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This dissertation presents novel two stage ADC architecture with a VCO based 

second stage. With the scaling of the supply voltages in modern CMOS process it is 

difficult to design high gain operational amplifiers needed for traditional voltage domain 

two-stage analog to digital converters. However time resolution continues to improve 

with the advancement in CMOS technology making VCO-based ADC more attractive. 

The nonlinearity in voltage-to-frequency transfer function is the biggest challenge in 

design of VCO based ADC. The hybrid approach used in this work uses a voltage domain 

first stage to determine the most significant bits and uses a VCO based second stage to 

quantize the small residue obtained from first stage. The architecture relaxes the gain 

requirement on the the first stage opamp and also relaxes the linearity requirements on 

the second stage VCO. The prototype ADC built in 65nm CMOS process achieves 

63.7dB SNDR in 10MHz bandwidth while only consuming 1.1mW of power. The 

performance of the prototype chip is comparable to the state-of-art in terms of figure-of-

merit but this new architecture uses significantly less circuit area. 
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                               Chapter 1 Introduction 

Scaling of the CMOS technology in last few decades has encouraged time-

domain analog to digital conversion techniques. The scaling leads to lower supply 

voltages which lead to smaller signal swings and lower signal to noise ratio. The 

transistors in advanced CMOS nodes also typically have lower output impedance 

making it difficult to design high gain opamps. One of the benefits of scaling is that 

the fT of the transistors keeps increasing as the technology scales. This leads to 

improved time resolution and benefits ADC architectures which rely on time domain 

processing for analog to digital conversion. In this chapter we will look at trends in 

the technology scaling and improvement in time resolution. We also look at some 

time-based ADC architectures which benefit from technology scaling. 

       1.1 Technology trends 

Figure 1.1 (a) shows projections from International technology roadmap for the 

semiconductors (ITRS) [1] for the supply voltage as the gate lengths are scaled. The 

supply voltage is expected to drop as low as 0.57V for gate lengths of 5.9nm. The 

reduction in supply voltage will make design of traditional voltage domain ADCs 

challenging.  In contrast Figure 1.1(b) shows that the stage delay of a ring oscillator is 

expected to continue improving with each technology node reaching sub-ps levels for 

most advanced nodes. This means that ADC architectures relying on time-domain 

processing will benefit from scaling and can be operated at higher speeds. Since time 

domain ADC’s are mostly digital circuits the power consumption in these ADC’s 

should also reduce with the reduction in the supply voltage. 
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Figure 1.1 Technology trends       

                                          

1.2     Voltage domain ADC 

Figure 1.2 illustrates the challenge in conventional voltage domain analog to 

digital conversion using a 3 –bit flash ADC [2]. In this design the comparator 

compares the analog input Vin to a different reference voltages. As the supply voltage 

reduces the LSB (least significant bit) size on the ADC reduces. This makes the 

design of comparator difficult as it must have smaller offset and noise. Traditional 

techniques like pipelining also becomes challenging because of the need for high gain 

opamps which are difficult to realize in advanced CMOS nodes.                      
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Figure 1.2 Voltage domain Flash ADC 

1.3 Time to digital converters (TDC) 

     Figure 1.3(a) shows the concept of time to digital converters. The aim is to 

measure the time interval (Tin) between two events indicated by signals “Start” and 

“Stop”. The time-resolution is limited by the reference time interval (Tq). If the time 

interval is quantized by counting the reference edges between “Start” and “Stop” it 

can be seen that the TDC output is given by  

                                         Tout(k) = Tin(k) + tε1 - tε2                                       (1) 
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(a)                

 

 

Figure 1.3 TDC (a) Concept (b) Delay line based TDC  

 

The raw TDC resolution is determined by the period of the reference signal. The 

simplest form of TDC is a digital counter. However, to achieve a high resolution 

TDC, one needs to use a very high frequency counter for a wide dynamic range. The 

resolution of counter-based TDCs can be improved significantly by resolving the 

counter residual error with a high resolution fine TDC based on gate delay [3].  Figure 

1.4 shows a typical implementation of a delay line based time to digital converter. 

Since the resolution for TDC in Figure 1.4 is limited by the inverter delay it will 

improve with the improved device fT. 
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                                                               (a) 

                   

                                                                  (b)  

Figure 1.4: TDC resolution (a) survey (b) 180nm or lower technologies 
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A literature survey [4- 54] on the reported resolution of time to digital converters 

in last two decades shows (Figure 1.4a) that the TDC resolution has improved 

dramatically as technology has advanced to sub -100nm range. Figure 1.4(b) focuses 

only on technologies 180nm and lower. A vast majority of TDC’s in this plot have a 

resolution of 20ps or lower. A resolution of 0.63ps has been reported in [44]. This is 

in effect equivalent to having a virtual clock [55] of greater than 1THz.  Since the ring 

oscillator stage delay is projected to keep reducing further, we can expect that TDC 

resolution will improve further as technology scales. 

 

1.4 Time Based ADC architectures  

   In this section we look at some time based ADC architectures which benefit 

from improved time resolution offered by advanced CMOS nodes. 

1.4.1 Voltage-time-digital scheme 

 In the voltage to time conversion scheme illustrated in Figure 1.5 the input 

voltage is converted into a time window Tin which is digitized using a time-to-digital 

converter. In a simple implementation TDC may be replaced with a counter. 

Integrating ADC or slope based ADC discussed in next chapter are based on this 

concept. They typically use counters to quantize the time window which limits their 

speed. Recently some high speed slope based ADC’s have been reported which use 

advanced time-to-digital converters [55, 56].  

Another example of voltage-time-digital scheme is pulse position modulation (PPM) 

ADC [57] illustrated in Figure 1.6(a). The input signal is continuously compared with  
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Figure 1.5 Voltage–to-time to digital scheme 

 

      Figure 1.6 PPM ADC (a) block diagram (b) typical waveforms 

 

a voltage ramp. When the input signal and the ramp intersect, the comparator 

generates a pulse. The time interval between the start of the ramp and the instant the 

input signal crosses the ramp ( i.e [t1,t2,t3,t4 ..]) in Figure 1.6(b)  is measured by a 

time-to-digital converter. Assuming the ramp slope is constant, the time vector is 

proportional to the signal amplitude at the crossover points. In a PPM ADC measuring 

the time vector leads to nonuniform sampling of the input signal. This leads to 
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distortion if the samples are treated as uniformly sampled. Low-pass filtering is a 

straightforward linear technique for constructing uniform samples from non-uniform 

sample information (Fig. 3). Generally an over- sampling ratio of 8 or higher is 

required. Another approach is to apply a time-varying, nonlinear recovery technique 

[57] which allows sampling the signal at a frequency close to the Nyquist rate.  

1.4.2 Voltage-delay-digital scheme 

   In the voltage to delay to digital scheme [58, 59] illustrated in Figure 1.7 the 

input signal Vin modulates the delay (td) per buffer instead of the time window as in 

Figure 1.5. The number of delay cells the signal passes through in a constant time 

window (Ts) is proportional to the input voltage. A major benefit of this type of 

structure lies in its all digital implementation. This makes it compatible with 

technology scaling.  The ADC with this scheme has a built-in first-order antialiasing 

sinc filter with nulls at (1/Ts). This is similar to the integrating ADC where the input is 

integrated for time window Ts.  The biggest drawback of the approach is the 

nonlinearity in the voltage to delay transfer function. 

          

Figure 1.7 Voltage-delay-digital scheme 
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1.4.3 Voltage-frequency-digital scheme  

In a voltage-to-frequency-conversion based ADC architecture, the input signal is 

converted to frequency (or phase) and then quantized by a frequency (phase) 

quantizer. Typically, this time-based ADC uses a voltage-controlled oscillator (VCO) 

as a voltage- to-frequency converter where the frequency is controlled by the analog 

input voltage. Figure 1.8 shows the block diagram of a VCO based ADC [60, 61] 

using a multiphase ring oscillator. The output of the VCO is fed to a phase quantizer 

whose digital output corresponds to the analog input signal. The phase quantizer can 

be implemented using counters which detects the rising and falling edges of the VCO 

output, thereby quantizing the output phase by ߨ/ܰ. The output of the counter is 

sampled at rate of  Fs which is the ADC output data rate. The calibration block 

compares the the count obtained with a reference count to generate the digital code. 

The resolution of the VCO based is given by  

݊݋݅ݐݑ݈݋ݏܴ݁                                 ൌ 	 ଶ݃݋݈ ቀ
௙೘ೌೣ

ிೞ
െ	௙೘೔೙

ிೞ
ቁ ൅               (2)	ଶሺ2ܰሻ݃݋݈

where fmax and fmin are maximum and minimum oscillation frequencies.  

Since the counter is reset every clock period the architecture in Figure 1.8 doesn’t 

provide any noise shaping. It is suitable for design of nyquist rate ADC which is the 

focus of this work. If the counter is not reset it can be shown that VCO based 

quantizer can provide first order noise shaping when used as an oversampled data 

converter [62-69].  One of the biggest challenge with the VCO based ADC is the 

nonlinearity in the voltage-to-frequency transfer function.  
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     Figure 1.8 VCO based ADC architecture 

This problem has been addressed [62-64] and a solution is to embed the VCO based 

quantizer in a delta sigma loop. The work in [65-66] uses digital calibration to 

improve the linearity performance of an open loop VCO based ADC. The work in 

[67] uses a dithering technique to linearize the VCO by randomizing the VCO input. 

 

1.5 Research Contribution  

Here we present the design of a two stage ADC using VCO based ADC as the 

second stage. Prior VCO based ADCs achieve high dynamic range using 

oversampling. They typically clock the circuit at very high frequencies (>=600MHz) 

leading to high power consumption. This is the first work on open loop VCO based 

Nyquist rate ADC. The design uses a hybrid voltage-time approach to get a power 

efficient ADC. The first stage is optimized using the fact that VCO based ADC is 

very good at quantizing small residue. The reference refreshing scheme is used for the 

first time in digital domain in this work. The design achieves lower power compared 
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to a traditional two step voltage ADC’s by using a simple telescopic opamp in the first 

stage. The figure of merit (FOM) of 44fJ/conversion step is best among the VCO 

based ADCs. The design solves the VCO nonlinearity problem in a innovative way by 

making the VCO as a backend of two stage ADC design. We also present a design of 

a novel differential VCO in this work which achieves 9 bit linearity. The VCO based 

backend in this design is very digital intensive and occupies only 0.02mm2
. The 

architecture is well suited for advanced CMOS technology nodes and the performance 

will continue to improve in the years ahead. 
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Chapter 2: Dual Slope ADC based on VCO 

 

Dual slope ADCs were traditionally used for highly accurate measurements [69]. 

The speed limitations of the architecture limited its use to low speed conversions. 

With the advancements in the CMOS processes time resolution is improving making 

this architecture viable again [55, 56, and 70]. In this chapter we have a brief look at 

the traditional dual slope integrating ADC, followed by an implementation of such an 

ADC using VCO as an integrator. Next we look at potential application for such an 

ADC.  

          2.1 Traditional Dual slope ADC 

  The block diagram of a typical dual slope ADC is shown in Figure 2.1. It 

consists of an integrator, comparator, counter, logic and switches. The algorithm starts 

with the integrator in its reset state. This is achieved by shorting the integrating 

capacitor. The counter is reset and then switch is connected to analog input. The 

integrator generates a negative ramp whose slope is proportional to analog input. The 

comparator goes high and the counter is pulsed by external clock input. When the 

counter overflows, it resets to zero and the control circuit switches the integrator input 

to a negative reference voltage. This causes the integrator to generate a ramp with 

positive slope. When this ramp reaches zero, the comparator goes low and stops the 

counter. The counter output represents the digital equivalent of analog input. 
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                          Figure 2.1: Dual slope ADC architecture 

               

 

                       Figure 2.2 Dual slope ADC timing  
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Figure 2.2 illustrates the integrator output waveform for two different levels of 

analog inputs. The input integration time is Tint and the ramp down time is tx.  It is 

easy to see that tx= Vin/Vref*Tint. If Tint is chosen to be 2N clock periods then output 

code is 2N*Vin/Vref. 

