
HAL Id: hal-00863360
https://hal.archives-ouvertes.fr/hal-00863360

Submitted on 20 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MODESA: An optimized multichannel slot assignment
for raw data convergecast in wireless sensor networks

Ridha Soua, Pascale Minet, Erwan Livolant

To cite this version:
Ridha Soua, Pascale Minet, Erwan Livolant. MODESA: An optimized multichannel slot assignment
for raw data convergecast in wireless sensor networks. IPCCC 2012 : 31st IEEE International Perfor-
mance Computing and Communications Conference, Dec 2012, Austin, Texas, United States. pp.91 -
100, �10.1109/PCCC.2012.6407742�. �hal-00863360�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49753051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00863360
https://hal.archives-ouvertes.fr

MODESA: an Optimized Multichannel Slot

Assignment for Raw Data Convergecast in

Wireless Sensor Networks

Ridha Soua, Pascale Minet, Erwan Livolant

INRIA Rocquencourt, 78153 Le Chesnay cedex, France

Email: firstname.name@inria.fr

Abstract—In aerospace applications, wireless sensor networks
(WSNs) collect data from sensor nodes towards a sink in a multi-
hop convergecast structure. The throughput requirement of these
applications is difficult to meet with a single wireless channel.
That is why, in this paper, we focus on a multichannel time
slot assignment that minimizes the data gathering cycle. We first
formalize the problem as a linear program and compute the
optimal time needed for a raw data convergecast in various
multichannel topologies. These optimal times apply to sinks
equipped with one or several radio interfaces. We then propose
our algorithm called MODESA and prove its optimality in
various multichannel topologies. We evaluate its performances in
terms of number of slots, maximum buffer size and number of
active/sleep switches per node. Furthermore, we present variants
of MODESA achieving a load balancing between the channels
used.

I. CONTEXT

Data gathering or convergecast applications represent the

main part of applications supported by wireless sensor net-

works (WSNs). These applications generally require small

delays for data gathering and time consistency of gathered

data; this time consistency is usually achieved by a small

gathering period. Collected data from sensors are transferred to

a special entity, called sink, generally more powerful than other

nodes. When the volume of data transmitted by any sensor is

reduced, aggregation techniques are used to increase network

efficiency and throughput. When several samples are transmit-

ted in a single MAC frame, the length of the frame is usually

close to the maximum length allowed by the MAC protocol

(e.g.: 127 bytes for the IEEE 802.15.4 MAC protocol). As a

consequence, no aggregation is possible in the intermediate

nodes (i.e raw data convergecast). Other techniques must be

investigated to achieve network throughput and efficiency. In

this paper, we focus on multichannel techniques to ensure a

small gathering cycle time and a higher throughput.

In many real deployments of WSNs, the channel used by

the WSN usually encounters perturbations such as jamming,

external interferences or noise caused by external sources (e.g.

a polluting source such as a radar) or other coexisting wireless

networks (e.g. WiFi, Bluetooth). Commercial sensor nodes

can communicate on multiple frequencies as specified in the

802.15.4 standard. This reality has given birth to multichannel

This work is partly funded by the FUI project SAHARA.

communication paradigm in WSN. Multichannel WSNs sig-

nificantly expand the capability of single-channel WSNs by

allowing parallel transmissions and avoiding channels that are

congested or whose performances are degraded by interfering

devices.

It is obvious that medium access protocols that are

contention-based protocols are inefficient for periodic data

collection under heavy traffic conditions which drastically in-

crease the probability of collisions and retransmissions. In con-

trast, Time Division Multiple Access, TDMA, is a contention-

free protocol where time is divided into cycles. A cycle is

divided into slots. Interfering nodes are scheduled to transmit

in different slots. Each node transmits data in its allocated

slots. On the one hand, since the TDMA protocol removes

idle listening and overhearing, which are the main sources of

energy drain, TDMA deterministic scheduling is appropriate

for low power devices since nodes turn off their radio in non

scheduled time slots ensuring energy efficiency and prolonging

network lifetime. On the other hand, minimizing the number

of slots in the TDMA cycle is crucial if we want to preserve

the small energy budget of sensors. In multichannel context,

interfering nodes are scheduled to transmit on different chan-

nels for further throughput enhancement. Moreover, nodes near

the sink suffer from heavy traffic. Therefore, we tackle in this

paper the problem of ensuring to any node a medium access

that is proportional to its traffic demand.

