697 research outputs found

    Design of a compact and low-power TDC for an array of SiPM's in 110nm CIS technology

    Get PDF
    Silicon photomultipliers (SiPMs) are meant to substitute photomultiplier tubes in high-energy physics detectors and nuclear medicine. This is because of their -to name a few interesting properties- compactness, lower bias voltage, tolerance to magnetic fields and finer spatial resolution. SiPMs can also be built in CMOS technology. This allows the incorporation of active quenching and recharge schemes at cell level and processing circuitry at pixel level. One of the elements that can lead to finer temporal resolutions is the time-to-digital converter (TDC). In this paper we describe the architecture of a compact TDC to be included at each pixel of an array of SiPMs. It is compact and consumes low power. It is based on a voltage controlled oscillator that generates multiple internal phases that are interpolated to provide time resolution below the time delay of a single gate. Simulation results of a 11b TDC based on a 4-stage VCRO in 110nm CIS technology yield a time resolution of 80.0ps, a DNL of ±0.28 LSB, a INL ±0.52 LSB, and a power consumption of 850μW.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035

    A Novel Cyclic Time to Digital Converter Based on Triple-Slope Interpolation and Time Amplification

    Get PDF
    This paper investigates a novel cyclic time-to-digital converter (TDC) which employs triple-slope analog interpolation and time amplification techniques for digitizing the time interval between the rising edges of two input signals(Start and Stop). The proposed converter will be a 9-bit cyclic time-to-digital converter that does not use delay lines in its structure. Therefore, it has a low sensitivity to temperature, power supply and process (PVT) variations. The other advantages of the proposed converter are low circuit complexity, and high accuracy compared with the time-to-digital converters that have previously been proposed. Also, this converter improves the time resolution and the dynamic range. In the same resolution, linear range and dynamic range, the proposed cyclic TDC reduces the number of circuit elements compared with the converters that have a similar circuit structure. Thus, the converter reduces the chip area, the power consumption and the figure of merit (FoM). In this converter, the integral nonlinearity (INL) and differential nonlinearity (DNL) errors are reduced. In order to evaluate the idea, the proposed time-to-digital converter is designed in TSMC 45 nm CMOS technology and simulated. Comparison of the theoretical and simulation results confirms the benefits of the proposed TDC

    Bio-inspired 0.35μm CMOS Time-to-Digital Converter with 29.3ps LSB

    Get PDF
    Time-to-digital converter (TDC) integrated circuit is introduced in this paper. It is based on chain of delay elements composing a regular scalable structure. The scheme is analogous to the sound direction sensitivity nerve system found in barn owl. The circuit occupies small silicon area, and its direct mapping from time to position-code makes conversion rates up to 500Msps possible. Specialty of the circuit is the structural and functional symmetry. Therefore the role of start and stop signals are interchangeable. In other words negative delay is acceptable: the circuit has no dead time problems. These are benefits of the biology model of the auditory scene representation in the bird's brain. The prototype chip is implemented in 0.35μm CMOS having less than 30ps single-shot resolution in the measurements.Hungarian National Research Foundation TS4085

    Voltage-to-Time Converter for High-Speed Time-Based Analog-to-Digital Converters

    Get PDF
    In modern complementary metal oxide semiconductor (CMOS) technologies, the supply voltage scales faster than the threshold voltage (Vth) of the transistors in successive smaller nodes. Moreover, the intrinsic gain of the transistors diminishes as well. Consequently, these issues increase the difficulty of designing higher speed and larger resolution analog-to-digital converters (ADCs) employing voltage-domain ADC architectures. Nevertheless, smaller transistor dimensions in state-of-the-art CMOS technologies leads to reduced capacitance, resulting in lower gate delays. Therefore, it becomes beneficial to first convert an input voltage to a 'time signal' using a voltage-to-time converter (VTC), instead of directly converting it into a digital output. This 'time-signal' could then be converted to a digital output through a time-to-digital converter (TDC) for complete analog-to-digital conversion. However, the overall performance of such an ADC will still be limited to the performance level of the voltage-to-time conversion process. Hence, this thesis presents the design of a linear VTC for a high-speed time-based ADC in 28 nm CMOS process. The proposed VTC consists of a sample-and-hold (S/H) circuit, a ramp generator and a comparator to perform the conversion of the input signal from the voltage to the time domain. Larger linearity is attained by integrating a constant current (with high output impedance) over a capacitor, generating a linear ramp. The VTC operates at 256 MSPS consuming 1.3 mW from 1 V supply with a full-scale 1 V pk-pk differential input signal, while achieving a time-domain output signal with a spurious-free-dynamic-range (SFDR) of 77 dB and a signal-to-noise-and-distortion ratio (SNDR) of 56 dB at close to Nyquist frequency (f = 126.5 MHz). The proposed VTC attains an output range of 2.7 ns, which is the highest linear output range for a VTC at this speed, published to date

