s

s

V A J t t S V T A T J T

S V A t t t S S V T AT

S S V T AT

S V A J t t t

J T

S V t t t S S V T

S V J t t t 3

5 4 4 5 5 5

2 2

5 5 6 6 5 6 6 5 5 6 6

2

6 6 7 7
2 2

6 6 7 7 7 7 6 7
3

7 7

1

6
1 1

, ,
2 2

1

1 1 2, ,
12 6

6

e

k

l

S S V T J T

S V D t t t S S V T DT

S S V T DT

S V D J t t t

J T L
 (3.14)

where si (i = 1..7) is the displacement reached at the end of each phase. Durations Ti (i =

1…7) of each phase must be computed to realize the JLAP. Firstly, considering the

trapezoidal nature of the profile, acceleration demand is evaluated from,

54

2

max 1 3

max max

2
1 1

1

max 7 5

max max

,
2

,
2

k k
ck c

c

k k
ck c

c

A A A A
A J F V T T

J J

A A D D
D J F V T T

J J

 (3.15)

Above, Jmax is tangential jerk limit. If magnitudes A or D exceed their limits Amax,

they are capped by the limit, and constant acceleration duration T2 and T6 are computed as:

2

max
2

max max max max

2
11

max
6

max max max max

1

2

1

2

kk
cc

kk
cc

AF V A
T

A J A J

AF V A
T

A J A J

 (3.16)

Otherwise, constant acceleration phase simply does not exist, T2 = T6 = 0.

Finally, the distance between cornering transitions, Ll
k, should be traveled by all the

stages of interpolation. If the linear distance between corners is long enough, programmed

feedrate of the block, F should be achieved implying that T4 ≥ 0. The total distance traveled

along the 7-segmented JLAP is can be computed from Eqs. (3.14)-(3.16) as:

2 2
2 1 2 1

4

max max

3 3 2 2
1 14 4

1

2 2 2

max max max

1 12 2 11

max max

2 2 2 2

1

8 3 4

1

2

k k k k
c c c ck

l

k k k k
k k

c c c c
c c

k k k kk kk k
c c c cc cc c

F V V F A DF V F V
L T F

A D J J

D AA A A AA A

J J JD A

A V A VV VA A

J JA D

 (3.17)

and cruise velocity duration T4 is revealed from Eq. (3.17) as:

55

2 22 21 1

max max

3 3 2 2
1 14 4

1

4 2 2 2

max max max

1 12 2 11

max max

2 2 2 2

1 1

8 3 4

1

2

k k k k
c c c c

k k k k
k k

c c c ck
c c

l

k k k kk kk k
c c c cc cc c

F FV V A DF V F V

A D J J

D AA A A AA AT L
F J J JD A

A V A VV VA A

J JA D

0

 (3.18)

If Eq. (3.18) does not hold, T4 < 0, it is set to zero T4 = 0, and the maximum

reachable feedrate Fnew is computed from the solution of the following quadratic equation:

2 0new newaF bF c+ + = (3.19)

where

max

4 4 2 211 1

2

max max

3 3 2 2
1 1

2 2

max max
2 211 1

max

1 1
,

2 2 2

1 1

8 2

3 4

2 2

2 2 2

k kk k k k
c cc c c c

k k k k

c c c c

k kk k k k
c cc c c c

D A
a b

D A J

V VA A A Ac L
J JA D D A

A DA A A A

J J

V VA A A D V V

J A D

 (3.20)

If Eq. (3.19) possesses complex roots, consecutive cornering velocities Vc
k, Vc

k+1 and

accelerations Ac
k, Ac

k+1 need to be adjusted to find a feasible solution for planning the JLAP.

Non-linear optimization techniques [45] can be used to plan a time optimal motion.

However, utilizing iterative schemes for optimizing such a short motion is not feasible in

real-time implementation, and should not improve the overall cycle time significantly. Thus,

the following analytical approach is developed to determine a sub-optimal cornering

velocity to plan a feasible JLAP for stitching the cornering transitions as follows.

Firstly, as shown in Figure 3.7 consecutive block's cornering speeds are lowered to

the minimum

56

  1 1min ,k k k k

c c c cV V V V+ += = (3.21)

Notice that lowering cornering velocities reduces cornering errors εk, εk+1 from their

preset tolerance as well. Consequently, corner transition lengths Lc
k, Lc

k+1 are shortened,

and this elongates Ll
k (See Figure 3.7). Eq. (3.17) is then used to plan a feasible JLAP

motion to stitch consecutive cornering transitions. If a feasible JLAP can be planned, then

consecutive cornering velocities are increased to reduce the cycle time. The following

analytical technique is developed to search for feasible cornering velocities in a

computationally efficient and real-time suitable scheme.

Figure 3.7: Feed adjustment in-between local corners.

Firstly, linear distance between smoothened corners, Ll
k is typically very small <1

mm in dense short-segmented tool-paths, and this makes planning a complete 7-segmented

JLAP unlikely. Instead, a shortened 3-segmented JLAP is planned to interpolate an

acceleration uninterrupted cornering transitions. It is assumed that the constant feed,

acceleration, and deceleration sections of the 7-segmented JLAP are non-existing, T4 = T2

= T6 = 0, and it is assumed that if Vc
k > Vc

k+1 the motion starts with an acceleration decrease

stage (T1 = 0). Similarly, if Vc
k+1 > Vc

k, a deceleration increase section does not exist (T7 =

0). The objective is to analytically compute near time-optimal cornering velocity Vc
k and

57

the corresponding cornering acceleration Ac
k based on this simplified 3-segmented JLAP.

As observed from Eqs. (3.8) and (3.9), altering cornering speed actually alters ε, Ac
k, Lc

k.

As a matter of fact, cornering error ε, scales Vc
k, Ac

k, Lc
k, and this relationship can be

captured by introducing a scaling factor α as:

'

'

' 2

 where 1

k k

c c
k k

c c
k k

c c

A A

V V

L L

 (3.22)

The achievable feedrate F and deceleration D values are determined based on the

3-segmented JLAP as,

2
'

'

max

2 2
' 1

' 1

max

2

2

k

ck

c

k k

c ck k

c c

A
F V

J

A A
D V V J

 (3.23)

and corresponding segment durations are obtained;

' ' 1

3 5 7

max max max

, ,
k k

c cA D A D
T T T

J J J
 (3.24)

The total displacement traveled can be computed by integrating the acceleration

profile with the durations from Eq. (3.24) and amplitudes from Eqs. (3.22) and (3.23) as:

3 2 2 31 1 1 2 3

2 2 2 2 2 2

max max max max max max

1 2

max

3 2 6

2 1

kk k k k k
cc c c c c

k
k kk kc
c lc c

A DA A A A A D D
L

J J J J J J

V
L LA A D

J

 (3.25)

Finally, the scaling factorα is calculated analytically from Eq. (3.25):

58

4 3 2

3

2

maxmax

22 23 3 11 1 1

22 2
max maxmax

21

2

max

3 4
1

2 23 3

max max

0

2
1, ,

34 22

6 6

8

12 12

k k k
c c c

kk
cc

kk kk k k kk k
cc cc c c lc c

k k kk
c c cc

k k
c c

k

c

k k k
c c c

k k

c ck

c

a b c d e

V A V
a b

J LJ L

VA AA A L LV A
c

J L J L LJ L

V V

J L

A A A

J JL L
d V

4 2 2
1 1

2 23 3

max max

2 2 11 1

2 2 22

max max max

2
3 32 2 2 11 1

2 24 4

max max

1

3

12 12

2

8 72

k k k

c c c

k k

c c

k kk k k k k
c cc c l c c

k k k

c c c

k kk k k k
c cc c c c

k k

c c

k

ck

c

A A A

J JL L

A VV L L A A

J J JL L L

A AA A A A
e

J JL L

A
V

4 4 3 2 211 1

3 2

max

3 3 21 1 1

2 2 22

max max

22 2 311 1

2 22

max max

3 8 6

12

2 2

3

2

kk k k k
cc c c c

k

c

k kk k k k k k k k
c lc c c c c l c l

k k k

c c c

kk k k
cc c c

k k

c c

AA A A A

J L

L LA A A V L L L L

J JL L L

VA A V

J JL L

 (3.26)

The cornering velocity is obtained based on α without the need of iterative

procedure from Eq. (22). This approach provides an effective analytical planning of a near-

time optimal JLAP to stitch consecutive cornering transitions. If a feasible solution could

not be found from Eq. (26), both current and next segment velocities Vc
k and Vc

k+1 need to

be further lowered. This can be done by scaling consecutive cornering velocities

simultaneously by

' ' 1 1

' 2 ' 1 2 1

' 3 ' 1 3 1

 and where 0 1

k k k k

c c c c
k k k k

c c c c
k k k k

c c c c

A A A A

V V V V

L L L L

 

  

 

+ +

+ +

+ +

   = =
   

= =     
   = =   

 (3.27)

59

and the associated scaling factor α can be calculated analytically following the similar

procedure presented above.

3.3.2. Motion planning along overlapping corners

Previous section presented planning of a continuous and rapid motion along locally

corner-smoothed tool-path. If locally smoothed corners are not overlapping as shown in

Figure 3.5a, the approach presented in the Section 3.3.1 is effective to plan a jerk limited

motion analytically at low computational expense. Nevertheless, if linear segment lengths

are short and cornering errors are large, locally smoothened corners overlap each other as

shown in Figure 3.5b. This section presents planning of an uninterrupted jerk limited feed

motion along overlapping corners.

The general geometry for two locally smoothed overlapping corners is presented in

Figure 3.8. Local corner trajectories are planned based on the technique presented in

Section 3.2. The idea is to connect mid-points of overlapping corners to generate an

acceleration un-interrupted rapid cornering motion (See Figure 3.8a). The mid-point

kinematics during cornering transitions can be calculated as:

22

and

4 4

k kk k
sy eykk sx ex

mymx

k kk k
k sy eyksx ex
mx my

k k k k k k
mx x c my y c

a aa a
aa

v vv v
v v

s x s y

 (3.28)

where amx
k, vmx

k, amx
k and amy

k, vmy
k, amy

k are the midpoint acceleration, velocity and position

values for the X and Y axes. The mid-points of consecutive corners are then connected by

a 2-segmented jerk profile as shown in Figure 3.8b. The kinematic constraints for

interpolating midpoints are written for the X-axis as:

60

1

1 2

1 2 2

1

2 2

1 2

1 2 2 3 3

1

Acc. Constraint : 1

1
v

2
Vel. Constraint :

1
1 1

2

1 1
Disp. Constraint : s

2 6

k k

mx mx m x x m m x x m

k k k

mx mx mx x m m x x m

k

mx m x x m x m m x x m

k k k k

mx mx mx x m mx x m m x x m

m

a a j T j T

v a T j T

a j T T j T

s v T a T j T

v 2 2

1

2 32 3

1 2

1
1

2

1 1
1 1

2 6

k k

x mx x m m x x m x m

k

mx m x x m x m m x x m

a T j T T

a j T T j T

 (3.29)

Above, Tm is the motion duration, jm1x and jm2x are the jerk amplitudes, and 0 < λx <

1 controls timing of jerk transition (See Figure 3.8b). Note that the Y-axis complement of

Eq. (3.29) can be written with λy, jm1y, jm2y. There are total of 7 unknowns, Tm, λx, λy, jm1x,

jm2x, jm1y, jm2y that needs to be solved from total 6 equalities (X and Y axis contributions)

given in Eq. (3.29). The solution can be obtained in 2 steps. Firstly, λx = 0.5 is set to divide

X-axis motion into half. Three of the unknowns, Tm, jm1x and jm2x are calculated from Eq.

(3.29). Using Tm, the remaining unknowns λy, jm1y and jm2y are obtained from the Y-axis

complement. Notice that the following kinematic limits need to be satisfied to plan a

feasible motion:

1

2

max max
1

2

0 , 0 1,

m x

m xx

m
m yy

m y

j

j
T J J

j

j

 (3.30)

If Eq. (3.30) is not satisfied, Vc
k and/or Vc

k+1 should be reduced to satisfy the

constraints. The problem could be formulated as a nonlinear optimization problem and

solved numerically. In order to avoid costly iterative schemes, the following analytical

approach is developed to determine a sub-optimal cornering velocity.

Firstly, the cornering velocities are set identical to Vc
k = Vc

k+1 = min{Vc
k, Vc

k+1},

and existence of a feasible solution is checked from Eqs. (3.29) and (3.30). If a feasible

solution could not be obtained, a scaling parameter is used to capture the relationship,

61

''

' 2 ' 2

' 3 ' 3

, where 0 1

k kk k
my mymx mx

k k k k

mx mx my my

k k k k k k k k
mx mx c c my my c c

a aa a

v v v v

s s x x s s y y

 (3.31)

and seek for a faster cornering motion. Including the scaling factor, α, the total unknowns

to plan overlapping cornering motion becomes 8; namely, α, Tm, λx, jm1x, jm2x, λy, jm1y, jm2y.

Firstly, the interpolation time Tm is approximated using linear distance in between the

corners and the average velocity as:

2 2
1 1

2 2 2 2
1 1

2

k k k k

mx mx my my

m
k k k k

mx my mx my

s s s s
T

v v v v

 (3.32)

Next, in order to seek for rapid motion, one of the X or Y-axis jerk amplitudes is

saturated, and the remaining 6 unknowns are solved analytically from Eq. (3.29) by

plugging scaled mid-corner position (smx’, smy’), velocity (vmx’, vmy’) and accelerations (amx’,

amy’) from Eq. (3.31). Notice that there are 4 cases to consider, jm1x = Jmax, jm2x = Jmax, jm1y

= Jmax, jm2y = Jmax. The feasibility of the solution is checked from Eq. (3.30), and the

parameter set with the largest α is selected. For instance, if jm1x = Jmax the scaling factor α

is computed from

4 3 2

2

1 1

1

1
21 2 1 2

1

1 1

0

4 6 6

6 6 2 6

6

8 6 2

6 6 8 3

k k k kk
mx c mx mxmx

k k k k k k k

mx c mx mx mx mx m m x c m
k

m x mx m

k k k k kk
mx mx m mx mx m m x mx mmx

k k k k k k k

mx c mx mx mx mx m mx m

a b c d e

a a x a sv

b a x a s a v T j x T

j s T

c v v T a v T j v Ta

d a x a s a v T a a 1 2

2 1 1 11
1

1 1 3 1 2

1 1 1

4 6 6 6

6 4

k

x m

k k k k kk
mx c mx mx m x c mmx

k k k

m x mx m mx m x m m x mx m

T

e a x a s j x Tv

j s T a j T j v T

 (3.33)

either analytically or using a simple Newton-Raphson [45] type iterative technique, both

of which are computationally efficient. If a feasible solution could be obtained, α is used to

scale both corner velocities simultaneously similar to Eq. (3.27) (See Section 3.3.1), and

all the unknowns can be determined analytically.

62

Figure 3.8: Overlapping corner smoothing strategy.

3.4. Illustrative examples

This section presents application of the methods introduced in Sections 3.3.1 and

3.3.2 on a simple short-segmented tool-path. When corners are not overlapping, we identify

the case as “local cornering” and apply the acceleration uninterrupted corner smoothing

technique presented in Section 3.2 jointly with the feed planning method presented in

Section 3.3.1. If local corners are overlapping, we will identify the case as “global

cornering” and apply the method presented in Section 3.3.2.

63

As shown in Figure 3.9, the test tool-path consists of 3 linear moves generating 2

right-handed 45° corners. The length of linear segments before and after the two corners

are fixed to 10 mm, and the length of linear segment between corners is set to 0.5 mm.

Programmed feedrate is F = 100mm/s, and acceleration and jerk limits of the drives (X and

Y axis) are set to Amax = 3 × 103 mm/s2 and Jmax = 1 × 105 mm/s3, respectively.

Figure 3.9 (left hand side) shows application of “local corner smoothing” with a

corner tolerance of ε = 9 μm. In this case, corners are well separated and thus they can be

smoothened locally. Both axis jerk limits are utilized to generate fast cornering trajectories.

Cornering velocities are computed identically as Vc = 13.26mm/s. The JLAP profile to

stitch local corners is generated analytically, and the resultant total cycle time is 0.357 s.

On the other hand, when the cornering tolerance increased to ε = 80 μm, locally

smoothened corner trajectories overlap as discussed in Section 3.3.2. Since the linear

distance between locally smoothened corners is less than zero the algorithm presented in

Section 3.3.2 is applied. As shown in Figure 3.9 (right hand side), overlapping corners are

traveled in an uninterrupted fashion. The overlapping corner interpolation can keep

cornering velocity higher as compared to the local corner interpolation technique. Figure

3.9c and d show generated axis acceleration and jerk profiles. As shown, the acceleration

and jerk limits of the drives are fully utilized, the motion is continuous and smooth, and

the total cycle time could be reduced to 0.317 s.

64

Figure 3.9: Right-Handed Consecutive Corner Smoothing Using Local and Overlapping

Cornering Interpolation Techniques.