In this paper, we focus on a multichannel time slot assign-

ment that minimizes the data gathering cycle. After a state

of the art in Section II, we first formalize the problem as

a linear program in Section III and determine the minimum

number of slots for various multichannel topologies in Section

IV. We then propose our algorithm called MODESA, prove

its optimality for different topologies and present its variants

achieving a load balancing between the channels used in Sec-

tion V. Performances of MODESA are evaluated by simulation

in Section VI. Finally, we conclude in Section VII.

II. STATE OF THE ART

In multichannel WSNs, we distinguish two problems,

namely channel assignment and node/link scheduling. These

problems can be solved separately or jointly. In channel

assignment, each sensor is assigned a physical channel. The

channel can be assigned either to the sender (the receiver has to

91978-1-4673-4883-6/12/$31.00 ©2012 IEEE

switch), or to the receiver (the sender has to switch, multicast

is more complex), or both of them in case of frequency

hopping. Existing multichannel assignment protocols can be

classified [1] according to (1) the frequency of the channel

assignment: (e.g. static, semi-dynamic or dynamic channel

assignment), (2) the channel selection policy: (e.g. round

robin, the least loaded), and (3) the channel coordination

technique used (e.g. dedicated control channel, split phase,

coloring like).

We now detail TDMA based scheduling protocols proposed

in multichannel WSNs. WirelessHART [2] was the first com-

munication standard specially designed to fit critical require-

ments of industrial applications. WirelessHART uses TDMA

to arbitrate communications between devices. To enhance

reliability, TDMA is combined with channel hopping on a per-

transaction (packet + acknowledgment) basis. A fundamental

shortcoming of this standard is that only a single device is

scheduled for transmission in each channel at the same slot.

Hence, there is no spatial reuse of the bandwith.

In [3], authors address jointly the link scheduling and

channel assignment for convergecast in networks operating

according to the WirelessHART standard. Authors have proven

that for linear networks with N single buffer devices, the

minimum schedule length obtained is (2N−1) time slots with

⌈N/2⌉ channels. They present also an algorithm with time

complexity O(N2) to generate the time and channel optimal

convergecast schedule. The solution does not provide spatial

reuse of the bandwith and is restricted to linear topologies

which are not suitable for all real deployments. In addition,

they focus only on single radio interface devices.

TMCP [4] was designed to support data collection traffic. It

begins by partitioning the network into multiple subtrees and

then assigns different channels to nodes belonging to different

subtrees. Hence, it minimizes the interferences between sub-

trees. After the channel assignments, time slots are assigned to

nodes. However, TMCP does not eliminate contention inside

the branches of a subtree since nodes that belong to the same

branch communicate on the same channel.

Y-MAC [5] is a multichannel MAC protocol for WSNs

that requires that nodes share the same wake/sleep duty cycle.

Time slots are not assigned to the senders but to the receivers.

At the beginning of each time slot, potential senders for the

same receiver contend for the medium. When a node needs

to transmit multiple packets to a receiver, these packets are

sent on different channels following a pre-determined hopping

sequence. We notice that Y-MAC has not been designed

for data gathering applications, where the contention around

the sink quickly becomes severe especially in heavy traffic

conditions.

In [6], Ramen et al have proposed PIP : a joint TDMA-

FDMA based bulk transfer protocol. When the sink needs data

from a specific sensor, it establishes a connection with this

latter and downloads data from that node at the highest rate

possible. The major shortcoming of PIP is that the sink can

only collect data from at most two sensors at the same time

(i.e at most two simultaneous connections).

Incel et all [7], have proven that if all interfering links

are removed (with the required number of channels), the

schedule length for raw-data convergecast is lower bounded

by max(2nk − 1, N) where nk is the maximum number of

nodes in any top-subtree of the routing tree and N is the

number of source nodes. They have also proposed an optimal

convergecast scheduling algorithm JFTSS that achieves this

lower bound on any network topology where the routing tree

has an equal number of nodes on each branch. In this paper,

we generalize these theoretical results considering that the sink

has one or more radio interfaces and at least two channels are

available at each node. We also propose an algorithm called

MODESA that reaches these bounds in many multichannel

topologies.

