14,788 research outputs found

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Adaptive time-frequency detection and filtering for imaging in heavy clutter

    Get PDF
    Abstract. We introduce an adaptive approach for the detection of a reflector in a strongly scattering medium using a timefrequency representation of the array response matrix followed by a Singular Value Decomposition (SVD). We use the Local Cosine Transform (LCT) for the time-frequency representation and introduce a detection criterion that identifies anomalies in the top singular values, across frequencies and in different time windows, that are due to the reflector. The detection is adaptive because the time windows that contain the primary echoes from the reflector are not determined in advance. Their location and width is identified by searching through the time-frequency binary tree of the LCT. After detecting the presence of the reflector we filter the array response matrix to retain information only in the time windows that have been selected. We also project the filtered array response matrix to the subspace associated with the top singular value and then image using travel time migration. We show with extensive numerical simulations that this approach to detection and imaging works well in heavy clutter that is calibrated using random matrix theory so as to simulate regimes close to the experiments in [3]. While the detection and filtering algorithm presented here works well in general clutter it has been analyzed theoretically only for the case of randomly layered media [1]

    Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) provide a new approach to human computer communication, where the control is realised via performing mental tasks such as motor imagery (MI). In this study, we investigate a novel method to automatically segment electroencephalographic (EEG) data within a trial and extract features accordingly in order to improve the performance of MI data classification techniques. A new local discriminant bases (LDB) algorithm using common spatial patterns (CSP) projection as transform function is proposed for automatic trial segmentation. CSP is also used for feature extraction following trial segmentation. This new technique also allows to obtain a more accurate picture of the most relevant temporal–spatial points in the EEG during the MI. The results are compared with other standard temporal segmentation techniques such as sliding window and LDB based on the local cosine transform (LCT)

    Discrete Elastic Inner Vector Spaces with Application in Time Series and Sequence Mining

    Get PDF
    This paper proposes a framework dedicated to the construction of what we call discrete elastic inner product allowing one to embed sets of non-uniformly sampled multivariate time series or sequences of varying lengths into inner product space structures. This framework is based on a recursive definition that covers the case of multiple embedded time elastic dimensions. We prove that such inner products exist in our general framework and show how a simple instance of this inner product class operates on some prospective applications, while generalizing the Euclidean inner product. Classification experimentations on time series and symbolic sequences datasets demonstrate the benefits that we can expect by embedding time series or sequences into elastic inner spaces rather than into classical Euclidean spaces. These experiments show good accuracy when compared to the euclidean distance or even dynamic programming algorithms while maintaining a linear algorithmic complexity at exploitation stage, although a quadratic indexing phase beforehand is required.Comment: arXiv admin note: substantial text overlap with arXiv:1101.431

    DCTNet : A Simple Learning-free Approach for Face Recognition

    Full text link
    PCANet was proposed as a lightweight deep learning network that mainly leverages Principal Component Analysis (PCA) to learn multistage filter banks followed by binarization and block-wise histograming. PCANet was shown worked surprisingly well in various image classification tasks. However, PCANet is data-dependence hence inflexible. In this paper, we proposed a data-independence network, dubbed DCTNet for face recognition in which we adopt Discrete Cosine Transform (DCT) as filter banks in place of PCA. This is motivated by the fact that 2D DCT basis is indeed a good approximation for high ranked eigenvectors of PCA. Both 2D DCT and PCA resemble a kind of modulated sine-wave patterns, which can be perceived as a bandpass filter bank. DCTNet is free from learning as 2D DCT bases can be computed in advance. Besides that, we also proposed an effective method to regulate the block-wise histogram feature vector of DCTNet for robustness. It is shown to provide surprising performance boost when the probe image is considerably different in appearance from the gallery image. We evaluate the performance of DCTNet extensively on a number of benchmark face databases and being able to achieve on par with or often better accuracy performance than PCANet.Comment: APSIPA ASC 201

    Audio Source Separation Using Sparse Representations

    Get PDF
    This is the author's final version of the article, first published as A. Nesbit, M. G. Jafari, E. Vincent and M. D. Plumbley. Audio Source Separation Using Sparse Representations. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 10, pp. 246-264. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch010file: NesbitJafariVincentP11-audio.pdf:n\NesbitJafariVincentP11-audio.pdf:PDF owner: markp timestamp: 2011.02.04file: NesbitJafariVincentP11-audio.pdf:n\NesbitJafariVincentP11-audio.pdf:PDF owner: markp timestamp: 2011.02.04The authors address the problem of audio source separation, namely, the recovery of audio signals from recordings of mixtures of those signals. The sparse component analysis framework is a powerful method for achieving this. Sparse orthogonal transforms, in which only few transform coefficients differ significantly from zero, are developed; once the signal has been transformed, energy is apportioned from each transform coefficient to each estimated source, and, finally, the signal is reconstructed using the inverse transform. The overriding aim of this chapter is to demonstrate how this framework, as exemplified here by two different decomposition methods which adapt to the signal to represent it sparsely, can be used to solve different problems in different mixing scenarios. To address the instantaneous (neither delays nor echoes) and underdetermined (more sources than mixtures) mixing model, a lapped orthogonal transform is adapted to the signal by selecting a basis from a library of predetermined bases. This method is highly related to the windowing methods used in the MPEG audio coding framework. In considering the anechoic (delays but no echoes) and determined (equal number of sources and mixtures) mixing case, a greedy adaptive transform is used based on orthogonal basis functions that are learned from the observed data, instead of being selected from a predetermined library of bases. This is found to encode the signal characteristics, by introducing a feedback system between the bases and the observed data. Experiments on mixtures of speech and music signals demonstrate that these methods give good signal approximations and separation performance, and indicate promising directions for future research

    Group-Lasso on Splines for Spectrum Cartography

    Full text link
    The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finitely-parameterized (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that ``better'' explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Simulated tests corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced.Comment: Submitted to IEEE Transactions on Signal Processin
    • 

    corecore