3.5. Experimental results

Experimental validation and benchmark comparisons of the proposed technique are

performed on the Cartesian X-Y motion system shown in Figure 3.10. The planar X-Y

motion table is driven by 3 linear motors. The heavier X-axis is designed as gantry and

65

carries the lighter Y-axis. In order to implement proposed algorithms, servo amplifiers are

set to operate in torque (current) control mode. Closed loop control is implemented in the

Dspace DS1103® real time control system by reading linear encoder feedback at a

resolution of 0.1 µm and commanding torque signal to the servos at a closed loop sampling

interval of Ts = 0.1 ms. Both X and Y drives are controlled by P-PI cascade motion

controllers with velocity feedforward action. The position feedback control bandwidths of

the axes are roughly matched at ω = 50 Hz n to ensure good motion synchronization and

contouring [37].

Figure 3.10: Experimental Planar Motion Platform.

Firstly, 3 different interpolation algorithms are implemented and compared

experimentally on smoothing a “spiral shaped” short-segmented tool-path shown in Figure

3.11. A part from the first and last long linear moves, the spiral geometry is discretized

densely with 1 mm long linear segments. The “local” and “global” corner smoothing

algorithms from Sections 3.3.1 and 3.3.2 are implemented separately. These two

interpolation algorithms are then compared to a point-to-point (P2P) interpolation

technique, which demands a full stop at each corner. All algorithms are sampled and

commanded in real-time to the servo controllers. The desired feedrate is set to F = 100

mm/s. Axis acceleration and jerk limits are fixed to Amax = 2000 mm/s2 and Jmax = 50,000

mm/s3, respectively.

66

Figure 3.11 illustrates the tool-path geometry smoothened by “local” and “global”

corner smoothing methods. The desired cornering tolerance is set to ε = 50 μm. Both, local

and the global corner smoothing algorithms successfully smoothen the discrete path

geometry and deliver a continuous motion. Nevertheless, the “local” corner-smoothing

algorithm lowers the predefined cornering tolerance if the corners are close to each other.

This is because local corner smoothing algorithm cannot interpolate overlapping corners

and so it enforces some linear distance in-between corners. Cornering errors are reduced

from the preset value down to ε = 0.4-13.3 μm based on the corner angle. On the other

hand, the “global” corner interpolation algorithm generates smoothed cornering trajectory

while mostly reaching the desired cornering tolerance.

Figure 3.12 presents the resultant kinematic profiles. As expected, the P2P motion

strategy shows cyclic motion kinematics and delivers the longest cycle time. Due to short

linear moves, commanded feedrate along the tool-path is never reached. Please note that

this type of motion scheme is barely utilized in modern machine tools. It is implemented

there to highlight the importance of corner smoothing. The local cornering technique, on

the other hand, delivers a faster motion time. The acceleration profile is continuous, and

limits of the drives are fully utilized at every corner. Due to the obtuse corner geometry,

mostly jerk limits of the drives are saturated. Similar to the P2P interpolation scheme, feed

profile is fluctuating and motion decelerates and accelerates in-between corners as it

attempts to attain higher speeds. Finally, the proposed global corner smoothing technique

is applied. As shown in Figure 3.12, the velocity profile is smooth and the fastest cycle

time is achieved while respecting drive limits. It is also noticeable that the tangential

feedrate is gradually decreasing along the spiral section. This decline in the speed is

dictated by the spiral geometry having acute cornering angles towards the end of the path.

Figure 3.13 shows the experimentally measured contouring errors for the tool-path

interpolated by each method. As expected, within all the 3 methods, the largest contour

errors typically occur at cornering sections when drives undergo large acceleration, and

attempt to overcome static friction in the system. Table 3.1 summarizes corresponding

cycle times, contour errors, and computational times of each algorithm. The dramatic cycle

time reduction, nearly ~45%, by the proposed global corner smoothing algorithm is

67

obvious. Nevertheless, both proposed global and local corner smoothing techniques deliver

nearly identical contouring performance validating the potential for practical application

of the developed technique. Lastly, computationally time of each method is compared in

Table 3.1. All the 3 methods are implemented in Matlab environment on a PC with Intel i7

2 GHz clocked chipset running on Windows. As observed, when cycle times get longer,

computational expense also increases. This is simply due to the fact that more number of

samples needs to be interpolated. However, the unit computational expense for

interpolating the global and local corner smoothing algorithms with the proposed LAW

technique requires very comparable computational effort to local corner smoothing

technique. This justifies that the proposed method can be implemented in modern NC

systems conveniently.

Figure 3.11: Short-segmented Spiral tool-path.

68

Figure 3.12: Kinematic profiles along spiral tool-path.

Figure 3.13: Experimentally recorded contouring errors.

69

Table 3.1: Cycle time and contouring performance comparison along spiral tool-path.

Algorithms

Cycle

Time

[sec]

Cycle time

Reduction in

Percentage

[%]

Contour

Error

[μm]

Computational

Time [sec]

Unit Computational

Effort (Total

Computation Time/

Total Cycle Time) RMS Max

Global

(overlapping)
1.8840 45.9 2.5867 12.8730 0.6497 0.3449

Local 2.9075 16.5 2.2025 12.5822 0.8431 0.2900

Point-to-

Point (P2P)

interpolation

3.4832 Base 2.0071 9.3338 0.8925 0.2562

Finally, a more complicated tool-path in the shape of a “hearth” shown in Figure

3.14 is smoothened to benchmark contribution of the “global” corner smoothing technique.

The tool-path consists of long linear segments with separated corners, and short (<2 mm)

dense linear segments in the middle section. Motion direction also changes suddenly in the

center of the tool-path. 4 Different methods are compared to each other; namely the

proposed 1-step “global” corner smoothing method, the 1-step “FIR” filtering method [34],

the “Bezier Spline” based 2-step local corner smoothing technique [8], and finally the basic

P2P interpolation. The FIR filtering method is a 1-step method since it directly filters the

reference tool-path. It is capable of controlling separated corner tolerances. But, it is not

capable of accurately controlling cornering tolerance of overlapping sections. Therefore,

FIR filter parameters are hand tuned by trial-and-error to make sure that the cornering

tolerance is respected in the middle of the tool-path, both axis acceleration and jerk limits

are respected, and a rapid feed motion is achieved. Similarly, the Bezier spline-based

corner smoothing technique is only capable of controlling local cornering errors.

The cornering tolerance is set to ε = 100 μm for all the methods, and Figure 3.14

shows actual and smoothened, i.e. interpolated, tool-path geometries. As shown, the

proposed method, FIR filtering and the Bezier spline techniques all smoothen “local”

corners at ε = 100 μm tolerance. However, along short-segmented regions of the tool-path,

Bezier method overrides the set cornering tolerance to generate feasible trajectories. Thus,

70

it locally smoothens the path, which in return elongates cycle times and generates

interrupted motion with large fluctuation in acceleration and jerk profiles. The FIR filtering

method cannot cope with short-segmented sections either. In this experiment, FIR filter

parameters are iteratively tuned to make sure that the corner tolerance and axis kinematic

limits are respected along the short-segmented section of the path. In fact, the FIR

technique needs to be re-tuned different tool-paths.

Figure 3.14: “Heart” Shaped Short-Segmented Tool-Path.

 Figure 3.15 depicts the kinematic motion profiles of each method. The

programmed feedrate is F = 150 mm/s, and axis acceleration and jerk limit are set to Amax

= 2000 mm/s2 and Jmax = 50,000 mm/s3, respectively. Figure 3.15a shows the path

(tangential) velocity profiles. As shown, proposed global interpolation algorithm delivers

the fastest cycle time. Observed from the jerk profiles, the motion profiles are smoother

with less fluctuation in velocity, acceleration and jerk. Proposed method uses significantly

71

less jerk to interpolate along densely discretized toolpath section. This is mainly due to the

fact that the proposed global smoothing technique can interpolate overlapping corners with

uninterrupted acceleration profiles. Notice that Bezier technique exceeds jerk limits of the

drives due to deficiencies in the real-time interpolation stated in the literature [4], [20] and

mentioned in Section 3.1 of the manuscript. Similarly, the FIR filtering method exceeds

jerk limits of the drives during short-segmented section of the tool-path. Both techniques

deliver significantly more fluctuating feedrate profiles. This typically results in a rougher

surface finish of the manufactured parts. The cycle time comparison is presented in Table

3.2. The proposed global smoothing technique can reduce cycle time almost by half as

compared to the basic P2P type interpolation. It also delivers faster cycle time than Bezier

and FIR filtering methods.

Finally, experimental contouring errors are presented in Figure 3.16. As shown, the

root mean square (RMS) average errors (See Table 3.2) are very similar. The maximum

contour errors are also comparable. The Bezier corner smoothing technique generates

interrupted acceleration profiles. Hence, this adverse effect is particularly clear from

contouring error fluctuations. Similar fluctuations are also observed for the FIR filtering

technique. Proposed global corner smoothing technique delivers a less a fluctuating,

smoother contouring error profile.

72

Figure 3.15: Kinematic profiles along heart shaped tool-path.

73

Figure 3.16: Contour error analysis.

Table 3.2: Cycle time and contouring performance comparison.

Algorithms
Cycle time

[sec]

Cycle time

Reduction in

Percentage

[%]

Contour error

[μm]

RMS Max

Global (overlapping)

Interpolation
3.457 45.0 2.4001 12.7891

FIR Interpolation 3.774 39.8 2.1930 8.7736

Bezier (Local)

Interpolation
4.092 34.7 2.1038 9.0324

P2P Interpolation 6.270 Base 2.1446 12.0504

74

3.6. Conclusions

This paper proposes a novel global corner smoothing and real-time interpolation

technique along short short-segmented linear tool-paths. Corners are smoothed by

interpolating axis motions continuously with uninterrupted acceleration profiles. This, in

return, generates smooth and rapid motion along short-segmented tool-paths. Furthermore,

the cornering transition is planned to be near time-optimal where either acceleration or jerk

limits of the drives are saturated. A novel Look-Ahead Windowing (LAW) technique is

developed to efficiently plan the feed motion. As compared to already existing techniques

in the literature, the hereby-proposed algorithms are 1-step and analytical. Therefore,

proposed algorithms are computationally efficient and convenient to implement in real-

time on CNC machine tools. Furthermore, the proposed global corner-smoothing scheme

considers overlapping corners in short-segmented tool-paths and generates smoother and

at the same faster motion suitable for high speed machining. Experimental benchmarks

along short segmented toolpaths show that the proposed algorithms can improve the cycle

time up to ~45% as compared to P2P path interpolation and 10–15% compared to the

existing techniques in the literature while still delivering identical or better contouring

performance.

75

Accurate interpolation of machining tool-paths based on FIR filtering

Shingo Tajima, Burak Sencer and Eiji Shamoto

Precision Engineering

Volume 52, April 2018, Pages 332-344

76

4. Accurate interpolation of machining tool-paths based on FIR filtering

This paper presents a novel real-time (online) interpolation algorithm based on Finite

Impulse Response (FIR) filters to generate smooth and accurate reference motion

trajectories for machine tools and motion systems. Typically, reference tool-paths are

composed of series of linear (G01) or circular (G02) segments. Basic point-to-point (P2P)

feed motion can be generated by interpolating each segment with trapezoidal or S-curved

velocity profile. However, smooth and accurate transitions between path segments are

necessary to realize non-stop contouring motion. In this study, FIR filters are utilized, and

the reference tool-path is filtered to interpolate a non-stop rapid feed motion. By using a

chain of FIR filters, acceleration and jerk continuous motion profiles are generated from

velocity pulse commands. A segment interpolation timing technique is developed to

control the contour errors during non-stop real-time interpolation of tool-paths.

Furthermore, by utilizing FIR filters for interpolation, frequency spectrum of the

interpolated motion profiles is controlled. The time constant (delay) of the filter is tuned to

create notches around the lightly damped vibration modes of the motion system, which

allows mitigation of unwanted vibrations and thus enables delivering accurate feed motion.

Simulation studies and industrial scale experimental validations are provided to illustrate

effectiveness of the developed interpolation technique.

4.1. Introduction

Reference trajectory generation plays a key role in the computer control of machine

tools and motion systems. Generated trajectories must not only describe the desired tool

path accurately, but must also have smooth kinematic profiles in order to maintain high

tracking accuracy, and avoid exciting natural vibration modes of the mechanical structure

or servo control system. As a matter of fact, most machining tool-paths are defined in terms

of series of linear (G01) segments or circular (G02) arcs [1], [46]. This imposes serious

limitations in terms of delivering a non-stop smooth and rapid motion for productivity, and

to achieve the desired final part geometry.

77

There are several challenges associated with interpolating a smooth motion along

these discrete tool-paths. Consider interpolation on a single path segment; feedrate

(tangential velocity) profile needs to be planned with smooth acceleration and decelerations

to avoid excitation of the machine tool’s structural modes [36] and at the same time respect

kinematic limits, i.e. torque, acceleration and jerk, of the drives [30], [47], [48]. Polynomial

based feed profiles, such as trapezoidal velocity [46], acceleration [30] and jerk profiles

[49] are well-known to the machine tool literature. They can be planned to fully exploit

machine limits and generate time-optimal feed motion along predetermined paths [10], [47],

[48]. However, these methods suffer from two bottlenecks. Firstly, they don't provide any

quantitative means to control the frequency spectrum of the interpolated acceleration

commands. In practice, the jerk limit is used to mitigate any residual vibrations [36]. Note

that, tuning the jerk limit smoothens acceleration profile. But, it does not directly control

the frequency spectrum. Robotics literature adapted exponential [50], trigonometric [51]

or minimum jerk spline [48] based acceleration profiles to help attenuate frequency

spectrum of reference trajectories. In precision machine tool literature, input shapers (IS)

[52], [53] and notch filtering are utilized to filter the reference motion commands to

attenuate the excitation around the lightly damped resonant frequencies of the machine.

These techniques are easy to implement and robust against parameter variations [52],

which makes them suitable for practice. However, input shaping distorts interpolated tool

trajectories due to shaper dynamics and induces interpolation errors. Either machining

velocity (feedrate) has to be lowered to reduce those errors, which is widely employed in

practice; or, model-based compensation techniques that are mostly computationally costly

are proposed in the literature [54].

Another bottleneck is the computational load of reference trajectory generators. As

the degree and complexity of the acceleration profile becomes higher, computational cost

to plan polynomial based trajectory generation increases [55]. Recent efforts are directed

towards generating online, real-time suitable interpolation techniques [56]–[58]. These

approaches essentially utilize a tuned dynamic system to filter and smoothen

velocity/displacement commands. They are designed with a chain of integrators and

cascaded feedback loops [59]. Online path smoothers can be implemented in the form of

78

recursive difference equations. To attain time-optimal motion, nonlinear feedback elements

such as saturation blocks are also introduced [60], [61]. Nevertheless, unless combined

with an input shaper, methods cannot control frequency spectrum of generated trajectories.

Finite Impulse Response (FIR) filters provide a computationally efficient

framework for online trajectory generation. The use of FIR filtering for real-time

interpolation and trajectory generation is known to the machine tool literature [62]. Chain

of 1st order FIR filters can be used to generate smooth reference trajectories with

trapezoidal acceleration and jerk profiles [34], [43]. Time constants of filters can be

assigned to realize time optimal motion. Furthermore, frequency response of the filter can

be tuned so that the excitation of the reference trajectory is shifted away from the

resonances of the machine tool. Finally, it can be implemented as a moving average filter

on modern microprocessors with minimum computational effort [43].

Although FIR filtering is an effective technique for online interpolation of reference

trajectories, so far, its use is constrained in simple point-to-point (P2P) moves. If

consecutive moves, e.g. linear or circular segments, are interpolated continuously without

a full stop at the segment junctions, large interpolation contouring errors occur due to

sudden change in the feed direction and the dynamics of the filter. Unless these contour

errors are confined, the use of FIR filtering for generating uninterrupted, rapid and accurate

feed motion in precision motion systems is limited. Recent literature recognized these

shortcomings and proposed compensation techniques [34], [35], [54]. However, these

techniques are either computationally expensive because they need to estimate errors

through dynamic models. This greatly limits their application in real-time implementation.

Or, they consider contouring errors only around junction of linear segments [34], which is

not realistic since conventional machining tool-paths consist of both mixture of linear and

circular segments, and transitions in-between those segments must be considered for a non-

stop high-speed contouring motion.

This paper, for the first time, presents comprehensive interpolation techniques for

generating uninterrupted and accurate feed motion along multi-segmented machining tool-

paths based on FIR filtering. Contributions of the paper are laid out as follows. Section 4.2

79

first analyses high-order trajectory generation based on FIR filtering technique. It is

followed by the introduction of accurate interpolation of linear and circular paths. A

feedrate control technique is presented to control contour errors during interpolation of

circular paths. Section 4.3 presents online interpolation of multi-segmented toolpaths based

on FIR filtering. Dwell time control technique is presented to control the interpolation

errors that occur during non-stop transition between linear and circular segments. Finally,

Sections 4.4 and 4.5 present illustrative examples and rigorous experimental validations

along complex tool-paths.

4.2. Online trajectory generation based on FIR filtering

4.2.1. Generation of high order kinematic profiles

Typically, “trapezoidal acceleration” or “trapezoidal jerk” based feed profiling is

employed to generate reference trajectories for highspeed and precision motion systems

[30], [49]. This section outlines the basic methodology to generate high-order trajectories

utilizing a chain of FIR filters [43].

