
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

Fall 1-31-1995 

Scheduling of flexible manufacturing systems with automated Scheduling of flexible manufacturing systems with automated 

guided vehicles using petri net models guided vehicles using petri net models 

Hua-Sheng Chiu 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Electrical and Electronics Commons 

Recommended Citation Recommended Citation 
Chiu, Hua-Sheng, "Scheduling of flexible manufacturing systems with automated guided vehicles using 
petri net models" (1995). Theses. 1149. 
https://digitalcommons.njit.edu/theses/1149 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1149?utm_source=digitalcommons.njit.edu%2Ftheses%2F1149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

SCHEDULING OF FLEXIBLE MANUFACTURING SYSTEMS
WITH AUTOMATED GUIDED VEHICLES

USING PETRI NET MODELS

by
Hua-Sheng Chiu

In this thesis, Petri net models for Flexible Manufacturing Systems (FMS) are constructed.

A firing sequence of the Petri net from the initial marking to the final marking can be seen

as a schedule of the modeled FMS. By using the branch-and-bound algorithm, an optimal

schedule of the FMS can be obtained.

Automated Guided Vehicle Systems (AGVS) are increasingly used for material

handling in factories and warehouses. An AGVS can reduce labor costs and is ready to be

integrated into an automated factory. This thesis presents two AGVS models (shared and

duty) which integrate the control of AGVS with the control of part processing facilities.

Both types of AGVS are modeled by Petri nets. We want to compare the two AGVS in

terms of systems performance and discuss which application is more suitable for each

AGVS type.

We also want to consider and solve AGV jam problems. The objective of the AGV

jam-free control module is to guarantee a jam-free condition among AGVs in an FMS.

Results have been obtained and analyzed.
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CHAPTER ONE

INTRODUCTION

1.1 Flexible Manufacturing Systems (FMS)

The word "flexible" is used to describe objects "capable of responding or conforming to

changing or new situations." Flexibility is therefore the property that makes an object

"flexible". In the context of manufacturing systems, flexibility is widely accepted to imply

the ". . . ability of a system to cope with changes". It is important for companies which

compete in today's market.

Flexible manufacturing systems, having won recognition for their potential to revive

ailing manufacturing industries, have been installed by many firms to produce such items

as automobiles, aircrafts and machine tools. The growth of flexible automation has been

propelled by advances in computerized manufacturing technology coupled with the need

for shorter production runs, greater responsiveness to demand changes, customized

production, and superior control of the production processes. Advocates claim that FMS

offer a unique ability to simultaneously accomplish two hitherto irreconcilable objectives:

high productivity and the ability to respond to changing markets. Thus, FMS deliver

economies generally associated with the automation of mass production to small-batch

manufacturing.

A key feature of FMS is their "flexibility". In fact, it is this quality that distinguishes

them from the traditional high-volume, process-dedicated production systems like

automated transfer line [Gupta 1989].

Manufacturing industries are under great pressure because of the rising costs of

energy, material, labor, capital, and intensi fying worldwide competition. While these

trends will remain for a long time, the problems facing manufacturing today run much

deeper. In many cases they stem from the very nature of the manufacturing process itself.

1
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Flexible manufacturing systems are regarded as one of the most efficient methods

used in reducing or eliminating problems in the manufacturing process. FMS is more than

a technical solution; it is a business-driven solution leading to improved profitability

through reduced lead times and inventory levels, rapid response to market changes, lower

staffing levels, and improved manufacturing effectiveness through increased operational

flexibility, predictability, and control.

FMS provides new hope to the manufacturing industries and will continue to be

looked on not as an end in itself: but as a dynamic, evolving process to keep the

manufacturing world alive and well in the years ahead.

1.2 What are Petri Nets ?

Consider an automated manufacturing system. The goal is to make a set of products from

raw materials and purchased parts using resources such as machines, robots, Automated

Guided Vehicles (AGVs), materials handling and storage devices. A complex set of

activities must occur in order to meet this goal. The need exists in manufacturing to

properly coordinate and synchronize these activities and resources which work

concurrently to produce a set of products. This is the manufacturing control design

problem.

Petri net theory was originally developed by Carl Adam Petri and presented in his

doctoral dissertation in 1962. Petri nets are a graph theoretic as well as a visually graphical

tool specifically designed for modeling, analysis, performance evaluation and control of

interacting concurrent discrete event systems. These types of systems are characterized by

a discrete state space and are event driven, as opposed to time dependent. Often, these

events are asynchronous. They are sometimes called Discrete Event Systems (DES) or

Discrete Event Dynamic Systems (DEDS). Examples of DEDS are manufacturing systems,

communication networks, and computer-based systems.
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The following will introduce Petri nets informally using the simple robotic example

in Figure 1. In this example, we want to show the sequence of conditions and events that

must occur for the robot to move two parts. We can describe a Petri net (PN) graphically

as having several elements:

Figure 1.1 A simple Petri net example

Places (circles) which represent conditions. In this thesis they represent resource

availability or process status. In Figure 1.1, places p i and p2 indicate

the availability status of the robot and parts respectively, and p 3

indicates the operational status of the robot.

Transitions (bars) which represent events. In this thesis they represent the starting and

stopping of processes. In Figure 1.1, t i represents the start of robot

moving a part; t2 the end of the robot moving the part.

Input functions that define arcs (arrows) from places to transitions. The arc from p i to t i

defines p i as an input place to transition t i ; similarly the arc from p2 to

ti defines p2 as an input place to t i . The arc from p3 to t2 defines p3 as

an input place to t2.
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Output functions that define arcs (arrows) from places to transitions. The arc from t 1 to p3

defines p3 as an output place from t1 and the arc from t2 to Pi defines pi

as an output place from t1.

These four elements define the structure of an ordinary Petri net. The state of a Petri

net is indicated by it's

Marking, a vector whose component is the number of tokens (dots) in the corresponding

place. In general, there could be more than one token per place. The

initial marking for the PN in Figure 1.1 is one token in place p i , two

tokens in p2 , and zero token in p 3 , so the marking vector is mo=(1 2 0)T

[DiCesare 1991] 

Petri nets are an approach for modeling, control, and performance analysis of

automated manufacturing systems. This approach has become more important in recent

years because it can solve problems that cannot be modeled. Petri nets are a very valuable

performance analysis tool.

Petri nets were originally developed to model asynchronous, concurrent processes in

communication and computer systems and have been used to model various types of

discrete event systems. By introducing time delays associated with transitions and/or

places in net models, they can capture the system actual temporal behavior. Petri nets are a

promising tool for describing and studying flexible manufacturing systems. As a graphical

tool, Petri nets can be used as a visual-communication aid similar to flow charts. As a

mathematical tool, it is possible to set up mathematical models governing the behavior of

systems and derive system performance indices [Xiong 1994].

Petri nets are useful tools for the modeling and analysis of a production system. It

can provide accurate models of the precedence relations and concurrent, asynchronous

events. In this thesis, a Petri net model is built to model the detailed behavior of an FMS

and a schedule which is generated in a Petri net framework optimizes some a priori-

assigned performance criterion [Sun 1993].
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1.3 Problem Description

Production scheduling concerns the efficient allocation of resources over time for the

manufacturing of goods. Scheduling problems arise whenever a common set of resources

— material, machine, and robot — must be used to make a variety of different times under

the same products. The objective of scheduling is to find a way to assign and sequence the

use of these shared resources such that production constraints are satisfied and the time

spent is minimized.

Interest in new approaches to production scheduling has been stimulated by a variety

of pragmatic and theoretical consideration. First among these has been the increasingly

competitive world markets for manufactured goods. Better production schedules provide

a competitive advantage through gains in resource productivity and related efficiencies in

operations management. Competition has also motivated the introduction of sophisticated

and capital intensive new manufacturing systems made possible by the declining cost and

increasing power of industrial computers and robots. Most notable among the new

manufacturing technologies are systems for automated, flexible, agile, and computer-

integrated manufacturing. These new systems have created a range of new operational

problems, further speeding up the pace of scheduling research.

Among theorists the development of complexity theory and maturation of artificial

intelligence have begun to redirect the body of scheduling research. Sequencing and

scheduling theory long has been preoccupied with the design of constructive solutions and

optimization algorithms for highly simplified machine-scheduling problems. These

problems and procedures appear to be more robust than optimization-based machine

scheduling and for this reason hold great promise for commercial adaptation. Taken as a

whole, current market, technological, and theoretical developments have made solutions

to both long-standing and newly emerging scheduling problems the subject of intense

applied and theoretical research.
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Recent advances in the theory and practice of production scheduling transcend

traditional disciplinary boundaries. As a consequence, the scheduling literature has escaped

its traditional locus in operations research, management science, and industrial

engineering. Production research has recently been reported in proceedings and journals

principally concerned with control theory, artificial intelligence, system simulation, and

other branches of engineering and computer science. The sheer diversity and momentum

of activity has made developments in production scheduling increasingly difficult to track

and assimilate.

Production scheduling is the allocation of available production resources over time

to meet some set of performance criteria. Typically, the scheduling problem involves a set

of jobs to be completed, where each job comprises a set of operations to be performed.

Operations require machines and material resources and must be performed according to

some feasible technological sequence. Scheduling is influenced by such diverse factors as

job properties, due-date requirements, release dates, cost restrictions, machine

availabilities, machine capabilities, operation precedences, resource requirements, and

resource availabilities. Performance criteria typically involve trade-offs between holding

inventory for task, frequent production changeovers, satisfaction of production-level, and

satisfaction of due dates.

Developing a production schedule involves selecting a sequence of operations (or

process routing) that will result in the completion of a job, designating the resources

needed to execute each operation in the routing, and assigning the times at which each

operation in the routing will start and finish execution. Routings and resource assignments

typically are the product of process planning. Scheduling generally refers to the activity of

time tabling operations.

The formal job-shop or machine-scheduling problem may be stated as follows : N

jobs are to be processed on M machines. Each job consists of a set of M operations, one

operation uniquely associated with each of the M machines. The processing time for an



7

operation cannot be split. Technological constraints demand that the operations within

each job must be processed in a unique order. The scheduling problem involves

determining the sequence and timing of each operation on each machine such that some

given performance criterion is maximized or minimized. Typical performance criteria

include minimizing the makespan (i.e., minimizing the time required to complete all of the

jobs) [Rodammer 1988].

L4 Motivation

Questions of schedule are perhaps not as vital as the decisions that determine what

tasks are to be scheduled or how the task is to be performed once its turn has arrived.

Nevertheless, if proper selection of schedule can yield some incremental improvement, it

seems pointless to neglect the opportunity.

To illustrate the art of production scheduling, consider a specific example of the

traditional, single-stage, job-shop, or machine scheduling problem [Rodammer 1988].

Example 1 is an FMS that has two machines M1 and M2. Two job types J1 and J2 are to

be carried out and Table 1.1 shows the requirement for each jobs [Conway 1967]. The

first operation of Job 1 can be carried out at Machine 1 and needs 4 unit time. The second

operation of Job 1 can be carried out at Machine 2 and needs 1 unit time. The first

operation of Job 2 can be carried out at Machine 1 and needs 1 unit time. The second

operation of Job 2 can be carried out at Machine 2 and needs 4 unit time.