III. MULTICHANNEL SLOT ASSIGNMENT PROBLEM

We are looking for a multichannel slot assignment model

that minimizes the number of slots assigned, under the as-

sumptions described below, and ensures that no two conflicting

nodes transmit simultaneously on the same channel.

A. Assumptions

◦ A1. Node type: We assume two distinct types of node in

the network. The sinks are in charge of gathering data from

the other nodes. These other nodes, called sources, generate

packets they have to transmit towards the sinks.

◦ A2. Node radio interface: The sinks are the only nodes

that have k ≥ 1 radio interfaces. All the source nodes have a

single radio interface. Hence, two children of the same parent

that is not a sink cannot send data simultaneously, even on

different channels, since every source node has a single radio

interface.

◦ A3. Available channels: For the sake of simplicity, we

assume that at each node, nchannel > 1 channels are available.

These channels are numbered from 1 to nchannel. Network

connectivity is assumed on any of these channels and the

1-hop neighborhood of any node is the same on any available

channel. Since any node u different from the sink has a single

radio interface, at most one channel is active at any time on

node u. For the sink, there are at most k active channels

simultaneously.

◦ A4. Data gathering cycle: In each data gathering cycle,

each node except the sink transmits its own data to its parent

in the data gathering tree rooted at the sink and forwards the

data received from its children. For the sake of simplicity, we

assume that the slot size enables the transmission of a single

packet corresponding to the data generated by a node. More-

over, each unicast transmission is acknowledged in the time

slot of the sender, this is called immediate acknowledgment.

◦ A5. Conflicting nodes: Two nodes are said conflicting

on a given channel if and only if they cannot transmit in the

same time slot on this channel.

◦ A6. Ideal environment: In this paper, we assume there

is neither message loss, nor node failure.

92

B. Formalization of the problem

The network is formalized as a graph G = (V,E) where

V is the set of vertices representing network nodes and E
is the set of edges representing the communication links. Let

V = Vs

⋃
Vg , where Vs is the set of source nodes in the

network and Vg represents the set of gateways acting as sinks,

with Vs

⋂
Vg = ∅.

For each node v ∈ V , we define I(v) the set of nodes

that interfere with v when transmitting on the same channel.

Moreover, let iv denote the number of physical interfaces

available at the node v. For any source s, let ps be the number

of packets that it has to transmit in the TDMA cycle. For any

link e, let fe,s denote the number of packets generated by the

source s and sent over the link e during the TDMA cycle. Let

E+(v) denote the set of links through which a node v can

transmit. Let E−(v) be the set of links through which a node

v can receive.

Let C be the set of the nchannel channels available for any

transmission. We define ae,c,t the activity of a link e on the

channel c in the time slot t, ie ae,c,t = 1 if and only if there

is a transmission of a packet on the link e on the channel c in

the time slot t and ae,c,t = 0 otherwise. Furthermore, let ut

be the use of a slot t, in other words ut = 1 means that there

is at least one link activity on any channel in the slot t and

ut = 0 denotes an empty slot.

We can compute Tmax, an upper bound of the cycle length.

This bound is reached when all packets are sent sequentially

on the same channel. We then have: Tmax =
∑

s

∑
e fe,s ∗

depths where depths is the depth of node s in the the data

gathering tree. The objective is to minimize the number of

slots t ≤ Tmax.

min
∑

t≤Tmax

ut

with the following constraints:

ae,c,t ≤ ut

∀e ∈ E, ∀c ∈ C, t ≤ Tmax

(1)

ae,c,t + ae′,c,t ≤ 1

∀v ∈ V, ∀e ∈ E
+
(v),

∀w ∈ I(v), ∀e
′
∈ E

+
(w),

∀c ∈ C, t ≤ Tmax

(2)

∑

c∈C

∑

e∈E+(v)

ae,c,t +
∑

c∈C

∑

e′∈E−(v)

ae′,c,t ≤ iv

∀v ∈ V, t ≤ Tmax

(3)

∑

s∈Vs

fe,s =
∑

c∈C

∑

t≤Tmax

ae,c,t

∀e ∈ E

(4)