A 1st order FIR filter is defined in Laplace (s) domain by the following transfer

function [43], [63]:

1 1

() , 1...
isT

i

i

e
M s i N

T s
 (4.1)

where Ti is the time constant (delay) of the ith FIR filter. Observed from Eq. (4.1), a FIR

filter consists of an integrator (1/s) and a pure delay e-sTi resembling a simple moving

average filter [63]. The impulse response is evaluated by taking inverse Laplace transform

of Eq. (4.1) as:

1

1, 0() ()
() () where

0, 0

i
i

i

tu t u t T
m t L M s u

tT
 (4.2)

and as shown in Figure 4.1, it becomes a simple rectangular pulse with a duration of Ti

having a magnitude of 1/Ti. This implies that for any Ti > 0, the area underneath the impulse

response is unitary. As a result, when an arbitrary signal is convolved with the FIR filter,

80

area underneath the original signal does not alter. Furthermore, since the filter has a free

integrator (1/s) it increases degree of the filtered (convolved) signal. This property can be

used to generate high order real-time motion trajectories as follows.

Figure 4.1: Impulse response of a 1st order FIR filter.

Let us consider a simple linear movement for a length of L commanded at a velocity

of F. This trajectory can be commanded by a rectangular pulse for a duration of Tv = L/F

as shown in Figure 4.2a. FIR filtering this rectangular velocity pulse generates the well-

known trapezoidal velocity profile [46] with piecewise constant acceleration segments (See

Figure 4.2b). Subsequently, another FIR filter can be convolved with the trapezoidal

velocity profile to generate smoother trapezoidal (jerk limited) acceleration profile [30]. As

outlined in Figure 4.2, high-order reference kinematic profiles can be generated by filtering

a reference velocity pulse though chain (series) of FIR filters [34], [43]. Finally, the

resultant velocity profile is integrated to obtain reference displacement profile as shown in

Figure 4.2c.

81

Figure 4.2: FIR filtering based smooth trajectory generation.

Filtered kinematic profiles can be analyzed through analytical solution of

convolution [63]. Consider a simple trapezoidal velocity profile. Convolution of a

rectangular velocity pulse command v(t), with the impulse response of the FIR filter from

Eq. (4.2) is written as:

() () () ()()

() () () ()

() () () ()

1

1 0

1
0 0

1
1

0 0

1
'() () ()

1

t

v

t t

t t

v v

v t v t m t v v T u t u t T d
T

v u t d v u t T d

T v T u t d v T u t T d

    

     

     

=  = − − − − − −      

 − − − −
 =
 
− − − + − − −  



 

 

 (4.3)

and the filtered velocity signal v’(t) is derived by evaluating above integrals,

()

()

1 1

1

1 1 1

1

 , 0

 ,
'()

 ,

0 ,

v

v v v

v

F T t t T

F T t T
v t

F T t T T T t T T

T T t

 


 
= 

− + +   +
 + 

 (4.4)

82

where the resultant acceleration signal is obtained by differentiation as:

1 1

1

1 1

 , 0

'() 0 ,

 ,

v

v v

F T t T

a t T t T

F T T t T T

 (4.5)

Finally, smooth displacement profile s’(t) is generated by integration of the velocity profile.

The use of convolution enables analytical derivation of filtered profile kinematics.

Above trapezoidal velocity profile is derived for the case of Tv > T1 and also illustrated in

Figure 4.3a. The peak acceleration depends on the filter’s time constant and the

commanded velocity, Apeak = F/T1. Commanded velocity F is reached at filter’s time

constant, t = T1, and the remaining cruise velocity duration becomes Tv − T1. On the other

hand, when the reference velocity pulse duration is equal or shorter than the filter’s time

delay Tv ≤ T1, motion kinematics alters. As depicted in Figure 4.3b, when Tv = T1, no

velocity cruise section occurs. As opposed, Figure 4.3c illustrates the case of Tv < T1. In

this case, commanded velocity cannot be reached and peak velocity becomes Vpeak = L/T1

with a cruise phase duration of T1 − Tv. Although omitted here, convolution can be used to

analytically derive all these kinematic profiles. The overall motion duration is elongated

by the amount of filter’s time constant Tv + T1.

83

Figure 4.3: Trapezoidal velocity profile generated by single FIR filter.

In precision motion systems jerk [30] or even snap [49] limited velocity profiles are

favored to generate smoother, more traceable reference motion profiles. As illustrated in

Figure 4.2, utilizing 2 FIR filters with time constants T1 and T2 generates the well-known

trapezoidal acceleration (jerk limited) feed profile. Figure 4.4 illustrates the motion profile

generated by filtering a trapezoidal velocity pulse. The profile kinematics can be computed

analytically by replacing rectangular velocity pulse command with the trapezoidal one in

Eq. (4.3), and for the case of Tv > T1 > T2, the generated velocity profile is derived as:

84

()

()()

()

()()

()()

2

2

1 2

2
2 12

1 1

2

1 1 21 2

1 2

1 2

2

2

1 2

2
2 2 1

1 1

2

1 2 1 1 2

1 2

1 2

1
0

2

1

2

1

2

'()
1

2

1

2

1

2

0

v

v v v

v v v

v v v

v

F
t t T

TT

FT F
T t Tt T

T T

F
F t T t T TT T

TT

F T T t T
v t

F
F t T T t T T

TT

FT F
F t T T T T t T T

T T

F
T T T t T T t T T T

TT

T T T t


 




+  −



− −   ++

 +  

= 
 − −   +


 − − − + +   +

+ + − +   + +

+ + 








 (4.6)

and the corresponding filtered acceleration profile a’(t) becomes:

()

()

()

()()

2

1 2

2 1

1

1 1 21

1 1 2

1 2

2

1 2

2

1 2

2 1

1

1 1 1 2

1 1 2

0

0

'()

v

v v v

v v v

v v

v v v

F
t t T

TT

F
T t T

T

F F
T t T Tt T

T TT

T T t T

a t F
t T T t T T

TT

F
t T T t T T

TT

F
T T t T T

T

F F
t T T T T t T T T

T TT


 




 



−   +−

 +  


= 
− −   +


− −   +


− +   +


− + − + +   + +
 (4.7)

As observed from Eq. (4.6), filtered (interpolated) motion profile is determined by

the filter delays, T1 and T2, and the length of the reference velocity pulse, Tv. There are in

total 8 combinations. Owing to the linearity of filtering operation, the order of filters in the

85

chain does not matter, and 3 main cases characterize the interpolated profiles; namely, Tv

> T1 + T2, Tv = T1 + T2, or Tv < T1 + T2. Figure 4.4a depicts the most common case when

the velocity pulse is longer than total sum of filter time constants, Tv > T1 + T2 and T1 > T2.

Note that in this case, a full 7-segmented jerk limited acceleration profile [30] with cruise

phase can be generated (Eq. (4.6)). However, if a rapid (high speed) move on a short travel

distance is commanded, Tv may become smaller. For instance, cruise velocity phase may

disappear completely if Tv = T1 + T2 as shown in Figure 4.4b. Furthermore, if Tv < T1 + T2,

commanded path velocity cannot be reached. In this case, peak velocity is computed as

Vpeak = L/T1 (See Figure 4.4c). The total motion duration is elongated by the filter delay as,

Tv + Td, where Td = T1 + T2.

86

Figure 4.4: Trapezoidal acceleration profile generated by 2 FIR filters.

4.2.2. Frequency shaping of interpolated trajectories

The FIR filter structure also provides effective means to control frequency spectrum

of the generated trajectories. Filtered acceleration a’(t) profile controls the torque/force

delivered by the feed drive, which induces excitation to the overall motion system. If

frequency spectrum of the reference acceleration profile contains components near the

87

lightly damped structural modes of the machine structure, it initiates forced vibrations [52],

[54].

For a rectangular pulse velocity input, the acceleration command consists of set of

impulses separated by Tv (See Figure 4.2a). Consider only a single acceleration impulse

with a magnitude h

, 0

()
0, 0

h t
a t

t
 (4.8)

convolved with the chain of FIR filters; the frequency spectrum of resultant acceleration

profile simply becomes frequency response of the FIR filters in the chain, evaluated as:

1 2'() () ()... ()na j hM j M j M j (4.9)

and frequency (ω) response of a single FIR filter can be computed from Eq. (4.1) as:

sin
1 1 2

2

i

i
j T

i i
ii

T

e
M j M j

TT j
 (4.10)

Consequently, frequency spectrum of the acceleration profile becomes

multiplication of sinc [64] functions from Eq. (4.10) as:

1 1

sin sin
2 2

' , where

2

i
N N

i

i
ii i i

i

T

a j
T T

 (4.11)

The above property can be exploited to choose time constant of the FIR filter to avoid

exciting lightly damped structural frequencies of the machine tool. Every sinc function

creates periodic notches (ripples), which can be matched with the resonant frequency of

the motion system by setting,

2r

i i

r

T k
k

 (4.12)

An example is presented in Figure 4.5. Simply setting time constant of the filters in

the chain to the natural periods of the resonant modes k = 1, Ti = 2π/ωr introduces shortest

88

filter delay into the motion while avoiding excitation of resonances. It is also notable that

there is close resemblance between Input Shaper [52], [53] and the FIR filter. Input Shapers

have the property to cancel any vibration at the half of the vibration period, π/ωr.

Figure 4.5: Frequency response of FIR filter.

4.2.3. FIR based interpolation of linear and circular paths

4.2.3.1. Linear Interpolation

Interpolation of single axis motion based on FIR filtering is presented in the

previous sections. This technique can be extended to generate point-to-point (P2P) multi-

axis linear motion. Figure 4.6 outlines the process to interpolate planar P2P linear motion

between two points, Ps = [xs, ys]
T and Pe = [xe, ye]

T. Firstly, the path length is computed

from the Euclidean distance, L = ||Pe – Ps||, and the tangential feed pulse F for a duration

of Tv = L/F is generated as shown in Figure 4.6b. The feed pulse is dissolved into its

Cartesian velocity pulse components based on the path geometry,

 1

() () ()cos

 where tan

() () ()sin

e s
x

e s

e s e s
y

x x
v t v t v t

y yL

y y x x
v t v t v t

L

 (4.13)

and smooth axis velocity commands are interpolated by applying FIR filtering. Note that,

time constants of the filters are set identical so that the resultant motion is coordinated.

Finally, the interpolated axis velocity commands are integrated to interpolate position

commands.

89

Figure 4.6: Multi-axis interpolation based on FIR filtering.

4.2.3.2. Circular interpolation

Next, the approach for linear interpolation is adapted to interpolate circular paths.

During circular interpolation, the total travel length becomes the arc length of the circular

path L = RΔθ where R is the arc radius and Δθ = θe − θs is the difference between starting

and ending angular positions (See Figure 4.7). Omitting the arc center, rectangular feed

pulse F is dissolved into its axis components based on the circular geometry as:

90

Velocity Commands

() sin () cos

 and

() cos () sin

x xs s

y ys s

F F
v t F s t Rt t

R R

F F
v t F s t Rt t

R R
Position Commands

 (4.14)

Notice that as opposed to the linear motion, reference axis velocity commands

during circular interpolation are not in rectangular pulse form but rather sinusoidal signals.

The reference axis commands are then filtered through chain of FIR filters and integrated

to interpolate the circular path. Figure 4.7 illustrates the reference and interpolated velocity

commands during circular interpolation.

Notice that sinusoidal axis motion commands are generated at the rotational

frequency of ωc = F/R, and they are modulated by the frequency response of FIR filters. At

steady state, the filtered axis motion commands can be written from Eqs. (4.14) and (4.1)

as:

' () cos

' () sin

c

c

x FIR init

y FIR init

F
s t R G t

R

F
s t R G t

R

 

 





=

=

 
= + 

 


  = +    

 (4.15)

where
1

()
N

FIR i

i

G M j
=

= is frequency response function of FIR filter. The discrepancy

between reference and interpolated (filtered) circular motion commands result in an

interpolation contour error ε as shown in Figure 4.7. This contour error is measured normal

to the commanded circle, and its steady state value can be calculated from Eqs. (4.14) and

(4.15) as:

() ()

() ()

()

22

2 2

''

cos sin1 1

1

y yx x

FIR FIRs s

FIR

s ss s

F F
R RG Gt t

R R

R G



 

−= − +

      
= +− −+ +      

      

= −

 (4.16)

The steady state value of the contour error is controlled by magnitude of the

frequency response of the FIR filter at the fundamental frequency of the circular motion,

91

ωc. By lowering the feedrate F, excitation frequency can be altered, and ε can be confined

by a user-specified tolerance value. Without losing generality, let us consider a trapezoidal

acceleration profile generated by 2-FIR filters. The magnitude of the frequency response at

ωc can be evaluated from Eq. (4.11) as:

1 2

1 2

sin sin
2 2

2 2

c
FIR

T F T F

R RG
T F T F

R R

 =

   
   
   = (4.17)

4-term Taylor expansion can be applied to Eq. (4.17) to obtain a polynomial expression:

 () () () ()
2 4 2 4

1 1 2 22 2 2 2
1 1

3! 5! 3! 5!

c c c c
FIR

T T T T
G

     
 − + − +  
  

 (4.18)

and substituting Eq. (4.18) into Eq. (4.16) yields the relationship between the contouring

error and the feedrate as:

()

4 3 2

2 2 2 2 4 4

1 2 1 2 1 2

4 2 2 4 4 4
1 2 1 2 1 2

1 0

1 1 10 3 3
80 640

1 1
153600 3686400 0

c
FIRGR

x x x
T T T T T T

x
T T T T T T R

 




=
−− =

   
+ + + − +   

   

 
+− + = 

 

 (4.19)

where

2

2

c

F
x

R
 (4.20)

Eq. (4.19) is a 4th order polynomial whose roots can be solved conveniently in real-

time, and the maximum feedrate to bound the contour error by a tolerance value can be

obtained from Eq. (4.20). It should be noted that the polynomial approximation used in Eq.

(4.18) only approximates |GFIR| at low frequency; namely, below the first notch (ripple)

of FIR filters. The first notch is typically matched with one of the structural resonances to

mitigate vibrations [34], [46], [53] and to minimize overall filter delay. Hence, the 4-term

Taylor expansion is suitable for practice.

92

Figure 4.7: Circular interpolation and corresponding velocity profiles.

4.3. Multi-segmented tool-path interpolation strategy

Previous section discussed generation of basic linear and circular trajectories based

on FIR filtering of axis velocity pulse commands. This section focuses on continuous and

accurate interpolation of multi-segmented tool-paths.

Figure 4.8 presents the overall strategy for online FIR based interpolation of multi-

segmented NC tool-paths. Each segment of the tool-path in a NC block/G-code is

represented by a timed feed pulse. As introduced in the previous section, depending on the

interpolation type, e.g. linear or circular, tangential feed pulse is dissolved into its axis

velocity pulses, which are then filtered through chain of FIR filters to generate smooth axis

reference motion commands. The NC part program can be interpolated based on two types

of motion; namely, “point-to-point” (P2P), or non-stop “contouring”. The motion type can

93

be controlled by adjusting the “dwell” time between consecutive feed pulses (See Figure

4.8). For instance, in P2P mode, an instantaneous stop between the programmed segments

is desired. This kind of motion strategy is typically employed in pick-and-place operations,

ultra-precision machining and measurement. P2P motion can be achieved by simply

accounting for the FIR filter delay and adding a dwell time between consecutive feed pulses

that is equal to the filter delay Td as outlined in Figure 4.8. Figure 4.9a shows an example

P2P motion generated along 2 linear segments. Consecutive feed pulses are filtered with a

dwell time of Td = T1 + T2 (in case of 2 FIR filters) to generate a full stop at P1 and the

corresponding velocity profile is shown in Figure 4.9b.

Figure 4.8: Overall path interpolation strategy.

94

Figure 4.9: Kinematic profiles during contouring motion.

95

4.3.1. Contour error control during non-stop linear interpolation

On the other hand, in high-speed machining, uninterrupted accurate contouring

motion is desired. As presented in Figure 4.8, non-stop “contouring” motion can be

generated by interpolating consecutive feed pulses without fully waiting for the filter delay

to die out. This enforces convolution of consecutive feed pulse to begin with non-zero

initial conditions, and through precise control of the dwell time, contouring errors [23],

[65] along segment transitions can be confined.

Firstly, let us define an “overlapping time”, Tk, to control the overlap of convolution

of the consecutive feed pulses:

 0 k dT T (4.21)

If Tk = 0, the dwell time is equal to the total filter delay Td, and as shown in Figure 4.9a and

b, a P2P motion is generated. Figure 4.9c illustrates the case when Tk = Td/2. In this case,

consecutive segment interpolation is initiated before feed motion of the 1st block comes to

a full-stop. As a result, feed direction is altered continuously. Due to this gradual change

in the feed direction an interpolation error, ε, occurs around the junction point of

consecutive path segments (See Figure 4.9a). When the overlapping time Tk is increased to

its upper limit Tk = Td, no dwell time is inserted between consecutive feed pulses. Since

change in the feed direction is also initiated earlier, larger interpolation contour error occurs

as shown in Figure 4.9d.