An operation ()ilk represents the j-th operation of the i-th job type being performed

at the k-th machine. Schedule 1 is shown in Figure 1.2(a). It means that Machine 1

processes the first operation of Job 1 (Machine 2 is idle), then Machine 1 processes the

second operation of Job 1 and Machine 2 processes the first operation of Job 2 at the

same time, then Machine 2 processes the second operation of Job 2 (machine 1 is idle).

The makespan of schedule 1 is 9 Units. Schedule 2 is shown in Figure 1.2(b). It means

that Machine 1 processes the first operation of Job 2 (Machine 2 is idle), then Machine 2
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processes the second operation of Job 2 and Machine 1 processes the first operation of

Job 1 at the same time, then Machine 2 processes the second operation of Job 1 (Machine

1 is idle). The time makespan of schedule 2 is 6 Units. There is a big difference between

these results. Thus, you can know obviously how important the scheduling problems are.

Under the usual assumptions that all jobs are ready at the start and that all operations

require the exclusive use of a machine and cannot be split. Schedule 2 represents the

sequence of operations which minimizes the total time required to complete the processing

of all jobs (the makespan).

Table 1.1 Job requirements of Example 1

Figure 1.2(b) Schedule 2 of Example 1

Note that the required ordering of operations within each job (the technological

sequence) is preserved and that the ordering of operations on the machines has been

selected so as to achieve the desired objective [Rodammer 1988].
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Automated Guided Vehicle Systems (AGVS) are increasingly used for material

handling in factories and warehouses. An AGVS can replace conveyors and can

accommodate new routes with relative ease. An AGVS can also reduce labor costs and is

ready to be integrated into an automated factory. This thesis presents two AGVS models

(shared and duty) which integrate the control of AGVS with the control of part processing

facilities [Lee 1993]. These two types of AGVS are modeled by Petri nets. This thesis also

compares the two AGVS and discusses which case is suitable for each one type.

1.5 Objectives

This thesis emphasizes the Petri net approach for modeling, control, and performance

analysis of flexible manufacturing systems (FMS). This approach has become more

important in recent years because it can solve problems that cannot be modeled using

queuing theory, and avoid the time consuming, trial and error approach of simulation.

The mathematical model of an FMS cell has been synthesized using Petri nets. The

concurrency, conflicts, resource-sharing, and sequential operations have been built in the

net models. The resulting net models have the system properties such as liveness, safeness,

and reversibility. Application of Petri net theory to practical FMS is a very important area

in order to develop modern manufacturing control systems [Zhou 1993].

The purpose of this thesis is to demonstrate how Petri nets can be used in design of

flexible manufacturing systems. Five objectives are as follows:

1) To present the branch-and-bound algorithm to solve the scheduling problem.

2) To discuss modeling, analysis, and control issues of FMS with Petri nets and

summarize the Petri net design approaches proposed in the literature.

3) To analyze the system cycle time based on the resulting Petri net model.

4) To discuss the automated guided vehicle system (AGVS).

5) To solve the collision and traffic jam problems of vehicles.



CHAPTER TWO

DEVELOPMENT OF SCHEDULING ALGORITHM

2.1 Definition of Petri Nets

Mathematical modeling or synthesis of EMS is the first step to analyze, simulate, and

control the operations of such systems. When concurrency and synchronization concepts

become keys for study of modern manufacturing systems control, Petri nets provide a

most straightforward tool to model these concepts. In addition, they can model conflicts,

nondeterminism, time information, and resource-sharing environments.

Petri nets are a graphical tool where places, pictured as circles, are used to represent

availability of resources, operation processes, or conditions and transitions, pictured as

bars, model the events, start, or termination of operations. Arcs indicated the relationship

between places and transitions. Tokens in places and their flow regulated by firing

transitions add the dynamics to Petri nets. Thus a marked Petri net can be used to study

dynamic behavior of the modeled discrete event systems [Zhou 1993].

For a fundamental knowledge of Petri net theory, a reader is referred to [Murata

1989]. Strictly, a Petri net may be defined as Z = (P,T,I,O,m), where

In this definition, p i is called a place, t i a transition, I an input function defining the

set of directed arcs from P to T, 0 an output function defining the set of directed arcs

from T to P, and m is an n-dimensional marking whose ith component represents the

number of tokens in place p i . m(p) denotes the number of tokens in place p.

10
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Graphically, places are represented by circles and transitions by bars. If I(p,t) = 1, we

include a directed arc from place p to transition t, and O(p,t) = 1, a directed arc from

transition t to place p. A marking assigns to each place a nonnegative integer. If a marking

assigns to place p a nonnegative integer k, we say that p has k tokens, and we put k black

dots (tokens) in place p.

The behavior of many systems can be described in terms of systems states and their

changes. In order to simulate the dynamic behavior of a system, a state or marking in a

Petri net is changed according to the following transition (firing) rules:

(1) A transition is enabled if m(pi) I(pi,tj) for any pie P;

(2) An enabled transition t can fire at marking m', and its firing yields a new marking,

m(p) = m'(p) + O(p,t) - I(p,t), for arbitrary p from P.

The marking m is said to be reachable from m'. Given Z and its initial marking m 0 ,

the reachability set is the set of all marking reachable from m 0 through various sequences

of transition firings and is denoted by R(Z,m0). Reachability set is a fundamental basis for

studying the dynamic properties of a system.

A Petri net (Z,m0 ) is said to be K-bounded or simply bounded if the number of

tokens in each place does not exceed a finite number K for any marking reachable from

m0 . A Petri net (Z,m0) is said to be safe if it is 1-bounded. For bounded Petri net, from the

initial marking m0, we can obtain all possible reachable markings through firing all enabled

transitions.

A Petri net (Z,m0) is said to be live if, no matter what marking has been reached

from m0, it is possible to ultimately fire any transition of the net by progressing through

some further firing sequence. A live Petri net guarantees deadlock-free operation, no

matter what firing sequence is chosen. The application to manufacturing is direct because,

in general, the discrete event control should not lead to deadlock or at least all possibilities

for deadlock should be known.
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A Petri net (Z,m0) is said to be reversible if, for each marking m in R(Z,m 0), m0  is

reachable from m. Therefore, in a reversible net one can always get back to the initial

marking.

2.2 Petri Net Modeling

A certain order of activities needs to be followed by each job in FMS. For example, the

activity sequence {operation 1, operation 2) should be followed by each job. Therefore,

for Petri net modeling, the first important issue is the modeling of sequential activities for

each job in the system.

The second modeling issue is synchronization. For example, Machine 1 will process

material piece 1 only when it is present. It will never finish the process operation if the

material is missing.

The third issue is modeling of concurrence. By concurrence we mean that there are

parallel relationships among the concerned events. For example, two physical events 1)

Machine 1 processes the first operation of Job 1, 2) Machine 2 processes the second

operation of Job 2, are concurrent if both events may occur simultaneously. Two machines

can operate concurrently if both can process tasks at the same time. High concurrency

among system resources often implies high productivity.

The fourth modeling issue we are concerned with conflict, when the sharing of

machines is encountered. The mutual exclusion concept is especially useful to model the

characteristics of this situation.

Another modeling issue is priority. For example, the first operation of Job 1 is

executed first, and the first operation of Job 2 is executed second.

The Petri net models must take the various issues as discussed above into

consideration. The usual approach is to create a Petri net model, with which to analyze

critical properties of interest. A more rigorous approach for Petri net modeling is to
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synthesize a Petri net of a system which has desirable properties such as boundedness and

deadlock freeness.

Examples of Petri net models for linear sequence, synchronization, concurrency, and

mutual exclusion are shown in Figure 2.1 [Xiong 1994].

Figure 2.1 Examples of Petri net models for (a) linear sequence, (b) synchronization,

(c) concurrency, and (d) mutual exclusion

Figure 2.2 is the Petri net model of Example 1. If we want to execute the first

operation of Job 1, the Job 1 material and Machine 1 must be available. Thus, we put the

arcs from p i and p6 to t 1 . If we want to execute the second operation of Job 1, the first

operation of Job 1 must be finished and Machine 2 must be available. Thus, we put the

arcs from p 3 and p7 to t3 . The same method is applied to Job 2. Table 2.1 shows the

description of places and transitions of Figure 2.2.

Because Job 1 and Job 2 share Machine 1 and Machine 2, so they are the mutual

exclusive events. Two 2-parallel mutual exclusions (p6, {t1,t2} {t5,t6}) and (117, {t3,t4}

{t7,t8 }) are used in this model by using the concepts presented in [Zhou 1991].
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We picture the transitions t1, t3, t5, and t7 as solid bars because they are immediate

transitions. The transitions t 2 , t4, t6, and t8 are pictured as open bars because they are

timed transitions. Table 2.2 shows the operation times of transitions. Places p 3 and p 10

model buffer spaces.

The initial marking m0=(1,0,0,0,0,1,1,1,0,0,0,0)T where the values in the vector are

associated with the series of places p1,P2, . . . ,P12. The value is 1 if the place is initially

marked with a token, otherwise it is zero. The final marking is (0,0,0,0,1,1,1,0,0,0,0,1)T. If

a marking equals to the final marking, then we find a feasible solution.

Figure 2.2 The Petri net model for Example 1
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Table 2.1 Description of places and transitions of Figure 2.2

pi Job 1 material t1 The first operation of Job 1 can be processed

P2 Job 1 material waiting the first operation t2 The first operation of Job 1 is processing

p3 Job 1 material finished the first operation t3 The second operation of Job 1 can be processed

P4 Job 1 material waiting the second operation t4 The second operation of Job 1 is processing

p5 Job 1 material finished the second operation t5 The first operation of Job 2 can be processed

p6 Machine 1 is available t6 The first operation of Job 2 is processing

p7 Machine 2 is available t7 The second operation of Job 2 can be processed

p8 Job 2 material t8 The second operation of Job 2 is processing

p9 Job 2 material waiting the first operation

pi 0 Job 2 material finished the first operation

p11 Job 2 material waiting the second operation

p12 Job 2 material finished the second operation

Table 2.2 Operation times of Figure 2.2

Operation	 ' time

t 1 0

t2 4

t3 0

t4 1
t5 0

t6 1
t7 0

t8 4

2.3 Branch and Bound Algorithm

Branch-and-bound methods have been developed in a variety of contexts, and under a

variety of names, such as "backtrack programming" and "implicit enumeration".

Essentially, the idea is to repeatedly break the set of feasible solutions into subsets, and to

calculate bounds on the costs of the solutions contained within them. The bounds are used
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to discard entire subsets of solutions from further consideration. The simple but effective

technique has scored a number of notable successes in practical computations.

Branch-and-bound algorithms are always 'primal' in the sense that they proceed from

one feasible solution to another until optimality is verified. In fact they often find optimal

or near optimal solutions early in the enumeration process and spend the majority of the

time verifying optimality. Thus the user can be comforted by the expectation that

termination before proof of optimality will likely yield a very good solution if not an

optimal one [Christofides 1978].

In this thesis, timed Petri nets are employed to model the aforementioned scheduling

problem, and solve for an optimum schedule. The algorithm presented in this thesis

combines the execution of the Petri net with a modified branch-and-bound scheme. Once

the Petri net model of system is constructed, the evolution of the system can be described

by changes in the marking of the Petri net. In other words, all possible behaviors of the

system can be completely tracked by the reachability graph of the Petri net. Theoretically,

therefore, an optimal schedule can be obtained by generating the reachability graph and

finding the optimal path from the initial marking to the final marking. The path is a fired

sequence of the transitions of the Petri net model.

