195 research outputs found

    Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks

    Get PDF
    We explore the following fundamental question - how fast can information be collected from a wireless sensor network? We consider a number of design parameters such as, power control, time and frequency scheduling, and routing. There are essentially two factors that hinder efficient data collection - interference and the half-duplex single-transceiver radios. We show that while power control helps in reducing the number of transmission slots to complete a convergecast under a single frequency channel, scheduling transmissions on different frequency channels is more efficient in mitigating the effects of interference (empirically, 6 channels suffice for most 100-node networks). With these observations, we define a receiver-based channel assignment problem, and prove it to be NP-complete on general graphs. We then introduce a greedy channel assignment algorithm that efficiently eliminates interference, and compare its performance with other existing schemes via simulations. Once the interference is completely eliminated, we show that with half-duplex single-transceiver radios the achievable schedule length is lower-bounded by max(2nk − 1,N), where nk is the maximum number of nodes on any subtree and N is the number of nodes in the network. We modify an existing distributed time slot assignment algorithm to achieve this bound when a suitable balanced routing scheme is employed. Through extensive simulations, we demonstrate that convergecast can be completed within up to 50% less time slots, in 100-node networks, using multiple channels as compared to that with single-channel communication. Finally, we also demonstrate further improvements that are possible when the sink is equipped with multiple transceivers or when there are multiple sinks to collect data

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters

    A New Distributed Slot Assignment Algorithm for Wireless Sensor Network Under Convergecast Data Traffic

    Get PDF
    The scarcest resource for most of the wireless sensor networks (WSNs) is energy and one of the major factors in energy consumption for WSNs is due to communication. Not only transmission but also reception is the source of energy consumption. The lore to decrease energy consumption is to turn off radio circuit when it is not needed. This is why TDMA has advantages over contention based methods. Time slot assignment algorithm is an essential part of TDMA based systems. Although centralized time slot assignment protocols are preferred in many WSNs, centralized approach is not scalable. In this paper, a new energy efficient and delay sensitive distributed time slot assignment algorithm (DTSM) is proposed for sensor networks under convergecast traffic pattern. DTSM which is developed as part of the military monitory (MILMON) system introduced in [27], aims to operate with low delay and low energy. Instead of collision based periods, it assigns slots by the help of tiny request slots. While traditional slot assignment algorithms do not allow assigning the same slot within two hop neighbors, because of the hidden node problem, DTSM can assign, if assignment is suitable for convergecast traffic. Simulation results have shown that delay and energy consumption performance of DTSM is superior to FPRP, DRAND, and TRAMA which are the most known distributed slot assignment protocols for WSNs or ad hoc networks. Although DTSM has somewhat long execution time, its scalability characteristic may provide application specific time durations

    Adaptive TDMA Slot Assignment Using Request Aggregation in Wireless Sensor Networks

    Get PDF
    AbstractTDMA-based MAC protocols are considered an energy effcient solution to prolong wireless sensor network lifetime. However, their drawbacks such as complexity of slot assignment and schedule maintenance and adaptivity to varying traffc conditions are yet to be handled in an effcient way. In this paper we present On-demand Convergecast Scheduling based (OCS) MAC protocol. It is a centralized and adaptive multihop scheduling-based TDMA protocol which supports convergecast applications. OCS adopts a novel requests aggregation mechanism for adaptive slot assignment such that time slots are assigned on-demand to currently active sources as well as relays. The performance of OCS is compared to existing protocols based on simulations in ns-2. Results show that OCS outperforms protocols such as Z-MAC, S-MAC, and others in terms of delay, throughput and energy effciency

    MODESA: An optimized multichannel slot assignment for raw data convergecast in wireless sensor networks

    Get PDF
    International audienceIn aerospace applications, wireless sensor networks (WSNs) collect data from sensor nodes towards a sink in a multi-hop convergecast structure. The throughput requirement of these applications is difficult to meet with a single wireless channel. That is why, in this paper, we focus on a multichannel time slot assignment that minimizes the data gathering cycle. We first formalize the problem as a linear program and compute the optimal time needed for a raw data convergecast in various multichannel topologies. These optimal times apply to sinks equipped with one or several radio interfaces. We then propose our algorithm called MODESA and prove its optimality in various multichannel topologies. We evaluate its performances in terms of number of slots, maximum buffer size and number of active/sleep switches per node. Furthermore, we present variants of MODESA achieving a load balancing between the channels used
    • 

    corecore