The contour error around the segment junction due to non-stop change in the feed

direction can be controlled analytically. Consider the generic path shown in Figure 4.9, the

deceleration motion towards midpoint, P1 starts at t = Tv. When a non-zero overlapping

time is set Tk > 0, feed direction towards the endpoint P2 is initiated with the start of

convolution of the consecutive segment at t = Tv + Td - Tk. Note that convolution of the 1st

segment finishes at t = Tv + Td, which marks the completion of feed direction change. If the

feedrate F at consecutive segments is identical, total axis (x and y) velocity traverse, i.e.

change in feed direction, is controlled directly by the angle between linear segments as:

96

st nd1 Segment Velocities 2 Segment Velocities

cos() cos() cos() sin()
, where

sin() sin() sin() co

x x x

y y y

F F F F F

F F F F F

Rotation Matrix

s()

x

y

F

F
 (4.22)

where Fx,y
- represent axis velocities along the 1st linear segment and Fx,y

+ represent

velocities on the 2nd (consecutive) segment, and β is the angle between the linear segments.

Thus, when feed pulses with identical amplitude F are commanded,

deceleration/acceleration kinematics around the bisector from the segment junction P1

becomes mirror-imaged (See Figure 4.9a). As a result, tangential feedrate exhibits its

minimum in the middle of the segment transition at t =Tv + Td - Tk/2. Similarly, the

interpolated trajectory also becomes symmetric where the maximum deviation from the

junction point occurs along the bisector at t = Tv + Td - Tk/2.

Kinematic profiles during segment transition depend on the overlapping time, Tk,

and the filter delay, Td. They can be computed by superimposing filtered velocity profiles

of consecutive segments as shown in Figure 4.10. For a 7-segmented trapezoidal

acceleration profile the x and y-axis velocities during segment transition can be calculated

from Eq. (4.6) as:

97

()

()()

()()

()()

()()

2,

, 2

1 2

, 2 ,

, 2 12

1 1

2,

1 1 21 2

1 2

2,

1 2

1 2

, 1 2 1 2

2,

1 2

1 2

1

2

1

2

1

2

1

2
' ()

1

2

1

2

x y

x y v v v

x y x y

x y v vv

x y

v v kv

x y

v

x y v k v

x y

v k

F
F t T T t T T

TT

F T F
F T T t T Tt T T

T T

F
T T t T T T TT T T t

TT

F
T T T t

TT
v t T T T T t T T T

F
t T T T T

TT

F

−

−

− −

−

−

−

+

− −   +

− − +   +− +

+   + + −+ + −

+ + −

= + + −   + +

+ − + + −

()()

()()

()()

2,

1 2 1 21 2

1 2

, 2 ,

1 2 1 21 2

1 1

2,

, 1 2 1 21 2

1 2

2

1
2 22

2

1
2 2 22 2

2

x y

v v kv k

x y x y

v k v kv k

x y

x y v k v kv k

T T T t T T T Tt T T T T
TT

F T F
T T T T t T T T Tt T T T T

T T

F
F T T T T t T T T TT T T T t

TT

+

+ +

+

+




















+ +   + + −− + + −


 + + + −   + + −− + + −




− + + −   + + −+ + − −


 (4.23)

for Tk < 2T2. Similarly, maximum contouring error along the bisector can be calculated by

superimposing the remaining distance towards the midpoint P1 during interpolation of the

1st segment, and the distance traveled due to the convolution of the 2nd segment. Based

on Figure 4.10 Cartesian components of the maximum contour error can be written as:

/ 2

/ 2 0

/ 2

/ 2 0

' '

' '

v d k

v d k

v d k

v d k

T T T

x x x

T T T

T T T

y y y

T T T

v d v d

v d v d

 (4.24)

and integrating axis velocity profiles v’x,y
- and v’x,y

+ from Eq. (4.6) yields the maximum

contour error during uninterrupted interpolation of consecutive linear segments from Eq.

(4.24) as:

3

2

1 22 2

2 2

2 2
2 1 2

1

sin 0 2
24 2

4 6 3
sin 2

12 2

k
k

x y

k k
k

T
F T T

TT

T T T T
F T T T T

T

 (4.25)

98

Finally, for a predetermined contour error tolerance the overlapping time can be

solved from Eq. (4.25) as:

()

()

1 2
3

2

2

1 2
2 2 1 2

24
0 2

sin 2

4
2

sin 32

k

k

k

TT
T T

F
T

T T
T T T T T

F










 


= 


+ −   +


 (4.26)

As presented above, the dwell time between consecutive interpolation of feed pulses is

controlled by the amount of Tk from Eq. (4.26), and interpolation contour error is confined

by a predetermined value efficiently.

Figure 4.10: Axis kinematic profiles during segment transition.

4.3.2. Control of contour errors during non-stop linear and circular interpolation

As shown in Figure 4.11, contour errors occur during non-stop interpolation

through circular (G2/G3) and linear (G1) segments as well. The dwell time control method

presented in the previous section can be adapted to confine these contour errors by

approximating the change in the feed direction.

99

Figure 4.11: Linear to circular interpolation transition.

During circular interpolation, interpolated tool motion settles down on a circular

path that has a smaller radius than the reference one due to the FIR filter dynamics (See

Figure 4.7). As shown in Figure 4.11, the feed direction at the start of the circular

interpolation is bounded between the tangent vector +

ref
t of the reference path and the

tangent vector +

filt
t of the interpolated path shown. +

ref
t is known from the reference path

geometry, and +

filt
t can be computed by the geometry through the following relationship:

 cos 0
2

c filt c filt c filt

+ + +  
⊥ →  = = 

 
t t t t t t (4.27)

where

() ()

() ()

22

22

c x x y y

filt x x y y

T O T O

T P T P


= − + − 


= − + −


t

t

 (4.28)

Note that norm of
c

t is known from Eq. (4.16),

 () ()
22

c x x y yT O T O R = − + − = −t (4.29)

and substituting Eqs. (4.29) and (4.28) in (4.27) yields:

100

() () () () ()

() () () () ()

2 22

2

2 22

2

y yx x

filt x x

y y x x

y y

P OP O RR R R
O P

R

P O R P OR R R
O P

R

  

  

 −−  −− − −
 = + − +
 
 

 − − −− − −
 + −
 
 

t i

j

 (4.30)

where i and j are the unit directional vectors in x and y directions, respectively. Feed

direction during linear to circular segment G01→G02/03 transition is then bounded

between the +

ref
t and +

filt
t , and hence the largest change can be approximated as shown in

Figure 4.11 as:

 ,arccos min
ref ref ref filt

ref ref ref filt



− + − +

− + − +

   
 =  

  
  

t t t t

t t t t
 (4.31)

where -

ref
t is the feed vector along the linear path. Eq. (4.31) is used to calculate the

overlapping time Tk and control the maximum value of the contour error. In a similar

fashion, transition from circular to linear segment G02/03→G01 is depicted in Figure 4.12a,

and Eq. (4.31) can be adapted for this case as:

 ,arccos min
ref ref filt ref

ref ref filt ref



− + − +

− + − +

   
 =  

  
  

t t t t

t t t t
 (4.32)

Finally, the transition between two consecutive circular segments G02/G03→

G02/G03 is illustrated in Figure 4.12b. In this particular case, Eqs. (4.31) and (4.32) needs

to be expanded to contain all possible combinations to bound the feed direction, and the

largest angular change, i.e. worst case, is determined as:

 , , ,arccos min
ref ref ref filt filt ref filt filt

ref ref ref filt filt ref filt filt



− + − + − + − +

− + − + − + − +

     
 =  

  
  

t t t t t t t t

t t t t t t t t
 (4.33)

101

Figure 4.12: Feed direction during circular and linear transitions.

4.4. Illustrative example

This section demonstrates application of the proposed FIR based block timing

control technique to accurately interpolate machining tool-paths. The reference tool-path

shown in Figure 4.13 is given in the Gcode/CL program defined by two G01 linear

segments followed by circular move (G02). In order to interpolate it with a jerk limited

trapezoidal acceleration profile, 2 FIR filters are used with time constants set to T1 = 50

[ms] and T2 = 30 [msec]. The command feedrate is set to F = 200 [mm/sec], and the

maximum interpolation error tolerance is ε = 100 [μm].

The path is interpolated based on the P2P and the proposed non-stop contouring

type interpolation techniques (See Figure 4.8). Interpolation results are summarized in

Figure 4.13. Figure 4.13a and b compare P2P and the contouring type interpolated tool

trajectories, and resultant feedrate profiles. As shown, in case ofP2P interpolation, the

motion undergoes a full stop at each segment junction. A dwell time identical to the total

FIR filter delay Td = 30 + 50 = 80 [ms] is inserted between the blocks. The total cycle time

102

for P2P motion results to Ttotal = 1.137 [s]. Proposed FIR filtering based contouring type

interpolation technique can generate accurate non-stop feed motion. Contouring errors

around transition of linear and circular segment junctions as well as the circular contour

are precisely kept at and below the ε = 100 [μm] tolerance value. The circular interpolation

error is bounded by lowering the feedrate to 84.2 [mm/s] from Eqs. (4.19) and (4.20). The

contour error around segment transitions are controlled by calculating the overlapping time

Tk based on the change in the feed direction from Eq. (4.26). The overall cycle time is

reduced to Ttotal = 1.074 [s]. Next section presents interpolation of a more complex tool-

path on an actual motion stage.

103

Figure 4.13: FIR based interpolation of multi-segmented path.

104

4.5. Experimental validation

4.5.1. Setup and implementation

Experimental validation and benchmark comparisons of the proposed technique are

performed on the Cartesian X-Y motion system shown in Figure 4.14. The planar X-Y

motion table is driven by 3 linear motors. The heavier X-axis is designed as gantry and

carries the lighter Y-axis. In order to implement proposed algorithms, servo amplifiers are

set to operate in torque (current) control mode. Closed loop control is implemented in the

Dspace DS1103® real time control system by reading linear encoder feedback at a

resolution of 0.1 [μm] and commanding torque signal to the servos at a closed loop

sampling interval of Ts = 0.1 [msec]. Both X and Y drives are controlled by P-PI cascade

motion controllers with velocity feed-forward action. The position feedback control

bandwidths of the axes are roughly matched at ωn = 50 [Hz] to ensure good motion

synchronization and contouring [23].

Figure 4.14: Experimental XY motion platform.

Next, to generate motion commands at discrete time instants kTs, FIR filter’s

transfer function from Eq. (4.1) needs to be discretized. A simple Euler’s backward

differentiation technique [63] is applied to derive the z-domain transfer function as:

1

1 1
()

1

iN

i

i

z
M z

N z
 (4.34)

105

where Ni = Ti/Ts is the number of (delay) samples of the filter. The filtered velocity

commands v'x,y are generated by implementing Eq. (4.34) through the following simple

difference equation:

, , , ,

1
' () ' (1) () ()x y x y x y x y i

i

v k v k v k v k N
N

 (4.35)

where k is the sample counter. Note that generation of the filtered velocity commands from

above difference equation requires only 2 additions and 1 multiplication for a single FIR

filter.

4.5.2. Experimental results

In the 1st experiment, the clover shaped tool-path shown in Figure 4.15 is

interpolated with the P2P and contouring interpolation techniques. As shown, this tool-

path consists of 5 linear and 5 circular segments. The feedrate along the tool-path is set to

F = 200 [mm/sec], and the maximum interpolation contour tolerance is ε = 100 [μm]. 2

FIR filters are used to interpolate the tool-path with time constants set to T1 = 30 and T2 =

25 [msec]. As shown in Figure 4.15, the tool-path is interpolated non-stop within desired

contouring tolerance. Maximum contouring errors both around linear and circular segment

transitions as well as along the circular sections are respected. Kinematic profiles are shown

in Figure 4.16. As shown, feedrate is lowered along circular sections and also at segment

junctions to generate accurate transition. Figure 4.16b depicts the feed pulse timing and the

resultant feedrate profiles. The cycle time during contouring interpolation is clearly shorter

and axis motion profiles are acceleration and jerk limited (See Figure 4.16c and d).

Contouring errors are measured experimentally [23] and presented in Figure 4.17 as well.

As shown, the tool-path is interpolated within the given contour error tolerance.

Experimentally measured contour errors show small discrepancy from the interpolated

ones due to feedback tracking dynamics of the servo system. These errors are not accounted

for in the proposed technique, and although small in this experiment (< 15 [μm]), they can

be further improved by well-known feed-forward control techniques [63].

106

Figure 4.15: Clover shaped tool-path.

107

Figure 4.16: Interpolated kinematic profiles along clover shaped tool-path.

Figure 4.17: Contour errors during clover tool-path.

108

A 2nd experiment is performed to showcase vibration suppression capabilities of

the proposed interpolation scheme. The starfish shaped tool-path shown in Figure 4.18 is

interpolated using the proposed FIR filtering based technique and compared against another

technique that fits small Bezier segments at segment junctions to realize a continuous

motion transition and thereby non-stop contouring motion [8]. The tool-path consists of

125 short linear segments. The programmed feedrate is set to F = 50 [mm/sec], and the

contouring tolerance is ε = 30 [μm]. 2 FIR filters are used to interpolate the path with

trapezoidal acceleration profiles. The filter time constants are tuned to avoid unwanted

vibrations. As shown in Figure 4.14, 2 flexible beams are placed on the X-Y table. The

beams are flexible in orthogonal directions, e.g. X and Y, where their 1st bending modes

are identified with accelerometers (PCB-3711E1110G) mounted on the top of the beams

as: ωx ≈ 7.4 [Hz] and ωy ≈ 9.2 [Hz]. In order to avoid exciting the lightly damped beam

resonances, FIR filter delays are set to T1 = 136.1 [msec] and T2 = 110.9 [msec],

accordingly. Figure 4.19 shows feedrate profiles of the interpolation techniques. Note that,

due to short linear segments, the programmed feedrate is never reached. As a result,

interpolated feed profiles and the corresponding accelerations fluctuate aggressively.

Nevertheless, the proposed FIR based filtering technique delivers the fastest cycle time

while respecting desired contouring tolerance along the entire tool-path. Figure 4.20

compares frequency spectrum of the interpolated acceleration profiles. As shown, FIR

based interpolation technique exhibits attenuated frequency spectrum especially around the

resonances of flexible beam structures. Most of the excitation is kept in the lower

frequencies. However, the Bezier based technique simply spreads the excitation at a much

wider bandwidth. Figure 4.21 presents beam accelerations measured through the attached

accelerometers. As shown, the level of acceleration of the beams are significantly less as

the motion stage tracks the FIR based interpolated trajectory. The maximum acceleration

is same as the interpolated one from the reference trajectory. As compared, the acceleration

level is significantly higher on the Bezier based trajectory generation technique. Finally,

Figure 4.22 shows the frequency spectrum of the measured beam accelerations. As shown,

the Bezier based technique clearly excites the resonances and causes beams to vibration

heavily. On the other hand, FIR based technique does not induce any unwanted vibrations

109

and the beams move as a rigid body with the motion table. This experiment clearly

demonstrates that the proposed technique can interpolate complex tool-paths accurately,

deliver rapid non-stop contouring motion and at the same time mitigate unwanted residual

vibrations.

Figure 4.18: Starfish shaped tool-path.

110

Figure 4.19: Interpolated kinematic profiles along starfish shaped tool-path.

Figure 4.20: DFT of interpolated axis acceleration profiles.

111

Figure 4.21: Experimentally measured beam accelerations.

Figure 4.22: DFT of beam accelerations.

4.6. Conclusions

A novel online trajectory generation scheme has been proposed for Cartesian

machines and motion systems to generate high-speed and accurate feed motion. Owing to

its simple filtering structure, proposed scheme can interpolate linear and circular paths with

high kinematic continuity and minimum computational load making it suitable for real-

time processors. The proposed block timing technique considers the change in the feed

112

direction and the total delay in the filter chain to generate accurate non-stop rapid feed

motion. For the first time, interpolation errors that occur during both linear and circular

segment transitions as well as circular arcs are considered making the proposed scheme

comprehensive for multi-segmented paths. Furthermore, by tuning the filter delays with

respect to the dynamics of the motion system, frequency spectrum of the acceleration

profile is shaped and unwanted residual vibrations are avoided. Experimental results

validated that the proposed technique can interpolate multi-segmented tool-paths

accurately. As compared to the state of the art technique, the proposed interpolation method

can eliminate unwanted vibrations and reduce the cycle time up to ∼20% while utilizing

same level of acceleration proving it to be a practical and effective online interpolation

technique form modern NC systems.

113

Accurate real-time interpolation of 5-axis tool-paths with

local corner smoothing

Shingo Tajima and Burak Sencer

International Journal of Machine Tools & Manufacture

Volume 142, July 2019, Pages 1-15

114

5. Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing

5-axis machining tool-paths, when programmed in workpiece coordinates, translational

and rotational tool motion in terms of Cartesian tool center points (TCPs), and unit tool

orientation vectors (ORI). This paper presents a computationally efficient real-time

trajectory generation algorithm for 5-axis machine tools to interpolate translational and

rotational tool motion synchronously for accurate 5-axis machining. Finite Impulse

Response (FIR) filters are used to generate jerk limited motion trajectories in real-time.