Since the precedence relationships and resource constraints are incorporated in the

Petri net model, only the feasible schedules would be obtained by executing the Petri net.

Thus the search space is limited to that of feasible schedules. It should be pointed out that

firing a transition during a search implies to explore a new schedule [Shen 1992].

The branch-and-bound algorithm that finds an optimal or near optimal schedule is as

follows. Given a Petri net model, it expands the reachability graph from the initial marking

until the generated portion of the reachability graph touches the final marking. Once the

final marking is reached, the path is constructed. Then the transition sequence of the path

provides the order of starts of the activities.
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The Algorithm :

Step 1: Find the initial marking (m0) and final marking (mf).

Step 2: Set the upper bound (Tub) of makespan.

Step 3: Let current marking me = m0 .

Step 4: If there is no enabled transition, then go to step 15.

Step 5: Fire any one and put the others in waiting-list.

Step 6: Record this fired transition to fired-sequence.

Step 7: Generate the new marking (mnew) for this fired transition. Let current marking

Step 8: Calculate the actual time (TO from m0 to mc .

Step 9: If "Cc > Tub, then go to Step 15.

Step 10: If m0 has occurred before and if it may not make a shorter time (τc>τb), then
go to Step 15.

Step 11: If me = mf, then go to Step 13.

Step 12: Go to Step 4.

Step 13: We find a feasible solution. Calculate the time makespan (TO.

Step 14: If τt > 'Cub, then reject this solution.
If τt < τub, then this solution is selected. Let τub = τt .

Step 15: Go backward and get a transition from waiting-list. If there are no transitions in
waiting-list, then terminate. Otherwise, fire this selected transition and go to
Step 6.

In Step 2, use a large number as the upper bound to ensure that reasonably short

makespan is not left out. In Step 5, the waiting-list is a data structure used to record

information of alternative transitions. In the waiting-list, items are stored and retrieved in

Last-In-First-Out (LIFO). Figure 2.3 shows the flowchart of branch-and-bound algorithm.
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The algorithm is implemented in Fortran. See Appendix A for the source code. In

order to find enabled transitions in Step 4, the implementation identifies marked places.

For each marked place, the program identifies its output transitions. For each output

transition the program checks if all its input places are marked. If they are, the transition is

enabled. In Step 5, recording "waiting-list" is actually combined with "current marking"

and "current executing time" on stack in order to remember the condition of branch node.

2.4 The Execution Result

We can write the formal mathematical expression of Example 1 according to the definition

of Petri net (section 2.1).



Figure 2.3 Flowchart of the branch-and-bound algorithm
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We can easily find transitions t 1 and t5 are enabled according to the transition firing

rule (1): m(pi) I(pi,t1) and m(p i) I(p i,t 5). Thus, we can fire either t 1 or t5 . If we choose

to fire t 1 , then we get the new marking = (0,1,0,0,0,0,1,1,0,0,0,0)T according to the

transition firing rule (2) and put the transition t 5 to waiting-list. For example, m(p i) =

m'(p1) + 04) 1 ,0 - I(p 1 ,t) = 1 + 0 - 1 = 0, m(p 2) = m'(p2) + O(p2,t) - I(p2,t) = 0 + 1 - 0 = 1.

m(p3) to m(p 12) can be obtained by using the same method. Therefore, we get the new

marking=(0,1,0,0,0,0,1,1,0,0,0,0)T. The operation time is zero (T=0) because the

operation time of t 1 is zero.

The new marking is (0,1,0,0,0,0,1,1,0,0,0,0)T after firing t i . We can find only the

transition t2 is enabled, so we can only choose t 2 to fire. The new marking becomes

(0,0,1,0,0,1,1,1,0,0,0,0)T and the operation time ti = 0 + 4 = 4 because the operation time

of t2 is 4.

If a new marking has occurred before and it may not make a shorter operation time,

then stop this branch and go backward to get another transition from waiting-list (as those

bold lines shown in Figure 2.4).

We can get the execution results according to the Petri net and branch-and-bound

algorithm. Figure 2.4 shows the completely reachability graph of Petri net for Example 1

(some markings are not given due to space limitation). The dotted line (• • •) is Schedule 1

(Figure 1.2(a)) and the double line (=) is Schedule 2 (Figure 1.2(b)) in Figure 2.4. It is

obviously that Schedule 2 (makespan = 6U) is better than Schedule 1 (makespan = 9U).

Thus, the optimal schedule is Schedule 2.

Table 2.3 The execution results of Example 1
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Figure 2.4 Completed reachability graph of Petri net for Example 1
(some markings are not given due to space limitation)



CHAPTER THREE

PERFORMANCE EVALUATION OF FMS USING MARKED GRAPHS

3.1 Marked Graphs

Marked graphs, a special class of timed Petri nets, are used for modeling and analyzing

job-shop systems. The modeling allows for evaluating the steady-state performance of the

system under a deterministic and cyclic production process. Given any fixed processing

times, the productivity (i.e., production rate) of the system can be determined from the

initial state. It is shown in particular that, given any desired product mix, it is possible to

start the system with enough jobs in-process so that some machines will be fully utilized in

the steady-state. These machines are called bottleneck machines, since they limit the

throughput of the system. The system will work at the maximal rate and the productivity is

optimum.

A job-shop system is a specific type of production system composed of a certain set

of machines and a variety of jobs which must be produced using the machines. The

manufacturing process of each job is specified as a sequence of machines to visit, i.e., as a

routing into the system. Any routing is allowable but is defined uniquely for each job.

Further, the time spent by the jobs on the machines is assumed to be fixed and

deterministic. Finally, the sequencing of the jobs on the machines is also assumed to be

given, as well as the order with which jobs are loaded into the system (input sequencing).

The model allows for evaluating such performance measure as the production rate in

steady state. It is possible to fully utilize some machine in steady state with a finite number

of jobs in-process. It means that the maximum production rate is obtained when those

machines (called bottlenecks) are fully utilized, a condition that always can be satisfied.

In a timed marked graph, each transition takes a real time to fire. When a transition

is enabled, a firing is initiated by moving one token from each of the transition input place.
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The token remains in the transition during the time of the firing execution and then the

firing terminates by adding one token in each of the transition output place.

Marked graphs (also called decision-free Petri nets) are Petri nets such that each

place has exactly one input and one output transition as shown in Figure 3.1. In marked

graph, any two transitions do not share the same input place. So, there is no conflict to

simultaneously process several enabled transitions [Hillion 1989].

Figure 3.1 A example of marked graph

A marked graph has some properties as follows:

1) The token count in a direct circuit is invariant under any firing.

2) It is live iff there is at least one token on each direct circuit.

3) A live marked graph is safe if each place belongs to a directed circuit whose

token count is one.

4) There is a live and safe marking in any marked graph if it is strongly connected.

5) The maximal number of tokens that a place can have is equal to the minimal

number of tokens placed by initial marking on directed circuits containing the

place.

For timed marked graphs, there exists already the formula to find the system cycle

time [Freedman 1991], [Murata 1989], [Ramchandani 1974]. For a marked graph which

has time delays in its transition and place, the system cycle time C is given by

where
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Ti = Sum of the transition and place delays in circuit

Ni = Total number of tokens in the places in circuit

n = Number of circuits in the marked graph.

Those circuits for which the cycle time is maximum are called bottleneck (critical)

circuits. Indeed, those circuits are the ones that actually bound the throughput of the

system. Two types of circuits in a marked graph are : 1) processing circuits — that model

the manufacturing process of the sequence of each job. 2) command circuits that model

the sequencing of the jobs on the machines. If a circuit includes nodes of both processing

and command circuit, then such circuit will be called mixed circuit [Billion 1989].

3.2 Marked Graphs Modeling of FMS

Let us consider a job-shop system with 3 machines, donated by Ml, M2, M3 and 4

different types of jobs, denoted by Job 1, Job 2, Job 3, Job 4. Table 3.1 shows the job

requirements of this example [Baker 1974]. In this thesis, the batch size equals one for

each job. We can consider it in future research when the batch size is greater than one.

Table 3.1 Job requirements of Example 2

Order 1st 2nd 3rd

Job 1 Machine 1 ( 4U ) Machine 2 ( 3U) Machine 3 ( 2U )

Job 2 Machine 2 ( 1U) Machine 1 ( 4U ) Machine 3 ( 4U )

Job 3 Machine 3 ( 3U) Machine 2 ( 2U ) Machine 1 ( 3U )

Job 4 Machine 2 ( 3U) Machine 3 ( 3U ) Machine 1 ( 1U )

As said in Section 2, we can obtain the Petri net model of Example 2 (Table 3.1) as

Figure 3.2 shows. For the description of places and transitions of Figure 3.2, please refer

represent availability of Machine 1, Machine 2, and

Machine 3, respectively.



Figure 3.2 PN Model of the Example 2



Table 3.2 Description of places and transitions of Figure 3.2
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Job 1 material

Job 1 material waiting the first operation

Job 1 material finished the first operation

Job 1 material waiting the second operation

Job 1 material finished the second operation

Job 1 material waiting the third operation

Job 2 material

Job 2 material waiting the first operation

Job 2 material finished the first operation

Job 2 material waiting the second operation

Job 2 material finished the second operation

Job 2 material waiting the third operation

Job 3 material

Job 3 material waiting the first operation

Job 3 material finished the first operation

Job 3 material waiting the second operation

Job 3 material finished the second operation

Job 3 material waiting the third operation

Job 4 material

Job 4 material waiting the first operation

Job 4 material finished the first operation

Job 4 material waiting the second operation

Job 4 material finished the second operation

Job 4 material waiting the third operation

Machine 1 is available

Machine 2 is available

Machine 3 is available

The first operation of Job 1 can be processed

The first operation of Job 1 is processing

The second operation of Job 1 can be processed

The second operation of Job 1 is processing

The third operation of Job 1 can be processed

The third operation of Job 1 is processing

The first operation of Job 2 can be processed

The first operation of Job 2 is processing

The second operation of Job 2 can be processed

The second operation of Job 2 is processing

The third operation of Job 2 can be processed

The third operation of Job 2 is processing

The first operation of Job 3 can be processed

The first operation of Job 3 is processing

The second operation of Job 3 can be processed

The second operation of Job 3 is processing

The third operation of Job 3 can be processed

The third operation of Job 3 is processing

The first operation of Job 4 can be processed

The first operation of Job 4 is processing

The second operation of Job 4 can be processed

The second operation of Job 4 is processing

The third operation of Job 4 can be processed

The third operation of Job 4 is processing
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Since each place has exactly one input and output transition in a marked graph, we

can easily find that the Petri net model of Figure 3.2 is not a marked graph because Places

P25, P26, and p27 have more than one input and one output transition.

Since the scheduling problem exists in this example, we may use the branch-and-

bound algorithm to obtain the optimal schedule. Figure 3.3 shows the optimal result for

Example 2. In Figure 3.3(a), the manufacturing process of each job is supposed to be

unique. That is to say, the executed sequences on each machine are fixed. Machine 1

processes Job 2 first, then Job 1 second, then Job 4 third, and Job 3 last. Machine 2

processes Job 2 first, then Job 4 second, then Job 3 third, and Job 1 last. Machine 3

processes Job 3 first, then Job 4 second, then Job 2 third, and Job 1 last.

Figure 3.3 Two views of a optimal schedule of Example 2

For job shop systems, we can directly derive the marked graph from the initial Petri

net model after the schedule is determined. A general procedure can be stated as follows:
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(1) If a machine serves for i jobs, then change the number of places from 1 to i.