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jännitetason piirien suunnittelu tulee entistä haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekä tehonkulutus pienenevät prosessikehityksen myötä. Tästä syystä digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jännitetason sijaan aikatasossa käyttämällä aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pääosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu käytettäväksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekä muunnosalueen, sekä saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekä pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntämällä suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillä. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla näytteistys herkillä kiikkuelementeillä, hyödyntämällä Gray-koodattua laskuria, sekä jälkiprosessoimalla laskurin näytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s näytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    Arrayable Voltage-Controlled Ring-Oscillator for Direct Time-of-Flight Image Sensors

    Get PDF
    Direct time-of-flight (d-ToF) estimation with high frame rate requires the incorporation of a time-to-digital converter (TDC) at pixel level. A feasible approach to a compact implementation of the TDC is to use the multiple phases of a voltage-controlled ring-oscillator (VCRO) for the finest bits. The VCRO becomes central in determining the performance parameters of a d-ToF image sensor. In this paper, we are covering the modeling, design, and measurement of a CMOS pseudo-differential VCRO. The oscillation frequency, the jitter due to mismatches and noise and the power consumption are analytically evaluated. This design has been incorporated into a 64x64-pixel array. It has been fabricated in a 0.18 mu m standard CMOS technology. Occupation area is 28x29 mu m(2) and power consumption is 1.17 mW at 850 MHz. The measured gain of the VCRO is of 477 MHz/V with a frequency tuning range of 53%. Moreover, it features a linearity of 99.4% over a wide range of control frequencies, namely, from 400 to 850 MHz. The phase noise is of -102 dBc/Hz at 2 MHz offset frequency from 850 MHz. The influence of these parameters in the performance of the TDC has been measured. The minimum time bin of the TDC is 147 ps with a rms DNL/INL of 0.13/1.7LSB.Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía P12-TIC 233

    Low Noise Time to Digital Converters as Phase Detectors for All Digital PLLs

    Get PDF
    Nowadays PLLs are used in in almost every electronic circuit, because phase correction and detection are very important in a circuit. For this phase detection TDCs are used. This work proposes and demonstrates a Low noise Time to Digital Converter (TDC). This Time to Digital converter will be used as a phase detector in an all Digital PLL, with a 100 MHz frequency. The proposed topology employs CMOS inverters, and Set and Reset Flip Flops, due to their simplicity, to achieve a 4 bit circuit. The performance of the circuit was studied by evaluation fundamental parameters like RMS jitter, linearity, resolution and range. To further test the circuit a mismatch and noise analysis was performed, by testing the circuit with the PVT corners and Monte Carlo variations. The proposed TDC is simulated, using UMC 130 nm CMOS technology, achieves a RMS jitter of 22.9 f s, a INL and DNL error of 0.13 and 0.11 LSB respectively and a resolution of 15.3 ps. The TDC also has a power consumption of 1.11 mW and a area of 0.143 mm2.Atualmente as PLLs são utilizadas em quase todos os circuitos eletrónicos, porque a correção e a deteção de fase são muito importantes num circuito. Para esta deteção de fase são utilizados CTDs. Este trabalho propõe e demonstra um conversor de tempo para digital (CTD) de baixo ruído. Este conversor de tempo para digital será utilizado como detetor de fase num PLL completamente Digital, com frequência de 100 MHz. A topologia proposta emprega inversores CMOS e Flip Flops Set e Reset, devido à sua simplicidade, para obter um circuito de 4 bits. O desempenho do circuito foi estudado pela avaliação de parâmetros fundamentais como jitter RMS, linearidade, resolução e alcance. Para testar ainda mais o circuito foi realizada uma análise de incompatibilidade e ruído, testando o circuito com os cantos PVT e variações de Monte Carlo. O CTD proposto é simulado, usando tecnologia UMC 130 nm CMOS, atinge um jitter RMS de 22,9 f s, um erro INL e DNL de 0,13 e 0,11 LSB respetivamente e uma resolução de 15,3 ps. O CTD tem também um consumo de energia de 1,11 mW e uma área de 0.143 mm2

    A 1.9 ps-rms Precision Time-to-Amplitude Converter With 782 fs LSB and 0.79%-rms DNL

    Get PDF
    Measuring a time interval in the nanoseconds range has opened the way to 3-D imaging, where additional information as distance of objects light detection and ranging (LiDAR) or lifetime decay fluorescence-lifetime imaging (FLIM) is added to spatial coordinates. One of the key elements of these systems is the time measurement circuit, which encodes a time interval into digital words. Nowadays, most demanding applications, especially in the biological field, require time-conversion circuits with a challenging combination of performance, including sub-ps resolution, ps precision, several ns of measurement range, linearity better than few percent of the bin width (especially when complex lifetime data caused by multiple factors have to be retrieved), and operating rates in the order of tens of Mcps. In this article, we present a time-to-amplitude converter (TAC) implemented in a SiGe 350 nm process featuring a resolution of 782 fs, a minimum timing jitter as low as 1.9 ps-rms, a DNL down to 0.79% LSB-rms, and conversion rate as high as 12.3 Mcps. With an area occupation of 0.2 mm2 [without PADs and digital-to-analog converter (DAC)], a FSR up to 100 ns, and a power dissipation of 70 mW, we developed a circuit suitable to be the core element of a densely integrated, faster and high-performance system
    corecore