Linear translational motion of the tool center point (TCP) is interpolated by FIR filtering

of Cartesian velocity pulses in G01 blocks. In order to generate constant speed tool axis

rotation, spherical linear interpolation is used, and unit tool orientation vectors (ORI) are

filtered directly in the spherical coordinates. Precise tool motion synchronization is realized

by matching time-constants of FIR filters utilized for translational and rotational

interpolation. Non-stop path interpolation is achieved by locally blending consecutive

linear G01 commands. Instead of fitting geometric blending curves and solving feed

scheduling problem, smoothing functionality of FIR filtering is used, and a direct 1-step

path smoothing algorithm is proposed for real-time implementation. The algorithm

considers path blending errors in Cartesian (Euclidian) as well as in spherical (orientation)

coordinates due to transient response of the FIR filter. As a result, both tool-tip and the

tool-orientation errors are controlled accurately. Effectiveness of the developed algorithms

are validated in simulations and also experimentally on an open-NC controlled 5-axis

machine tool.

5.1. Introduction

5-axis machines have become a crucial tool for modern die and mold and aerospace

industries. As compared to their 3-axis counterparts, 5-axis machines can alter tool

orientation in synch with the tool-tip in simultaneous 5-axis machining. This functionality

enables them to machine complex sculptured surfaces faster and thereby achieve

significantly better finish quality [66]. The speed, accuracy and overall productivity of 5-

axis machine tools are greatly affected by 2 key factors: i) Reference tool-path, and ii)

115

Performance of the numerical control (NC) system [9]. This paper proposes a novel real-

time trajectory generation technique for accurate interpolation of discrete 5-axis machining

tool-paths.

Typical 3 or 5-axis machining tool-paths are generated using Computer-Aided

Manufacturing (CAM) systems and programmed by series of linear G01 moves [9], [67].

Deficiencies of this point-to-point (P2P) linear tool-path format are well-known to 3-axis

machining literature. Since linear tool-paths are only position (G0) continuous, feed motion

must undergo instantaneous stops at segment junctions, which yields elongated cycle times,

puts strain on the drives and generates stair-cased rough surface finish. A well-known

approach to generate non-stop continuous tool motion is to blend consecutive linear

segments locally using micro-splines [8], [23], which ensures acceleration continuous

transition between consecutive linear moves. This operation is performed by the NC system

in real-time. The key is to control the corner rounding (blending) geometry so that the

blending error is within the allowable part tolerance, and its curvature is minimized [8] to

attain rapid feed motion. Most techniques are based on this 2-step approach where firstly,

a micro-spline curve is fitted to generate a smooth corner geometry. Next, smooth feedrate

profile is planned along the blended path geometry and interpolated in real-time while

minimizing feed fluctuations and chord errors [4], [22], [23], [29]. Yutkowitz [6] patented

a corner smoothing method, which uses two 4th order polynomial curves to blend two

linear feed blocks with user-specified tolerances and ensure an acceleration continuous

feed motion. Erkorkmaz et al. [23] used a quintic (5th order) splines to round a sharp corner

accurately. Sencer et al. [8] used a curvature optimized quinitc Bezier spline to generate

both accurate and rapid cornering motion. Ernesto and Farouki [25] employed a Bezier

conic and optimized the feedrate along the curve under acceleration bounds. Variety of

spline types and feed optimization algorithms are proposed in the literature in an effort to

achieve faster cycle times and also minimize the computational load required for real-time

interpolation [7], [10], [31].

Currently available 5-axis local path smoothing algorithms are generally build on

this existing 2-step approach developed for 3-axis machining. Nevertheless, 5-axis

machining brings additional challenges. A crucial challenge arises immediately in the 1st

116

step. Typical 5-axis machining tool-paths are programmed in workpiece coordinates where

tool axis translation is described by Cartesian tool center points (TCPs) and tool axis

orientation is defined in spherical coordinates by unit tool-orientation vectors (ORI). Both

translational and rotational tool motion must be blended locally in their corresponding

coordinate systems and interpolated synchronously. As illustrated in Figure 5.1, this

requires accurate control of Euclidian tool-tip and angular tool-orientation blending errors

at segment junctions, and also synchronized interpolation of those curves in their

corresponding coordinate systems (cartesian and spherical). Fleasing and Spence [14] were

the first one to propose a de-coupled approach where Quintic splines are used in Cartesian

and spherical coordinates to smoothly interpolate TCP and ORI paths separately. They

reported that the use of linear spherical interpolation for tool orientation vectors reduces

angular velocity fluctuations and provides smoother tool motion. Nevertheless, they have

to use an extra polynomial to synchronize linear and angular tool velocities, which is

reported as a challenge in this de-coupled interpolation strategy [14]. This approach

requires actually 3 steps; namely, geometric spline fitting, feed-planning and TCP and ORI

synchronization. Tulsyan and Altintas [26] adapted this approach for local corner

smoothing, and derived analytical solutions to minimize the computational cost of fitting

higher order splines in cartesian and spherical coordinates. System of non-linear equations

must be solve to fit corner blending splines within user specified Euclidian and angular

error tolerances [14], which greatly limits real-time implementation on modern NC systems.

Yang and Yuen [68], [69] further provided closed-form solutions in an attempt to reduce

the computational burden.

117

Figure 5.1: 5-Axistool-pathinterpolation.

Although de-coupled blending in Cartesian and Spherical coordinates allows

accurate control of tool motion, it is computationally expensive [70], [71]. Dual-spline

interpolation in cartesian coordinates is proposed to reduce the computational expense [10],

[15], [67], [72], [73]. In this approach, TCP and another point along the tool-shank is

blended in cartesian coordinates. The analytical framework generated for the 3-axis case

can be deported to 5-axis machining for this approach. Notice that, since two local corner

smoothing curves for TCP and another tool-axis point are used, computational load is

actually only doubled from the 3-axis case. As long as those blending curves are

parameterized identically, this approach potentially reduces feed fluctuations arising from

synchronization of linear and angular tool motion kinematics as well. Bezier and B-spline

[15], [72], or PH curves [73] can be used for corner blending. The blending step is then

followed by feedrate profiling, and interpolation of those blending curves [10], [47], [74].

As noted, lifting the 2-step corner blending approach for 5-axis machining requires at least

118

doubles the computational load and still suffers from deficiencies related to real-time

interpolation.

This paper presents novel online interpolation of 5-axis machining tool-paths in

workpiece coordinates. Drawbacks of geometric smoothing and interpolation are avoided,

and a “direct” path interpolation approach is proposed. Firstly, Finite Impulse Response

(FIR) filters [34], [43], [75] are used to interpolate translational and rotational tool motion

in workpiece coordinate system. TCP motion is interpolated and locally blended in

Cartesian coordinates by FIR filtering of axial velocity components [34]. Spherical linear

interpolation [14] is employed, and tool orientation is blended directly in spherical

coordinates. Rotational blending errors are also controlled analytically. Henceforth, the

paper is organized as follows. Section 5.2 presents real-time P2P interpolation of 5-axis

tool-paths using FIR filtering. Section 5.3 shows local corner blending for tool translation

and tool orientation based on two novel approaches. Finally, experimental validations

conducted on a 5-axis machine tool are presented in section 5.4.

5.2. Point-to-point (P2P) linear interpolation of 5-axis tool-paths

As shown in Figure 5.1, typical simultaneous 5-axis machining tool-paths are

defined in the workpiece coordinate system, and they command synchronized linear

interpolation of tool-tip (TCP) and tool-axis orientation (ORI) [67], [76]. TCP is defined

by its Cartesian coordinates P = [Px, Py, Pz]
T, and ORI is given by set of unit orientation

vectors O = [Oi, Oj, Ok]
T in spherical coordinates. During P2P interpolation, TCP must be

interpolated linearly between successive points. At the same time, ORI must be

interpolated linearly between successive tool-axis orientation vectors on the unit sphere

[14], [26].

This section first introduces fundamentals of Point to Point (P2P) interpolation

based on FIR filtering. This is then followed by P2P linear interpolation of 5-axis toolpaths

in workpiece coordinate system.

119

5.2.1. FIR filtering based real-time interpolation

In this work, Finite Impulse Filters (FIR) are utilized to realize linear interpolation

of tool motion with trapezoidal (jerk-limited) acceleration kinematics so that generated

trajectories are suitable for high-speed 5-axis machining. A 1st order FIR filter is defined

in Laplace(s) [77] domain by the following transfer function (TF) [43], [75]:

1 1

() , 1...
isT

i

i

e
M s i N

T s
 (5.1)

where Ti is the time constant (delay) of the ith FIR filter. FIR filter’s TF consists of an

integrator (1/s) and a pure delay isT
e
− yielding a rectangular impulse response as:

1

1, 0() ()
() () where

0, 0

i
i i

i

tu t u t T
m t L M s u

tT
 (5.2)

When Eq. (5.2) is convolved (∗) with a rectangular velocity pulse v for a length of Tv, it

produces a trapezoidal velocity profile. Convolving resultant trapezoidal velocity profile

with another FIR filter (i = 2) having a constant T2 increases continuity of the motion (due

to the integrator in FIR’s TF from Eq. (5.1)), and generates the well-known jerk-limited

velocity profile v’ with trapezoidal acceleration transients [22], [75] also shown in Figure

5.2 as:

120

2

2

1 2

2
2 12

1 1

2

1 1 21 2

1 2

1 2

1 2
2

2

1 2

2
2 2 1

1 1

2

1 2 1 1 2

1 2

1 2

1
0

2

1

2

1

2

'() () () ()
1

2

1

2

1

2

0

v

v v v

v v v

v v v

v

F
t t T

TT

FT F
T t Tt T

T T

F
F t T t T TT T

TT

F T T t T
v t v t m t m t

F
F t T T t T T

TT

FT F
F t T T T T t T T

T T

F
T T T t T T t T T T

TT

T T T t

 (5.3)

Notice that total motion duration becomes summation of the original velocity pulse

length and time constants of the FIR filters, Ttotal = Tv + T1 + T2. Filter’s time constant

controls shape of the profile and a detailed analysis on the motion kinematics is already

provided in [43], [75]. For instance, if Tv > T1 > T2, a full 7 segmented jerk limited trajectory

could be generated. Peak acceleration is controlled by filter time constant and tangential

speed, F/T1. Similarly, peak jerk value becomes F/T1/T2 (see Figure 5.2). Hence, filter time

constants or block’s feedrate can be selected to adjust the peak acceleration and jerk

demanded by the trajectory.

Kinematic profiles, i.e. position, velocity, acceleration and jerk, can be computed

analytically in polynomial form by formally solving the convolution integral. For the real-

time implementation on NC systems; however, this may not be necessary. FIR filter is

discretized,

 1 11

1 1
() ()

1

i

s

N

i i s z T

i

z
M z M s

N z
 (5.4)

with z = exp(sTs) being the discrete time operator, Ts is servo loop’s sampling time and Ni

= int(Ti/Ts) is the number of delay samples. Eq. (5.4) is then simply implemented in the

121

form of a moving average filter [43], [75] in real-time by evaluating following difference

equation:

 ()1 1

1
' () ' (1) ' () ' ()i i i i i

i

v k v k v k v k N
N

− −= − + − − (5.5)

where k is the sample counter and v’i is the ith filtered signal. As observed, real-time FIR

filtering-based trajectory generation requires only 1 multiplication and 2 summation

operation. As shown in Figure 5.2, jerk-limited acceleration profiles require 2 consecutive

FIR filtering. Therefore, 2 multiplication and 4 addition operation must be performed at

most to generate the profile in real-time, which is conveniently realizable by most modern

NC units or even low-cost micro-processors.

Figure 5.2: Jerk limited trajectory generated by FIR filtering.

5.2.2. Real-time point to Point (P2P) interpolation of 5-axis toolpaths

This sub-section presents linear interpolation of simultaneous P2P 5-axis motion

trajectories based on FIR filtering directly in workpiece coordinates. Figure 5.3 outlines

the proposed de-coupled interpolation scheme. As shown, translational and rotational

motion of the tool are interpolated in a de-coupled fashion. Translational tool motion is

generated by linear interpolation of TCPs in the Cartesian workpiece coordinates.

122

Synchronously, tool-orientation is interpolated by spherical linear interpolation of ORI

vectors in Spherical coordinates.

Consider starting and ending tool poses on a G-line, [Ps, Os] and [Pe, Oe]. The

Euclidian distance and angle of rotation are calculated as:

 and arccosL e s s eP P O O (5.6)

If the machining feedrate F is defined based on linear tool-tip velocity, then a linear feed

pulse is generated for the duration of

v

L
T

F F

e s
P P

 (5.7)

In order to ensure synchronized tool motion, identical angular velocity pulse duration Tv is

set and corresponding angular velocity ω pulse magnitude is calculated:

()arccos

v vT T





= =

s e
O O

 (5.8)

Typically, federate in 5-axis machining is programmed w.r.t to linear TCP velocity.

If inverse-time-mode interpolation [47] is programmed, then Tv may be already provided

in the G-code. In this case, linear and angular speed pulse amplitudes are updated to F =

L/Tv and ω = θ/Tv.

Next, the TCP velocity pulse is dissolved into its Cartesian components based on

the path geometry:

()
()

() () () , where

()

x x

y y

z z

v t t
d t

t v t v t t
dt

v t t

   
−   

= = = = =
    −
      

e s

e s

P P P
P t t

P P
 (5.9)

As shown in Figure 5.3d and e, Cartesian velocity pulses vx, vy, vz are convolved (filtered)

with parallel FIR filters directly in the workpiece coordinates,

 1 2

' ()
'()

'() ' () () () ()

' ()

x

y

z

v t
d t

t v t t m t m t
dt

v t

 
 

= = =  
 
  

P
P P (5.10)

123

where m1 and m2 are the impulse responses of FIR filters. Filtered (smoothened) velocity

commands are then integrated to generate the final TCP commands:

0

' () ' ()

'() ' () ' ()

' () ' ()

x xt

y y

z z

p t v t

t p t v t d

p t v t

P (5.11)

As shown in Figure 5.3, the tool orientation vectors (ORI) are interpolated in parallel. The

pseudo angular velocity pulse components dO/dt = [vi, vj, vk] are generated on the unit

sphere by making use of the spherical linear interpolation [14], [26] as:

()() ()

()

()
cos cos()

() () , 1
sin

()

i

v

j

k

v t
T t td t

t v t
dt

v t

   



 
− − + 

= = = = =
 
  

s e

s e

O OO
O O O (5.12)

and they are smoothened by convolving with parallel FIR filters in the spherical

coordinates:

 1 2

' ()
'()

'() ' () () () ()

' ()

i

j

k

v t
d t

t v t t m t m t
dt

v t

 
 

= = =  
 
  

O
O O (5.13)

Finally, numerical integration is performed to interpolate the final ORI vectors

directly on the unit sphere:

 ()1 2

0

' ()

'() ' () () () ()

' ()

i t

j

k

o t

t o t t m t m t d

o t



 
 

= =  
 
  

O O (5.14)

As depicted in Figure 5.3, FIR filtering based linear interpolation of TCP and ORI vectors

is performed directly in the workpiece system. Since parallel FIR filters with identical time

constants are used, tool translational and orientation motion start and end at the same time

in a synchronized manner. Furthermore, the linear and angular speed of the tool is kept

constant eliminating any unwanted fluctuations.

124

Figure 5.3: Point to Point (P2P) tool-motion interpolation.

125

5.2.3. Illustrative example

An illustrative example is provided hereby to showcase application of the proposed

interpolation scheme. A 5-axis machining tool-path shown in Figure 5.4 is programmed

with 3 consecutive tool-pose points. Tangential feedrate is set to F = 100 [mm/sec]. Feed

pulse durations are computed from linear feed and TCP displacement. Tool’s angular speed

is calculated from Eq. (5.8). 2 FIR filters with time constants of T1 = 100 [msec] and T2 =

60 [msec] are utilized. Notice that FIR filtering elongates each block’s duration by the total

filter delay of Td = T1 + T2. Thus, successive block velocity pulses are commanded with a

“dwell” time of Tdwell = Td = 160 [msec]. As a result, at the end of each linear interpolation

the tool undergoes a full-stop and P2P motion is achieved. As shown in Figure 5.4, both

TCP and ORI vectors are interpolated with trapezoidal acceleration profiles. Linear and

angular velocities are synchronized precisely. Furthermore, owing to direct spherical

interpolation constant angular tool-axis’ velocity [14] is preserved. Based on the

interpolated tool-pose, inverse kinematics is applied, and joint position commands are

generated. Readers should refer to Section 5.4 for the kinematics of the in-house controlled

5-axis machine tool. Since the kinematic transformation is continuous, all the drive

commands are interpolated with smooth jerk-limited acceleration kinematics as

demonstrated in Figure 5.4.

126

Figure 5.4: P2P interpolation example.

5.3. Non-stop linear interpolation of 5-axis tool-paths with local corner blending

Previous section discussed P2P linear interpolation of 5-axis machining tool-paths

in workpiece coordinates. This section focuses on non-stop interpolation of 5-axis

machining tool-paths with accurate local corner blending (smoothing). Two methods are

presented for real-time interpolation targeting high-speed or high high-smoothness motion.