Name these places as p1k, P2 k, . . ., pik where k is the initial symbol for that

machine.

(2) According to the executed sequences on each machine, we draw an output arc

from p1 k to the transition which represents the first job processed by the

machine, then draw an input arc to p2 k from the transition which represents the

first job finished by that machine. Based on the same method as above, we

draw an output arc from p2k to the transition which represents the second job

processed by the machine, then draw an input arc to p3k from the transition

which represents the second job finished by that machine. Repeat the above

procedure until we draw an output arc from pi k to the last job processed by that

machine. Then we draw a last arc from the last job finished by that machine to

(3) Put a token in

We can apply this general procedure to Example 2. Since Machine 1 processes 4

jobs, we draw 4 places (p 1 25, P225, P325, and P425 where "25" represents Machine 1). Since

it processes Job 2 first, we draw an output arc from p 1 25 to t9 and draw an input arc to p225

from t 10 . Since Machine 1 processes Job 1 second, we draw an output arc from p 2 25 to t 1

and draw an input arc to p 3 25 from t2 . Because it processes Job 4 third, we draw an output

arc from p325 to t23 and draw an input arc to p425 from t24 . Since it processes Job 3 last, we

draw an output arc from P425 to t17 and draw an input arc to p 125 from t18. We do the same

procedures for Machines 2 and 3. Finally, we put three tokens in places p 1 25, P 1 26, and

p 1 27 . According to the above procedure, we can obtain the marked graph of the FMS

using the optimal scheduling of Example 2, as shown in Figure 3.4.

In Figure 3.4, each place has exactly one input and one output transition. Therefore,

the net is a marked graph.



Figure 3.4 A marked graph of the optimal scheduling of Example 2
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3.3 Performance Evaluation of Cyclic Systems

It should be clear that the Petri net model developed in Section 3.2 corresponds to a

marked graph (see Figure 3.4). Furthermore, the net is strongly connected, thanks to the

input command circuit that links the processing circuits all together. The firing times of

transitions (as specified by the operation processing times — Table 3.3) make it finally a

strongly connected timed Petri net.

Table 3.3 Operation times of Figure 3.4

Appendix B shows the elementary circuits and their cycle times of Figure 3.4. There

are totally 49 elementary circuits (including the four processing circuits—

the three command circuits —

Therefore, the maximum cycle time is 12 Units and the critical circuits are Y6, Y32, Y41,

and Y47•

According to Figure 3.3, we can find that makespan of optimal scheduling of

Example 2 is 14 Units. It means that it needs 14 Units when each job (Job 1, Job 2, Job 3,

and Job 4) is executed exactly once.
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Based on Figure 3.4, the cycle time of the system is 12 Units. It is reasonable,

because it is a long-term run performance. In Figure 3.3(a), Machine 3 finished Job 1 (i.e.,

the first part of each job) at the end of 14-th Unit. But Machine 2 is idle in 12-th Unit, and

Machine 2 can processes the first operation of the second part of the Job 2 (i.e., the

second part of each job). Therefore, the cycle time (12 Units) < the makespan (14 Units)

is reasonable. The cycle time is correct. If the cycle time is greater than the makespan,

then the cycle time is incorrect.



CHAPTER FOUR

AUTOMATED GUIDED VEHICLE SYSTEMS (AGVS)

4.1 Two AGVS Models

Automated Guided Vehicle Systems (AGVS) are increasingly used for material handling in

factories and warehouses. An AGVS can replace conveyors and can accommodate new

routes with relative ease. The AGVS are flexible systems for transportation and suitable

for simple transport operations with a small number of destinations as well as complex

ones with many destinations [Muller 1983].

The advantages to use AGVS are as follows:

(1) Saving in costs and personnel.

(2) High performance capacity even in the area of high material flow densities.

(3) High transport safety.

(4) Automated transport, closing the gap between automated storage systems and

manufacturing systems.

In this thesis, we want to discuss and compare two AGVS models: the shared

AGVS and the duty AGVS through Petri net models [Lee 1993].

4.1.1 The Shared AGVS

In a shared AGVS, there are no firm objects served by the AGVS. Figure 4.1 shows an

FMS with the shared AGVS. SL and Su represent the loading area and unloading area.

and S 1 0 represent the input position and output position of Machine 1.

S3 0 have the similar meanings as S1i and S 1 0 . r 1 represents the route from loading area to

Machine 1. r2 represents the route from loading area to Machine 2. r3 r 10 have the similar

meanings. All AGVs can serve in the loading area, unloading area or any machine. Any

AGV is devoted to a job until it is completed. The AGVs have an original position at the
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loading area. Raw material is loaded onto an empty AGV at the loading area and

processed by a machine through the FMS to the unloading area. After the AGV delivers a

part to the input position of a machine and unload a part to it, the AGV moves from input

position to output position immediately. After the part is unloaded, the empty AGV

returns to the original position at the loading area and waits for additional raw material.

Figure 4.1 An FMS with the "shared" AGVS

4.1.2 The Duty AGVS

In a duty AGVS, there is a firm object served by the AGV. The loading area has some

AGVs (the number is dependent on every different case) which are used to send parts to

machines. Each machine Mj has its own AGVmj which has an original position at the

output of the machine (S1o, S2o, or S3 0 ...) and is used only to send a part away to the

input of another machine (S1i, S2i, or S31 ...). After delivering a part to another machine,

the AGV returns to its original position at the owner machine for next delivery. Figure 4.2

shows an FMS with the duty AGVS. There are no AGVs moving between loading area

and unloading area, so we don't need to draw route
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Figure 4.2An FMS with the "duty" AGVS

4.2 Petri Net Models of AGVS-Based FMS

We have already discussed two AGVS models in Section 4.1. Furthermore, we want to

discuss the suitable cases for these two AGVS models.

Table 4.1 shows the job requirements of Example 3. In Example 3, we have two jobs

and three machines, and each job has the same processed sequence through machines.

Table 4.1 Job requirements of Example 3

Order 1st 2nd 3rd

Job 1 Machine 1 Machine 2 Machine 3

Job 2 Machine 1 Machine 2 Machine 3

Table 4.2 shows the job requirements of Example 4. We have two jobs and three

machines, and Job 2 has the reverse processed sequence through machines. Two AGVS

will be applied to Examples 3 and 4 respectively.
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Table 4.2 Job requirements of Example 4

Order 1 st 2nd 3rd

Job 1 Machine 1 Machine 2 Machine 3

Job 2 Machine 3 Machine 2 Machine 1

1) The shared AGVS: The FMS of Examples 3 and 4 along with 5 shared AGVs and

their paths are depicted in Figures 4.3 and 4.5. p 17 represents that AGVs are available at

the loading area. Because all AGVs have an original position at the loading area, we put

five tokens in p 17 .

2) The duty AGVS: The FMS of Examples 3 and 4 along with 5 duty AGVs and

their paths are depicted in Figures 4.4 and 4.6. p 17 represents that AGVs are available on

the loading area. These places (p22, P27, and p32) represent that AGVs are available on the

output of machines (Machines 1, 2, and 3). According to the definition of the duty AGVS,

each machine Mj has its own AGVmj which has an original position at the output of the

machine. Thus, we put two tokens in p 17 and one token in p22, p27, and p32, respectively.

Now we discuss about the initial marking. P20, P25, and p30 represent Machines 1, 2,

and 3, so we put one token in p20, p25, and

paths, so we put one token in these places.

input or output positions of machines and unloading area. Because these are empty

originally, we put one token in these places.

Tables 4.3(a) and 4.3(b) show the description of places and transitions of Figures

4.3, 4.4, 4.5, and 4.6. We assume that the time is negligible for the following operations:

(1) a material is loaded to AGV, (2) a material is unloaded from AGV, and (3) AGV

moves from input position (Sji) to output position (Sj o) of the same machine. Therefore,

we draw these transitions as immediate transitions, i.e. solid transitions.



Figure 4.3 The Petri net model for Example 3 with the shared AGVS
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Figure 4.4 The Petri net model for Example 3 with the duty AGVS
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Figure 4.5 The Petri net model for Example 4 with the shared AGVS
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Figure 4.6 The Petri net model for Example 4 with the duty AGVS
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Table 4.3(a) Description of places of Figures 4.3, 4.4, 4.5, and 4.6
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Table 4.3(b) Description of transitions of Figures 4.3, 4.4, 4.5, and 4.6
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4.3 Stochastic Petri Net Package (SPNP)

Developed in the early 80's, Stochastic Petri Net Package (SPNP) has become one of the

most commonly used Petri net tools. The package can deal with Petri net text file inputs

which define places, transitions, their input and output relations, and transitions' random

firing delay times with exponential distributions. In SPNP, Petri nets with immediate

transitions and priorities of enabled transitions are allowed.

Given a stochastic Petri net described as a Petri net text file, the package first

generates its reachability graph. Then the Markov chain solution is derived. The

performance indices such as the steady-state transition firing frequency and probability of

a place with token presence can be computed. Based on these, one can calculate system

throughput and transient solution for stochastic Petri net.

SPNP runs under the UNIX system on a wide array of platforms such as 5.AX,

SUN, and Convex, and under the VMS system such as VAX [Ciardo 90].

4.4 Performance Analysis

In this section we will use the SPNP software to evaluate four cases (Example 3 with the

shared AGVS, Example 3 with the duty AGVS, Example 4 with the shared AGVS, and

Example 4 with the duty AGVS). We assume that all the time delays are associated with

transitions instead of places in order that we can directly use the SPNP package. The firing

rates assumed for the transitions in Figures 4.3-6 are summarized in Table 4.4. When an

immediate transition is enabled, it can fire instantaneously. Suppose that v denotes the

AGV speed rate, a variable. Appendices C-F show the codes of Figures 4.3-6 for SPNP.

Table 4.5(a) shows the system throughputs of Example 3 (the same sequence) in

Figures 4.3 and 4.4. We can see that the duty AGVS is better than the shared AGVS. The

throughput difference is approximately 11% when the AGV speed rate equals to 0.75.

Table 4.5(b) shows the system throughputs of Example 4 (the reverse sequence) in the
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Figures 4.5 and 4.6. We can see that the shared AGVS is better than the duty AGVS. The

throughput difference is approximately 10% when the AGV speed rate equals to 0.75.

Table 4.4 Firing rates of transitions of Figures 4.3, 4.4, 4.5, and 4.6

Table 4.5(a) The system throughputs of Figures 4.3 and 4.4 for the same sequence

AGV Speed Rate 0 0.25 0.5 0,75 1.0

Duty AGVS 0 0.254 0.402 0.488 0.542

Shared AGVS 0 0.198 0.343 0.440 0.506

Table 4.5(b) The system throughputs of Figures 4.5 and 4.6 for the reverse sequence

AGV Speed Rate 0 0.25 0.5 0.75 1.0

Duty AGVS 0 0.135 0.284 0.396 0.468

Shared AGVS 0 0.194 0.338 0.436 0.503
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The results of performance analysis are shown in Figure 4.7 and 4.8 for the four

Petri net models shown in Figures 4.3, 4.4, 4.5, and 4.6. They show the changes in system

throughput and AGV speed rate when the AGV speed rate increases from 0 to 1.0. The

system throughput decreases as the AGV speed rate decreases.