One of the key advantages of dual slope ADC is the inherent antialiasing 

provided by the input integrator. The signal transfer function for such an ADC is a 

sinc function with nulls at multiples of the sampling frequency fs = 1/Ts as illustrated 

in Figure 2.3. One of the key disadvantages of such a design is that to achieve N bits 

of resolution 2N clock cycles are required (assuming counting on both edges). Thus 

this requires clock frequency to be 2Nfs implying an oversampling ratio of 2N.               

                  

                    Figure 2.3 Signal transfer function of a dual slope ADC 
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The improvement in SQNR obtained by doubling the sampling clock is only 6dB 

per octave.  The counter in Figure 3.1 can be replaced with a combination of counter 

and TDC (time-to-digital converter). In advance CMOS nodes with the improved time 

resolution it is feasible to build medium speed ADC with the slope based approach 

[55, 56]. With a 25ps time resolution one can build a 12 bit, 10Msps ADC. The latest 

TDC’s have an LSB resolution of as low as 0.63ps [44] and as technology scales 

further it will continue to improve making this dual slope ADC approach viable. The 

bigger challenge is the design of a precise integrator which needs an opamp with high 

DC gain which is not easily achievable in short channel technologies. Also the 

comparator noise and offset can limit the performance of the ADC. The metastability 

in the comparator will limit the maximum speed of the ADC.  In the next section we 

discuss the design of a dual slope ADC using a voltage controlled oscillator as an 

integrator. The analog comparator in this case is replaced by a digital subtractor 

simplifying the design. 

2.2 VCO based dual slope integrating ADC 

The VCO ADC is conceptually based on dual slope integration principle shown 

in Figure 2.4.  In a VCO-based scheme illustrated in Figure 2.4(a), the integration is 

provided by the combination of VCO and the counter. In first phase, the input is 

applied to the VCO for 2N clock periods (Tc). The VCO phase is counted by 

incrementing a counter for each transition of the VCO output. In the second phase a 

reference is connected to VCO input and the counter until it decrements to zero.  
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C
O
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N
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Figure 2.4 (a) VCO based dual slope ADC (b) calibration phase (c) Normal operation 

Similar to traditional dual slope a counter is incremented at rate Fc during the 

countdown phase and is stopped as soon as zero crossing is detected. The value in the 

output Counter is digital equivalent of analog input. Since the integrator output is 

digital, in this scheme the ramp down phase can be eliminated and replaced by a 

calibration step which can be repeated as often as needed.  During the calibration step 

shown in Figure 2.4b the input to the VCO is connected to a reference voltage Vref for 

half the sampling period Ts/2 and the counter output is stored as COUNT_FS. During 

the normal operation shown in Fig 2.4c the input is connected to the VCO for same 

period of time Ts/2. If the count at the ending of integration period is COUNT_IN 

                            
N

FSCOUNT

INCOUNT
DOUT ^2*

_

_


                                              (1)  

The full-scale count needs to greater than 2N for the ADC to have N bits resolution.  
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The benefits of VCO based integration compared to traditional dual slope are as 

follows 

1. Opamp is not required: Since the integration is realized using the VCO and Counter 

the opamp is eliminated from the design. 

2. Analog Comparator is not required: The comparator is replaced by a digital 

subtraction. The analog comparator limits the performance of the ADC because of 

noise. The comparator also limits the speed of the design because of metastability 

issues. By eliminating the analog comparator faster operating speeds can be obtained 

which is limited only by TDC resolution. 

3. A high frequency external clock is not required. With a VCO based design as shown 

in Figure 2.4 only a Nyquist rate clock (Fs) is required. The high speed external clock 

Fc in the traditional dual slope design is eliminated. This simplifies the system design 

and can potentially reduce power in i/o buffers. The design in effect is a Nyquist rate 

design with built in antialias filter.  

The biggest disadvantage of a VCO based design is the nonlinearity in the 

voltage-to-frequency transfer function. The non-linearity can be greatly reduced by 

doing a fully differential design. Also the linearity can be improved by reducing the 

maximum frequency deviation Δf with respect to the oscillation frequency (fc) [71]. 

This implies that the input signal swing to the VCO must be reduced. In the real world 

a vast majority of signals from sensors and transducers are small in magnitude. A 

VCO based design can be ideally suited for such a system. In the next section we look 

at an application example for a VCO based dual slope ADC. 
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          2.3 An application example 

Recently there have been some publications [72, 73] reporting low power VCO 

based ADC for biopotential measurements. Figure 4.5 shows the voltage and 

frequency ranges for three common biopotential signals electrocardiogram (ECG), 

electroencephalogram (EEG) and electromyogram (EMG) [74]. All these biopotential 

signals are very small in magnitude with ECG and EEG being bandwidth limited to 

150Hz.  

 

 

    Figure 2.5 Voltage and frequency range for common biopotential signals 
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        Figure 2.6 A typical front-end for biopotential amplifiers 

Figure 2.6 shows a typical acquisition system for such a biopotential amplifier 

[74] with an instrumentation amplifier amplifying the signal to the full-scale range of 

the ADC. The instrumentation amplifiers are needed because traditional voltage 

domain ADC’s are not very efficient at quantizing small signals (<10mV). The VCO 

based ADC’s are ideally suited for processing small signals with very high accuracy 

[72]. The dynamic range can be increased by just increasing the depth of the counter 

or using multiple phases of a ring based oscillator. Since these biopotential signals are 

very small the VCO operates in the linear region and the non-linearity in voltage-to-

frequency transfer function is not a very big challenge. The work in [73] reports a 

VCO based ADC for biopotential measurement with only 379nW of power 

consumption. 

The noise in the reported works on VCO based ADC for biopotential 

measurement remains quite high. One of the challenges in the design biopotential 
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amplifiers is the 1/f noise because of the low frequency nature of the signals [75]. 

Though it has not been reported yet traditional techniques like chopper stabilization 

can be used to eliminate 1/f noise. Figure 2.7 illustrates a conceptual chopper 

stabilized VCO based ADC for biopotential measurements. The VCO based approach 

had potential of achieving very low noise levels (< 1μVpp) with much lower power 

than traditional approach in Figure 2.6. 
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                     Figure 2.7 Chopper stabilized VCO based ADC 
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   Chapter 3 Power reduction Techniques in Pipelined ADC’s 

In this chapter we look at various techniques being used in the design of 

pipelined ADC to reduce its power consumption. We use some of the same techniques 

in the design of Hybrid voltage-time domain ADC described in next chapter. In the 

last section we provide the comparison table of ADC’s implemented using various 

techniques described in this chapter.  

3.1 Front-end Sample and Hold Amplifier (SHA) removal 

Figure 3.1 shows the block diagram of a conventional pipelined ADC with a 

sample and hold amplifier (SHA) at the front of the pipeline ADC. The purpose of 

SHA is to provide a constant voltage to the first stage of the pipelined ADC. SHA is 

not essential to functioning of a pipelined ADC.  Typically SHA doesn’t provide any 

gain and consumes almost as much power as the first stage MDAC amplifier. They 

also contribute significant noise and distortion to the ADC.  

 

 

  Fig 3.1 Block diagram of a conventional pipelined ADC 
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There can be significant power savings if the SHA can be removed [76]. The 

removal of SHA moves the burden of sampling the high frequency input to the first 

stage of the ADC.  The first stage samples the input in the S/H built into the MDAC 

and the sub-ADC. The sampling in two paths leads to the errors because of clock 

skew and bandwidth mismatch in two paths as described below.   

      

Sampling Clock skew: The sampling clock skew problem is illustrated in Figure 3.2 

Let’s assume that the sampling instant for the first-stage S/H and sub-ADC are 

skewed by Δt. This leads to difference in voltage ΔV (called aperture error) sampled 

by the two paths. For a sine wave input  Vin = Vrefsin(2πFint) it can be shown that  

 

                                  ∆ܸ ൌ ߨ2 ∗ ௥ܸ௘௙ ∗ ௜௡ܨ ∗  (1)                                                  ݐ∆

The problem is more severe for the high frequency inputs and is worst near the zero 

crossings where the slope of the waveform is largest.  
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                       Figure 3.2 Sampling clock skew problem 
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This sampling clock skew effectively creates a large dynamic offset in the sub-

ADC at high input frequencies and leads to conversion failures when the resulting 

error exceeds the built-in redundancy of the architecture. In conventional designs with 

SHA there is generally an intentional skew in the sampling instant of the two paths; 

with MDAC path sampling first to ensure that MDAC path is not corrupted by the 

kickback noise from the sub-ADC path. In the design without SHA it still may be 

desirable to let MDAC sample earlier than the sub-ADC. The dynamic offset resulting 

from this skew can be accounted for in the error budgeting of the sub-ADC.  

Sampling time constant mismatch: The mismatch in the sampling bandwidths 

of the MDAC path and sub-ADC also leads to aperture error. Let τ be mismatch in the 

time constant of two paths then it can be shown the aperture error is given by 

                                ∆ܸ ൌ ߨ2 ∗ ௥ܸ௘௙ ∗ ௜௡ܨ ∗ τ	                                                     (2) 

This means that either the two paths must be very wideband compared to largest 

signal frequency of interest or the paths must match precisely to make sure that 

dynamic offset resulting from time constant mismatch is within the redundancy range 

of the architecture. Figure 3.3 shows the two sampling paths in a typical pipeline 

ADC [76].  The MDAC path contains two switches and sampling capacitor Cs. The 

input switch S1 is normally bootstrapped to have a constant gate source voltage to 

achieve good linearity.  The flash path contains a switch, sampling capacitor and the 

preamplifier in the sampling path.     
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       Figure 3.3 Sampling network time constant matching 

In this architecture the preamplifier must have a large bandwidth to match the 

bandwidth of the sampling network in MDAC path. One option will be to remove the 

preamplifier in the design of flash comparator. In this case both the sampling paths 

only contain sampling capacitor and switches and can be matched to some extent. The 

drawback of this approach will be that overall comparator offset will increase limiting 

the number of bits that can be resolved by the sub-ADC.        

    Despite the drawbacks listed above removing the SHA has been found to be a 

very effective technique to reduce power and is implemented in many designs. The 

above mentioned problems have been solved by the some of the techniques discussed 
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next. By reducing the number of bits in sub-ADC the allowed offset budget (random 

+ dynamic) is increased. Though this is not optimal from the ADC power perspective, 

power savings obtained from eliminating SHA outweighs it. The designs in [77, 78, 

79] rely on this to combat dynamic offset. By increasing the redundancy [80] a larger 

offset can be tolerated in sub-ADC, but this is the same as resolving less number of 

bits in the first stage. Other scheme described in [81] utilizes the S/H in the MDAC as 

an S/H for the sub-ADC. It does require creating an additional clock phase slowing 

down the overall operation. Yet another work [82] calibrates the clock skew between 

the two paths. The works in [76, 83] rely on matching the time constant and 

minimizing clock skew on the two paths.  