127

5.3.1. Non-stop interpolation based on dwell-time controlled blending (NS-DCB)

The first method is based on the dwell-time control, and it is called the non-stop

dwell-time control path blending (NS-DCB). As presented in proceeding section, if

consecutive blocks are commanded with a dwell-time of equal or larger than the filter delay,

a full-stop and an exact P2P motion is realized. On the other hand, if consecutive velocity

pulses are commanded without fully waiting for the filter delay to die out, tool’s linear and

angular feed directions are changed before the target pose is reached, and a corner blend is

generated. The idea of utilizing dwell-time control to blend 2-axis Cartesian tool-paths with

confined corner blending tolerance is already presented in [34], [75]. This approach is

extended here for local blending of 5-axis tool-paths with synchronized TCP and ORI

kinematics directly in the workpiece coordinates. This strategy is outlined in Figure 5.5,

and detailed mathematical analysis is provided in the following.

128

Figure 5.5: Overall Non-stop Interpolation of 5-axis Tool-paths based on Dwell-time

Control Strategy.

Figure 5.6 illustrates application of dwell-time control for non-stop interpolation

with TCP motion blending. A simple example with two consecutive feed blocks is shown

in Figure 5.6a. As observed, when the dwell-time between consecutive blocks is set less

than the total FIR filter delay Tdwell < T1 + T2, convolution of the successive feed block (F2)

is initiated before the current one is completed. As a result, feed direction is transitioned

from t1 to t2 without stopping at the corner. Local blending (smoothing) starts at Ps, at t =

Tv,1 + Tdwell and ends at Pe when FIR filter’s transient response dies out at t = Tv,1 + Td.

Shortening the dwell-time initiates earlier cornering transition, and thus the time spend

129

during cornering transition increases yielding a larger blending trajectory and a greater

deviation from the corner, i.e. segment’s junction point, P2. Thus, cornering duration Tc

plays a critical role in controlling corner blend geometry. The total FIR filtering delay, Td

= T1 + T2 is fixed. Cornering duration Tc becomes:

c d dwellT T T= − (5.15)

If the successive block feeds are identical F1 = F2, maximum corner blending error

occurs in the middle of the cornering trajectory at t = Tv + Td - Tc/2 as shown in Figure 5.6:

 TCP = −m 2P P (5.16)

The midpoint coordinates Pm can be calculated by the remaining distance towards

P2 from current (1st) block’s deceleration profile, which is donated as l1, and by the added

distance due to acceleration towards the successive (2nd) block donated as l2 (See Figure

5.6a and b). Velocity profile during current block’s deceleration is simply based on the

trapezoidal acceleration profile from Eq. (5.3):

21
1 2

1 2

' 1 2 1
1 1 2 2 1

1 1

2
1

1 2 1 1 2

1 2

1

2

1
()

2

1

2

v v v

v v v

v v v k

F
F t T T t T T

TT

FT F
v t F t T T T T t T T

T T

F
T T T t T T t T T T T

TT

 (5.17)

and by setting the integration boundaries to ts = Tv,1 + Tdwell and te = Tv,1 + Td in Eq. (5.17),

yields the remaining distance towards P2:

3

1 2

1 2'

1 1 2 2

2 2/2
2 1 2

1

, 0 2
48

4 6 3
, 2

24

v d

v d c

c
T T c

c cT T T
c

T
F T T

TT
l v d

T T T T
F T T T T

T

 (5.18)

Next, velocity profile during acceleration towards P3 is integrated to compute the

l2

130

3

/2 2 2

1 2'

2 2 2 2

2 20
2 2 1 2

1

, 0 2
48

4 6 3
, 2

24

c

c
T c

c c
c

T
F T T

TT
l v d

T T T T
F T T T T

T

 (5.19)

Hence, midpoint of cornering blend is evaluated from the geometry as shown in Figure

5.6a,

 2 1l l− = −m 2 2 1P P t t (5.20)

and its Euclidian norm yields TCP blending error:

 ()2 2

2 1 1 2 1 22TCP l l l l l l = − = + − 2 1 1 2t t t t (5.21)

It is worthwhile to notice that the inner product of consecutive feed vectors yields

the cornering angle

 ()cos TCP = 1 2t t (5.22)

and hence by plugging Eqs. (5.18) and (5.19) into Eq. (5.21), provides the final TCP

blending error expression as a function of cornering duration Tc, FIR filter delays, T1, T2

and the cornering angle θTCP as:

()

()

3
2 2

1 2 1 2 2

1 2

2 2
2 22 2

1 2 1 2 2 1 2

1

2 cos , 0 2
48

4 6 3
2 cos , 2

24

c
TCP c

TCP

c c
TCP c

T
F F F F T T

TT

T T T T
F F F F T T T T

T








+ −  


= 

− + + −   +



 (5.23)

Closed-form solution to the Tc for a desired TCP blending tolerance is calculated from

above;

()

()

1 2
3 2

2 2

1 2 1 2

2
1 2

2 2 1 2
2 2

1 2 1 2

48
, 0 2

2 cos

8
, 2

32 cos

TCP
c

TCP

c

pos

c

TCP

TT
T T

F F F F
T

T T
T T T T T

F F F F










 

+ −
= 


+ −   +
+ −

 (5.24)

and the final dwell-time between consecutive feed blocks is simply:

 ,dwell TCP d cT T T= − (5.25)

131

Figure 5.6: TCP blending error control.

Notice that the cornering angle, θTCP plays a critical role. Acute corners, θTCP > π/2

demand larger velocity traverse, and thus require shorter cornering duration to satisfy

desired blending tolerance. Eq. (5.23) captures this geometrical effect. Also notice that,

proposed formulation assumes that the largest blending error occurs in the middle of the

cornering trajectory. If F1 ≠ F2, cornering trajectory is no longer symmetric around the bi-

sector of P1P2P3. In this particular case, proposed formulation overestimates the blending

error and can still be utilized safely for non-stop real-time tool-tip interpolation. This is due

to the fact that proposed method computes contour error at the midpoint of the cornering

trajectory.

In 5-axis machining, blending of ORI vectors and controlling the angular deviation

is critical especially during flank milling operations [67], [76]. Above dwell-time control

approach can also be applied for blending ORI vectors within specified angular orientation

error tolerance εORI. Figure 5.7 shows corner blend trajectory on the unit sphere and

132

corresponding angular velocity kinematics for Tdwell < Td. As illustrated in Figure 5.7, when

pseudo angular velocities (dOi/dt, dOj/dt, dOk/dt) are FIR filtered, tool-orientation is

blended with C2 continuity and make a smooth transition around O2. Henceforth, the ORI

blending error is controlled as follows.

Os is the ORI vector at the start of the blend when successive block convolution

starts, and Oe in Figure 5.7 is measured at the end of the blend. Similar to the Cartesian

case, cornering trajectory is symmetric on the unit sphere when ω1 = ω2, and maximum

angular deviation occurs at the midpoint, Om. θ1 and θ2 are analogous to l1 and l2 denoting

remaining and added rotations of successive interpolation blocks around the corner. They

are obtained by integrating the angular velocity kinematics:

3

2

1 2

2 2

2 2
2 1 2

1

, 0 2
48

for 1, 2
4 6 3

, 2
24

c
i c

i

c c
i c

T
T T

TT
i

T T T T
T T T T

T








 


= =

− +   +



 (5.26)

Next, O2Os
*OmOe

* forms a spherical square on the unit sphere [78]. Considering

the fact that the corner blending tolerance is typically very small, the geometry can be

assumed as a parallelogram. Hence, the spherical cosine [78] law can be applied, and the

orientation blending error εORI can be expressed as a function of cornering angles:

 () () () () () ()1 2 1 2cos cos cos sin sin cosORI ORI    = + (5.27)

where

() ()

arccosori
  

=  
 

2 31 2

2 31 2

O OO O

O OO O
 (5.28)

By plugging Eqs. (5.26) and (5.28) into Eq. (5.27) blending error εORI for any given

dwell-time Tdwell and FIR filter delay Td can be calculated. The goal is to calculate the

dwell-time required to satisfy desired angular blending tolerance. In order to find a closed-

form solution, Maclaurin Series for the sine/cosine terms are used,

133

()

()

3

2 4

sin
3!

cos 1
2! 4!

i
i i

i i
i


 

 



= −



 = − +


 (5.29)

and Eq. (5.27) is linearized

 () ()
2 4 2 4 3 3

1 1 2 2 1 2
1 2

cos cos1 1
2! 4! 2! 4! 3! 3!

ori ORI

     
  

     
= +− + − + − −     
     

 (5.30)

and organized as a 4th order polynomial as:

4 3 2 0temp temp temp tempaT bT cT dT e+ + + + = (5.31)

Notice that, accuracy of the above Maclaurin series approximation can be improved

by adding more terms in Eq. (5.29). The use of only 2 terms leads to the above 4th order

polynomial, which can be solved conveniently in real-time, and it does not introduce

significant errors in practice.

When Tc ≤ 2T2, (See Eq. (5.26)) the polynomial coefficients in Eq. (5.31) become

()

()

()

()

4 4

1 2

8 8 8

1 2

4 2 2 4 3 3

1 2 1 2 1 2
6 6 6

1 2

4 4 2 2 3 3

1 2 1 2 1 2 1 2
4 4 4

1 2

2 2

1 2
2 2 2 1 2

1 2

48 4!4!

1
cos

48 2!4! 3!3!

1
cos

48 4! 2!2! 3!

1
cos

48 2!

1 cos

ORI

ORI

ORI

ORI

a
T T

b
T T

c
T T

d
T T

e

 

     


      


 
 




=


  +

= − + 
 


 + +

= + − 
 


  +

= − +  
 

 = −

 (5.32)

where 6
c tempT T= . When Tc > 2T2 (See Eq. (5.26)), Eq. (5.31) must be solved using the

updated polynomial coefficients as:

134

()

()

()

()

4 4

1 2

8 8

1

4 2 2 4 3 3

1 2 1 2 1 2
6 6

1

4 4 2 2 3 3

1 2 1 2 1 2 1 2
4 4

1

2 2

1 2
2 2 1 2

1

24 4!4!

1
cos

24 2!4! 3!3!

1
cos

24 4! 2!2! 3!

1
cos

24 2!

1 cos

ORI

ORI

ORI

ORI

a
T

b
T

c
T

d
T

e

 

     


      


 
 




=


  +

= − + 
 


 + +

= + − 
 


  +

= − +  
 

 = −

 (5.33)

where ()2

2 2
3c temp

T T T T= + − . In order to realize fastest cornering duration, the

smallest real root of Eq. (5.31) should be selected. The dwell-time for satisfying angular

blending tolerance then becomes:

 ,dwell ORI d cT T T= − (5.34)

Finally, the minimum of the dwell times calculated for TCP and ORI (Eq. (5.25)

and (5.34)) errors must be selected so that both tolerances are respected:

 (), ,,max dwell TCP dwell ORIdwell
T TT = (5.35)

135

Figure 5.7: ORI blending error control.

5.3.2. Non-stop interpolation based on Velocity Controlled blending (NS-VCB)

A novel 5-axis cornering strategy is presented in the previous section. Dwell-time

between consecutive feed blocks is adjusted to ensure non-stop and accurate interpolation

of discrete 5-axis tool-paths. This strategy commands the feedrate to be altered from

current block to the next one within the dwell-time. When the dwell time is short, it

commands a large velocity change requiring higher acceleration. Although this approach

provides rapid cornering that is suitable for roughing or semi-finishing operations, rapid

change in machining feed may leave cutter marks on the part surface due to cutting force

fluctuations and residual forced vibrations [9], [76]. This may jeopardize surface quality in

136

fine finishing operations. This section proposes a reduced acceleration cornering strategy

tailored for precision and fine finishing on 5-axis machine tools. The approach presented

in this subsection tries to control the cornering speed [23] to yield a reduced acceleration

5-axis TCP and ORI blending trajectory, and it is denoted as non-stop interpolation based

on velocity-controlled blending (NS-VCB). When utilized interchangeably with the

previous strategy, both rapid and accurate interpolation of 5-axis machining toolpaths can

be realized for roughing and finishing operations.

In this approach, the dwell-time around corners is set to zero Tdwell = 0 and only the

cornering speed is adjusted. Two feed pulses, F1
* and F2

*, at a duration of Td/2 are created

around the corner to be blended (See Figure 5.8). Those feed pulses are adjusted to control

the blending error during cornering transition. Note that the original TCP feed pulses F1

and F2 are altered only around the corner (See Figure 5.8). Similarly, two angular velocity

pulses ω1
* and ω2

* are introduced to the angular motion for blending the ORI vectors.

Cornering duration becomes the filter delay, Tc = Td. Assigned cornering velocity pulses

F1
*, F2

*, ω1
* and ω2

* are determined based on the corner blending tolerance as follows.

Figure 5.8: TCP and ORI blending kinematics based on velocity control.

Firstly, Eq. (5.23) is used as a basis, and Tdwell is set to zero to yield the following

relationship between cornering speed and the TCP blending errors:

137

 ()
2 2

*2 *2 * * 1 2
1 2 1 2

1

3
2 cos

24
TCP TCP

T T
F F F F

T
 

 +
= + −  

 
 (5.36)

Notice that F1
* and F2

* are the adjusted feed pulses, where α is the corresponding scaling

factor,

*

1 1

*

2 2

F F

F F





 =


=

 (5.37)

Plugging Eq. (5.37) into Eq. (5.36) shows that increasing cornering feed (or the scaling

factor) linearly increases corner blending errors as:

()

()

2 2
* *2 *2 * * 1 2

1 2 1 2

1

2 2
2 2 1 2

1 2 1 2

1

3
2 cos

24

3
2 cos

24

TCP TCP

TCP

TCP

T T
F F F F

T

T T
F F F F

T

 

 



 +
= + −  

 

 +
= + −  

 

=

 (5.38)

Hence, the scaling factor α for a desired cornering tolerance can be solved from Eq. (5.38)

as:

()

1

2 2

1 2

2 2

1 2 1 2

24

3

2 cos
TCP

TCP

T

T T

F F F F
 



+
=

+ −
 (5.39)

As shown in Figure 5.8b similar approach can be followed to control ORI blending

errors as well. The dwell-time in Eq. (5.30) is set to zero and the ORI blending error εORI

is evaluated as a function of angular velocity pulses of consecutive segments as:

()
2 4 2 4 3 3

1 1 2 2 1 2
1 2

2 2

1 2

1

arccos cos1 1
2! 4! 2! 4! 3! 3!

3
where , 1,2

24

ORI ORI

i i

T T
i

T

     
  

 

      
= +− + − + − −      

      

+
= =

 (5.40)

Next, angular feedrate is also scaled by ω1
* = αω1 and ω2

* = αω2 around the corner, and

Eq. (5.40) is expanded,

138

()

() ()

() ()

*4 *4 *4 *2 *2 *4 *3 *3
1 2 1 2 1 2 1 2

*4 *4 *2 *2 *3 * * *3

1 2 1 2 1 2 1 2

*2 *2
** *1 2

1 2

2 2
* 1 2
1

1

cos
4!4! 2!4! 2!4! 3!3!

cos cos
4! 4! 2!2! 3! 3!

1 coscos
2! 2!

3
where

24

ORI

ORI ORI

ORIORI

T T

T

       


       
 

 
  



 
+ − − + 
 

 
+ + + − − 
 

 
+ + =− − + 
 

+
=

2 2
* 1 2

1 2 2

1

3
, and

24

T T

T
   

+
=

 (5.41)

The scaling factor α to satisfy orientation blending errors is determined through solution of

the following 4th order polynomial,

 4 3 2 0a b c d e      + + + + = (5.42)

where

()

()
()

()
()

()
()

8 4 42 2
1 21 2

8 8

1

6
2 2 4 2 2 4 3 3

1 2 1 2 1 2 1 2
6 6

1

4
2 2 4 4 2 2 3 3

1 2 1 2 1 2 1 2 1 2
4 4

1

2
2 2 2 2

1 2 1 2
2 2 1 2

1

3

24 4!4!

3
cos

24 2!4! 3!3!

3
cos

24 4! 2!2! 3!

3
cos

24 2!

1 c

ORI

ORI

ORI

T T
a

T

T T
b

T

T T
c

T

T T
d

T

e

 

     


      


 
 

+
=

+  +
= − + 

 

+  + +
= + − 

 

+  +
= − + 

 

= − ()os

and

ORI

 


















=

 (5.43)

The smallest scaling factor obtained from Eq. (5.39) and Eqs. (5.42)-(5.43) is used

to determine the cornering speed that satisfy both TCP and ORI blending errors.

 On the other hand, if the original consecutive feedrate commands are not identical,

F1 ≠ F2 then the algorithm needs to be modified slightly. If the feed difference is large, F1

≪ F2 or F1 ≫ F2, only the larger federate is reduced to satisfy the blending error tolerance.

The algorithm is summarized in Figure 5.9 and blending errors are controlled as follows.

