805 research outputs found

    Experimental investigations of two-phase flow measurement using ultrasonic sensors

    Get PDF
    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measurement of the parameters of the two- phase slug flow. The use of the HHT technique is sensitive enough to detect the hydrodynamics of the slug flow. The results of the experiments are compared with correlations in the literature and are in good agreement. Next, experimental data of air-water two-phase flow under slug, elongated bubble, stratified-wavy and stratified flow regimes were used to develop an objective flow regime classification of two-phase flow using the ultrasonic Doppler sensor and artificial neural network (ANN). The classifications using the power spectral density (PSD) and discrete wavelet transform (DWT) features have accuracies of 87% and 95.6% respectively. This is considerably more promising as it uses non-invasive and non-radioactive sensors. Moreover, ultrasonic pulse wave transducers with centre frequencies of 1MHz and 7.5MHz were used to measure two-phase flow both in horizontal and vertical flow pipes. The liquid level measurement was compared with the conductivity probes technique and agreed qualitatively. However, in the vertical with a gas volume fraction (GVF) higher than 20%, the ultrasound signals were attenuated. Furthermore, gas-liquid and oil-water two-phase flow rates in a vertical upward flow were measured using a combination of an ultrasound Doppler sensor and gamma densitometer. The results showed that the flow gas and liquid flow rates measured are within ±10% for low void fraction tests, water-cut measurements are within ±10%, densities within ±5%, and void fractions within ±10%. These findings are good results for a relatively fast flowing multiphase flow