 

3.2 Reference Scaling  

With the reduced supply voltages in advanced CMOS nodes it becomes challenging to 

design a high gain opamp with wide signal swing. The concept of the reference 

scaling is to reduce the gain in the first stage residue amplifier to reduce the swing at 

the output of the first stage. In a typical pipeline with N-bit of resolution in the first 

stage the residue is scaled up G = 2N-1
 so that the later stage sees a nominal signal 

swing of +/-Vref/2. The signal swing with the opamp offset and flash inaccuracy can 

be as large as +/-Vref. Figure 3.4 shows the residue plot of a pipelined ADC with 

residue being scaled by a factor α.    The benefits of the reference scaling are listed 

next.         
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 Figure 3.4 Residue plot of a pipelined ADC with reference scaling α 

1. Reduced open loop DC gain requirement 

For a N-bit first stage (shown in Figure 3.3) with no reference scaling Cs = 2N-1Cf. 

Ignoring the parasitic at the virtual ground node of residue amplifier the feedback 

factor β is given by   ߚ ൌ ଵ

ଵାଶಿషభ
  . As the gain in the first stage is dropped while 

scaling the reference, the feedback factor β increases. For the reference scaling by a 

factor α the feedback factor increases to ൌ ఈ

ఈାଶಿషభ
 . For a given open loop gain Adc in 

the opamp this increases the closed loop DC gain βAdc of the residue amplifier. This 

reduces the error due to finite gain in the opamp. 

2.  Reduced swing at the output 

The reduced output swing allows getting some DC gain out of the output stage using 

cascoding techniques. This is very useful in advanced CMOS nodes where it may be 

very difficult to get adequate DC gain even with two stage opamps. Also with reduced 
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signal swing a single stage telescopic cascode amplifier may be sufficient with some 

digital calibration. The reduced complexity of the residue amplifier leads to reduction 

in power as multi-stage opamps are difficult to compensate and require more current 

for the same bandwidth. 

3. Reduced open loop bandwidth requirement 

As discussed above the increased reference scaling increases the feedback factor β. 

This means that for same settling error requirements a smaller open loop bandwidth is 

required. For a single stage opamp the closed loop bandwidth is given by ωo= βgm/CL. 

If the load CL is held constant than the gm required can be decreased by the same 

factor as the β is increased thus saving power [84].  In practice the load CL will 

increase with the increased reference scaling diminishing the benefits of increased β. 

The load CL increases because of the two factors (a) the loading from the feedback 

path increases (b) the later stage sampling capacitance has to increase to reduce its 

noise contribution. The total load CL at the output of the first stage can be given by   

                                     CL = βCS + CS2 + Cp                                                                                 (3) 

Here βCs is the loading from the feedback path, CS2 is the second stage sampling 

capacitor and Cp is the additional capacitor for the next stage flash, the loading from 

the common mode feedback circuit, the device capacitance on the opamp and routing 

parasitics. For high interstage gains Cp term can dominate the load capacitance. 

Normally the second stage will be scaled such that it contributes less input referred 

noise compared to the first stage. Assuming the second stage contributes 3dB less 

noise than first stage it can be seen that  
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ௌଶܥ		                                                ൌ 	
஼ೞ∗ఈమ

ଶమಿషయ
                                                       (4) 

         For a given bandwidth ωo required gm is given by  

                 ݃௠ ൌ 	߱଴ ቂܥௌ ൅
஼ೄమା஼೛

ఉ
ቃ ൌ 	߱଴ ൤ܥௌ ൅

஼ೄ∗ఈ∗൫ఈାଶಿషభ൯

ଶమಿషయ
൅

஼೛∗൫ఈାଶಿషభ൯

ఈ
൨               (5) 

Let Cp = k*Cs then 

                    gm = 	߱଴ܥௌ ቂ1 ൅
ఈ∗൫ఈାଶಿషభ൯

ଶమಿషయ
൅

௞∗൫ఈାଶಿషభ൯

ఈ
ቃ                                     (6) 

It can be seen from (6) that gm requirement because of the feedback loading remains 

same as the reference is scaled. gm requirement because of next stage loading 

increases as α is increased and gm requirement because of all other parasitic loads (Cp) 

decreases as reference is scaled. Figure 3.5 shows curve of normalized gm as α is 

varied for different values of N and k. It can be seen from the curves above that the gm 

requirements on the opamp does drop initially as the reference is scaled and β 

increases but the benefit diminishes as the capacitance on next stage needs to be 

increased because of noise. The designs with large number of bits in first stage [84] 

will benefit more from aggressive reference scaling.  The above analysis for a single 

stage opamp shows that the open loop bandwidth requirements on opamp do get 

relaxed by reference scaling. The power savings from this is in addition to the one 

obtained from simplified design.  Reference scaling is a powerful technique in low 

voltage designs and has been reported in some recent publications. Some works 

including reference scaling are [85-88].  
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Figure 3.5 Power consumption trends with reference scaling factor α 
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3.3 Reference Refreshing technique 

The reference refreshing technique [89, 90] illustrated in Figures 3.6 doesn’t 

require a high gain opamp in the MDAC. It solves the problem of error in the 

interstage gain (G) by adjusting the reference to the next stage by the same factor as 

the error in the interstage gain G. This can be explained by a simple example. Let’s 

assume that the interstage gain for ith stage has an error εi so that gain is Gi(1+ εi). In 

this case residue for the (i+1) th stage is given by 

          Vres[i+1] = G[i+1](1+ ε[i+1]){G[i](1+ ε[i])[Vin[i] –D[i]Vref[i]] – D[i+1]*Vref[i+1]}               (7)             

If the reference to the (i+1) th stage is changed such that Vref[i+1] = (1+εi)Vref[i] then 

(7) can be written as  

   Vres[i+1] = G[i+1](1+ ε[i+1]){G[i](1+ ε[i])[Vin[i] –D[i]Vref[i] – D[i+1]*Vref[i]] }                 (8) 

showing that the nonlinearity due the error in interstage gain is no longer present and 

it only appears as a gain error term for the ADC. 

    The design in [90] generates the reference for different stages by propagating the 

reference voltage through the same gain stages as the residue so as to introduce the 

same gain error in the reference. By applying the same gain to both reference and the 

signal interstage gain error is cancelled. One of the problems of the above approach is 

that the offset in the residue amplifier changes the reference value when the reference 

is being passed through the gain stage. This leads to distortion, so the opamp offset 

needs to be calibrated or needs to be small enough to use this reference refreshing 

technique. 
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Figure 3.6: Pipelined ADC architecture with reference refreshing 

3.4 Two step amplification techniques 

In this section we look at some techniques which achieve high accuracy in the 

residue amplification using two steps in time domain. Using the techniques described 

below a highly accurate interstage gain can be implemented using a low gain opamp. 

Low DC gain opamps typically consume much lower power than multi-stage high 

gain opamps.  

         3.4.1 Correlated Double sampling  

 One solution to low opamp gain problem is the use of correlated double 

sampling (CDS) technique [91]. CDS techniques have been used successfully in 

integrator and amplifier designs. With CDS, the error resulting from the finite opamp 

gain becomes inversely proportional to the square of the opamp gain.  
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           Figure 3.7 Amplifier with correlated double sampling (CDS) 

Furthermore, the opamp offset is removed, and 1/f noise is also suppressed. Fig 3.7 

shows a switched-capacitor amplifier with CDS technique.  The input is assumed to 

be held constant over phase’s φ1 and φ2. During phase φ1, a preliminary amplification 

(PA) operation is performed using capacitors C3 and C4.  This operation  suffers from 

an error due  to  the  finite  gain,  giving rise  to  a  nonzero  voltage  at  the inverting  

input  of the amplifier. This voltage is stored in CI. During phase φ2, the desired 

amplification (A) is done using C1 and C2 with CI placed in series with the inverting 

input of the amplifier. The finite gain error with CDS technique can be quantitatively 

represented by means of the equation  

                                 	 ௢ܸሺ݊ሻ ൌ 	െ
஼భ
஼మ

௜ܸ௡ሺ݊ሻ െ 	߳                                                   (9)         

 

Where  
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Note that the error is inversely proportional to A2. This makes it much smaller 

than the error in the conventional circuits, which can be shown to be inversely 

proportional only to A.  However, the straightforward implementation of CDS in 

pipelined ADC design increases load on the opamp and adds one extra clock phase.        

The work in [92] solves this issue with some timing adjustments to the 

conventional CDS scheme. The scheme called time-shifted CDS is compared to 

traditional CDS scheme in Figure 3.8. In the traditional timing scheme illustrated in 

Figure 3.8(a) there are there three phases. In first phase both set of capacitors sample 

the inputs (S &PS), second phase is the preamplification phase (PA) and the third 

phase is the amplification phase (A). It is during this amplification phase that the 

second stage samples the input. This leads to reduced throughput in a pipeline ADC 

design with conventional CDS scheme. In the time-shifted CDS technique illustrated 

in Figure 3.8(b) the extra clock phase is removed by using preliminary residue voltage 

(from stage i) for sampling in the preamplifying phase of stage (i+1) and merging the 

amplifying phase and the presampling phase in one time slot. The splitting of 

sampling and presampling in two separate time slot helps remove any extra capacitive 

loading from extra sets of capacitors. The speed and/or power consumption overhead 

in the conventional CDS technique is removed completely with this scheme. This 

technique has potential to reduce power consumption as very simple single stage 

opamps can be used for residue amplification. 
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         Figure 3.8 Timing change from conventional CDS to time-shifted CDS. 

3.4.2 Correlated level shifting  

Correlated level shifting (CLS) is a general technique that reduces opamp errors 

due to finite gain and increases the distortion-free swing. The basic CLS MDAC 

structure introduced in [93] and shown in Figure 3.9 can be used to reduce finite 

opamp gain error and increase the opamp’s useful output swing. After sampling the 

input in phase φS, the MDAC switches into an amplification phase φA which is split in 

two parts the estimation phase (φEST) and the level shifting phase (φCLS). In the 

estimation phase an estimate of correct output voltage with respect to common mode 

voltage VCMO is sampled on the CLS capacitor. In the level shift phase the capacitor 

CCLS is connected between the MDAC output and the opamp output, which level 

shifts the opamp output back to VCMO. The opamp now only processes the error of the 

initial estimate which will reduce the finite opamp gain error and reduces the opamp 

output swing. It is shown in [93] that the effective gain with this approach is 

proportional to A2. 
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                    Figure 3.9 Correlated Level Shifting 

 

The work in [94] optimizes the CLS design further by realizing that the gains 

AEST and ACLS do not necessarily need to be the same or even come from the same 

amplifier. By splitting the amplifier in Figure 3.9 into two separate amplifiers and 

then designing each amplifier with its specific requirements in mind, the the overall 

performance of CLS in terms of power, speed, and accuracy can improve.  Figure 

3.10 shows a generalized single ended Split-CLS structure. Amplifier Aφ1 processes 

the full signal during estimation phase and is directly connected to the output load. 

Therefore, for optimum performance it should have as large of an output swing as 

possible and high slewing capabilities. By contrast, Aφ2 must only process the small 

error term and charges the output indirectly through CCLS. 
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                                   Figure 3.10 Split CLS 

The output swing of the Aφ2 amplifier is much smaller than the Aφ1 amplifier. 

The work in [94] uses a dynamic zero crossing based circuit [ZCBC] discussed in 

next section for amplifier in estimation phase and a regular opamp in the level shifting 

phase. Power savings are obtained by using a simple telescopic amplifier for Aφ2 . 

