166 research outputs found

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    An integrated approach for remanufacturing job shop scheduling with routing alternatives.

    Get PDF
    Remanufacturing is a practice of growing importance due to increasing environmental awareness and regulations. However, the stochastic natures inherent in the remanufacturing processes complicate its scheduling. This paper undertakes the challenge and presents a remanufacturing job shop scheduling approach by integrating alternative routing assignment and machine resource dispatching. A colored timed Petri net is introduced to model the dynamics of remanufacturing process, such as various process routings, uncertain operation times for cores, and machine resource conflicts. With the color attributes in Petri nets, two types of decision points, recovery routing selection and resource dispatching, are introduced and linked with places in CTPN model. With time attributes in Petri nets, the temporal aspect of recovery operations for cores as well as the evolution dynamics in cores\u27 operational stages is mathematically analyzed. A hybrid meta-heuristic algorithm embedded scheduling strategy over CTPN is proposed to search for the optimal recovery routings for worn cores and their recovery operation sequences on workstations, in minimizing the total production cost. The approach is demonstrated through the remanufacturing of used machine tool and its effectiveness is compared against another two cases: baseline case with fixed recovery process routings and case 2 using standard SA/MST

    TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS

    Get PDF
    The paper presents a method of automated modelling and performance evaluation of concurrent production flows carried out in Flexible Manufacturing Systems. The method allows for quick assessment of various variants of such systems, considering their structure and the organization of production flow of possible ways of their implementation. Its essence is the conditions imposed on the designed model, limiting the space of possible variants of the production flow only to deadlock-free variants. The practical usefulness of the model implemented in the proposed method illustrates the example, which describes the simultaneous assessment of alternative variants of the flexible machining module's structure and the planned multi-assortment production. The ability of the method to focus on feasible solutions offers attractive perspectives for guiding the Digital Twin-like scenario in situations caused by the need to change the production flow

    Modeling, design and scheduling of computer integrated manufacturing and demanufacturing systems

    Get PDF
    This doctoral dissertation work aims to provide a discrete-event system-based methodology for design, implementation, and operation of flexible and agile manufacturing and demanufacturing systems. After a review of the current academic and industrial activities in these fields, a Virtual Production Lines (VPLs) design methodology is proposed to facilitate a Manufacturing Execution System integrated with a shop floor system. A case study on a back-end semiconductor line is performed to demonstrate that the proposed methodology is effective to increase system throughput and decrease tardiness. An adaptive algorithm is proposed to deal with the machine failure and maintenance. To minimize the environmental impacts caused by end-of-life or faulty products, this research addresses the fundamental design and implementation issues of an integrated flexible demanufacturing system (IFDS). In virtue of the success of the VPL design and differences between disassembly and assembly, a systematic approach is developed for disassembly line design. This thesis presents a novel disassembly planning and demanufacturing scheduling method for such a system. Case studies on the disassembly of personal computers are performed illustrating how the proposed approaches work

    Scheduling of flexible manufacturing systems with automated guided vehicles using petri net models

    Get PDF
    In this thesis, Petri net models for Flexible Manufacturing Systems (EMS) are constructed. A firing sequence of the Petri net from the initial marking to the final marking can be seen as a schedule of the modeled FMS. By using the branch-and-bound algorithm, an optimal schedule of the FMS can be obtained. Automated Guided Vehicle Systems (AGVS) are increasingly used for material handling in factories and warehouses. An AGVS can reduce labor costs and is ready to be integrated into an automated factory. This thesis presents two AGVS models (shared and duty) which integrate the control of AGVS with the control of part processing facilities. Both types of AGVS are modeled by Petri nets. We want to compare the two AGVS in terms of systems performance and discuss which application is more suitable for each AGVS type. We also want to consider and solve AGV jam problems. The objective of the AGV jam-free control module is to guarantee a jam-free condition among AGVs in an EMS. Results have been obtained and analyzed

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Modelado con redes de Petri e implementación con GRAFCET de un sistema de manufactura flexible con procesos concurrentes y recursos compartidos

    Get PDF
    This paper shows a model of Flexible Manufacturing System (FMS) with concurrent processes and shared resources based on Discrete Event Systems through Petri Nets (PN) and GRAFCET. FMS is represented by a hypothetic model that is modeled by a PN to identify its dynamic and achieve the optimal system sequence. A mathematical model was developed to find the time accumulated vector for processes in a system modeled by PN. Using this vector it is possible locate the best system sequence. Finally, in order to simulate the FMS modeled, an electro-hydro-pneumatic assembly controlled by GRAFCET through PLC was implemented in Automation Lab at Universidad Militar Nueva Granada.En este trabajo, se presenta el modelado de un Sistema de Manufactura Flexible (SMF), con procesos concurrentes y recursos compartidos mediante Sistemas a Eventos Discretos (SED), específicamente Redes de Petri (RdP), y GRAFCET. El SMF se plantea como un modelo hipotético que se modela con una RdP con el objeto de identificar su dinámica y hallar la secuencia óptima de funcionamiento del sistema. Se desarrolló un modelo matemático que permite estimar el vector de tiempo acumulado de un proceso modelado mediante una RdP, el cual constituye la base para hallar la mejor secuencia posible del sistema modelado. Por último, se realizó una implementación en el Laboratorio de Automatización de la Universidad Militar Nueva Granada, que simula el funcionamiento del SMF modelado por un montaje electrohidroneumático controlado con GRAFCET mediante PLC
    corecore