∑

e∈E+(s)

fe,s = ps

∀s ∈ Vs

(5)

∑

g∈Vg

∑

e∈E−(g)

fe,s = ps

∀s ∈ Vs

(6)

∑

s∈Vs

∑

e∈E+(i)

fe,s = pi +
∑

s∈Vs

∑

e∈E−(i)

fe,s

∀i ∈ Vs

(7)

∑

c∈C

∑

e∈E+(i)

ae,c,t ≤
∑

c∈C

∑

e∈E−(i)

∑

t′∈{1..t−1}

ae,c,t′ + pi

−
∑

c∈C

∑

e∈E+(i)

∑

t′∈{1..t−1}

ae,c,t′

∀i ∈ Vs, t ≤ Tmax

(8)

Constraint 1 binds the use of a time slot to at least the

activity of one link on any channel in the slot. Constraint

2 ensures that two conflicting nodes do not transmit on the

same channel in the same time slot. Constraint 3 guarantees

that the number of simultaneous communications for a node

is limited to its number of interfaces. Constraint 4 ensures the

mapping between the activities on all channels and the packets

sent on links. Constraints 5, 6 and 7 express the conservation

of messages between the sources and the sinks. The last

constraint guarantees that any node receives or generates a

packet before transmitting it.

C. Illustrative Examples

An optimal multichannel time slot assignment can be ob-

tained by linear programming tools such as GLPK (GNU

Linear Programming Kit) [8] based on this model. Figure 1

shows the optimal number of slots nbs for different single-

sink topologies (linear 1(a), multiline 1(b), balanced tree 1(c)

and tree 1(d)) with various number of sink interfaces k and

channels nchannel. These optimal results are reached by the

MODESA algorithm presented in Section V.

1

2

3

4

5

(a)
(1;2)=7

1

2 3 4

5 6 7

8 9

10

(b) (1;2)=9
(2;2)=7 (3;3)=7

1

2 3 4

5 6 7 8 9 10

(c) (1;2)=9 (2;2)=6 (3;3)=5

1

2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19

20

(d) (1;2)=19 (2;2)=13 (3;3)=13

Fig. 1. The optimal number of slots nbs for various topologies with different
number of sink interfaces k and channels nchannel with the notation:
(k;nchannel)=nbs.

93

We will see in the next section that we distinguish two types

of network topologies where the optimal number:

• is imposed by the most populated subtree: see for instance

Figures 1(b) and 1(d), both with two sink interfaces. In

Figure 1(d), there are two most populated subtrees rooted

at nodes 2 and 3 respectively.

• depends only on the number of nodes and the number of

interfaces of the sink: see for instance Figures 1(c) and

1(d) both with a single sink interface.

We can observe that a given topology may belong to one type

or another depending on the number of sink interfaces (e.g.

Figures 1(c) and 1(d) for a single sink interface belong to the

first type and for two sink interfaces to the second type).

IV. THEORETICAL BOUNDS ON THE NUMBER OF SLOTS

A. Additional assumptions

◦ A6. Neighborhood: Two nodes u and v are 1-hop neighbors

if and only if their distance is lower than or equal to the

transmission range R. For any integer h > 1, any two nodes

u and v are h-hop neighbors if and only if u is (h − 1)-hop

away from a 1-hop node of v.

◦ A7. Interferences: We assume that interferences are limited

to 2 hops. Consequently, we assume that any two nodes u
and v within 2-hop neighborhood from each other do not

transmit in the same time slot on the same channel.

◦ A8. Topology links: We also assume that the only topology

links are those represented in the convergecast tree.

Theorem 1: In any WSN with N nodes, a lower bound on

the number of slots required by a raw data convergecast is

⌈ N−1
min(k,nc,nchannel)

⌉, where k ≥ 1 is the number of interfaces

of the sink, nc is the number of children of the sink and

nchannel > 1 the number of available channels at each node.

Proof: In any network with N nodes, the sink has

to receive N − 1 messages from its children. The number

of simultaneous transmissions to the sink is limited by the

number of children and the number of sink interfaces as well

as the number of available channels (each interface using its

own channel). Hence, the number of slots needed is higher

than or equal to ⌈ N−1
min(k,nc,nchannel)

⌉. Hence the theorem.