        3.4.3 Extended Correlated Double Sampling (ECDS) 

Extended correlated double sampling introduced in [95] is an immediate 

calibration technique to simultaneously reduce finite- opamp-gain errors and increase 

the maximum output swing of the opamps while operating from only two clock 

phases. ECDS is suitable in ADCs where the error that stems from low opamp gain in 

one stage can be processed in a later stage, such as in pipelined and algorithmic 

ADCs. Figure 3.11 illustrates the operating principle of ECDS scheme. The output of 

the first stage Vo1 during φ2 phase is given by  

                                            ௢ܸଵ ൌ 2 ௜ܸ௡ െ ଵܦ ோܸ ൅  (11)                                          ߝ
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Figure 3.11: Extended correlated double sampling (a) Phase φ1   (b) Phase φ2    
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Where D1 is the output of the sub-adc and is -1, 0 or 1 and ε is the error in the 

output. If the parasitic capacitance at the the opamp input is ignored the feedback 

factor during φ2 is ½ and the error ε is given by 

ߝ                                                 ൌ 	െ2 ௏೚భ
஺

                                                          (12) 

The voltage at the opamp input Vn1 is equal to 0.5 ε. If this voltage Vn1 is 

inverted, amplified by a factor of 2 and added to Vo1, the effect of the ε in Vo1 is 

canceled. This cancellation of the error is done in the second stage. During the φ2 

phase the first stage’s residue Vo1 is sampled onto the second stage’s capacitors CS2 

and CF2. Also in the same phase, Voa which is an inverted version of the error ε in Vo1, 

is sampled on an extra capacitor CI. Voa is generated by amplifying the voltage at the 

opamp input Vn1, by an auxiliary amplifier with a gain of g1 = -2.  Next, during φ1 

phase, the second stage cancels the first-stage error ε by placing the extra capacitor CI 

between the node that joins CS2 and CF2 and opamp input. This placement means that 

Vo1 is added to Voa = - ε in the second stage, completely canceling the effect of the 

error in Vo1 if the capacitors are matched and the parasitic capacitances are zero. In 

practice the parasitic capacitance and non-ideal gain in auxiliary amplifier will limit 

the effectiveness of the technique [95].  

3.5 Residue amplification without amplifiers 

Since the residue amplifiers consumes the majority of power in pipeline ADC 

stage there have been attempts to generate residue without any operational amplifier. 

In this section we look at two of the techniques which reduce power consumption by 

eliminating the opamp. 
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        3.5.1 Zero Crossing Based Circuits (ZCBC) 

Zero crossings based circuits are a generalization of comparator based switched 

capacitor circuits (CBSC) that was introduced in [96]. CBSC architecture replaces the 

function of the opamp with the combination of a comparator and current source to 

realize the same charge transfer as an opamp-based implementation. It completely 

eliminates opamps from the design and does not require stabilizing a high-gain, high-

speed feedback loop. This not only reduces complexity but also eliminates the 

associated stability versus bandwidth/power tradeoff. A simplified schematic of the 

CBSC MDAC stage is shown in Figure 3.12. The sampling phase φ1 is similar to 

traditional opamp based design. In the charge transfer phase φ2 opamp is replaced by 

a current source and a comparator. When φ2 goes high to enter the transfer phase, a 

short pulse is used to initialize the charge transfer by closing switch S1 to pre-charge 

the output voltage to ground. Following this pulse, S1 opens and the current source I1 

charges the capacitors to generate a constant voltage ramp on the output voltage. 

             

                        Figure 3.12 CBSC based gain stage 
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This causes the virtual ground voltage to ramp with it via the capacitor divider 

consisting of C1and C2. As the voltage ramp proceeds, the comparator will detect 

when the virtual ground condition has been reached and then turn off the current 

source to realize the same charge transfer as the opamp-based implementation.  

The work in [97] extended the work on CSBC by realizing that a general purpose 

comparator is not required for zero crossing detection by the comparator. The 

comparator in CSBC scheme consumes static power which is reduced in ZCBC 

scheme by using a dynamic zero crossing detector circuit. The work in [98] further 

improves the resolution, power efficiency, and robustness of the previous ZCBC 

designs through various means including fully differential signaling, offset 

compensation, and output range enhancement. The work in [99] presents a high 

resolution, low power voltage scalable zero crossing based pipelined ADC which 

works at supply voltage as low as 0.5V. 

        3.5.2 Capacitive charge pump based Circuits 

Capacitive charge pumps are widely used as voltage doublers in DC-DC 

converters. The work in [100] uses a doubler circuit to build a residue amplifier for a 

low power pipelined ADC. The concept of building a gain of two amplifiers using a 

charge pump is shown in Figure 3.13. A unity-gain buffer is used in Fig. 3.13 to 

prevent charge sharing between the sampling capacitors Cs, and   load capacitance CL. 

Ignoring the parasitic capacitors the output voltage is given by  

                               ௢ܸ ൌ 	െ2ሺ ௜ܸ௡ െ ஼ܸெሻ ൅ ஽ܸ஺஼                                              (13) 
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     Figure 3.13 Gain of approximately two using a capacitive charge pump 

 

With a capacitive charge pump, the gain is determined by the sampling capacitor 

arrangement, whereas the bandwidth of the output Vo, during φ2 is independently 

established by the unity-gain buffer and CL. An additional advantage of gain with 

capacitive charge pumps is that in each pipeline stage since the unity-gain buffer is 

preceded by the amplification of the input, the noise-power of the buffer when 

referred to the input of the pipeline stage is reduced by the square of the stage-gain. 

Hence the buffer adds only a small noise contribution, enabling the use of small 

sampling capacitors (thus reduced power consumption) to meet the desired thermal 

noise floor. 

If the dominant parasitic capacitor Cp is included the output of the classical 

charge pump based MDAC is given by 

																										 ௢ܸ ൌ 	െ ቂ
ଶ

ଵାଶሺ஼௣	/஼௦ሻ
ሺ ௜ܸ௡ െ ஼ܸெሻ െ

ଵ

ଵାଶሺ஼௣	/஼௦ሻ ஽ܸ஺஼ቃ                   (14) 
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which is a direct function of parasitic capacitors.  The work in [100] uses digital 

calibration to correct for the error in the inter stage gain. The design achieves low 

power by using a simple source follower as the unity gain buffer. 

       3.6 Amplifier Sharing:  

To reduce the power dissipation, the number of op amps in each pipeline can be 

reduced by sharing op amps between stages [101]. In general, switched-capacitor 

circuits afford themselves to amplifier sharing between two different switched- 

capacitor networks working on opposite clock phases.  This is because these networks 

require the op amp only during the amplification/integration phase and not during the 

input sampling phase. A scheme showing the sharing of opamp between two stages 

‘A’ & ’B’ is  illustrated in Figure 3.14 Here, the capacitors C1 and C2 are the parts of 

switched capacitor stage A whereas C3 and C4 are part of stage B. These two 

switched-capacitor networks operate on opposite clock phases, with the op amp 

alternating between them. 

Although the amplifier sharing helps reduce power there a few potential 

drawbacks of the scheme.  First, the additional switches that are used to implement 

amplifier sharing introduce series resistances which, in combination with the op-amp 

input capacitance, affect the settling behavior of the stage. Second, the nonzero input 

voltage of the amplifier is never reset. Thus, every input sample is affected by the 

finite-gain error component from the previous sample. Third error voltages, including 

flicker noise and the opamp’s intrinsic offset voltage, cannot be cancelled because the 

amplifier is always in the active mode.  
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Figure 3.14 Amplifier sharing between two adjacent stages in pipeline  

 

The work in [102] introduces a feedback signal polarity inverting (FSPI) 

technique to reduce the opamp offset and flicker noise to one third compared to a 

traditional design of a 1.5bits per stage pipeline. Another issue with amplifier sharing 

is the crosstalk between the stages because of the source drain parasitic capacitances 

of ‘off switch’. The work in [103] addresses the issue with modified timing and using 

dummy switches. The work in [81] solves the issue by adding additional switches to 

isolate the opamp sharing stages. The works in [79, 104] extend the amplifier sharing 

to share capacitances as well. 
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         3.7 Digital Calibration 

The finite gain in the opamps causes the inter-stage gain in the pipeline to deviate 

from its ideal value. For illustration we look at a two-stage ADC in Figure 3.15 with 

the interstage gain having an error of ε. This gain can be corrected in the digital 

domain by doing an inverse transfer function on the M LSB bits as illustrated in Figure 

3.16. For a pipelined ADC this concept can be recursively applied to all the stages 

starting with the last stage. The error ε can be determined with a foreground 

calibration scheme or a background calibration scheme. Foreground calibration 

estimates the unknown errors sources by interrupting normal ADC operation and 

applying a known input sequence to the ADC. By comparing the output of the ADC to 

the expected ADC output under ideal conditions (i.e. no non-idealities) the impact of 

each error source can be measured and corrected.  

             

           Figure 3.15 Two stage ADC with interstage gain error  
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                        Figure 3.16 Digital calibration of gain error  

The advantage of a foreground scheme is that calibration can be achieved within a 

small number of clock cycles. The disadvantage of foreground calibration is that the 

ADC is required to be taken offline every time calibration is performed, which in some 

applications may not be possible. Background calibration continuously measures and 

corrects the effect of non-idealities in a pipeline stage, thus has the significant 

advantage that the ADC is not required to be taken offline to perform calibration. The 

digital calibration techniques can be used to trade-off analog complexity for digital 

complexity. With the advances in CMOS technology this is a favorable tradeoff as the 

digital power keeps scaling in advanced process nodes. There has been a large amount 

of research on power reduction techniques which reduce the power in the opamp by 

using a low gain opamp and then correcting the error in digital domain. The work in 

[105] uses open loop amplifiers instead of traditional closed loop amplifiers to save 

power, whereas the work in [106] uses amplifiers with incomplete settling.  The work 

in [107] uses single stage Class AB amplifiers to achieve low power. Some other 

recent works relying on calibration to achieve low power are [78, 85, 88, 100, 108, 

109, 110, and 111].  
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3.8 Performance Comparison 

In the Table 3.1 we compare the performance of the various references listed in this 

chapter.  We also highlight the power saving technique being employed in the 

referenced designs. Following code is used for the power reduction technique 

A  Digital Calibration   B Reference Scaling       C Shaless design 

D Amplifier sharing     E Reference refreshing    F Zero Crossing based circuits 

G  CLS                        H Charge pump based     I  Correlated double sampling 

One observation that can be made from the Table 3.1 is that regardless of the 

design techniques used latest pipeline ADCs benefit from process scaling. Best figure 

of merits are obtained by designs in 65nm process node followed by designs in 90nm 

node. This is due to the fact that newer designs are relying more on digital calibration 

and trying to minimize static power consumption in the designs. 
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Table 3.1 Performance comparison 

Reference 

Year Power  
Reduction  
Technique 

Process 
 node 

Area 
(mm2) 

Sample 
Rate 
(MHz) 

SNDR 
(dB) 

Power 
(mW) 

FOM 
 
(fJ/conv) 

[108] 2013 A 65nm 0.36 200 61.2 19.85 106 
[85] 2013 A,B,C  65nm 0.225 1000 52.4 33 97 
[99] 2012 A,F 65nm 0.36 50 67.7 4.07 41 
[99] 2012 A,F 65nm 0.36 5 66.3 0.237 28 
[107] 2012 A 90nm 0.36 30 65.2 2.95 66 
[82] 2011 C 90nm 0.26 100 55 12.2 266 
[84] 2011 B,C 65nm 0.16 50 66 3.5 43 
[94] 2010 G 0.18um   1.1 10 69.5 8.4 344 
[100] 2010 H 0.18um 1.4 50 58.2 9.9 298 
[109] 2010 A 90nm 0.36 100 58 6 92 
[77] 2009 A,C 90nm 0.5 500 52.8 55 308 
[79] 2009 C,D 0.18um 0.86 50 58.4 12 353 
[78] 2009 A,C 90nm 0.123 50 49.4 1.44 119 
[83] 2009 C 0.18um     - 125 78.6 385 443 
[86] 2009 B 65nm 0.164 80 60.1 10.4 157 
[88] 2009 A,B 90nm 1 100 73 200 548 
[98] 2009 F  90nm 0.3 50 62 4.5 87 
[104] 2009 D 0.18um 2.2 80 53.2 36 1205 
[110] 2009 A 90nm 4 100 67.6 92 469 
[111] 2008 A 0.18um 3.91 20 73 285 3904 
[93] 2008 G 0.18um  - 20.2 65 7.5 256 
[87] 2008 B 65nm 0.34 30 65.1 18 408 
[81] 2008 C,D 0.18um 0.7 30 57.41 21.6 1187 
[97] 2007  F 0.18um 0.05 100 43.3 4.5 377 
[106] 2007 A 0.35um 7.9 75 65.6 273 2338 
[96] 2006 F 0.18um 1.2 7.9 52 2.5 973 
[90] 2006 E 0.35u 5.28 10 62 19 1847 
[92] 2004 I 180nm 2.52 100 54 67 1636 
[103] 2004 C 0.18um 12 75.5 98 1678 
[105] 2003 A 0.35um 7.9 75 68.2 290 1841 
[76] 2000 C 0.35μm 2.6 40 59 55 1888 
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Chapter 4        Hybrid Voltage-Time domain ADC 

 In this chapter we present a design of a hybrid voltage-time domain ADC. The ADC 

architecture shown in Figure 4.1 consists of two stages. The first stage does voltage 

domain analog to digital conversion whereas the second stage converts the residue 

from the first stage using a VCO based ADC. The flash ADC in the first stage 

provides the 4 bits whereas a VCO and counter combination in the second stage 

provides remaining 9bits. The output from the two stages is combined together in the 

digital calibration block according to the relationship below.  