    Improvement of signal analysis for the ultrasonic microscopy

    Get PDF
    This dissertation describes the improvement of signal analysis in ultrasonic microscopy for nondestructive testing. Specimens with many thin layers, like modern electronic components, pose a particular challenge for identifying and localizing defects. In this thesis, new evaluation algorithms have been developed which enable analysis of highly complex layer-stacks. This is achieved by a specific evaluation of multiple reflections, a newly developed iterative reconstruction and deconvolution algorithm, and the use of classification algorithms with a highly optimized simulation algorithm. Deep delaminations inside a 19-layer component can now not only be detected, but also localized. The new analysis methods also enable precise determination of elastic material parameters, sound velocities, thicknesses, and densities of multiple layers. The highly improved precision of determined reflections parameters with deconvolution also provides better and more conclusive results with common analysis methods.:Kurzfassung......................................................................................................................II Abstract.............................................................................................................................V List ob abbreviations........................................................................................................X 1 Introduction.......................................................................................................................1 1.1 Motivation.....................................................................................................................2 1.2 System theoretical description.....................................................................................3 1.3 Structure of the thesis..................................................................................................6 2 Sound field.........................................................................................................................8 2.1 Sound field measurement............................................................................................8 2.2 Sound field modeling..................................................................................................11 2.2.1 Reflection and transmission coefficients.........................................................11 2.2.2 Sound field modeling with plane waves..........................................................13 2.2.3 Generalized sound field position.....................................................................19 2.3 Receiving transducer signal.......................................................................................20 2.3.1 Calculation of the transducer signal from the sound field...............................20 2.3.2 Received signal amplitude..............................................................................21 2.3.3 Measurement of reference signals..................................................................24 3 Ultrasonic Simulation......................................................................................................27 3.1 State of the art............................................................................................................27 3.2 Simulation approach..................................................................................................28 3.2.1 Sound field measurement based simulation...................................................28 3.2.2 Reference signal based simulation.................................................................30 3.3 Determination of the impulse response.....................................................................31 3.3.1 1D ray-trace algorithm....................................................................................31 3.3.2 2D ray-trace algorithm....................................................................................33 3.3.3 Complexity reduction – optimizations.............................................................35 4 Deconvolution – Determination of reflection parameters............................................38 4.1 State of the art............................................................................................................39 4.1.1 Decomposition techniques..............................................................................39 4.1.2 Deconvolution.................................................................................................41 4.2 Analytic signal investigations for deconvolution.........................................................42 4.3 Single reference pulse deconvolution........................................................................44 4.4 Multi-pulse deconvolution..........................................................................................47 4.4.1 Homogeneous multi-pulse deconvolution.......................................................48 4.4.2 Multi-pulse deconvolution with simulated GSP profile....................................49 5 Reconstruction.................................................................................................................50 5.1 State of the art............................................................................................................50 5.2 Reconstruction approach...........................................................................................51 5.3 Direct material parameter estimation.........................................................................52 5.3.1 Sound velocities and layer thickness..............................................................52 5.3.2 Density, elastic modules and acoustic attenuation.........................................54 5.4 Iterative material parameter determination of a single layer......................................56 5.5 Reconstruction of complex specimens......................................................................60 5.5.1 Material characterization of multiple layers ....................................................60 5.5.2 Iterative simulation parameter optimization with correlation...........................62 5.5.3 Pattern recognition reconstruction of specimens with known base structure. 66 6 Applications and results.................................................................................................71 6.1 Analysis of stacked components................................................................................71 6.2 Time-of-flight and material analysis...........................................................................74 7 Conclusions and perspectives.......................................................................................78 References.......................................................................................................................82 Figures.............................................................................................................................86 Tables...............................................................................................................................88 Appendix..........................................................................................................................89 Acknowledgments.........................................................................................................100 Danksagung...................................................................................................................101Die vorgelegte Dissertation befasst sich mit der Verbesserung der Signalauswertung für die Ultraschallmikroskopie in der zerstörungsfreien Prüfung. Insbesondere bei Proben mit vielen dünnen Schichten, wie bei modernen Halbleiterbauelementen, ist das Auffinden und die Bestimmung der Lage von Fehlstellen eine große Herausforderung. In dieser Arbeit wurden neue Auswertealgorithmen entwickelt, die eine Analyse hochkomplexer Schichtabfolgen ermöglichen. Erreicht wird dies durch die gezielte Auswertung von Mehrfachreflexionen, einen neu entwickelten iterativen Rekonstruktions- und Entfaltungsalgorithmus und die Nutzung von Klassifikationsalgorithmen im Zusammenspiel mit einem hoch optimierten neu entwickelten Simulationsalgorithmus. Dadurch ist es erstmals möglich, tief liegende Delaminationen in einem 19-schichtigem Halbleiterbauelement nicht nur zu detektieren, sondern auch zu lokalisieren. Die neuen Analysemethoden ermöglichen des Weiteren eine genaue Bestimmung von elastischen Materialparametern, Schallgeschwindigkeiten, Dicken und Dichten mehrschichtiger Proben. Durch die stark verbesserte Genauigkeit der Reflexionsparameterbestimmung mittels Signalentfaltung lassen sich auch mit klassischen Analysemethoden deutlich bessere und aussagekräftigere Ergebnisse erzielen. Aus den Erkenntnissen dieser Dissertation wurde ein Ultraschall-Analyseprogramm entwickelt, das diese komplexen Funktionen auf einer gut bedienbaren Oberfläche bereitstellt und bereits praktisch genutzt wird.:Kurzfassung......................................................................................................................II Abstract.............................................................................................................................V List ob abbreviations........................................................................................................X 1 Introduction.......................................................................................................................1 1.1 Motivation.....................................................................................................................2 1.2 System theoretical description.....................................................................................3 1.3 Structure of the thesis..................................................................................................6 2 Sound field.........................................................................................................................8 2.1 Sound field measurement............................................................................................8 2.2 Sound field modeling..................................................................................................11 2.2.1 Reflection and transmission coefficients.........................................................11 2.2.2 Sound field modeling with plane waves..........................................................13 2.2.3 Generalized sound field position.....................................................................19 2.3 Receiving transducer signal.......................................................................................20 2.3.1 Calculation of the transducer signal from the sound field...............................20 2.3.2 Received signal amplitude..............................................................................21 2.3.3 Measurement of reference signals..................................................................24 3 Ultrasonic Simulation......................................................................................................27 3.1 State of the art............................................................................................................27 3.2 Simulation approach..................................................................................................28 3.2.1 Sound field measurement based simulation...................................................28 3.2.2 Reference signal based simulation.................................................................30 3.3 Determination of the impulse response.....................................................................31 3.3.1 1D ray-trace algorithm....................................................................................31 3.3.2 2D ray-trace algorithm....................................................................................33 3.3.3 Complexity reduction – optimizations.............................................................35 4 Deconvolution – Determination of reflection parameters............................................38 4.1 State of the art............................................................................................................39 4.1.1 Decomposition techniques..............................................................................39 4.1.2 Deconvolution.................................................................................................41 4.2 Analytic signal investigations for deconvolution.........................................................42 4.3 Single reference pulse deconvolution........................................................................44 4.4 Multi-pulse deconvolution..........................................................................................47 4.4.1 Homogeneous multi-pulse deconvolution.......................................................48 4.4.2 Multi-pulse deconvolution with simulated GSP profile....................................49 5 Reconstruction.................................................................................................................50 5.1 State of the art............................................................................................................50 5.2 Reconstruction approach...........................................................................................51 5.3 Direct material parameter estimation.........................................................................52 5.3.1 Sound velocities and layer thickness..............................................................52 5.3.2 Density, elastic modules and acoustic attenuation.........................................54 5.4 Iterative material parameter determination of a single layer......................................56 5.5 Reconstruction of complex specimens......................................................................60 5.5.1 Material characterization of multiple layers ....................................................60 5.5.2 Iterative simulation parameter optimization with correlation...........................62 5.5.3 Pattern recognition reconstruction of specimens with known base structure. 66 6 Applications and results.................................................................................................71 6.1 Analysis of stacked components................................................................................71 6.2 Time-of-flight and material analysis...........................................................................74 7 Conclusions and perspectives.......................................................................................78 References.......................................................................................................................82 Figures.............................................................................................................................86 Tables...............................................................................................................................88 Appendix..........................................................................................................................89 Acknowledgments.........................................................................................................100 Danksagung...................................................................................................................10