B. Linear networks

Theorem 2: In linear networks where each node has

nchannel > 1, the minimum number of slots for a raw data

convergecast is 2N − 3, where N is the number of nodes

including the sink, whatever the number of interfaces of the

sink.

Proof: Consider a linear network with N nodes, where

nodes are numbered from 1 to N , starting by the sink node.

Any node i > 1 is at a distance i − 1 < N from the sink.

Node 2 needs to transmit N − 1 packets to the sink (node 1)

and needs to receive N−2 packets from node 3. Since node 2
has a single interface, these transmissions cannot overlap. As

a consequence, a lower bound on the number of slots is equal

to N − 1 +N − 2 = 2N − 3.

This bound is reached by the algorithm that schedules:

• in any odd slot, any node that is (2h+1)-hop away from

the sink, with h ∈ [0, ⌊N−1
2 ⌋];

• in any even slot, any node that is 2h-hop away from the

sink, with h ∈ [1, ⌊N−1
2 ⌋].

Hence the theorem.

C. Tree networks

Theorem 3: In tree networks, a lower bound on

the number of slots for a raw data convergecast is

Max(⌈ N−1
min(k,nc,nchannel)

⌉, 2n1 − 1 + δ), where N is

the number of nodes including the sink, n1 is the maximum

number of nodes in a subtree rooted at a sink child and nc

the number of sink children and δ = 1 if the number of

nodes of the (1 + min(k, nc, nchannel))
th most populated

subtree rooted at a sink child is equal to the number of the

most populated one, 0 otherwise.

Proof: Let g = min(k, nc, nchannel). The sink requires

⌈N−1
g

⌉ time slots to receive all the packets generated in the

network as seen in Theorem 1. Furthermore, each child of

the sink has at least one packet to transmit. Moreover, let

us consider the child of the sink with the highest number of

descendants. Let n1 be the number of nodes in the subtree

rooted at this child. This latter requires n1 − 1 slots to

receive the packets from its children and n1 slots to transmit

its packets to the sink. Since all these transmissions are

sequential, at least 2n1 − 1 slots are needed. If the (g + 1)th

most populated subtree has a number of nodes equal to n1,

then its schedule will require an additional slot. Indeed the

schedule of this subtree requires the same number of slots

as the first one. However, the (g + 1)th sink child starts to

transmit at the second slot, that is a slot later. Indeed, at the

first slot, all the available interfaces of the sink are used by

the g children of the sink having the most populated subtrees.

Consequently, the schedule of this subtree will end a slot after.

Hence, the value of δ and the theorem.

Notice that a multi-line topology can be seen as a specific

case of a tree topology.

D. Optimal schedule

In this section, we build an algorithm that reaches the

bounds given in the previous theorems. As a consequence,

these bounds are optimal as well as the algorithm. The

basic idea of this optimal algorithm is to maintain the

g = min(k, nc, nchannel) interfaces of the sink busy as

long as possible. We first notice that for a linear topology,

the algorithm given for the proof of theorem 2 meets this

requirement. We now extend this algorithm to tree topologies.

This algorithm, called FlipFlop, proceeds as follows:

First, it orders all the subtrees rooted at a sink child according

to the decreasing number of nodes. The g first subtrees form

the first group, the next g subtrees form the secong group

and so on until the last one. We first consider the case where

g ≤ nc ≤ 2g, there are at most 2 groups.

This algorithm schedules in the odd slots:

• the nodes of odd depth in the subtrees 1 to g, including

the sink children belonging to the first group,

94

• the nodes of even depth in any other subtree.

It schedules in the even slots:

• the nodes of even depth in the subtrees 1 to g,

• the nodes of depth 1 in subtrees g + 1 to 2g,

• the nodes of odd depth > 1 in any subtree > g.

Furthermore, this schedule meets the following rules:

• If several nodes have the same parent that is not the sink,

they are scheduled round robin.

• In the same subtree, two 2-hop nodes that are scheduled

in the same time slot transmit in different channels. For

instance, channel 1 is used at depth 1, 5, and 9, whereas

channel 2 is used at depth 3, 7 and 11...

• As soon as the schedule of a subtree is completed, the

first sink child that has never been scheduled is scheduled.