139

For instance, if only F1 needs to be adjusted; F1
* = αF1, εTCP is determined by

plugging F1
* into Eq. (5.36) as

()

() () ()

2 2
* *2 2 * 1 2

1 2 1 2

1

2 2
2 2 1 2

2 21 1

1

3
2 cos

24

3
2 cos

24

TCP TCP

TCP

T T
F F F F

T

T T
F FF F

T

 

 

 +
= + −  

 

 +
= + −  

 

 (5.44)

The scaling factor α for satisfying the desired tool-tip cornering tolerance is calculated;

() ()
2

2 2 2 2 1
2 2 2 22

1 2

1

24
cos cos

3
TCP TCP TCP

T
F F F

T T

F

  



  
+ − −   +  

= (5.45)

When F2 is adjusted as F2
* = αF2 instead of F1, then scaling factor α can be determined in

the same way of Eqs. (5.44)-(5.45). Similarly, when one of the angular velocity pulses is

only adjusted, i.e. ω1
* = αω1, the scaling factor α is computed by substituting the adjusted

angular velocity pulse ω1
* into Eq. (5.40) as

 4 3 2 0a b c d e   + + + + = (5.46)

where

() () ()

()
()

()
()

() ()

8 6 4
2 2 2 2 2 24 4 4 2 4

1 2 1 2 1 21 2 1 2 1

8 8 6 6 4 4

1 1 1

6 4
2 2 2 23 3 3

1 2 1 21 2 1 2

6 6 4 4

1 1

6 4
2 2 2 2 22 4 2 2

1 2 1 2 1 21 2 1 2

6 6 4 4

1 1

3 3 3

24 4!4! 24 2!4! 24 4!

3 3
cos cos

24 3!3! 24 3!

3 3 3

24 2!4! 24 2!2!

ORI ORI

T T T T T T
a

T T T

T T T T
b

T T

T T T T T T
c

T T

    

   
 

   

+ + +
= − +

+ +
= −

+ + +
= − + −

()

()
()

()
()

() ()
()

2
2 2

1

2 2

1

4 2
2 2 2 23

1 2 1 21 2
1 24 4 2 2

1 1

4 2
2 2 2 24 2

1 2 1 22 2

4 4 2 2

1 1

24 2!

3 3
cos cos

24 3! 24

3 3
1 cos

24 4! 24 2!

ORI ORI

ORI

T

T T T T
d

T T

T T T T
e

T T




  

 














+ +
= − +


 + +
 = − + −


 (5.47)

And when ω2 is adjusted as ω2
* = αω2, the scaling factor α can be determined in the same

way as in ω1 is adjusted.

140

Finally, original feed pulse durations Tv1 and Tv2 are adjusted so that the total

commanded displacement is kept unchanged. Notice that the area under original feed pulse

is the total travel distance of the linear block, Li = FiTvi, i = 1,2. Once feed pulses amplitudes

around the corner (see Figure 5.8) are reduced, duration of the original feed pulse must also

be modified to keep the total travel distance unchanged. Adjusted pulse durations can be

computed from Figure 5.8 by using the geometrical relationships as:

* *

1 1 1 2
* *

,1 ,2

1 2

2 2 and

d d

v v

T T
L F L F

T T
F F

− −

= = (5.48)

and the total cycle time elongation by this cornering approach becomes (Tv,1 + Tv,2
*) - (Tv,1

+ Tv,2
*) + Td.

Figure 5.9: Blending velocity calculation flow chart.

5.3.3. Illustrative examples

This section provides simulation-based case studies to validate effectiveness and

functionality of proposed schemes presented in section 5.3. Figure 5.10 shows the non-stop

141

path interpolation and corner blending techniques applied to a single corner. The G-code

consist of 3 discrete tool poses given in Table 5.1. Programmed feedrate is F = 100

[mm/sec], and cornering tolerances are set as 𝜀TCP = 800 [µm] for TCP and 𝜀ORI = 0.02

[rad] for the tool orientation, respectively. 2 FIR filters with time constants, T1 = 100 [msec]

and T2 = 60 [msec], are used to interpolate the toolpath. Notice that each linear pass is 20

[mm] long, which commands 2 identical 200 [msec] feed pulses. Corresponding angular

velocity pulse amplitudes are calculated to generated synchronized tool motion as

described in Section 5.2.

142

Figure 5.10: Non-stop interpolation illustrative example.

Table 5.1: Single corner tool-path pose points.

Position [mm] Orientation []

Px Py Pz Oi Oj Ok

1 0.0000 0.0000 0.0000 -0.1302 -0.3906 0.9113

2 17.6090 8.8045 3.5218 0.4262 0.0947 0.8997

3 1.8059 13.1032 15.0015 -0.1255 0.3137 0.9412

143

The dwell-time based blending technique NS-DCB is applied in Figure 5.10a, and

velocity-controlled blending one NS-VCB is applied in Figure 5.10b. As shown, in both

cases, cornering tolerances are well respected. Notice that the ORI tolerance is the limiting

one and the TCP tolerance is below the set value. This is just a coincidence. It all depends

on the tool-path and user set tolerance values. As described in the previous sections, NS-

DCB and NS-VCB methods provide different cycle times. Total cycle time for

interpolating this tool-path is 0.620 [sec] and 0.679 [sec], respectively. The cornering

durations are measured as 100.4 [msec] and 160 [msec], respectively. The NS-DCB

technique is 8.7% faster than the NS-VCB method. In return, maximum acceleration of the

dwell-time control technique is 70% larger. Hence, NS-DCB is more suitable for roughing

and semi-finishing operations whereas the NS-VCB is more favorable in finishing passes

since it demands less acceleration and induces less velocity fluctuation. Experimental

results section benchmarks overall contouring errors to showcase the difference as well.

Additionally, Figure 5.11 is provided to clearly illustrate the cycle-time difference

between the proposed techniques. As shown, for the same cornering angle, the NS-VCB

approach delivers longer cycle times and demands less acceleration. As a result, velocity

fluctuation in corner blending motion is smaller. Please notice that the trend in the cycle

time with cornering error is linear and accurately captured by Eqs. (5.38) and (5.39). Figure

5.11c depicts required cycle time as the cornering angle changes.

144

Figure 5.11: Benchmark between NS-DCB and NS-VCB schemes.

5.4. Experimental results

In addition to the simulation studies provided in the previous section, experimental

validations on an actual 5-axis machine tool are presented in this section. The experimental

machine tool is shown in Figure 5.12. It is a vertical 5-axis milling machine with A and C

145

rotary axes on the worktable side. The machine’s inverse kinematics is provided in [68],

[69]. The axes of the machine are controlled by in-house developed NC system based on

the Dspace® hardware system. PID controllers [77] for each axis are implemented and

position bandwidths are matched for synchronized motion at ~20 [Hz] [69]. PID tuning for

5-axis machine requires caution. Rotary and cartesian position loop dynamics must be

tuned so that their tracking bandwidths are matched. This helps attenuate contouring errors

due to dynamic synchronization. The closed-loop sampling time for the servo control

system is set to 1 [kHz].

Figure 5.12: Experimental 5-axis machine tool.

The star shaped tool-path shown in Figure 5.13 is commanded for experimental

validation. The tool-path consists of 15 number of linear segments and the corresponding

G-code is summarized in Table 5.2. Figure 5.13a shows Cartesian TCP path and Figure

5.13b shows the ORI path on spherical coordinates. In order to provide a fair and

informative comparison, the tool-path is interpolated with 4 different FIR based

interpolation schemes: (1) P2P interpolation scheme presented in Section 5.2, (2) Non-stop

interpolation scheme using NS-DCB is presented in Section 5.3, (3) Non-stop interpolation

scheme using the NS-VCB presented in Section 5.3 and (4) direct blending of joint

146

commands (NS-JCB). In NS-JCB, non-stop motion is realized by FIR filtering the joint

(axis) velocity pulses directly in the joint coordinates. Therefore, linear interpolation is not

performed in workpiece coordinates, instead joint positions are interpolated linearly

between start and end points of each linear block in the tool-path file [71]. Notice that this

approach does not generate coordinated tool motion and introduces large path following

(contour) errors. In order to attenuate severity of those fluctuations, extra way-points are

added along long linear segments.

Figure 5.13: Star shaped tool-path.

147

Table 5.2: Shaped tool-path points.

 Position [mm] Orientation []

Px Py Pz Oi Oj Ok

1 0 0 0 0.5025 0.5025 0.7035

2 100 0 0 -0.5025 0.5025 0.7035

3 100 100 0 -0.5025 -0.5025 0.7035

4 50 100 10 0.0000 -0.3511 0.9363

5 40 70 20 0.1562 -0.3123 0.9370

6 10 70 10 0.2357 -0.2357 0.9428

7 30 45 20 0.3162 0.0000 0.9487

8 20 10 10 0.2357 0.2357 0.9428

9 50 30 20 0.0000 0.3162 0.9487

10 80 10 10 -0.2357 0.2357 0.9428

11 70 45 20 -0.3162 0.0000 0.9487

12 90 70 10 -0.2357 -0.2357 0.9428

13 60 70 20 -0.1562 -0.3123 0.9370

14 50 100 10 0.0000 -0.3511 0.9363

15 0 100 0 0.5025 -0.5025 0.7035

16 0 0 0 0.5025 0.5025 0.7035

For all the cases 2 FIR filters are used with time constants of Td,1 = 100 [msec] and

Td,2 = 60 [msec]. As described in Section 5.1 this only requires 2 multiplications and 4

additions at each sampling interval. Since interpolation is performed in workpiece

coordinates, calculations must be done for each Cartesian (x,y,z) and spherical (i,j,k)

coordinates resulting in 12 multiplication and 24 addition operations to be performed in

real-time. This is still very well within the computational power of modern real-time

processors. It should also be noted that a polynomial root-finding algorithm must

implemented for confining the orientation smoothing errors from Eqs. (5.31) and (5.42).

However, this is a very standard procedure and can be realized in real-time.

148

The corner smoothing tolerance is set to εTCP = 200 [micron] and εORI = 1 [mrad].

Figure 5.13 shows the final interpolated tool-path. Firstly, as expected, sharp corners are

realized by the P2P interpolation scheme. The non-stop interpolation methods NS-DCB

and NS-VCB proposed in this paper generate smooth corner profiles within the set error

tolerances (See zoomed figures). Linear synchronous interpolation of tool-tip and tool-

orientation is achieved. Both TCP and ORI trajectories are blended accurately around

corners. Joint-space interpolation (NS-JCB) also generates non-stop motion. However, as

seen in the tool-path it cannot guarantee linear tool motion interpolation in workpiece

coordinates. Due to non-linear kinematics of 5-axis machine tool, linearly interpolating

joint positions does not ensure linear tool interpolation in workpiece coordinates. The

resultant tool-path deviates from the reference leaves large contour errors due to

interpolation being performed in the joint coordinates. In order to attenuate the contour

deviation, extra points are added along long linear segments during NS-JCB interpolation.

Although this reduces the contouring errors; in return, it creates large velocity fluctuations

in motion kinematics potentially degrading surface finish quality. This is another known

drawback of joint space interpolation. Most CAM systems generate densely discretized

sparse tool-paths to alleviate this problem [67].

Figure 5.14 presents TCP and ORI velocity profiles. The tangential TCP feedrate

profile is shown in Figure 5.14a. As observed P2P motion planning generates the slowest

cycle time since it commands stop and go motion at every corner. Both NS-DCB and NS-

JCB approaches provide faster trajectories. However, as shown in Figure 5.13, the NS-JCB

cannot be used for accurate 5-axis machining. It cannot ensure linear tool interpolation and

violent feed fluctuations may destroy the surface finish. The NS-VCB approach is the

second fastest interpolation scheme. Tool motion kinematics are shown in Figure 5.15, and

axis kinematic profiles are presented in Figure 5.16. They validate that fact that jerk-limited

smooth axis motion kinematics are generated by the proposed interpolation schemes.

149

Figure 5.14: Interpolated kinematic profiles along star shaped tool-path.

Figure 5.15: Interpolated tool motion kinematic profiles along star shaped tool-path.

150

Figure 5.16: Interpolated axis kinematic profiles along star shaped tool-path.

Finally, the 5-axis contouring performance for the interpolation schemes are

measured in Figure 5.17. Contour errors are calculated as the normal deviation from the

commanded TCP and ORI paths [79]. They assess how accurately feedback controllers

[77] track generated kinematic trajectories. If the interpolation scheme commands smooth

feed profiles, generated tool-path is followed more accurately. In contrast, if the

interpolation scheme demands rapidly varying feedrate and large accelerations, overall

contouring performance degrades, which may deteriorate the surface finish quality as well.

The following observations can be made from the contour error trend measured in Figure

5.17. Firstly, during linear interpolation contouring errors are small if the axis tracking

bandwidths are matched [77]. This characteristic is observed in Figure 5.17 with an

exception. A large contour error peak is visible at t = 4.2 [sec]. This peak occurs precisely

at a velocity reversal where all the 5 axes change their motion direction. When the axes

151

change their motion direction, coulomb friction disturbance with Stribeck effect [9] kicks

in and induces large tracking errors. Next, every time a corner is interpolated contour errors

show smaller peaks. This characteristic is expected since velocity and acceleration

transients are commanded, and hence servo lag induces contour error peaks. The NS-DCB

algorithm shows largest contour error peaks since it demands greater acceleration. In

contrast, the NS-VCB method shows smallest peaks. Overall RMS value of the contour

errors also validate these characteristics. The NS-VCB demands overall ~15% less

acceleration and hence it also induces 10% less contour errors. The NS-DCB provides the

fastest cycle time whereas the NS-VCB requires longer cycle time, but in return it

commands smoother provides and induces smaller contour errors making it more suitable

for precision finishing operations. Finally, joint space interpolation showcases the largest

contour errors. As explained in the previous paragraphs, this is mainly due to linear

interpolation performed in the joint space rather than in the workpiece coordinates.

Figure 5.17: Experimental contouring errors.

5.5. Conclusions

This paper presented novel real-time (online) interpolation techniques for 5-axis

machine tools. It shows that synchronized translational and rotational motion of the tool

152

can be interpolated directly in the workpiece coordinates using FIR (moving average)

filtering. It is computationally lightweight and ensures accurate linear interpolation of tool

motion. Direct linear interpolation of tool orientation in the workpiece coordinates has been

a bottleneck in 5-axis machining. This paper provides a very novel solution to this problem.

Tool orientation can be interpolated linearly on the great sphere in synch with the tool tip.

In addition, 2 types of corner smoothing algorithms are also developed based on the FIR

interpolation scheme. Both algorithms are simple and provide accurate smoothing of sharp

corners to realize non-stop 5-axis interpolation. Illustrative examples and experimental

results validate the significant contribution of the proposed algorithms. Overall cycle time

can be reduced up to 40~50% as compared to conventional P2P interpolation. On the other

hand, overall contouring accuracy can be improved up to 75% as compared to basic joint

based interpolation. The algorithms and techniques proposed in this paper can be applied

to increase efficiency and dynamic accuracy of modern 5-axis machine tools.

153

6. Conclusions

This thesis has proposed trajectory generation algorithms for machine tools and

industrial robots to generate smooth and accurate motion. Novel kinematic corner

smoothing techniques are developed to interpolate high-speed feed motion along discrete

tool-paths by fully utilizing kinematic limits of the drives. FIR filtering based trajectory

generation techniques are also introduced to mitigate any unwanted vibrations originating

due to structural dynamics of the machinery. Finally, 6DOF tool pose interpolation is

addressed, and a novel FIR based blending algorithm is developed for synchronized

interpolation of tool’s translational and rotational motion. Contributions of this thesis are

summarized as follows.

Chapter 2 presents a Local Kinematic Corner Smoothing (LKCS) algorithm, which

can blend cartesian axis velocities around sharp corners with jerk limited acceleration

transitions and generates symmetric rounded corner profiles within confined geometric

tolerances. This novel algorithm does not require any splining and provides fully analytical

solution to the time optimal corner blending problem. The proposed algorithms can

increase productivity up to 30-50% as compared to the state of the art blending and P2P

interpolation techniques.

The LKCS technique from Chapter 2 is extended to interpolate short-segmented

linear tool-paths in Chapter 3, and it is called the Global Kinematics Corner Smoothing

(GKCS). Short segmented tool-paths is widely used in aerospace and die-and-mould

machining. The proposed GKCS technique can generate near time optimal, smooth and

rapid motion. As compared to blending local corners smoothly, GKCS can generate

continuous contouring paths and improve the cycle time up 10–15%. The cycle time

improvement against P2P interpolation can be up to 50%.

Chapter 4 presented FIR filtering based interpolation techniques, which can

generate a non-stop contouring motion along cartesian machining tool-paths. Owing to the

simple FIR filtering structure, proposed scheme can interpolate linear and circular paths

with high kinematic continuity and minimum computational load making it suitable for

real-time processors. The proposed block timing technique considers change in the feed

154

direction and the total delay in the filter chain to generate accurate non-stop rapid feed

motion. These FIR based trajectory generation techniques control both contour errors and

frequency spectrum of reference trajectories. As compared to the state-of-the-art technique,

these techniques eliminate unwanted vibrations and reduce the cycle time up to ∼20%

while utilizing same level of acceleration for modern NC systems.

Chapter 5 presented FIR filtering based interpolation of tool-pose motion for

accurate 5-axis machining. This novel technique can interpolate tool tip and tool orientation

motion by applying FIR filtering synchronously in cartesian and spherical coordinates. As

compared to the state of the art joint coordinate based interpolation, proposed technique

eliminates fluctuations of the finishing surface and realizes accurate feed motion. It can

improve overall machining cycle times on 5-axis machine tools and can be applied on high

speed industrial robots.