    A novel approach to the classification of ultrasonic NDE signals

    Get PDF
    Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This thesis describes an alternative approach which uses the least mean square (LMS) method to determine the coordinates of the ultrasonic probe followed by the use of a synthetic aperture focusing technique (SAFT). The method is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The movement of the probe inside the tube is modeled using spherical and cylindrical coordinate systems. The mean square error (MSE) between the model prediction and the experimentally measured distance between the probe and the tube wall is minimized using the steepest descent algorithm to obtain estimates of the probe canting angle and its location. The information is used in conjunction with the synthetic aperture focusing technique to estimate the location of the ultrasonic reflector. An alternate approach employing a model based deconvolution has been described to facilitate comparison of results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm in conjunction with the Newton-Raphson method to estimate the time of flight. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented

    Development of an ultrasonic NDE&T tool for yield detection in steel structures

    Get PDF
    Nondestructive Evaluation and Testing (NDE&T) is a commonly used and rapidly growing field that offers successful solutions for health assessment of structures. NDE&T methods have gained increasing attention in the last few decades especially with the contribution of the advancements in computer and instrumentation technologies. The applications of numerous NDE&T methods in civil engineering mostly focus on material characterization and defect detection. Techniques for nondestructively identifying the stress state in materials, on the other hand, mostly rely on the Theory of Acoustoelasticity. However, the sensitivity and the accuracy of acoustoelasticity are affected by several factors such as the microstructure of the material, temperature conditions, and the type, propagation and polarization directions of the signals used. This dissertation presents the results of an experimental study that investigates the changes in the characteristics of ultrasonic signals due to the applied stresses. Using a specially built testing system, ultrasonic signals were acquired from four different groups of steel specimens subjected to uniaxial tension below and above the yield stress of the material. The experimental database was first analyzed in terms of the acoustoelastic theory. Then, well known Digital Signal Processing (DSP) methods were used to calculate a total of seven time and frequency domain characteristics of the first three echoes of the acquired signals. The investigated time domain parameters were the peak positive amplitudes and the signal energies of the echoes, while the peak amplitude of the Fast Fourier and Chirp-Z Transforms, peak and peak-to-peak amplitudes and the root mean square of the Wavelet coefficients were used for the spectral analyses. Even though the acoustoelastic effects can be very small for certain measurement cases and they can be influenced by several other factors, clear distinctions between prior to and post yielding were observed for all investigated time and frequency domain parameters. The results were further analyzed with statistical methods and Receiver Operating Characteristics (ROC) curves in order to investigate the potential of the presented study for being used as a nondestructive testing tool for yield detection in steel structures