        
FSCOUNT

COUNT
OUTSTAGEDOUT

_
*128_1*256                                     (1) 

where COUNT_FS is the COUNT obtained from the second stage when ADC input is  

VREF/16 and STAGE1_OUT is the first stage output code. COUNT_FS acts as the 

reference for second stage and is determined by a calibration routine.  

 

 

Figure 4.1 ADC architecture 
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The architecture helps relax the linearity requirement on the second stage by 

exercising only the linear input range of the VCO. The first stage also consumes 

significantly less power than a traditional pipeline ADC. In next section we discuss 

the power saving techniques in the first stage, followed by section on second stage 

design. 

4.1 First stage power reduction techniques  

In this section we look at various power reduction techniques utilized in this design to 

reduce the power consumption of the first stage. 

4.1.1 Reference scaling 

  Although in this architecture the first stage resembles that of a pipeline ADC, its 

requirements are dramatically relaxed. The primary reason for this is that the VCO 

based backend allows aggressive reference scaling (the second stage reference is 

reduced by a factor of 8). As discussed in chapter 3 this helps in multiple ways. Firstly 

it helps to reduce power by increasing the feedback factor so that a lower bandwidth 

opamp can be used. Secondly it reduces the swing at the output of first stage which 

allows the use of a single stage opamp. The reduced swing also helps relax the 

linearity requirement of VCO based second stage. Such reference scaling is 

impractical in traditional pipeline ADCs because it leads to very small residue which 

is difficult to quantize in voltage domain due to comparator offsets and noise in the 

next stage. The design in [84] limits the reference scaling to two precisely for this 

reason. In our design quantizing the residue in time domain makes it feasible to 

digitize the small residue.  
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4.1.2 Reference refreshing  

The reference refreshing technique [89, 90] illustrated in Figure 4.2 relaxes the opamp 

gain requirement in the MDAC. It solves the problem of error in the interstage gain (G) by 

adjusting the reference to the next stage by the same factor as the error in the interstage gain 

G. Traditionally the reference refreshing has been done in analog domain, requiring an 

additional capacitor array to update the reference for next stage.  One of the problems 

of the analog approach is that the offset in the residue amplifier changes the reference 

value when the reference is being passed through the gain stage. This leads to 

distortion, so the opamp offset needs to be calibrated or needs to be small enough to 

use this reference refreshing technique. 

 

 

Figure 4.2 Conceptual illustration of reference refreshing technique 
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In our architecture the reference refreshing is done in digital domain without any 

additional analog complexity. The inter-stage gain error can easily be digitally 

calibrated by refreshing the reference to second stage, which is just a digital count 

referred as COUNT_FS. The calibration process is illustrated in Figure 4.3. First the 

offset calibration is performed as illustrated in Figure 4.3(a). In the φ1 phase both the 

input sampling capacitor and feedback capacitor are reset. In the φ2 phase the 

amplifier is converted to a gain stage with input capacitor still grounded. This gives 

the opamp offset voltage at the output which is converted to a digital count by the 

second stage. The calibration of finite opamp gain and mismatch in DAC capacitors is 

shown in Figure 4.3(b). Instead of directly connecting 0.125VREF to the VCO 

following procedure is adopted. The input capacitor is reset in the sampling phase.  In 

the amplifying phase (φ2) one of the DAC unit capacitor (i) is connected to VREF and 

the remaining unit capacitors are connected to ground.  For ideal opamp this creates a 

residue equal to 0.125VREF at its output and acts as a reference for VCO. Since 

reference passes through the same path as the signal it also gets scaled by the same 

factor (1+εi). The second stage creates a count COUNT_FS(i) which is the full scale 

count with ith unit capacitor. The process is repeated for all the 16 unit capacitors and 

the full scale count (COUNT_FS) which is the reference for the second stage is 

determined as  

ܵܨ_ܷܱܶܰܥ ൌ
1
16

෍ܵܨ_ܷܱܶܰܥሺ݅ሻ

ଵ଺

௜ୀଵ
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(a)    Offset Calibration

(b)    Gain and mismatch Calibration  

       Figure 4.3 Calibration process to determine second stage reference 

 

The interstage calibration scheme described above can also be used to correct the 

errors because of mismatch in the unit capacitors. The COUNT_FS can be modified 

to use only the unit capacitors which are used in a given code. Since for this design 

we need only 9-bits matching in the unit capacitor, so it was not necessary to perform 

calibration of unit capacitor mismatch. To improve the accuracy of calibration 

COUNT_FS can be obtained as an average of mulitple measurements. This scheme 

corrects for constant gain error term in the MDAC. It doesn’t correct for gain error 

variation with swing at the output of the opamp. Since the swing at the output of the 

opamp is limited to +/-175mV the gain remains fairly constant.  
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4.1.3 Stage scaling  

Scaling the sampling capacitance in the successive stages [103,112] has been shown 

to reduce the power consumption in a pipelined ADC. In this design interstage gain is 

equal to two and the second stage sampling capacitor is reduced by a factor of 4 to 

reduce the loading on first stage residue amplifier and hence reducing its power 

consumption. Scaling the sampling capacitor by a factor of four with an interstage 

gain of two will give equal noise contribution from both stages in the traditional 

design. In this design in the second stage noise aliasing occurs only in the sampling 

phase, so the kT/Cs noise only affects the sampling phase. In the hold phase the noise 

passes through an antialiasing sinc filter preventing noise foldover. Because of this 

reason the second stage in this architecture contributes significantly less thermal noise 

even with aggressive scaling of the sampling capacitor in second stage. 

4.1.4 Reduced redundancy  

In a traditional pipelined design a full one bit of redundancy is used to correct for the 

errors in the flash sub-ADC. In this architecture full one bit of redundancy is not 

required. The first stage actually gives full four bits of output. The reference to the 

second stage is VREF/8 but the second stage input is allowed to swing beyond this 

reference. A larger residue translates into a higher count from the second stage which 

just needs more depth in the counters. The real constraint on the first stage output 

swing comes from the linearity of the VCO. As the input swing on the VCO becomes 

larger it becomes more nonlinear. So the VCO needs to be designed to remain linear 
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with a swing larger than +/-VREF/8.  The mismatch simulations indicate that the swing 

at the VCO input can exceed +VREF/8 by as much as 60mV, so the VCO needs to be 

linear for a range of +/- (VREF/8 + 60mV). This corresponds to a redundancy of about 

0.5bits for 1V reference. 

4.1.5 Design without front-end SHA 

Figure 4.4 shows the block diagram of a conventional pipelined ADC with a 

sample and hold amplifier (SHA) at the front of the pipeline ADC. As discussed in 

chapter 3 front-end SHA consumes significant power and adds noise to the ADC. 

There can be significant power savings if the SHA can be removed [76]. The removal 

of SHA moves the burden of sampling the high frequency input to the first stage of 

the ADC.  The first stage samples the input in the S/H build in the MDAC and the 

sub-ADC. Figure 4.5 shows the schematic of a comparator in a typical pipelined 

design [83] without front end sample and hold amplifier.  During track phase φ1 both 

the MDAC capacitors and the flash sampling capacitors CS_FLASH simultaneously 

sample the input. A separate set of capacitors in the flash sample the reference 

threshold (VTH).  At the beginning of the φ2 phase the preamplifier amplifies its input 

which is latched after some delay to produce the flash data. One of the challenges in 

this implementation is that the time available for MDAC settling is reduced by the 

total delay through the preamplifier and the latch during φ2 phase.  Hence, in this 

SHA-less front-end, both the flash comparators and the residue amplifier have to be 

faster and therefore consume more power compared to a conventional front-end 

implementation with a SHA.  
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  Figure 4.4 Block diagram of a conventional pipelined ADC 
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  Figure 4.5 Comparator schematic for SHA-less design 

In our design since the residue amplifier power is reduced significantly the preamp power 

in the latch starts dominating the power consumption in the first stage. To minimize the 

power consumption in the flash ADC the comparator is designed without a preamplifier in 

this design. Figure 4.6 shows the flash and MDAC sampling network for this design. 

During φ1 phase both the MDAC and flash track the input. The MDAC path samples the 

input at the falling edge of φ1p whereas the flash path latches the input on rising edge of 

Lat signal after a delay of ∆t. This non-overlap of ∆t ensures that there is no kickback at 
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the ADC input at the instant of MDAC sampling. The clock skew between the two paths 

lead to a dynamic offset in the comparator design given by  

                                  	∆ܸ ൌ ߨ2 ∗ ௥ܸ௘௙ ∗ ௜௡ܨ ∗  (2)                                                               ݐ∆
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Figure 4.6 Sampling network 
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Since this design is targeted towards low to medium frequency inputs this dynamic 

offset is not a big concern. For a 10MHz sine wave and Δt=100ps the dynamic offset 

is about 6.3mV which can be budgeted for in the design.  The benefit of such a 

scheme is no preamp power and no reduction in time available for residue 

amplification. The latch regenerates during the non-overlap time between phase φ1 

and φ2. This scheme is suitable only for relatively low speed designs. For the high 

speed designs dynamic offset given by (2) may become too large to be handled by the 

redundancy in the design. 

4.1 First stage design 
 

The first stage uses a sampling capacitor of 1.2pF from thermal noise consideration. 

The input sampling switch uses a signal dependent boost technique [113] to achieve 

high linearity. Reference scaling by a factor of 8 makes the signal swing at the output 

of first stage very small so that it is possible to get a flat gain across the signal swing. 