A slot where the g interfaces of the sink are not busy is

said uncomplete.

Theorem 4: In a multichannel WSN the optimal number of

slots for a raw data convergecast is:

• 2n1 − 1 if nc = g;

• 2n1 − 1 + δ if g + 1 ≤ nc ≤ 2g;

with g = min(k, nc, nchannel), n1 is the maximum number

of nodes in a subtree rooted at a sink child, nc the number of

sink children and δ = 1 if the number of nodes of the (g+1)th

most populated subtree rooted at a sink child is equal to n1,

0 otherwise. In both cases, the FlipFlop algorithm is optimal.

Proof: When there is only one group, nc = g, it is clear

that the FlipFlop algorithm requires exactly 2n1−1 slots, that

is the lower bound. Hence, the FlipFlop algorithm is optimal.

If there are two groups, g + 1 ≤ nc ≤ 2g, the FlipFlop

algorithm schedules in the odd slots the sink children of the

first group and in the even slots the sink children of the second

group. We distinguish two cases:

• if the size of the (g + 1)th subtree is identical to the

size of the first subtree, the FlipFlop algorithm requires

an additional slot to complete the schedule of the second

group. 2n1 slots are used, that is the optimal number.

• otherwise, the FlipFlop algorithm does not need any

additional slots. Hence, it uses 2n1 − 1 slots for its

schedule.

In both cases, the FlipFlop algorithm is optimal.

Theorem 5: In a multichannel WSN, the FlipFlop algorithm

is not optimal for 3 groups.

Proof: We just point out an example where the FlipFlop

algorithm is not optimal. We consider a multiline topology

with 16 nodes, 2 sink interfaces, 2 channels and 5 sink

children. Hence, g = min(2, 2, 5) = 2. The topology is

depicted in Figure 2. We notice that the third group contains

only one subtree rooted at a sink child. The FlipFlop algorithm

needs 9 slots, whereas the optimal slot number is 8 = ⌈N−1
g

⌉.

This can be explained by the fact that there are 3 > g = 2
slots where only the last sink child transmits.

Theorem 6: In a multichannel WSN, the optimal number of

slots for a raw data convergecast is: max(⌈N−1
g

⌉, 2n1−1+δ),
if nc > 2g, where N is the number of nodes including the

1

2 3 4 5 6

7 8 9 10 11

12 13 14 15 16

Fig. 2. An example of topology with 16 nodes and 2 sink interfaces where
FlipFlop is not optimal.

sink, g = min(k, nc, nchannel), n1 is the maximum number

of nodes in a subtree rooted at a sink child, nc the number of

sink children and δ = 1 if the number of nodes of the (g+1)th

most populated subtree rooted at a sink child is equal to n1,

0 otherwise.

Proof: We now consider the case nc > 2g and prove

by induction that there exists an algorithm that uses nslot =
max(2n1 − 1 + δ, ⌈N−1

g
⌉). This is true for nc = N − 1,

in this case the sink has nc children which are leaves. Each

sink child has exactly one message to transmit. In each slot,

the algorithm schedules a group. Consequently, the number

of slots needed is nslot = ⌈N−1
g

⌉. Since n1 = 1, we have

max(2n1 − 1 + δ, ⌈N−1
g

⌉) = ⌈N−1
g

⌉.

Let us consider any topology with N nodes and nc > 2g.

From this topology, we can build a topology with N − 1
nodes by removing a node in the last group, while maintaining

the non increasing order of the number of descendants in the

subtrees. According to our induction assumption, there exists

an optimal algorithm that schedules any topology with N − 1
nodes and nc ≥ 2g in nslot = max(2n1 − 1 + δ, ⌈N−2

g
⌉).

With regard to the scheduling of the topology with N − 1
nodes, the node inserted and all its ascendants require the

transmission of an additional message. These transmissions,

except the transmission by the root of this subtree, do not

require any sink interface, we schedule them at the earliest

(i.e. in the first slot where it is possible), in parallel with

other nodes, without requiring any additional slot. It follows

that the only transmission that remains to be scheduled is the

transmission done by the root of the subtree involved. Let

child denote this node. We consider two cases:

• 2n1−1+ δ ≥ ⌈N−1
g

⌉: the schedule length is imposed by

the two first groups.