In Figure 4.7, we compare these two systems (1) An FMS whose every job has the

same processed sequence through machines combined with the shared AGVS; and (2) An

FMS whose every job has the same processed sequence through machines combined with

the duty AGVS. We can see that the system throughput of using the duty AGVS is greater

than the system throughput of using the shared AGVS. Thus, the duty AGVS is more

suitable to Example 3.

Figure 4.7 The system throughput vs. AGV speed rate for Example 3

In Figure 4.8, we compare these two systems (1) An FMS whose every job has the

reverse processed sequence through machines combined with the shared AGVS; and (2)

An FMS whose every job has the reverse processed sequence through machines combined

with the duty AGVS. We can see that the system throughput of using the shared AGVS is

greater than the system throughput of using the duty AGVS. Thus, the shared AGVS is

more suitable to Example 4.
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Figure 4.8 The system throughput vs. AGV speed rate for Example 4

Therefore, the result shows that:

If each job has the same processed sequence through machines, then it is better to

use the duty AGVS. If each job has the reverse processed sequence through

machines, then it is better to use the shared AGVS.

The intuitive reasons for the results are given below:

(1) If each job has the same processed sequence through machines, the system is

simple and regular for AGVs' transportation because the parts always come from

same position and will be delivered to same position for machines. Thus, we use

the duty AGVS (every machine has its own AGV) to this case. The duty AGVS

will be better for this case.

(2) If each job has the reverse processed sequence through machines, the system is

complex and irregular for AGVs' transportation because the parts always come

from different positions and will be delivered to different positions for machines.

Thus, we use the shared AGVS (any AGV is devoted to a job (part) until it is

completed) to this case. The shared AGVS will be better for this case.



CHAPTER FIVE

AGV JAM-FREE CONTROL

In an FMS, the transporting system may have more than one AGV (for example: the FMS

has 5 AGVs in Figure 4.1) which transport materials among different workstations. Thus,

the traffic jam problems must be considered and solved. The objective of the AGV jam-

free control module is to guarantee jam-free condition among AGVs.

The basic idea of the AGV jam-free control is described as follows. When a

missioned AGV found a station on its traveling route occupied by another AGV, the

control center will send a command to that AGV to leave to an adjacent station. When

that station is released, the missioned AGV can resume its traveling on the same route

path.

In this thesis, we want to discuss two different cases:

1) The distance between two stations is short.

2) The distance between two stations is long.

If the time that AGV moves between two stations is less than one minute, we can

classify it to short distance case. Otherwise, it belongs to long distance case. However, it

depends on physical requirements.

5.1 Short Distance Case

Figure 5.1 shows the jam-free control unit module when the distance between stations is

short. In Figure 5.1, AGVX stops at Station i and AGVy stops at Station j. AGV want to

move from Station i to Station j. Because Station j is occupied by AGVy, the control

center sends a command to AGVy to leave for Station k. Then AGVx can start to move

from Station i to Station j. Places p i and pi represent that AGVs stop at Station i and

Station j. Place pij represents AGV got the order to move from Station i to Station j. Place
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pi e represents Station j is empty since its marking is zero. Transition tij represents AGV

moves from Station i to Station j.

AGV and AGVy stop at Station i and j since each of pi and pi has a token. AGV

wants to move from Station i to Station j due to a token in pij. Because there are no

tokens in pie (Station j is not empty), AGV cannot start to move. Control center sends an

order (pjk) to move AGVy. AGVy then moves from Station j to Station k assuming Station

k is available as shown in Figure 5.1. Thus, Station j becomes empty (pej has a token).

Transition tij can be enabled, and AGV can start to move from Station i to Station j. The

traffic problem is solved.

Figure 5.1 Jam-free control unit module for short distance case

Table 5.1 Description of places and transitions of Figure 5.1

AGV stays at station i

AGV stays at station j

AGV stays at station k

AGV can move from station i to j

AGV can move from station j to k

Station i is empty

Station j is empty

Station k is empty

AGV moves from station i to j

AGV moves from station j to k

5.2 Long Distance Case

In Section 5.1, AGVX cannot move until AGVy leaves Station j. If the distance between

stations is short, then the jam-free control unit module (Figure 5.1) can be accepted
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(because the waiting time of AGV X is relatively short). If the distance between stations is

long, then the jam-free control unit module (Figure 5.1) must be modified because

otherwise the waiting time of AGVX is too long.

We add a limit switch at route rjk but it is near Station j as Figure 5.2 shows. When

AGVy leaves Station j and touches the limit switch, AGVX at Station i can start to move.

This method can save much time, because AGV X does not need to wait too long.

Figure 5.2 The path added limit switch

Figure 5.3 shows the jam-free control unit module when the distance between

stations is long. Transition tjk-1 represents AGVy moves from Station j to limit switch and

touches the limit switch. Because it will spend very short time, we draw the transition tjk-1

as an immediate transition. We can regard Station j as empty when AGVy touches the limit

switch of rjk. Thus, transition tij-1 is enabled when pje has a token (AGVy touches the limit

switch). It means that AGVX can start to move from Station i to Station j. It will save the

waiting time of AGVX

Figure 5.3 Jam-free control unit module for long distance case



Table 5.2 Description of places and transitions of Figure 5.3
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5.3 Jam-Free Petri Net Models

Figure 5.4 shows an example of system layouts. rij represents the routes of AGVs. Arrows

represent the moving directions of an AGV. An AGV can move from Station 1 to Station

2 or Station 3. An AGV can move from Station 2 to Station 3 or Station 4. If an AGV

stays at Station 3, then it can only move to Station 4. If an AGV stays at Station 4, then it

can only move to Station 1. In short distance case, we can ignore the limit switches.

Figure 5.4 System layout directed graph

Figure 5.5 shows the jam-free Petri net model for short distance case. Figure 5.6

shows the jam-free Petri net model for long distance case. They can guarantee the jam-free

condition among AGVs.



Figure 5.5 Jam-free Petri net model for short distance case



Figure 5.6 Jam-free Petri net model for long distance case



Table 5.3 Description of places and transitions of Figure 5.5
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Table 5.4 Description of places and transitions of Figure 5.6



CHAPTER SIX

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

This thesis discusses the scheduling problem of an FMS. The complete Petri net model is

constructed for an FMS. A firing sequence of the Petri net from the initial marking to the

final marking can be seen as a schedule of the modeled FMS. Once the final marking is

reached, the path is constructed. Then the transition sequence of the path provides the

order of starts of the activities. In order to obtain an optimal schedule and alleviate the

computing complexity, the branch-and-bound algorithm is used. This method can give not

only an optimal solution, but also can easily be implemented on computers, since the

memory requirement is bounded and adjustable.

In order to get the long-term production rate of a system given the schedule marked

graphs are applied. They are a special class of timed Petri nets used for modeling and

analyzing job-shop systems. The modeling allows for evaluating the long-term periodic

performance of the system under a deterministic and cyclic production process. Given any

fixed processing times, the productivity (i.e., production rate) of the system can be

determined from the initial state. The system will work at the maximal rate and the

productivity is optimum.

Two AGVS models (shared and duty) are presented in this thesis. The shared model

means that there are no firm objects served by an individual AGV. An AGV is devoted to

a job until the job is completed. The duty model signifies that there is a firm object served

by each AGV, i. e., each area or machine has its own AGV(s). This thesis takes two

examples and discusses which case is more suitable for each AGVS type.

This thesis demonstrates the use of stochastic Petri nets for performance modeling

and evaluation of AGVS. The results can help designers construct more efficient
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manufacturing systems, and engineers run factories more efficiently. Systematic discrete-

event modeling tools and methods such as Petri nets shall play a significant role in design

and implementation of intelligent manufacturing systems which contains flexible machines,

material handling systems, intelligent robots and AGVs. It's very helpful for designers to

use the Petri net method to model and evaluate different design alternatives before full

implementation of an AGVS.

In an FMS, the transporting system may have more than one AGV which transports

materials among different workstations. Thus, traffic jam problems must be considered

and solved. The objective of the AGV jam-free control module is to guarantee the jam-

free condition among AGVs. Petri net modeling of both short and long distance cases is

given for the first time. The work will help design better AGVs.

6.2 Future Research

There are four areas which need to be explored in the future study:

1) The failure rates of machines and AGVs are not considered in this thesis.

Therefore, an FMS that includes the failure rates of machines and AGVs

requires future research.

2) The paths of AGVs and the structures of machines (input position and output

position) in this thesis are just one of many types. The control of AGVs need

future research when the structure is different, especially in connection with a

particular physical layout of the paths.

3) To add the jam-free control module into the Petri net model of an FMS with

AGVS. This thesis considers only the jam-free control module and the Petri net

model of an FMS with AGVS separately.

4) To explore the scheduling applications to real industrial problems.

5) To find how to convert the initial Petri net model to the marked graph when the

batch size is greater than one for each job.



APPENDIX A

Source Code for Branch and Bound Algorithm

PROGRAM PetriNet

parameter(nplace=12,ntran=8,nconfl=2,ktop=150)
integer mark(nplace),Ma(nplace),Mu(nplace,2)
integer ptime(nplace),fmark(nplace)
integer iarc(nplace,ntran), oarc (nplace, ntran)
integer incid(nplace,ntran)
integer choice(nconfl,ntran)
integer tenabl(ntran), tf ire (ntran)
integer clock, tseque(100)
real dueinf(ntran,3)

integer top,stack(ktop,nplace)
integer wlist(ktop,ntran),tstack(ktop,1)
common /one/ptime,iarc,oarc,choice,dueinf

open(11,file='netinput',status='old')
open(12,file='netout',status='new')

write(*,*) 'Input the initial marking'
read(11,*) (mark(i),i=1,nplace)
write(*,*) 'Input the time associated with places'
read(11,*) (ptime(i),1=1,nplace)
write(*,*) 'Input the final marking'
read(11,*) (fmark(i),i=1,nplace)

do 5 i=1,nplace
read(11,*) (iarc(i,j),j=1,ntran)

5 	 continue

do 10 i=1,nplace
read(11,*) (oarc(i,j),j=1,ntran)

10 	 continue

close (11)

do 15 i=1,nplace
do 15 j=1,ntran
incid(i,j)=oarc(i,j)-iarc(i,j)

15 	 continue

do 20 i=1,nplaceMu(i,1)=0

Mu (1, 2) =10000000
20 	 continue

clock=0
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do 25 i=1,nplace
Ma(i)=mark(i)

25 	 continue

write(12,30) (mark(i),i=1,nplace)
30 	 format(lx,'Initial marking',1x,20i3)

write(12,35) (fmark(i),i=1,nplace)
35 	 format(lx,'Final marking',3x,20i3)

top=ktop+1go to 85

40 	 do 45 i=1,nplace
if (mark(i).NE.fmark(i)) go to 70

45 	 continue

50 	 top=top+1
if (top .GT. ktop) go to 170

do 55 j=1,ntran
tfire (j) =0

55 	 continue

do 65 j=1,ntran
if (wlist(top,j) .EQ. 1) then

wlist (top, j) =0
tfire (j) =1
do 60 i=1,nplace

Ma(i)=stack(top,i)
Mu(i,1)=0

60 	 continue
clock=tstack (top, 1)
go to 120

end if
65 	 continue

go to 50

70 	 clock=Mu(1,2)

do 75 i=2,nplace
if (Mu(i,2) .LT. clock) then

clock=Mu(i,2)
end if

75 	 continue

do 80 i=1,nplace
if ((Mu(i,l) .GT. 0).AND.(Mu(i,2) .EQ. clock))
then

Ma(i)=Ma(i)+Mu(i,1)
Mu(i,1)=0
Mu(1,2)=10000000 .