The combination of reference refreshing and reference scaling allows the use of low 

gain, low power telescopic opamp show in Figure 4.7 as the residue amplifier in first 

stage. The opamp has an open loop gain of 49dB which remains constant to within 

7% with the signal swing. All the devices in the opamp use non-minimum length to 

achieve this gain. The large channel length is also desirable to reduce the effect of 

flicker noise. The design uses a traditional switched capacitor common mode 

feedback circuit. 
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Figure 4.7: Residue amplifier schematic 

4.2 Second stage design  

 
   Figure 4.8 shows the block diagram of the VCO based second stage. The residue 

from the first stage is sampled by a sample and hold stage. This sampled voltage is 

converted to current using a simple differential pair with degeneration. This output 

current controls the oscillation frequency of two current controlled ring-oscillators 

(CCO). The output frequency of each CCO is converted to digital form using dual 

edge counters on all three phases of the ring. The final COUNT obtained from the 

second stage is proportional to the difference between the frequencies of the two 

CCO’s. This ‘differential operation in the frequency domain’ enhances the linearity of 

the voltage to frequency transfer curve of the VCO. The VCO is free running but to 

save power the counters are clocked only in the phase they are counting. 
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                         Figure 4.8: Block diagram of second stage 

The gating of the VCO output to the counter helps solve the metastability problems 

which arise when counter outputs are latched on to registers.  

The stage 1 samples in φ1 phase and amplifies in φ2 phase. Stage 2 samples in the φ2 

phase and integrates in the φ1 phase.  The sampling capacitance of the second stage is 

chosen as ¼ of the first stage and equals 300fF. Even with a gain of only 2 the second 

stage contributes smaller thermal noise than the first stage. Second stage sampling 

phase (φ2) noise equals ඥ2݇ܶܥ௦ = 166μV(rms) which gives 78dB of SNR when 

referred to input. But in counting phase there is no noise foldover because of the 

averaging action provided by counting for 0.5Ts period. The smaller sampling 

capacitor helps reduce the power consumption on the first stage amplifier by reducing 

its loading.   
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Figure 4.9 illustrates the timing for the second stage. In this design the VCO sees a 

step input when switch φ2 is turned ‘on’. The VCO needs to settle to its new 

frequency before the counter starts counting, which is the rising edge of signal RZ in 

the Figure 4.9. The VCO settles to the new frequency at the same time as the first 

stage is generating the residue. This means that the VCO gets at most 0.5*Ts for its 

output frequency to settle. There is slight disturbance on the control voltage of VCO 

when the switch S1 turns off because of clock feedthrough and charge injection. This 

disturbance settles out during the time t2 between the φ2 falling edge and RZ rising 

edge.  The gating of the VCO output to the counter serves two purposes. First it helps 

reduce power consumption by clocking the counters for half the time period. 

Secondly it helps solve the metastability problem which arises when the counter 

outputs are being latched on the registers in the φ2 phase. Without the gating logic the 

VCO output clock is asynchronous with respect to the ADC sampling clock. 
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                       Figure 4.9 Illustration of second stage timing 



 

 61

The counters are updated on both the rising and falling edge of the VCO output. The 

metastability happens when the registers try to latch the counter output at the same 

time as it is getting updated. The errors because of metastability can be very large and 

leads to corrupted digital output. By gating the VCO output we make sure that 

registers latch the counter output only after they are stable. 

The time t4 between the falling edge φ1 of rising edge of φ2 in Figure 4.9 needs to be 

large enough to account for delay in gating logic block (td1), the counter delay 

(td_counter) and the setup time for the registers i.e  

                                t4 > = td1 + td_counter + tsetup                                                                                       (3) 

If the above requirement is satisfied there will not be any metastability problems 

when the counter outputs are latched on the registers.  Effective time available for 

counting is between the rising edge of RZ and falling edge of φ1 shown as t3.  This 

time determines the count which is obtained from the second stage which in turn 

determines the second stage resolution. The count obtained is given by  

                              Count = t3*fosc*6                                                                (4) 

Here fosc is the differential oscillation frequency and factor of 6 is because of the fact 

that we are counting both edges of three phases of ring oscillator. The timing t1 in the 

figure accounts for the delay in the gating logic block and t5 is needed to account for 

the hold time of the registers.  For a given clock frequency the aim is to maximize t3 

which means that we need to minimize t2 and t4. This means that we should minimize 

the counter delay and improve the VCO step response time. In the following sections 

we analyze the design of different blocks in the second stage the VCO, counter and 

adders. 
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4.2.1 VCO Design 

Figure 4.10 shows the schematic of the differential VCO used in the second stage. 

The key specifications for this are noise, linearity, gain, and step response time. All 

these requirements need to be satisfied with the overall aim of minimizing the power 

consumption. Another requirement on the VCO is the differential frequency stability 

across temperature. We will look at each of these requirements on the VCO and 

analyze the performance of the VCO shown in Figure 4.10.  

Linearity and Gain:  The linearity requirement on the VCO is relaxed significantly 

for this architecture because 4 MSB bits are obtained from the first stage itself. The 

VCO sees only a small swing (+/-VREF/8) at its input. Another benefit of the 

architecture is that the VCO is differential in frequency domain which leads to the 

cancellation of second harmonic [65,68] in the V-F transfer function. Still the VCO 

needs to be at least 8-bit linear to obtain 12 bits of linearity in the overall ADC.    

VCO gain (GHz/V) determines the resolution of the second stage and is a critical 

parameter. COUNT_FS is the count obtained from the second stage when input to the 

VCO is VREF/8. The higher this count higher the resolution obtained from the second 

stage. There are a couple of ways to obtain a higher count from the VCO. First option 

is to increase the number of phases in the ring VCO. This leads to higher power 

consumption if we want to maintain the same oscillation frequency. Another option is 

to increase the VCO gain (GHz/V) so that for the same reference input it will produce 

higher differential frequency. For a fixed quiescent oscillation frequency the increase 

in differential frequency doesn’t lead to higher power consumption. The increase in 
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oscillation frequency of one CCO is accompanied by decrease in speed of another 

CCO keep the power consumption constant. The aim of the design should be to 

maximize the VCO gain for a fixed quiescent oscillation frequency.  

Let’s analyze the VCO circuit in Figure 4.10 initially ignoring the current sources 

shunting the device M2. The linearity of this circuit is first limited by non-linearity of 

the input transconductor and next by the nonlinearity in the current to frequency 

transfer function. For the input transconductance with degeneration (as in this design) 

the third order distortion is given by [114] 

3ܦܪ		                             ൌ 	 ଵ
ଷଶ
ቀ ଵ

ଵା௚௠భோೞ
ቁ
ଶ
ቀ ௏೔೙
௏஽௦௔௧

ቁ
ଶ
                                                   (5) 

Increasing the source degeneration reduces the third harmonic distortion. One of the 

parameters to optimize is the voltage drop across the degeneration resistor because in 

low voltage design voltage headroom is quite limited. 

        
 

         Figure 4.10: Differential VCO schematic 
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Figure 4.11 shows the simulated linearity of the VCO versus the degeneration voltage 

for a fixed tail current (2I) and 125mV of differential input.  As it can be seen from 

the figure after about 250mV of degeneration the linearity starts getting limited by 

current to frequency transfer function and it doesn’t help to increase degeneration 

further. One of the issues with increased degeneration is the accompanied drop in 

VCO gain. Figure 4.11 also shows the plot of VCO gain versus the degeneration 

voltage for a fixed bias current. The reduction in VCO gains causes a smaller count 

for a given input reducing the resolution of the second stage.  

                      

 

Figure 4.11: Effect of degeneration on VCO nonlinearity and gain 
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 Adding the current source in parallel with diode connected devices M2 as shown in 

Figure 4.10 improves the VCO gain. The amount of current that can be shunted 

depends on the linear input range required. The linear differential input range reduces 

as shunt current is increased. For this prototype 3/8I was chosen as the shunt current 

and 100mV of degeneration was used in the differential pair.  Figure 4.12 shows a 

simulation of output frequency versus the differential input voltage. Simulation shows 

a nonlinearity of better than 9 bits and a gain of 11.3GHz/V. 

                       

 

 
 

Figure 4.12: VCO output and its nonlinearity  

 



 

 66

VCO step response: VCO in this design sees a step at its input every clock period. 

The VCO settles to its new frequency at the same time as first stage amplifier is 

settling and the second stage sampling network is tracking the residue. Assuming that 

only bandwidth limitation was from the VCO we can get 0.5*Ts for the VCO to 

settle. In actual case the residue amplifier from the first stage has finite bandwidth and 

may limit the settling of the VCO. Another secondary requirement comes from the 

disturbance on the VCO input node when the second stage input sampling switch is 

opened. It is desired that there is no non-linear settling component remaining after 

time t2 in Figure 4.8. For the VCO design in Figure 4.9 the settling limitations comes 

from mirror pole formed by the device M2.  

 
 

Figure 4.13: VCO step response 
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The aim of the design is to move this pole as far away as possible. But another design 

criteria flicker noise (discussed next) prevents use of small channel length devices. 

The final design has the mirror pole at 140MHz. Figure 4.13 shows the VCO response 

to an input step from 0 to +125mV. The differential output frequency settles to within 

0.1% in 13ns. 

Noise Analysis: 

The VCO output of interest in this design is its frequency and we are interested in 

determining the frequency deviation or frequency stability. The frequency is 

measured by counting the edges of the VCO during the time t3 in the Figure 4.8 which 

is approximately equal to 0.5*Ts. Let the count obtained from the VCO in this period 

be ‘N’ then  

                               N = 6*Fosc*0.5*Ts                                                                    (6) 

 Here the factor of 6 accounts for the fact that there are three phases in the ring 

oscillator and we are counting on both the edges. We need to analyze the effect of 

noise on the count N that we obtain from the VCO. Let us consider a carrier (߱ ൌ

 ௢௦௖ሻ which is frequency modulated by a single sinusoidal noise component atܨߨ2

frequency fm 

ሻݐሺݕ                                ൌ sin	ሾ߱ݐ ൅ ߨሺ2݊݅ݏܯ ௠݂ݐሻሿ                                               (7) 

Here M is the modulation index and is given by  ܯ	 ൌ 	 ∆௙
௙೘

 where ∆f is the peak 

frequency deviation.  

Let φ1 denote the phase at tA (beginning of period t3) and φ2 denote the oscillator 

phase at tB (the end of the period t3). From (7) we can write  
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    ߮ଵ	 ൌ ஺ݐ߱	 ൅ ߨሺ2݊݅ݏܯ ௠݂ݐ஺ሻ	            ߮ଶ	 ൌ ஻ݐ߱	 ൅ ߨሺ2݊݅ݏܯ ௠݂ݐ஻ሻ                      (8)                              

					߮ଶ	 െ ߮ଵ	 	ൌ 	߱ሺݐ஻ െ ஺ሻݐ ൅ ߨሺ2݊݅ݏሾܯ ௠݂ݐ஻ሻ െ ߨሺ2݊݅ݏ ௠݂ݐ஺ሻሿ         

Since the phase is quantized with a resolution of π/3, the count ‘N’ obtained in the 

time t3 = tB – tA  is given by 

             				ܰ	 ൌ 	 ଷ
గ
߱ሺݐ஻ െ ஺ሻݐ ൅

ଷெ

గ
ሾ݊݅ݏሺ2ߨ ௠݂ݐ஻ሻ െ ߨሺ2݊݅ݏ ௠݂ݐ஺ሻሿ                          (9)  

Using (6) we can estimate the average oscillation frequency in time t3 by dividing (9) 

by 6t3 ~ 3Ts   

	ܿݏ݋ܨ            ൌ 	 ே
ଷ்௦

ൌ ௢௦௖ܨ ൅
ெ

గ ೞ்
ሾ݊݅ݏሺ2ߨ ௠݂ݐ஻ሻ െ ߨሺ2݊݅ݏ ௠݂ݐ஺ሻሿ	  

	ܿݏ݋ܨ            ൌ ௢௦௖ܨ	 ൅
ଶெ

గ ೞ்
ሾܿݏ݋ሺߨ ௠݂ሺݐ஻ ൅ ߨሺ	ሻሻሿsin	஺ݐ ௠݂ ௌܶ/2ሻ	                             (10) 

Substituting ܯ	 ൌ 	 ∆௙
௙೘

 we get 

	ܿݏ݋ܨ          ൌ ௢௦௖ܨ	 ൅ ∆݂ሾܿݏ݋ሺߨ ௠݂ሺݐ஻ ൅ ሻሻሿ	஺ݐ
ୱ୧୬	ሺగ௙೘்ೄ/ଶሻ

గ௙೘ ೞ்/ଶ
	                                    (11) 

The cosine term in expression (11) has a peak value of one. The last term in the 

expression is a sinc filter with nulls for fm = 2/Ts. This sinc filter effectively works as 

first order antialias filter with a cutoff frequency of 0.5/Ts. This low pass filter will 

filter out any noise from voltage to current converter also. This means that for the 

entire VCO we are only interested in the frequency noise till 0.5/Ts bandwidth.  