Since the associated topology with N − 1 nodes is

obtained by removing a node in the last group and the

number of groups is strictly higher than two, we also

have 2n1 − 1 + δ ≥ ⌈N−2
g

⌉. According to our induction

assumption, there exists an algorithm that reaches this

bound of 2n1 − 1+ δ. We modify this schedule to insert

the additional transmissions required by the insertion of a

node, as explained previously. The transmission of child
can be scheduled in the last uncomplete slot where child
is not transmitting. Such a slot exists, since child does not

belong to the two first groups that impose the schedule

length and the message originated from the inserted node

has already reached child.

95

• ⌈N−1
g

⌉ > 2n1 − 1 + δ.

Since the associated topology with N − 1 nodes is

obtained by removing a node in the last group and the

number of groups is strictly higher than two, we also

have ⌈N−2
g

⌉ ≥ 2n1 − 1 + δ. According to our induction

assumption, there exists an algorithm that reaches this

bound of ⌈N−2
g

⌉. We modify this schedule to insert the

additional transmissions required by the insertion of a

node, as explained previously. For the transmission of

child, we consider two cases:

– ⌈N−2
g

⌉ = ⌈N−1
g

⌉, there are uncomplete slots in the

schedule of the N−1 topology. We distinguish again

two subcases:

∗ If in the last uncomplete slot, child is not transmit-

ting then the transmission of child can be sched-

uled in this slot. Notice that the message origi-

nated from the inserted node has already reached

child. Hence, the number of slots required for

the N node and the N − 1 node topologies are

identical.

∗ Otherwise, we go backward to find a slot such

that a sink child other 6= child that does not

transmit in the last slot is transmitting and no child

of child is transmitting. We then exchange the

transmissions of child and other. Consequently,

we have found a schedule for the N node topology

with the same number of slots than the N − 1
topology, such that all messages sent by the new

inserted node are transmitted to the sink.

– ⌈N−2
g

⌉ = ⌈N−1
g

⌉−1, there is no slot in the schedule

of the N−1 topology where the transmission of this

sink child can be done. Hence, an additional slot is

inserted at the end of the schedule.

Consequently, we have established a schedule for the N
topology that reaches the bounds. Hence, the theorem.

V. MODESA: MULTICHANNEL OPTIMIZED DELAY TIME

SLOT ASSIGNMENT

The aim of this section is to propose a centralized raw

data convergecast scheduling, called MODESA, that takes into

account the availability of multiple channels to reduce the

TDMA cycle length while ensuring a fair medium access.

A. Principles

MODESA builds the multichannel scheduling slot by slot

applying the following rules:

1) Any node has a dynamic priority. The priority is equal

to remPckt ∗ parentRcv where remPckt means the

number of packets the node has in its buffer at the

current iteration. parentRcv is the total number of

packets the parent of the node has to receive in a cycle.

The idea behind this heuristic is to reduce the number

of buffered packets by favoring nodes having packets to

transmit to a parent with a high number of descendants.

2) Nodes compete for the current time slot if and only if

they have data to transmit.

3) In addition to be allowed to transmit in a slot, a node

and its parent must have an available interface.

4) For any slot, the first scheduled node is the node

having the highest priority among all the nodes having

data to transmit. If two nodes have the same priority,

MODESA chooses the node with the smallest identifier.

The selected node is scheduled on the first channel c in

the greedy variant.

5) Any node can be scheduled in the current time slot on

channel c if it does not interfere with nodes already

scheduled on channel c in this slot.

6) Conflicting nodes that interfere with nodes already

scheduled in this slot are scheduled on a different

channel.

B. The MODESA algorithm

MODESA pseudo-code is given by Algorithm 1. The algo-

rithm iterates over N the set of nodes having data to transmit

and sorted according to their priorities. In each iteration, the

algorithm determines among these nodes the set of nodes that

are assigned to the current time slot t. The node u with the

highest priority that has an available interface as well as its

parent is scheduled first. Then MODESA iterates on the set of

nodes sorted according to their priority. Nodes which are non

conflicting are allocated to the same channel. In contrast, any

other node in the sorted set N is assigned the same time slot

but on a different channel if it conflicts with nodes already

assigned to the current slot.