end if
80 	 continue
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85 	 top=top-1

do 90 i=1,nplace
stack(top,i)=Ma(i)

90 	 continue

tstack(top,1)=clock

do 95 j=1,ntran
tenabl(j)=0
tfire (j) =0

95 	 continue

kempty=0
do 105 j=1,ntran

do 100 i=1,nplace
if (Ma(i) .LT. iarc(i,j)) goto 105

100 continue
kempty=1
tenabl(j)=1

105 	 continue

do 110 j=1,ntran
wlist(top,j)=tenabl(j)

110 	 continue

do 115 j=1,ntran
if (tenabl(j).eq.1) then

tenabl (j) =0
tfire(j)=1
wlist (top, j) =0
go to 120

end if
115 	 continue

120 	 do 130 i=1,nplace
ksum=0
do 125 j=1,ntran

ksum=ksum+incid(i,j)*tfire(j)
125 	 continue

if (ksum .GT. 0) then
Mu(i,1)=Mu(i,1)+ksum
Mu(i,2)=clock+ptime(i)

else
Ma(i)=Ma(i)+ksum

end if
mark(i)=Ma(i)+Mu(i,1)

130 	 continue

write (12,135) clock
135 	 format(/,1x,'Clock',4x,1i3)

write(12,140) (wlist(top,j),j=1,ntran)
140 	 format(lx,'Wlist',4x,20i3)



write(12,145) (tfire(j),j=1,ntran)
145 	 format(1x,'Firing',3x,20i3)

write(12,150) (mark(i),i=1,nplace)
150 	 format(1x,'Marking',2x,20i3)

do 155 j=1,ntran
tenabl (j) =0
tfire(j)=0

155 	 continue

k0=0
do 165 j=1,ntran

do 160 i=1,nplace
if (Ma(i) .LT. iarc(i,j)) goto 165

160 	 continue
k0=1
tfire(j)=1
if (k0 .GT. 0) goto 120

165	 continue

go to 40

170 	 stop

end
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APPENDIX B

Elementary Circuits and Cycle Times of Figure 3.4
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APPENDIX C

The Code of Figure 4-3 for SPNP

#include "user.h"
float x,y1,y2,z,v;

parameters() {
iopt(IOP_PR_FULL_MARK,VAL_YES);
iopt(IOP_PR_MC,VAL_YES);
iopt(IOP_PR_RGRAPH,VAL_YES);
iopt(IOP_PR_PROB,VAL_YES);
v=input("AGV Speed Rate(value from 0.1 to 1.0):");
x=4.0;
y1=4.0*v;
y2=1.0*v;
z=1.0;

}

net() {
place("p1"); 	 init("p1",5);
place("p2");
place("p3");
place("p4");
place("p5");
place("p6");place("p7");

place("p8");
place("p9");
place("p10");
place("p11");
place("p12");
place("p13");
place("p14");
place("p15");
place("p16");
place("p17"); init("p17",5);
place("p18"); init("p18",1);
place("p19"); init("p19",1);
place("p20"); init("p20",1);
place("p21"); init("p21",1);
place("p22");
place("p23"); init("p23",1);
place ("p24") ; init("p24",1);
place("p25"); init("p25",1);
place("p26"); init("p26",1);
place("p27");
place("p28"); init("p28",1);
place("p29"); init("p29",1);
place("p30"); init("p30",1);
place("p31"); init("p31",1);
place("p32");
place("p33"); init("p33",1);
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place("p34"); 	 init("p34",1);
place("p35"); 	 init("p35",1);
place("p36"); 	 init("p36",5);
place("p37");
place("p38");
place("p39");
place("p40");
place("p41");
place("p42");
place("p43");
place("p44");
place("p45");
place("p46");
place("p47");
place("p48");
place("p49");
place("p50");
place("p51");
place("p52");
place("p53");
place("p54");
place("p55");
place("p56");
place ("p57") ;

trans ("t1") ; 	 rateval("t1",100.0);
trans("t2"); 	 rateval("t2",y1);
trans("t3"); 	 rateval("t3",100.0)
trans("t4"); 	 rateval("t4",z);
trans("t5"); 	 rateval("t5",100.0)
trans("t6"); 	 rateval("t6",y1);
trans("t7"); 	 rateval("t7",100.0)
trans("t8"); 	 rateval("t8",x);
trans("t9"); 	 rateval("t9",100.0)
trans("t10"); rateval("t10",y1);
trans("t11"); rateval("t11",100.0);
trans("t12"); rateval("t12",x);
trans("t13"); rateval("t13",100.0);
trans("t14"); rateval("t14",y1);
trans("t15"); rateval("t15",100.0);
trans("t16"); rateval("t16",y2);
trans("t17"); rateval("t17",100.0);
trans("t18"); rateval("t18",100.0);
trans ("t19") ; rateval("t19",100.0);
trans("t20"); rateval("t20",100.0);
trans("t21"); rateval("t21",100.0);
trans("t22"); rateval("t22",100.0);
trans("t23"); rateval("t23",100.0);
trans("t24"); rateval("t24",y1);
trans("t25"); rateval("t25",100.0);
trans("t26"); rateval("t26",x);
trans("t27"); rateval("t27",100.0);
trans("t28"); rateval("t28",y1);
trans("t29"); rateval("t29",100.0);
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trans ("t30") ; rateval ( " t30 " z) ;
trans ("t31") ; rateval ( t31" , 100.0) ;
trans ("t32" ) ; rateval ("t32",y1) ;
trans ("t33" ) ; rateval ("t33", 100.0) ;
trans ("t34 " ) ; 	 rateval ('"t34'" , z) ;
trans ("t35") ; rateval ("t35" , 100.0) ;
trans ( " t36" ) ; rateval ("t36" , yl) ;
trans ( "t37" ) ; rateval ("t37" , 100.0) ;
trans ("t38") ; rateval ( "t38 " , y2) ;

iarc ("t1" , "p1" ) ; iarc ("t1", "p17") ; iarc ("t1" , "p18" ) ;
iarc ("t1" , "p19") ;
oarc ("t1" , "p2") ;

iarc ("t2" , "p2") ;
oarc ("t2" , "p3") ; oarc ( "t2" , "p18 " ) ;

iarc ("t3" , "p3" ) ; iarc ( "t3", "p20") ;
oarc (" t3 " , "p4") ;oarc ( "t3" , "p52" ) ;

iarc ("t4 " , "p4") ;
oarc ("t4 " , "p5") ;

iarc ("t5" , "p5" ) ; iarc ( "t5" , "p22") ; iarc ( "t5" , "p24" ) ;
iarc ( "t5" , "p23") ;
oarc ( "t5" , "p6") ;oarc ( "t5", "p20") ;oarc ("t5" , "p21" ) ;

iarc ( " t6" , "p6") ;
oarc ("t6" , "p7") ;oarc ( "t6" , "p23 " ) ;

iarc ("t7" "p7") ;iarc ( "t7", "p25") ;
oarc ("t7" , "p8" ) ; oarc ( "t7" , "p54" ) ;

iarc ("t8" , "p8" ) ;
oarc ("t8" , "p9") ;

iarc (" t9" , "p9") ; iarc ( "t9" "p27") ; iarc ( "t9" , "p29" ) ;
iarc ("t9" , "p28" ) ;
oarc (""t9", "p10") ;oarc ("t9" , "p25" ) ;oarc ("t9" , "p26" ) ;

iarc ("t10" , "p10") ;
oarc ("t10", "p11") ;oarc ( "t10" "p28" ) ;

iarc ("t11" , "p11" ) ;iarc ("t11" , "p30") ;
oarc ("t11" , "p12") ;oarc ( "t11" "p56" ) ;

iarc ("t12", "p12") ;
oarc ("t12" , "p13") ;

iarc ("t13", "p13") ; iarc ( "t13 " , "p32" ) ; iarc ("t13","p34") ;

iarc ("t13", "p33") ;
oarc ("t13", "p14") ;oarc ( "t13" , "p30") ;oarc ("t13", "p31") ;



iarc("t14","p14");
oarc("t 14 ","p15 ");oarc("t14","p33");

iarc("t15","p15");iarc("t15","p35");
oarc("t15","p16");oarc("t15","p34");oarc("t15" ,"p1");

iarc("t16","p16");
oarc("t 16 ","p17 ");oarc("t16","p35") ;

iarc("t 17 ","p5 2 ");iarc("t17","p21") ;
oarc("t 17 ","p19");oarc("t17","p22") ;

iarc("t 18 ","p21 ");iarc("t18","p53");
oarc("t 18 ","p19");oarc("t18","p22") ;

iarc("t19","p54");iarc("t19 ","p26");
oarc("t 19 ","p24");oarc("t19","p27");

iarc("t 20 ","p26");iarc("t20","p55");oarc("t20","p24");oarc("t20","p27");

iarc("t 21 ","p56");iarc("t21","p31");
oarc("t 21 ","p29");oarc("t21","p32");

iarc("t 22 ","p31");iarc("t22","p57");
oarc("t 22 ","p29");oarc("t22","p32");

iarc ( "t 23 " , "p17 ");iarc("t23","p18");iarc("t23","p19") ;
iarc("t23","p36");
oarc("t23 ", " p3 7");

iarc("t24", "p37") ;
oarc("t 24","p18");oarc("t24","p38");

iarc("t25","p20");iarc("t25","p38");
oarc("t 25 ","p39");oarc("t25","p53");

iarc("t26","p39");
oarc("t26","p40");

iarc("t27 ","p22 ");iarc("t27","p23");iarc("t27","p24");
iarc("t27","p40");
oarc("t27 ","p20 ");oarc("t27","p21");oarc("t27","p41") ;

iarc("t28","p41");
oarc("t28","p23");oarc("t28","p42");

iarc("t29","p25");iarc("t29","p42");
oarc("t29","p43");oarc("t29","p55");

iarc("t30","p43");
oarc("t30","p44");
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iarc("t 31 ","p27 ");iarc("t31","p28");iarc("t31","p29") ;
iarc("t31","p44");
oarc("t 31 ","p25 ");oarc("t31","p26");oarc("t31","p45") ;

iarc("t32","p45");
oarc("t32","p28");oarc("t32","p46");

iarc("t33","p30");iarc("t33","p46");
oarc("t33","p47");oarc ("t33","p57");

iarc("t34","p47");
oarc("t34","p48");

iarc("t 35 ","p 3 2");iarc("t35","p33");iarc("t35","p34");
iarc("t35","p48");
oarc("t 35 ","p49");oarc("t35","p30");oarc("t35","p31");

iarc("t36","p49");
oarc("t36","p33");oarc("t36","p50");

iarc("t37","p35");iarc("t37","p50");
oarc("t37","p34");oarc("t37","p51");
oarc("t37","p36");

iarc("t38","p51");
oarc("t38","p35");oarc("t38","p17");