The power spectral density of frequency noise Sf(fm)  is related to power spectral 

density of phase noise Sφ(fm) by [115] 

                              Sf(fm) = fm
2*Sφ(fm)                                                               (12) 

The frequency deviation over finite baseband bandwidth say fm1 –fm2 is given by 
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௡ଶܨ                                         ൌ ׬ S஦ሺ ௠݂ሻ
௙೘మ

௙೘భ
௠݂
ଶ	݀ ௠݂                                                (13)  

Let the VCO gain be k (Hz/Volts) then the VCO input referred noise can be obtained 

as Fn/k. The key difference between the frequency noise and phase noise is that 

frequency noise does not fall off as 1/f2 with increasing frequencies. This means that 

for thermal noise sources frequency noise will be flat and will be significant even at 

large offset frequencies. Figure 4.14 shows a representative PSD for frequency noise. 

We can see that 1/f3 region in the phase noise plot becomes 1/f region in the 

frequency noise plot , 1/f2 region becomes flat and the white phase noise spectrum 

actually starts rising in the frequency noise plot. 

 

                   Figure 4.14: Typical frequency noise power spectral density  
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For the VCO design in Figure 4.9 the noise analysis can be divided in two parts. First 

part consists of the noise from the voltage to current converter and the current source 

itself (vn1) and second part consists of noise from the oscillator (vn2). vn1 can be 

analyzed using traditional small signal noise analysis whereas vn2 can be estimated by 

running PSS/ Pnoise simulations to obtain phase noise density and then using (8) to 

obtain the integrated frequency noise. Figure 4.15 shows half –circuit of the setup 

used to analyze the noise vn1. Here the VCO current is injected into a noiseless 

resistor (Rsim) instead of the oscillator to determine the noise from the circuit. Rsim is 

chosen to be equal to ܴ௦௜௠ ൌ    ௠ଵ௘௙௙ܩܯ/1	

 

                           

                  Figure 4.15 : Simulation setup for simulating noise vn1 

 

Here M is the mirroring ratio and Gm1eff is effective transconductance of the input 

differential pair and is given by  

௠ଵ௘௙௙ܩ ൌ 	
݃௠ଵ

1 ൅ ܴ௦݃௠ଵ
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Simulations indicate the noise vn1 is dominated by flicker noise (about 60%) with total 

integrated noise being 110μVrms.  To estimate vn2 the ring oscillator was simulated 

using PSS and Pnoise. Figure 4.16 shows the phase noise plot obtained from the 

simulations and Figure 4.17 shows the frequency noise plot derived from it. From the 

Figure 4.17 it can be seen that in the bandwidth of interest (~20MHz) the noise is 

dominated by flicker noise.  The frequency noise of the oscillator in 20MHz band is 

about 0.37MHz which translates to a VCO input referred noise of about 31μVrms. 

Combining vn1 and vn2 and accounting from noise for both sides of differential VCO 

circuit the total simulated noise from the VCO is 161μVrms which corresponds to 

79dB SNR when referred to ADC input.  

 

Figure 4.16: Oscillator phase noise density plot 
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Figure 4.17: Oscillator frequency noise density plot 

 
4.2.2 Counter Design 

Since the majority of power in the ADC is consumed by counters which are 

clocked at high speeds (>1GHz) it is essential to optimize the design of counters. 

Figure 4.18 shows the traditional counter design approach using D- flip flops 

illustrated for 4 bits. Figure 4.18(a) shows a ripple counter in which the clock input 

only goes to one D-Flip flop. The second flip-flop is clocked by the inverted output of 

first DFF, third is clocked by inverted output of second DFF and so on.  Since the 

clock input to the later stages is delayed all the outputs are not available at the same 

time. Let TCQ denote the clock to output (Q) delay of a single flip flop. For an N-bit 

ripple counter the the clock to Q delay TCQ_CNT = N*TCQ which may not be acceptable 

for the design. The synchronous counter in Figure 4.1(b) solves this problem by 

clocking all the flip-flops by the same external clock.  
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Figure 4.18:  (a) Ripple (asynchronous) counter (b) Synchronous counter 

The delay of the counter in this case is same as the delay from a single flip-flip 

TCQ. The problem with this approach is that all the flip-flops are clocked at very high 

speed leading to significant power consumption.   

 To design a N (=9) bit counter we used a two stage counter as shown in Figure 4.19.  

The first stage is a N1 bit ripple counter and second stage is a N2 bit synchronous 

counter, such that N = N1+N2.  The delay of this two stage counter is equal to (N1 + 

1)*TCQ and approaches that of a ripple counter for N1 = N -1 and of a synchronous 

counter for N1 =0 .  Figure 4.20 shows the power consumption of two stage counter as 
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N1 is varied for a 9 bit counter. As can be seen from the figure significant power 

savings can be obtained For N1 = 2 or 3 and after that the power savings gradually 

taper off.  For this design we used N1 =2 to strike a balance between power 

consumption and the counter clock to Q delay. 

 

Figure 4.19 Two stage Counter 

                           

                 Figure 4.20 Power Consumption of a two stage counter 
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Since we need to count on both the edges of all the clock phases of the ring oscillator 

we will need a total of 12 counters. Further optimization is done by building a dual 

edge counter which counts on both the edges, reducing the total number of the 

counters to six. Figure 4.21 shows the implementation of the dual edge counter in this 

prototype.  

 

                            

 
Figure 4.21 Two stage counter with a dual edge counter in first stage. 
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4.2.3 Adder Design 

The adder propagation delay is not very critical in this design. The logic path has two 

adders and one subtractor in cascade and we have ~0.4*Ts of clock cycle for the data 

to propagate.  At 20MHz clock this is about 20ns of total propagation time giving 

about 6.7ns for each adder. A simple carry select adder shown in Figure 4.22 is 

implemented for this design. 

                                   
Figure 4.22 Carry select adder 

4.2.3 Divider 

  The ADC needs a divider to properly scale the second stage output. The ADC output 

is given by  

             
FSCOUNT

COUNT
OUTSTAGEDOUT

_
*128_1*256                              (14) 
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This division by COUNT_FS is not built on the prototype chip. The divider/adder can 

easily be integrated.  Synthesis of this block in 65nm process shows an area of 

0.02mm2 and power consumption of 12μW, when running at 20MHz.   

 

4.3 Conclusion 

In this chapter we presented design of a two stage ADC with time domain second 

stage. The ADC architecture reduces the power consumption on the first stage by 

using a low gain single stage opamp. We also presented the design of a linear VCO 

which satisfies the noise and settling requirement for this architecture.  
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Chapter 5        Prototype and measured results 

      5.1 ADC die and package 

The ADC described in the previous chapter was fabricated in Texas Instruments 65nm 

CMOS process. The test-chip die shown in Figure 5.1 was shared by multiple designs. 

The hybrid ADC occupies the small area in the top-right corner. The bond pads for 

the ADC were shared with another ADC on the die. The digital outputs of the ADC 

had to be routed the entire length of the chip to reach the bond pads. Figure 5.2(a) 

shows the zoomed in die photo highlighting the key blocks in the ADC. Figure 5.2(b) 

shows the layout snapshot of the ADC.  

 

Figure 5.1 Full die photo 
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(a)                                                                (b) 

Figure 5.2(a) Die photo (b) Layout snapshot 

 

Figure 5.3 Area distributions in percentage 
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As we can see from the layout the ADC core area is very small (0.07mm2) and is 

equal to the area of about 8 I/O cells. Figure 5.3 shows the percentage of the area 

occupied by the different blocks in the die. The second stage occupies an area of less 

than 0.02mm2. The 75 dies were packaged in an 80pin TQFP package using an 

external vendor VLSIP Technologies Inc. Figure 5.4 shows the mount and bond 

diagram of the die.  

   

 

Figure 5.4 Mount and Bond diagram 
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5.2 Test Setup  

To test the prototype chip a four layer board was built. The signals are routed on 

top and bottom layer. The second layer from top is ground plane and third layer is 

supply. Figure 5.5 shows a picture of the test board. The socket used on the test board 

is 80pin TQFP socket from ECT. Figure 5.6 shows a block diagram of the test setup. 

Hewlett Packard 33120A was used as an input signal source. The output of 33120A 

was filtered using narrow bandpass filters from TTE Inc to improve the source noise 

and distortion. The output of the TTE filter is fed to the onboard input drive circuitry 

built around THS4520 which is a high bandwidth (620MHz) amplifier from Texas 

Instruments. The reference circuit uses a divider on REF5025 followed by a driver.  

 

 

Figure 5.5 The test board  
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Figure 5.6 ADC Test Setup 

The reference driver was chosen as OPA211 for its low noise and high bandwidth 

(45 MHz).  A combination of HP8644B and Agilent 8133A was used as a clock 

source. HP 16500C Logic analyzer was used to capture the data from the ADC. 

5.3 Measured results  

 Clocked at 20MHz prototype consumes 1.1mW of power of which 0.4mW is 

consumed by analog blocks (first stage and VCO) and 0.7mW by the digital blocks 

(mostly counters). The ADC achieves a peak SNDR/SFDR of 63.7dB/76dB in 

10MHz bandwidth resulting in an ENOB of 10.3bits and FoM of 44fJ/conv-step. Fig. 

5.7 shows the ADC’s measured output spectrum for a full scale 2MHz sinusoidal 

input and a SFDR of 76dB is achieved. Also shown on the plot is SNR/SFDR vs input 

signal frequency with a minimum SNDR of 63.3dB. Fig 5.8 shows the DNL and INL 

plot obtained from the prototype. Figure 5.9 shows a plot of VCO nonlinearity 

obtained from the prototype. A linearity of better than 9 bits is obtained in voltage to 

frequency transfer function. A summary of chip performance is given in Table 5.1 
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Figure 5.7 ADC output PSD and SFDR/SNDR versus input frequency  
 

 

 
 

                          Figure . 5.8: Measured DNL and INL plot at 12 bit level 
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       Figure 5.9 VCO nonlinearity plot 
 

                                    Table 5.1 Chip performance summary 

Technology (nm) 65 

Core Area (mm2) 0.07 

Sampling Frequency Fs(MHz) 20 

Bandwidth(MHz) 10 

SNDR(dB) 63.7 

Power (mW) 1.1 

 

5.4 Comparison with prior art 

The ADC performance is compared with the prior art ADC’s using a Figure of 

Merit (FOM) given by  

ܯܱܨ ൌ
ݎ݁ݓ݋ܲ
2ே ∗ ݏܨ

 

 Where N is the effective number of bits (ENOB) and Fs is the ADC sampling rate.   