155

Bibliography

[1] Y.-K. Choi and A. Banerjee, “Tool path generation and tolerance analysis for free-form

surfaces,” Int. J. Mach. Tools Manuf., vol. 47, no. 3, pp. 689–696, Mar. 2007.

[2] X. G. P. Schuurbiers, “Blending in pick and place applications,” pp. 1–67, 2007.

[3] K. Zhang, J.-X. Guo, and X.-S. Gao, “Cubic spline trajectory generation with axis jerk

and tracking error constraints,” Int. J. Precis. Eng. Manuf., vol. 14, no. 7, pp. 1141–

1146, 2013.

[4] K. Erkorkmaz and Y. Altintas, “Quintic spline interpolation with minimal feed

fluctuation,” J. Manuf. Sci. Eng., vol. 127, no. 2, pp. 339–349, 2005.

[5] M. K. Jouaneh, Z. Wang, and D. A. Dornfeld, “Trajectory planning for coordinated

motion of a robot and a positioning table. I. Path specification,” IEEE Trans. Robot.

Autom., vol. 6, no. 6, pp. 735–745, 1990.

[6] S. J. Yutkowitz, “Apparatus and method for smooth cornering in a motion control

system,” Jul-2005.

[7] H. Zhao, L. Zhu, and H. Ding, “A real-time look-ahead interpolation methodology with

curvature-continuous B-spline transition scheme for CNC machining of short line

segments,” Int. J. Mach. Tools Manuf., vol. 65, pp. 88–98, 2013.

[8] B. Sencer, K. Ishizaki, and E. Shamoto, “A curvature optimal sharp corner smoothing

algorithm for high-speed feed motion generation of NC systems along linear tool paths,”

Int. J. Adv. Manuf. Technol., vol. 76, no. 9–12, pp. 1977–1992, 2015.

[9] Y. Altintas, A. Verl, C. Brecher, L. Uriarte, and G. Pritschow, “Machine tool feed

drives,” CIRP Ann., vol. 60, no. 2, pp. 779–796, 2011.

[10] B. Sencer, Y. Altintas, and E. Croft, “Feed optimization for five-axis CNC machine

tools with drive constraints,” Int. J. Mach. Tools Manuf., vol. 48, no. 7–8, pp. 733–745,

2008.

[11] J. M. Hyde and W. P. Seering, “Using input command pre-shaping to suppress

multiple mode vibration,” in Proceedings. 1991 IEEE International Conference on

Robotics and Automation, 1991, pp. 2604–2609.

[12] Y.-R. Hwang and C.-S. Liang, “Cutting errors analysis for spindle-tilting type 5-

axis NC machines,” Int. J. Adv. Manuf. Technol., vol. 14, no. 6, pp. 399–405, 1998.

156

[13] E. B. Dam, M. Koch, and M. Lillholm, Quaternions, interpolation and animation,

vol. 2. Citeseer, 1998.

[14] R. V. Fleisig and A. D. Spence, “A constant feed and reduced angular acceleration

interpolation algorithm for multi-axis machining,” Comput.-Aided Des., vol. 33, no. 1,

pp. 1–15, 2001.

[15] X. Beudaert, S. Lavernhe, and C. Tournier, “5-axis local corner rounding of linear

tool path discontinuities,” Int. J. Mach. Tools Manuf., vol. 73, pp. 9–16, 2013.

[16] L. Piegl and W. Tiller, The NURBS book. Springer Science & Business Media, 2012.

[17] Y. Koren and R.-S. Lin, “Five-axis surface interpolators,” CIRP Ann., vol. 44, no.

1, pp. 379–382, 1995.

[18] Q. G. Zhang and R. B. Greenway, “Development and implementation of a NURBS

curve motion interpolator,” Robot. Comput.-Integr. Manuf., vol. 14, no. 1, pp. 27–36,

1998.

[19] J. M. Langeron, E. Duc, C. Lartigue, and P. Bourdet, “A new format for 5-axis tool

path computation, using Bspline curves,” Comput.-Aided Des., vol. 36, no. 12, pp.

1219–1229, 2004.

[20] F.-C. Wang, P. K. Wright, B. A. Barsky, and D. C. H. Yang, “Approximately arc-

length parametrized C3 quintic interpolatory splines,” J. Mech. Des., vol. 121, no. 3,

pp. 430–439, 1999.

[21] S. D. Timar, R. T. Farouki, T. S. Smith, and C. L. Boyadjieff, “Algorithms for time–

optimal control of CNC machines along curved tool paths,” Robot. Comput.-Integr.

Manuf., vol. 21, no. 1, pp. 37–53, 2005.

[22] M. Heng and K. Erkorkmaz, “Design of a NURBS interpolator with minimal feed

fluctuation and continuous feed modulation capability,” Int. J. Mach. Tools Manuf.,

vol. 50, no. 3, pp. 281–293, 2010.

[23] K. Erkorkmaz, C.-H. Yeung, and Y. Altintas, “Virtual CNC system. Part II. High

speed contouring application,” Int. J. Mach. Tools Manuf., vol. 46, no. 10, pp. 1124–

1138, 2006.

157

[24] M. K. Jouaneh, D. A. Dornfeld, and M. Tomizuka, “Trajectory planning for

coordinated motion of a robot and a positioning table. II. Optimal trajectory

specification,” IEEE Trans. Robot. Autom., vol. 6, no. 6, pp. 746–759, 1990.

[25] C. A. Ernesto and R. T. Farouki, “High-speed cornering by CNC machines under

prescribed bounds on axis accelerations and toolpath contour error,” Int. J. Adv. Manuf.

Technol., vol. 58, no. 1–4, pp. 327–338, 2012.

[26] S. Tulsyan and Y. Altintas, “Local toolpath smoothing for five-axis machine tools,”

Int. J. Mach. Tools Manuf., vol. 96, pp. 15–26, 2015.

[27] M. Duan and C. Okwudire, “Minimum-time cornering for CNC machines using an

optimal control method with NURBS parameterization,” Int. J. Adv. Manuf. Technol.,

vol. 85, no. 5–8, pp. 1405–1418, 2016.

[28] V. Pateloup, E. Duc, and P. Ray, “Bspline approximation of circle arc and straight

line for pocket machining,” Comput.-Aided Des., vol. 42, pp. 817–827, 2010.

[29] L. B. Zhang, Y. P. You, J. He, and X. F. Yang, “The transition algorithm based on

parametric spline curve for high-speed machining of continuous short line segments,”

Int. J. Adv. Manuf. Technol., vol. 52, no. 1–4, pp. 245–254, 2011.

[30] K. Erkorkmaz and Y. Altintas, “High speed CNC system design. Part I: jerk limited

trajectory generation and quintic spline interpolation,” Int. J. Mach. Tools Manuf., vol.

41, no. 9, pp. 1323–1345, 2001.

[31] M.-T. Lin, M.-S. Tsai, and H.-T. Yau, “Development of a dynamics-based NURBS

interpolator with real-time look-ahead algorithm,” Int. J. Mach. Tools Manuf., vol. 47,

no. 15, pp. 2246–2262, 2007.

[32] Y. Altintas and K. Erkorkmaz, “Feedrate optimization for spline interpolation in

high speed machine tools,” CIRP Ann., vol. 52, no. 1, pp. 297–302, 2003.

[33] M. Weck and G. Ye, “Sharp corner tracking using the IKF control strategy,” CIRP

Ann., vol. 39, no. 1, pp. 437–441, 1990.

[34] B. Sencer, K. Ishizaki, and E. Shamoto, “High speed cornering strategy with

confined contour error and vibration suppression for CNC machine tools,” CIRP Ann.,

vol. 64, no. 1, pp. 369–372, 2015.

158

[35] M.-S. Tsai and Y.-C. Huang, “A novel integrated dynamic

acceleration/deceleration interpolation algorithm for a CNC controller,” Int. J. Adv.

Manuf. Technol., vol. 87, no. 1–4, pp. 279–292, 2016.

[36] P.-J. Barre, R. Bearee, P. Borne, and E. Dumetz, “Influence of a jerk controlled

movement law on the vibratory behaviour of high-dynamics systems,” J. Intell. Robot.

Syst., vol. 42, no. 3, pp. 275–293, 2005.

[37] S.-S. Yeh and P.-L. Hsu, “Perfectly matched feedback control and its integrated

design for multiaxis motion systems,” J. Dyn. Syst. Meas. Control-Trans. Asme, vol.

126, no. 3, pp. 547–557, 2004.

[38] C. Brecher et al., “NURBS based ultra-precision free-form machining,” CIRP Ann.,

vol. 55, no. 1, pp. 547–550, 2006.

[39] M.-C. Tsai, C.-W. Cheng, and M.-Y. Cheng, “A real-time NURBS surface

interpolator for precision three-axis CNC machining,” Int. J. Mach. Tools Manuf., vol.

43, no. 12, pp. 1217–1227, 2003.

[40] Q. Bi, Y. Wang, L. Zhu, and H. Ding, “A practical continuous-curvature Bezier

transition algorithm for high-speed machining of linear tool path,” in International

Conference on Intelligent Robotics and Applications, 2011, pp. 465–476.

[41] X. Pessoles, Y. Landon, and W. Rubio, “Kinematic modelling of a 3-axis NC

machine tool in linear and circular interpolation,” Int. J. Adv. Manuf. Technol., vol. 47,

no. 5–8, pp. 639–655, 2010.

[42] S. Tajima and B. Sencer, “Kinematic corner smoothing for high speed machine

tools,” Int. J. Mach. Tools Manuf., vol. 108, pp. 27–43, 2016.

[43] L. Biagiotti and C. Melchiorri, “FIR filters for online trajectory planning with time-

and frequency-domain specifications,” Control Eng. Pract., vol. 20, no. 12, pp. 1385–

1399, 2012.

[44] Q. Zhang, X.-S. Gao, H.-B. Li, and M.-Y. Zhao, “Minimum time corner transition

algorithm with confined feedrate and axial acceleration for nc machining along linear

tool path,” Int. J. Adv. Manuf. Technol., vol. 89, no. 1–4, pp. 941–956, 2017.

[45] T. Coleman, M. A. Branch, and A. Grace, “Optimization toolbox,” Use MATLAB

User’s Guide MATLAB 5 Version 2 Relaese II, 1999.

159

[46] Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool

vibrations, and CNC design. Cambridge university press, 2012.

[47] K. Erkorkmaz, A. Alzaydi, A. Elfizy, and S. Engin, “Time-optimal trajectory

generation for 5-axis on-the-fly laser drilling,” CIRP Ann., vol. 60, no. 1, pp. 411–414,

2011.

[48] T. Flash and N. Hogan, “The coordination of arm movements: an experimentally

confirmed mathematical model,” J. Neurosci., vol. 5, no. 7, pp. 1688–1703, 1985.

[49] P. Lambrechts, M. Boerlage, and M. Steinbuch, “Trajectory planning and

feedforward design for electromechanical motion systems,” Control Eng. Pract., vol.

13, no. 2, pp. 145–157, 2005.

[50] Z. Rymansaib, P. Iravani, and M. N. Sahinkaya, “Exponential trajectory generation

for point to point motions,” in 2013 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, 2013, pp. 906–911.

[51] A. Visioli, “Trajectory planning of robot manipulators by using algebraic and

trigonometric splines,” Robotica, vol. 18, no. 6, pp. 611–631, 2000.

[52] W. E. Singhose, W. P. Searing, and N. C. Singer, “Improving repeatability of

coordinate measuring machines with shaped command signals,” Precis. Eng., vol. 18,

no. 2–3, pp. 138–146, 1996.

[53] N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system

vibration,” J. Dyn. Syst. Meas. Control, vol. 112, no. 1, pp. 76–82, 1990.

[54] Y. Altintas and M. R. Khoshdarregi, “Contour error control of CNC machine tools

with vibration avoidance,” CIRP Ann., vol. 61, no. 1, pp. 335–338, 2012.

[55] J. W. Jeon and Y.-K. Kim, “FPGA based acceleration and deceleration circuit for

industrial robots and CNC machine tools,” Mechatronics, vol. 12, no. 4, pp. 635–642,

2002.

[56] S. Jones, R. Goodall, and M. Gooch, “Targeted processor architectures for high-

performance controller implementation,” Control Eng. Pract., vol. 6, no. 7, pp. 867–

878, 1998.

[57] R. A. Osornio-Rios, R. de Jesus Romero-Troncoso, G. Herrera-Ruiz, and R.

Castañeda-Miranda, “Computationally efficient parametric analysis of discrete-time

160

polynomial based acceleration–deceleration profile generation for industrial robotics

and CNC machinery,” Mechatronics, vol. 17, no. 9, pp. 511–523, 2007.

[58] D.-I. Kim, J. W. Jeon, and S. Kim, “Software acceleration/deceleration methods for

industrial robots and CNC machine tools,” Mechatronics, vol. 4, no. 1, pp. 37–53, 1994.

[59] M. Bonfe and C. Secchi, “Online smooth trajectory planning for mobile robots by

means of nonlinear filters,” in 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2010, pp. 4299–4304.

[60] R. Zanasi, C. G. L. Bianco, and A. Tonielli, “Nonlinear filters for the generation of

smooth trajectories,” Automatica, vol. 36, no. 3, pp. 439–448, 2000.

[61] R. Zanasi and R. Morselli, “Discrete minimum time tracking problem for a chain

of three integrators with bounded input,” Automatica, vol. 39, no. 9, pp. 1643–1649,

2003.

[62] C.-S. Chen and A.-C. Lee, “Design of acceleration/deceleration profiles in motion

control based on digital FIR filters,” Int. J. Mach. Tools Manuf., vol. 38, no. 7, pp.

799–825, 1998.

[63] K. Ogata and Y. Yang, Modern control engineering, vol. 4. Prentice-Hall, 2002.

[64] N. Wiener, The Fourier integral and certain of its applications. CUP Archive, 1988.

[65] S. Goto, M. Nakamura, and N. Kyura, “Trajectory generation of industrial

mechatronic systems to achieve accurate contour control performance under torque

saturation,” in Proceedings of 1995 IEEE International Conference on Robotics and

Automation, 1995, vol. 3, pp. 2401–2406.

[66] T. Moriwaki, “Multi-functional machine tool,” CIRP Ann., vol. 57, no. 2, pp. 736–

749, 2008.

[67] C. Lartigue, E. Duc, and A. Affouard, “Tool path deformation in 5-axis flank

milling using envelope surface,” Comput.-Aided Des., vol. 35, no. 4, pp. 375–382,

2003.

[68] A. Yuen, K. Zhang, and Y. Altintas, “Smooth trajectory generation for five-axis

machine tools,” Int. J. Mach. Tools Manuf., vol. 71, pp. 11–19, 2013.

[69] J. Yang and A. Yuen, “An analytical local corner smoothing algorithm for five-axis

CNC machining,” Int. J. Mach. Tools Manuf., vol. 123, pp. 22–35, 2017.

161

[70] M.-C. Ho, Y.-R. Hwang, and C.-H. Hu, “Five-axis tool orientation smoothing using

quaternion interpolation algorithm,” Int. J. Mach. Tools Manuf., vol. 43, no. 12, pp.

1259–1267, 2003.

[71] Y. Wang, X. Ma, L. Chen, and Z. Han, “Realization methodology of a 5-axis spline

interpolator in an open CNC system,” Chin. J. Aeronaut., vol. 20, no. 4, pp. 362–369,

2007.

[72] Y. Sun, Y. Zhao, Y. Bao, and D. Guo, “A smooth curve evolution approach to the

feedrate planning on five-axis toolpath with geometric and kinematic constraints,” Int.

J. Mach. Tools Manuf., vol. 97, pp. 86–97, 2015.

[73] J. Shi, Q. Bi, L. Zhu, and Y. Wang, “Corner rounding of linear five-axis tool path

by dual PH curves blending,” Int. J. Mach. Tools Manuf., vol. 88, pp. 223–236, 2015.

[74] M.-T. Lin, J.-C. Lee, C.-C. Shen, C.-Y. Lee, and J.-T. Wang, “Local Corner

Smoothing with Kinematic and Real-time Constraints for Five-axis Linear Tool Path,”

in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

(AIM), 2018, pp. 816–821.

[75] S. Tajima, B. Sencer, and E. Shamoto, “Accurate interpolation of machining tool-

paths based on FIR filtering,” Precis. Eng., vol. 52, pp. 332–344, 2018.

[76] E. Budak, E. Ozturk, and L. T. Tunc, “Modeling and simulation of 5-axis milling

processes,” CIRP Ann., vol. 58, no. 1, pp. 347–350, 2009.

[77] B. C. Kuo, Automatic control systems. Prentice Hall PTR, 1987.

[78] G. Van Brummelen, Heavenly mathematics: The forgotten art of spherical

trigonometry. Princeton University Press, 2012.

[79] B. Sencer, Y. Altintas, and E. Croft, “Modeling and control of contouring errors for

five-axis machine tools—part I: modeling,” J. Manuf. Sci. Eng., vol. 131, no. 3, p.

031006, 2009.