    A New Method for Estimation of Automobile Fuel Adulteration

    Get PDF

    Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures

    Get PDF
    The potential of acoustic signatures to be used for State-of-Charge (SoC) estimation is demonstrated using artificial neural network regression models. This approach represents a streamlined method of processing the entire acoustic waveform instead of performing manual, and often arbitrary, waveform peak selection. For applications where computational economy is prioritised, simple metrics of statistical significance are used to formally identify the most informative waveform features. These alone can be exploited for SoC inference. It is further shown that signal portions representing both early and late interfacial reflections can correlate highly with the SoC and be of predictive value, challenging the more common peak selection methods which focus on the latter. Although later echoes represent greater through-thickness coverage, and are intuitively more information-rich, their presence is not guaranteed. Holistic waveform treatment offers a more robust approach to correlating acoustic signatures to electrochemical states. It is further demonstrated that transformation into the frequency domain can reduce the dimensionality of the problem significantly, while also improving the estimation accuracy. Most importantly, it is shown that acoustic signatures can be used as sole model inputs to produce highly accurate SoC estimates, without any complementary voltage information. This makes the method suitable for applications where redundancy and diversification of SoC estimation approaches is needed. Data is obtained experimentally from a 210 mAh LiCoO2/graphite pouch cell. Mean estimation errors as low as 0.75% are achieved on a SoC scale of 0–100%

    Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    Get PDF
    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of '1-of-C coding method for classification' was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the success of a clamp-on ultrasound sensor for flow regime classification that would be possible in industry practice. It is considerably more promising than other techniques as it uses a non-invasive and non-radioactive sensor

    Automatic detection, sizing and characterisation of weld defects using ultrasonic time-of-flight diffraction

    Get PDF
    Ultrasonic time-of-flight diffraction (TOFD) is known as a reliable non-destructive testing technique for weld inspection in steel structures, providing accurate aw positioning and sizing. Despite all its good features, TOFD data interpretation and reporting are still performed manually by skilled inspectors and interpretation software operators. This is a cumbersome and error-prone process, leading to inevitable delay and inconsistency. The quality of the collected TOFD data is another issue that may introduce a host of error to the overall interpretation process. Manual interpretation focuses only on the compression waves portion of the collected TOFD data and overlooks the mode-converted waves region and considers it redundant. This region may provide useful and accurate aw sizing and classification information when there is uncertainty or ambiguity due to the nature of the collected data or the type of aw, and can reduce the number of supplementary (parallel) B-scans by utilising the (longitudinal) D-scans only. The automation of data processing in TOFD is required to minimise time and error and towards building a comprehensive computer-aided TOFD interpretation tool that can aid human operators. This project aims at proposing interpretation algorithms to size and characterise flaws automatically and accurately using data acquired from D-scans only. In order to achieve this, a number of novel data manipulation and processing techniques have been specifically developed and adapted to expose the information in the mode-converted waves region. In addition, several multi-resolution approaches employing the Wavelet transform and texture analysis have been used in aw detection and for de-noising and enhancing quality of the collected data. Performance of the developed algorithms and the results of their application have been promising in terms of speed, accuracy and consistency when compared to human interpretation by an expert operator, using the compression waves portion of the acquired data. This is expected to revolutionise the TOFD data interpretation and be in favour of a real-time processing of large volumes of data. It is highly anticipated that the research findings of this project will increase significantly the reliance on D-scans to obtain high sizing accuracy without the need to perform further B-scans. The overall inspection and interpretation time and cost will therefore be reduced significantly
    • …
    corecore