Figure 5.10 shows a comparison of this work with ISSCC publications from 2010 to 

2014 [116] 
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     Figure 5.10 Comparison of FOM with ADCs presented at ISSCC  

5.5 Conclusion  

  A fabricated prototype of the proposed architecture achieves 63.7dB SNDR in 

10MHz bandwidth while consuming 1.1mW of the power. The majority of the power 

is consumed in digital counters which should reduce with further process scaling. The 

VCO based second stage is very area efficient taking only 0.02mm2 of area.  

 

 

 

 

 

 



 

 86

Chapter 6   Conclusion 

In this chapter we look at some of the drawbacks of the proposed architecture. We 

also present some ideas which can be a basis of future work. 

6.1 Limitations of proposed architecture 

   6.1.1 Speed limitation 

One of the key limitations of the hybrid ADC presented in the thesis is that the 

throughput rate of the ADC is limited by the resolution obtained from second stage at 

high speed. The prototype achieves an SNDR of 66dB when clocked at 10MHz but 

the SNDR drops to 63.7dB when clocked at 20MHz because of the reduction in the 

count obtained from the second stage. The resolution of a VCO based second stage is 

given by  

                 















 
 Npk

F

FF
solution

s

oscosc **2*logRe min,max,
2

                                   (1)  
where Fosc  is the differential oscillation frequency. The factor k accounts for the fact 

that at most only half of the Fs period is available for phase integration. At very high 

sampling speeds k can be as small as 0.4 because of the need for non-overlapping 

phases. VCO based ADC architecture can realize 12-14 bits of resolutions at tens of 

Msps. However, at higher sampling frequencies the required VCO frequencies cannot 

be achieved even in advanced CMOS processes. For example, a simple calculation 

shows that a 12 bit, 200Msps ADC will need a differential oscillation frequency of 

136GHz for a ring oscillator with 3 inverters or a time resolution of 1.2ps. In this 

chapter we present couple of potential method of achieving higher throughput with  
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the hybrid technique presented in this work. 

6.1.2 Differential frequency temperature stability 

The full scale COUNT_FS obtained from calibration needs to be accurate to better 

than 8-bits. Since the value of the COUNT_FS will vary with temperature the ADC 

needs to be re-calibrated whenever the COUNT_FS deviates from its nominal value 

by more than COUNT_FS/256.  There are two sources of drift in COUNT_FS with 

temperature. First is the change in finite DC gain of the opamp with temperature. 

Second factor is the change in VCO gain (GHz/V) with temperature. Both these 

effects discussed below limit the ADC performance across temperature. 

Opamp DC gain variation 

Let the finite opamp gain at room temperature be A0. The error in the residue due to 

finite gain is given by 1/ A0β where β is the feedback factor and is 0.3 for this design. 

This error due to finite opamp gain is not a concern because of calibration. 

Now let A1 = (1-α)*A0 denote the dc gain at a different temperature. Without re-

calibration the error in the residue is given by  

ߝ                          ൌ 	
ଵ

஺భఉ
െ

ଵ

஺బఉ
ൌ 	

ఈ

஺భఉ
                                                          (2) 

This error term must be less than 1/28 to get 12bit ADC performance. Since there are 

other sources of error the aim should be to have this term less than 1/210.  

Figure 6.1 shows simulated DC gain variation across commercial temperature range 

of 0C to 70C for the opamp used in this design. The worst case α is 0.1 leading to an 

error of about 1/210. This means that at least in commercial temperature range re- 

calibration is not necessary. Across a much larger industrial temperature range of        
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-40C to 125C α increases to 0.25 which will mean that we will need a recalibration at 

higher temperatures. 

  

Figure 6.1 Simulated opamp DC gain variation with temperature 

VCO Gain variation 

For the VCO circuit in Figure 4.10 differential frequency variation with temperature 

is determined by two phenomenons working in opposite direction. For a fixed 

reference input, the output current of the differential transconductance pair decreases 

with increasing temperature, causing the differential output frequency to decrease. For 

a fixed bias current the oscillation frequency of the current controlled oscillator 

increases with increasing temperature. This is because of threshold voltage reduction 

at higher temperature. These two trends cancel out the majority of the frequency drift 
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across temperature range.  Figure 6.2 shows the simulated drift of differential 

oscillation frequency for typical corner. Across the commercial temperature range of 

0 to 70C the drift is about 0.3%. Figure 6.3 shows the simulated drift from room 

temperature across the process corners. The worst case drift is about 0.46% . This 

indicates that the VCO design will be good to 11-bit level without any calibration 

needed for temperature drift. The simulation results indicate that the design will need 

recalibration if we need to achieve performance better than 11-bit over a wide 

temperature range. We will discuss how a simple replica circuit can provide the 

corrected calibrated value without interrupting the ADC conversion flow. 

 

 

 

Figure 6.2 VCO differential frequency variations for fixed input 
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Figure 6.3 VCO differential frequency variation for fixed input across corners 

 

6.2 Improving the ADC speed  

We look at two different approaches to improve the conversion speed with this ADC 

architecture. 

6.2.1 Using TDC for phase quantization 

The easiest way to improve the time resolution in this design is to increase the number 

of phases in the ring oscillator. For example we can gain one extra bit of resolution by 

using a seven stage ring oscillator instead of three stage ring oscillator used in this 

design. Another option is to increase the oscillation frequency as the design is still not 

at the edge of process limitations. Both this approaches lead to higher power 
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consumption. One option to increase resolution without increase power consumption 

is to use a combination of counters and time to digital converters (TDC) to quantize 

the VCO phase [117]. The delay cell based TDC discussed in chapter 1 is shown in 

Figure 6.4(a). TDC measures time interval between the rising edge of START signal 

to rising edge of STOP signal in units of buffer delay. The counter counts the integer 

number of cycles of VCO. The fractional count is obtained by the three TDC’s as 

follows. TDC1 measures the time from rising edge of S to the following rising edge of 

the VCO, which is denoted as t1 in Fig 6.4(b). TDC2 measures the VCO time period t2 

whereas as TDC3 measures the time (t3) from falling edge of S to following rising 

edge of VCO. The fractional count is obtained as (t1-t3)/t2. Using TDC’s consumes 

less power than approach just using counters and provides better time resolution 

(~40ps) in this process. 

 

                    

Figure 6.4 (a) Delay based TDC unit. (b) Quantizer timing  
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       6.2.2 Interleaved VCO based ADC 

  One of the key features of the VCO based ADC is that we can obtain higher 

resolution by extending the integration time. We can take advantage of this by using 

time-interleaving of multiple VCOs. Fig 6.5 shows a two channel interleaved VCO 

based ADC with the associated timing. The two VCOs sample the analog input on ‘S’ 

phase which is alternate “high” of Fs signal. The held signal is then integrated in ‘H’ 

phase till it is time to sample the input again. This scheme extends the integration time 

by one full clock period. This leads to an improvement in resolution by a factor (1+ 

k)/k, which equals 3.5 for k of 0.4. This is a key advantage over traditional 

interleaving approaches where a two channel interleaving only gives a factor of two 

improvements. The approach can be extended to interleave more than two VCO based 

ADC. The biggest improvement is achieved by going from single VCO to two 

VCO’s. Further increase in interleaved VCOs leads to linear improvement in 

resolution. 

                  

                            Figure 6.5 Time interleaved VCO ADC 
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As seen from the timing diagram in Fig 6.6, using four interleaved VCOs extends the 

integration time of each individual VCO by a factor of (3 +k)/k which equals 8.5 for a 

k of 0.4. For a fixed resolution this means that ADC can now run at 8.5X faster speed 

than will be possible with a single VCO.  The ring oscillators and counters are digital 

circuits which tend to occupy very small area in advanced CMOS nodes. This means 

that interleaving multiple of these VCO’s is well suited to advance CMOS nodes.  

                          

 
                               

 Figure 6.6 High Speed ADC topology 
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 The performance of a time-interleaved ADC degrades because of gain, offset and 

timing mismatch among the channels [118]. For the VCO based second stage design 

the digital output is given by 

                             FSCOUNT

OFFSETCOUNTINCOUNT
Dout

_

__ 


                                            (3) 
As can be seen from (3) the gain mismatch is calibrated out in this architecture 

because the output is normalized with respect to a COUNT_FS obtained for each 

channel. The offset is similarly calibrated out for each channel. The timing scheme 

shown in Figure 6.2 always samples the input signal on the falling edge of master 

clock so is immune to duty cycle variation on the master clock.  

  ADC architecture in Figure 6.6 precedes the interleaved VCO stage with a 4 bit first 

stage with an MDAC gain of 2. The VCO stage quantizes the residue obtained from 

the first stage. Since the sampling of the input happens in the first stage the 

architecture becomes immune to the timing mismatch in the interleaved second stage. 

The second stage sample and hold (S/H) is a passive circuit with a switch and holding 

capacitor. For a given resolution the 4bits obtained from the first stage extends the 

speed of the interleaved VCO based ADC described above by a factor of 16. The 

VCO in this architecture sees only the residue from first stage. This helps to make the 

VCO more linear and relaxes the linearity requirement on the VCO. 

    A 12 bit, 200Msps ADC based on topology presented above has been designed in 

65nm CMOS process node. The nominal VCO frequency for the design is 3.2GHz.  

The power consumption for the design is 20mW. The design has been simulated with 

mismatches introduced in the different VCO stages. Fig 6.7 shows the output 
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spectrum of the ADC output with a 12.5MHz full scale input signal. The harmonic 

distortion is better than 80dB and the signal to quantization noise ratio is 65dB. 

 
                   Figure 6.7 Simulated PSD of the high speed ADC 

6.3 Improving thermal stability  

As discussed in preceding section the design presented in this thesis needs to be re-

calibrated for temperature change. This means that the A/D conversion needs to halt 

periodically to calibrate the ADC. Based on the simulation results presented in 

previous section calibration may be needed every 20o C to maintain optimal 

performance.  While this may be acceptable in some applications, it may not be 

suitable for applications which need continuous operation over prolonged period of 

time. We need a background calibration scheme which can update the COUNT_FS 

value after initial factory calibration. One of the ways to do this is to use a replica 
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circuit to generate a secondary COUNT_CAL as illustrated in Figure 6.8. At room 

temperature COUNT_CAL will be same as COUNT_FS but as temperature varies 

COUNT_CAL will change. This COUNT_CAL can be used to update the full scale 

COUNT in real time. The replica circuit doesn’t need to be active all the time, so its 

power consumption will be negligible. The replica circuit also doesn’t load the input 

and the reference loading is a very small fraction of overall ADC loading. Only real 

penalty of using the replica circuit is extra area needed for its implementation. As 

discussed in chapter 5 the biggest area contribution in the ADC is the first stage 

MDAC capacitors followed by the flash ADC. The replica circuit doesn’t need the 

flash ADC and we only need one DAC unit capacitor for determining the 

COUNT_FS so the number of unit capacitors can be reduced from 48 to 18. 

Figure 6.8 Replica circuit used for background calibration 
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Also since noise in the replica circuit is not important we can use a smaller unit 

capacitor. Next biggest contributor to area in the current design is the signal 

dependent boost switches which are also not needed in replica design.  We estimate 

the ADC area to increase by about 30% with the addition of replica circuit. 

6.4 Conclusion  

In this chapter we looked at the limitations of the design presented in this thesis. We 

looked at two different topologies which can extend the usable bandwidth of VCO 

based ADC.  A new interleaved VCO topology is proposed in this chapter, which can 

be basis of future work. We also presented a potential background calibration scheme 

for the VCO based ADC. The design presented in this thesis shows that a 12 bit 

Nyquist rate low power ADC can be built with VCO based second stage. The 

performance of the prototype chip is comparable to the state-of-art in terms of figure-

of-merit but this new architecture uses significantly less circuit area. The power 

consumption of the design is dominated by digital blocks and will reduce in more 

advanced CMOS technology nodes. 
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