}

assert() {return(RES_NOERR);}
ac_init() {}
ac reach() {}
reward_type ef0() {return(rate("t15")+rate("t37"));}
ac final() {pr_expected("throughout=",ef0);

pr_std_average();}



APPENDIX D

The Code of Figure 4-4 for SPNP

#include "user. h"
float x,y1,y2,z,v;

parameters() {
iopt(IOP_PR_FULL_MARK,VAL_YES);
iopt(IOP_PR_MC,VAL_YES); 
iopt(IOP_PR_RGRAPH,VAL_YES);
iopt(IOP_PR_PROB,VAL_YES);
v=input("AGV Speed Rate (value from 0.1 to 1.0):");
x=4.0;
y1=4.0*v;
y2=1.0*v;
z=1.0;

net() {
place("p1"); 	 init("p1",4);
place("p2");
place("p3");
place("p4");
place("p5");
place("p6");
place("p7");
place("p8");
place("p9");
place("p10");
place("p11");
place("p12");
place ("p13") ;
place("p14");
place("p15");
place("p16");
place("p17"); init("p17",2);
place("p18"); init("p18",1);
place("p19"); init("p19",1);
place("p20"); init("p20",1);
place("p22"); init("p22",1);
place("p23"); init("p23",1);
place("p24"); init("p24",1);
place("p25"); init("p25",1);
place("p27"); init("p27",1);
place("p28"); init("p28",1);
place("p29"); init("p29",1);
place("p30"); init("p30",1);
place("p32"); init("p32",1);
place("p33"); init("p33",1);
place("p34"); init("p34",1);
place("p36"); init("p36",4);
place("p37");
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place("p38");
place("p39");
place("p40");
place("p41");
place("p42");
place("p43");
place("p44");
place("p45");
place("p46");
place("p47");
place("p48");
place("p49");
place("p50");
place("p51");
place("p52");
place("p53");
place("p54");
place("p55");
place("p56");
place("p57");

trans("t1"); 	 rateval("t1",100.0);
trans("t2"); 	 rateval("t2",y1);
trans("t3"); 	 rateval("t3",100.0);
trans ("t4") ; 	 rateval("t4",z);
trans ("t5") ; 	 rateval("t5",100.0);
trans ("t6") ; 	 rateval("t6",y1);
trans("t7"); 	 rateval("t7",100.0);
trans ("t8") ; 	 rateval("t8",x);
trans ("t9") ; 	 rateval("t9",100.0);
trans("t10"); rateval("t10",y1);
trans ("t11") ; rateval("t11",100.0);
trans("t12"); rateval("t12",x);
trans("t13"); rateval("t13",100.0);
trans ("t14") ; rateval("t14",y1);
trans ("t15") ; rateval("t15",100.0);
trans("t16"); rateval("t16",y1);
trans("t17"); rateval("t17",y1);
trans("t18"); rateval("t18",y1);
trans("t19"); rateval("t19",y1);
trans("t20"); rateval("t20",y1);
trans ("t21") ; rateval("t21",y1);
trans ("t22") ; rateval("t22",y1);
trans ("t23") ; rateval("t23",100.0);
trans("t24"); rateval("t24",y1);
trans("t25"); rateval("t25",100.0);
trans("t26"); rateval("t26",x);
trans("t27"); rateval("t27",100.0);
trans("t28"); rateval("t28",y1);
trans ("t29") ; rateval("t29",100.0);
trans("t30"); rateval("t30",z);
trans("t31"); rateval("t31",100.0);
trans("t32"); rateval("t32",y1);
trans("t33"); rateval("t33",100.0);
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trans("t34"); rateval("t34",z);
trans ("t35") ; rateval("t35",100.0);
trans("t36"); rateval("t36",y1);
trans("t37"); rateval("t37",100.0);
trans ("t38") ; rateval("t38",y1);

iarc("t1","p1");iarc("t1","p17");iarc("t1","p18");
iarc("t1","p19");
oarc("t1","p2");

iarc("t2","p2");
oarc("t2","p3");

iarc("t3","p3");iarc("t3","p20");
oarc("t3","p4");oarc("t3","p52");

iarc("t4","p4");
oarc("t4 ",”p5" );

iarc("t5","p5");iarc("t5","p22");iarc("t5","p24");
iarc("t5","p23");
oarc("t5","p6");oarc("t5","p20");

iarc("t6","p6");
oarc("t6","p7");

iarc("t7","p7");iarc("t7","p25");
oarc("t7","p8");oarc("t7","p54");

iarc("t8","p8");
oarc("t8","p9");

iarc("t9","p9");iarc("t9","p27");iarc("t9","p29");
iarc("t9","p28");
oarc("t9","p10");oarc("t9","p25");

iarc("t10","p10");
oarc("t10","p11");

iarc("t11","p11");iarc("t11","p30");
oarc("t11","p12");oarc("t11","p56");

iarc("t12","p12");
oarc("t12","p13");

iarc("t13","p13");iarc("t13","p32");iarc("t13","p34");
iarc("t13","p33");
oarc("t13","p14");oarc("t13","p30");

iarc("t14","p14");
oarc("t14","p15");

iarc("t15","p15");
oarc("t15","p34");oarc("t15","p1");oarc("t15","p16");
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iarc("t16","p16");
oarc("t16","p32");oarc("t16","p33");

iarc("t17","p52");
oarc("t17","p17");oarc("t17","p18");
oarc("t17","p19");

iarc("t18","p53");
oarc("t18","p17");oarc("t18","p18");
oarc("t18","p19");

iarc("t19","p54");
oarc("t19","p22");oarc("t19","p23");
oarc("t19","p24");

iarc("t20","p55");
oarc("t20","p22");oarc("t20","p23");
oarc("t20","p24");

iarc("t21","p56");
oarc("t21","p27");oarc("t21","p28");
oarc("t21","p29");

iarc("t22","p57");
oarc("t22","p27");oarc("t22","p28");
oarc("t22","p29");

iarc("t23","p17");iarc("t23","p18");iarc("t23","p19");
iarc("t23","p36");
oarc("t23","p37");

iarc("t24","p37")");
oarc("t24","p38");

iarc("t25","p20");iarc("t25","p38");
oarc("t25","p39");oarc("t25","p53");

iarc("t26","p39");
oarc("t26","p40");

iarc("t27","p22");iarc("t27","p23");iarc("t27","p24");
iarc("t27","p40");
oarc("t27","p20");oarc("t27","p41");

iarc("t28","p41");
oarc("t28","p42");

iarc("t29","p25");iarc("t29","p42");
oarc("t29","p43");oarc("t29","p55");

iarc("t30","p43");
oarc("t30","p44");
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iarc("t31","p27");iarc("t31","p28");iarc("t31","p29");
iarc("t31","p44");
oarc("t31","p25");oarc("t31","p45");

iarc("t32","p45");
oarc("t32","p46");

iarc("t33","p30");iarc("t33","p46
oarc("t33","p47");oarc("t33","p57

iarc("t34","p47");
oarc("t34","p48");

iarc("t35","p32");iarc("t35","p33");iarc("t35","p34");
iarc("t35","p48");
oarc("t35","p49");oarc("t35","p30");

iarc("t36","p49");
oarc("t36","p50");

iarc("t37","p50");
oarc("t37","p34");oarc("t37","p36");oarc("t37","p51");

iarc("t38","p51");
oarc("t38","p32");oarc("t38","p33");

}

assert () {return (RES NOERR) ; }
ac init() {}

reward_type ef0() freturn(rate("t15")+rate("t37"));)
ac reach() 0

ac final() fpr_expected("throughout=",ef0);
pr_std_average();}



APPENDIX E

The Code of Figure 4-5 for SPNP

#include "user.h"
float x,y1,y2,z,v;

parameters()
iopt(IOP_PR_FULL_MARK,VAL_YES);

iopt (IOP_PR_MC,VAL_YES);
iopt(IOP_PR_RGRAPH,VAL_YES);
iopt(IOP_PR_PROB,VAL_YES);
v=input("AGV Speed Rate (value from 0.1 to 1.0):");

x=4.0;
y1=4.0*v;
y2=1.0*v;
z=1.0;

}

net() {
place("p1"); 	 init("p1",5);
place("p2");
place("p3");
place("p4");
place("p5");
place("p6");
place("p7");
place("p8");
place("p9");
place("p10");
place("p11");
place("p12");
place("p13");
place("p14");
place("p15");
place("p16");
place("p17"); init("p17",5);
place("p18"); init("p18",1);
place("p19"); init("p19",1);
place("p20"); init("p20",1);
place("p21"); init("p21",1);
place("p22");
place("p23"); init("p23",1);
place("p24"); init("p24",1);
place("p25"); init("p25",1);
place("p26"); init("p26",1);
place("p27");
place ("p28") ; init("p28",1);
place("p29"); init("p29",1);
place("p30"); init("p30",1);
place("p31"); init("p31",1);
place("p32");
place("p33"); 	 init("p33",1);
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place ("p34") ; 	 init("p34",1);
place("p35"); 	 init("p35",1);
place("p36"); 	 init("p36",5);
place("p37");
place("p38");
place("p39");
place("p40");
place("p41");
place ("p42") ;
place ("p43") ;
place("p44");
place("p45");
place("p46");
place("p47");
place("p48");
place("p49");
place("p50");
place("p51");
place("p52");
place ("p53");
place("p54");
place("p55");
place("p56");
place("p57");
place("p58"); 	 init("p58",1);
place("p59"); 	 init("p59",1);

trans("t1"); 	 rateval("t1",100.0)
trans ("t2") ; 	 rateval("t2",y1);
trans ("t3") ; 	 rateval("t3",100.0)
trans("t4"); 	 rateval("t4",z);
trans ("t5") ; 	 rateval("t5",100.0)
trans("t6"); 	 rateval("t6",y1);
trans ("t7") ; 	 rateval("t7",100.0)
trans("t8"); 	 rateval("t8",x);
trans ("t9") ; 	 rateval("t9",100.0)
trans("t10"); rateval("t10",y1);
trans ("t11") ; rateval("t11",100.0);
trans ("t12") ; rateval("t12",x);
trans("t13"); rateval("t13",100.0);
trans ("t14") ; rateval("t14",y1);
trans ("t15") ; rateval("t15",100.0);
trans("t16"); rateval("t16",y2);
trans ("t17") ; rateval("t17",100.0);
trans ("t18") ; rateval("t18",100.0);
trans ("t19") ; rateval("t19",100.0);
trans("t20"); rateval("t20",100.0);
trans("t21"); rateval("t21",100.0);
trans("t22"); rateval("t22",100.0);
trans("t23"); rateval("t23",100.0);
trans ("t24") ; rateval("t24",y1);
trans ("t25") ; rateval("t25,100.0);
trans ("t26") ; rateval("t26",z);
trans("t27"); rateval("t27",100.0);
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trans("t28"); rateval("t28",y1);
trans("t29"); rateval("t29",100.0);
trans("t30"); rateval("t30",z);
trans ("t31") ; rateval("t31",100.0);
trans("t32"); rateval("t32",y1);
trans("t33"); rateval("t33",100.0);
trans("t34"); rateval("t34",x);
trans("t35"); rateval("t35",100.0);
trans("t36"); rateval("t36",y1);
trans("t37"); rateval("t37",100.0);
trans("t38"); rateval("t38",y2);

iarc("t1","p1");iarc("t1","p17");iarc("t1","p18");
iarc("t1","p19");
oarc("t1","p2");

iarc("t2","p2");
oarc("t2","p3");oarc("t2","p18");

iarc("t3","p3");iarc("t3","p20");
oarc("t3","p4");oarc("t3","p52");

iarc("t4","p4");
oarc("t4","p5");

iarc("t5","p5");iarc("t5","p22");iarc("t5","p24");
iarc("t5","p23");
oarc("t5","p6");oarc("t5","p20");oarc("t5","p21");

iarc("t6","p6");
oarc("t6","p7");oarc("t6","p23");

iarc("t7","p7");iarc("t7","p25");
oarc("t7","p8");oarc("t7","p54");

iarc("t8","p8");
oarc("t8","p9");

iarc("t9","p9");iarc("t9","p27");iarc("t9","p29");
iarc("t9","p28");
oarc("t9","p10");oarc("t9", "p25");oarc("t9","p26");

iarc("t10","p10");
oarc("t10","p11");oarc("t10","p28");

iarc("t11","p11");iarc("t11","p30");
oarc("t11","p12");oarc("t11","p56");

iarc("t12","p12");
oarc("t12","p13");

iarc("t13","p13");iarc("t13","p32");iarc("t13","p34");
iarc("t13","p33");
oarc("t13","p14");oarc("t13","p30");oarc("t13","p31");
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iarc("t14","p14");
oarc("t14","p15");oarc("t14","p33");

iarc("t15","p15");iarc("t15","p35");
oarc("t15","p16");oarc("t15","p34");oarc("t15","p1");

iarc("t16","p16");
oarc("t16","p17");oarc("t16","p35");

iarc("t17","p52");iarc("t17","p21");
oarc("t17","p19");oarc("t17","p22");

iarc("t18","p21");iarc("t18","p57");
oarc("t18","p19");oarc("t18","p22");

iarc("t19","p54");iarc("t19","p26");
oarc("t19","p24");oarc("t19","p27");

iarc("t20","p26");iarc("t20","p55");
oarc("t20","p24");oarc("t20","p27");

iarc("t21","p56");iarc("t21","p31");
oarc("t21","p29");oarc("t21","p32");

iarc("t22","p31");iarc("t22","p53");
oarc("t22","p29");oarc("t22","p32");

iarc("t23","p17");iarc("t23","p58");iarc("t23","p29");
iarc("t23","p36");
oarc("t23 ”,"p37");

iarc("t24","p37");
oarc("t24","p58");oarc("t24","p38");

iarc("t25","p30");iarc("t25","p38");
oarc("t25","p39");oarc("t25","p53");

iarc("t26","p39");
oarc("t26","p40");

iarc("t27","p28");iarc("t27","p32");iarc("t27","p24");
iarc("t27","p40");
oarc("t27","p30");oarc("t27","p31");oarc("t27","p41");

iarc("t28","p41");
oarc("t28","p28");oarc("t28","p42");

iarc("t29","p25");iarc("t29","p42");
oarc("t29","p43");oarc("t29","p55");

iarc("t30","p43");
oarc("t30","p44");

iarc("t31","p27");iarc("t31","p23");iarc("t31","p19");
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iarc("t31","p44");
oarc("t31","p25");oarc("t31","p26");oarc("t31","p45")

;

iarc("t32","p45");
oarc("t32","p23");oarc("t32","p46");

iarc("t33","p20");iarc("t33","p46");
oarc("t33","p47");oarc("t33","p57");

iarc("t34","p47");
oarc("t34","p48");

iarc("t35","p22");iarc("t35","p59");iarc("t35","p34")
;

iarc("t35","p48");
oarc("t35","p49");oarc("t35","p20");oarc("t35","p21")

;

iarc("t36","p49");
oarc("t36","p59");oarc("t36","p50");

iarc("t37","p35");iarc("t37","p50");
oarc("t37","p34");oarc("t37","p51");
oarc("t37","p36");

iarc("t38","p51");
oarc("t38","p35");oarc("t38","p17");

}

assert() {return(RES_NOERR);}
ac init() {}
ac reach() {}
reward_type ef0() {return(rate("t15")+rate("t37"));}
ac final() {pr_expected("throughout=",ef0);

pr_std_average();)



APPENDIX F

The Code of Figure 4-6 for SPNP

#include "user.h"
float x,y1,y2,z,v;

parameters() {
iopt(IOP_PR_FULL_MARK,VAL_YES);

iopt(IOP_PR_MC,VAL_YES); 
iopt(IOP_PR_RGRAPH,VAL_YES);
iopt(IOP_PR_PROB,VAL_YES);
v=input("AGV Speed Rate (valuefrom 0.1 to 1.0) :") ;

x=4.0;
y1=4.0*v;
y2=1.0*v;
z=1.0;

}

net() {
place("p1"); 	 init("p1",4);
place("p2");
place("p3");
place("p4");
place("p5");
place("p6");
place("p7");
place("p8");
place("p9");
place("p10");
place("p11");
place("p12");
place("p13");
place("p14");
place("p15");
place("p16");
place("p17"); 	 init("p17",2);
place("p18"); 	 init("p18",1);
place("p19"); 	 init("p19",1);
place("p20"); 	 init("p20",1);
place("p22"); init("p22",1);
place ("p23") ; init("p23",1);
place ("p24") ; init("p24",1);
place("p25"); init("p25",1);
place("p27"); init("p27",1);
place("p28"); 	 init("p28",1);
place("p29"); 	 init("p29",1);
place("p30"); 	 init("p30",1);
place("p32"); 	 init("p32",1);
place("p33"); 	 init("p33",1);
place("p34"); init("p34",1);
place("p36"); init("p36",4);
place("p37");
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place("p38");
place("p39");
place("p40");
place("p41");
place("p42");
place("p43");
place("p44");
place("p45");
place("p46");
place("p47");
place("p48");
place("p49");
place("p50");
place("p51");
place("p52");
place("p53");
place("p54");
place("p55");
place("p56");
place("p57");
place("p58"); 	 init("p58",1);
place("p59"); 	 init("p59",1);

trans("t1"); 	 rateval("t1",100.0);
trans("t2"); 	 rateval("t2",x);
trans ("t3") ; 	 rateval("t3",100.0);
trans ("t4") ; 	 rateval("t4",z);
trans("t5"); 	 rateval("t5",100.0);
trans("t6"); 	 rateval("t6",x);
trans ("t7") ; 	 rateval("t7",100.0);
trans("t8"); 	 rateval("t8",x);
trans ("t9") ; 	 rateval("t9",100.0);
trans("t10"); rateval("t10",x);
trans ("t11") ; rateval("t11",100.0);
trans ("t12") ; rateval("t12",x);
trans("t13"); rateval("t13",100.0);
trans("t14"); rateval("t14",x);
trans ("t15") ; rateval("t15",100.0);
trans("t16"); rateval("t16",x);
trans("t17"); rateval("t17",x);
trans ("t18") ; rateval("t18",x);
trans ("t19") ; rateval("t19",x);
trans("t20"); rateval("t20",x);
trans("t21"); rateval("t21",x);
trans ("t22") ; rateval("t22",x);
trans ("t23") ; rateval("t23",100.0);
trans("t24"); rateval("t24",x);
trans ("t25") ; rateval("t25",100.0);
trans ("t26") ; rateval("t26",z);
trans ("t27") ; rateval("t27",100.0);
trans ("t28") ; rateval("t28",x);
trans ("t29") ; rateval("t29",100.0);
trans("t30"); rateval("t30",z);
trans ("t31") ; rateval("t31",100.0);
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trans("t32"); rateval("t32",x);
trans("t33"); rateval("t33",100.0);
trans ("t34") ; rateval("t34",x);
trans ("t35") ; rateval("t35",100.0);
trans("t36"); rateval("t36",x);
trans ("t37") ; rateval("t37",100.0);
trans("t38"); rateval("t38",x);

iarc("t 1 ","p1");iarc("t1","p17");iarc("t1","p18") ;
iarc("t1","p19");
oarc("t1","p2");

iarc("t2","p2");oarc("t2","p3");

iarc("t3","p3");iarc("t3","p20");
oarc("t3","p4");oarc("t3","p52");

iarc("t4 ","p4");
oarc("t4","p5");

iarc("t5","p5");iarc("t5","p22");iarc("t5","p24");
iarc("t5","p23");
oarc("t5","p6");oarc("t5","p20");

iarc("t6","p6");
oarc("t6" ,"p7");

iarc("t 7 ","p7");iarc("t7","p25");
oarc("t7","p8");oarc("t7","p54");

iarc("t8","p8");
oarc("t8","p9");

iarc("t9","p9");iarc("t9","p27");iarc("t9","p29");
iarc("t9","p28");
oarc("t9","p10");oarc("t9","p25");

iarc("t10","p10");
oarc("t10","p11");

iarc("t11","p11");iarc("t11","p30");
oarc("t11","p12");oarc("t11","p56");

iarc("t12","p12");
oarc("t12","p13");

iarc("t13","p13");iarc("t13","p32");iarc("t13","p34");
iarc("t13","p33");
oarc("t13","p14");oarc("t13","p30");

iarc("t14","p14");
oarc("t14","p15");



81

iarc("t15","p15");
oarc("t15","p34");oarc("t15","p1");oarc("t15","p16");

iarc("t16","p16");
oarc("t16","p32");oarc("t16","p33");

iarc("t17","p52");
oarc("t17","p17");oarc("t17","p18");
oarc("t17","p19");

iarc("t18","p53");
oarc("t18","p17");oarc("t18","p58");
oarc("t18","p29");

iarc("t19","p54");
oarc("t19","p22");oarc("t19","p23");
oarc("t19","p24");

iarc("t20","p55");
oarc("t20","p28");oarc("t20","p32");
oarc("t20","p24");

iarc("t21","p56");
oarc("t21","p27");oarc("t21","p28");
oarc("t21","p29");

iarc("t22","p57");
oarc("t22","p27");

Z/ );oarc("t22","p23");
oarc("t22 ","p19");

iarc("t23","p17");iarc("t23","p58");iarc("t23","p29");
iarc("t23","p36");
oarc("t23","p37");

iarc("t24","p37");
oarc("t24","p38");

iarc("t25","p30");iarc("t25","p38");
oarc("t25","p39");oarc("t25","p53");

iarc("t26","p39");
oarc("t26","p40");

iarc("t27","p32");iarc("t27","p28");iarc("t27","p24");
iarc("t27","p40");
oarc("t27","p30");oarc("t27","p41");

iarc("t28","p41");
oarc("t28","p42");

iarc("t29","p25");iarc("t29","p42");
oarc("t29","p43");oarc("t29","p55");
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iarc("t30","p43");
oarc("t30","p44");

iarc("t31","p27");iarc("t31","p23");iarc("t31","p19");
iarc("t31","p44");
oarc("t31","p25");oarc("t31","p45");

iarc("t32","p45");
oarc("t32","p46");

iarc("t33","p20");iarc("t33","p46"); -

oarc("t33","p47");oarc("t33”,"p57") ;

iarc("t34","p47");
oarc("t34","p48");

iarc("t35","p22");iarc("t35","p59");iarc("t35","p34");
iarc("t35","p48");
oarc("t35","p49");oarc("t35","p20");

iarc("t36","p49");
oarc("t36","p50");

iarc("t37","p50");
oarc("t37","p34");oarc("t37","p36");oarc("t37","p51");

iarc("t38","p51");
oarc("t38","p22");oarc("t38","p59");

assert() {return(RES_NOERR);}
ac_init()
ac reach() {}
reward_type ef 0 () (return(rate("t15")+rate("t37"));}
ac final() {pr_expected("throughout=",ef0);

pr_std_average();}
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