C. Optimality of MODESA

A tree is said balanced if and only if at each level l, the

number of children is the same for all nodes belonging to level

l.
Theorem 7: When nchannel > 1, MODESA is optimal for

linear, multiline and balanced tree topologies.

Proof: We consider three cases:

• First case: linear topologies

The behavior of MODESA and FlipFlop are identical:

odd (even respectively) slots schedule the transmissions

of nodes at an odd (even respectively) distance from the

sink. Hence, MODESA is optimal for linear topologies.

• Second case: multiline topologies

– When there is a single group, all sink children are

scheduled in parallel. The number of slots is the

one needed to schedule the first sink child. Hence,

MODESA is optimal.

– When there are two groups, MODESA schedules

in the first slot the sink children of the first group

because of their higher number of packets to receive

and in the second slot the sink children of the second

group. With two groups, a child of a sink child

has never a priority higher than its parent, when

this parent has at least one message to transmit.

Hence, MODESA behaves exactly like FlipFlop.

Since FlipFlop is optimal, MODESA is optimal too.

96

Algorithm 1 MODESA algorithm with the greedy variant

1: Input: nchannel channels, a spanning tree T , where each node
u has iu radio interfaces, du packets to transmit and a set of
conflicting nodes Conflict(u).

2: Output: The scheduling of nodes in the TDMA cycle
3: /* Initialization phase */
4: Initialize priority and traffic demand du for each node u
5: t← 0 // current time slot
6: /* Scheduling phase */
7: while

∑
u
du do // there are packets to transmit

8: Initialize number of available interfaces of nodes
9: Initialize conflicting nodes on channel c, conflictc ← ∅, ∀c =

1..nchannel

10: N ← list of nodes having data to transmit and sorted according
to their priorities.

11: t← t+ 1
12: /* Assignment of slot t */
13: while N 6= ∅ do
14: Tx← False, nChannelReached← False
15: repeat
16: Select node v with the highest priority in N
17: N ← N \ {v}
18: until iv > 0 and iparent(v) > 0
19: c← 1 // selected channel
20: repeat
21: if v /∈ conflictc then
22: Node v transmits in slot t on the channel c
23: dv ← dv − 1
24: dparent(v) ← dparent(v) + 1
25: iv ← iv − 1
26: iparent(v) ← iparent(v) − 1
27: conflictc ← conflictc ∪ Conflict(v)
28: Tx← True
29: else
30: if c < nchannel then
31: c← c+ 1 // change of selected channel
32: else
33: nChannelReached← true
34: end if
35: end if
36: until Tx || nChannelReached
37: end while
38: Update priority of nodes
39: end while

– When there are more than two groups, we distinguish

two cases:

∗ If 2n1 − 1 + δ ≥ ⌈N−1
g

⌉, the most populated

line determines the schedule length. Let c1 be the

sink child corresponding to this line. In any slot,

MODESA schedules either c1 or the child of c1,

keeping c1 always active, either transmitting to

the sink or receiving from its child. This gives

the optimal schedule for this line. Furthermore,

MODESA completes the schedule of any slot with

the other sink children that have not yet received

the slots they need, while keeping busy the g sink

interfaces as long as possible. Hence, MODESA

gets the optimal number of slots.

∗ Otherwise 2n1 − 1 + δ < ⌈N−1
g

⌉, the schedule

length is determined by the number of nodes and

g. As long as g sink children have not received

the slots they need, MODESA maintains busy the

g sink interfaces. Furthermore, MODESA uses

a variable Round Robin that ensures that the

schedule of the nc modulo g last sink children

is never entirely postponed at the end. This is

the difference with FlipFlop, where more than

g uncomplete slots (i.e. slots with some sink

interfaces inactive) may exist.

In both cases, MODESA maintains busy the g
interfaces of the sink as long as possible. It is not

possible to use a lower number of slots to schedule

the sink children. Hence MODESA is optimal for

multilines.

• Third case: balanced trees

– When there is a single group, all subtrees are

scheduled in parallel. The number of slots is the

one needed to schedule the first subtree. Hence,

MODESA is optimal.

– When there are two groups, MODESA schedules

in the first slot the sink children of the first group

because of their higher number of packets to receive

and in the second slot the sink children of the second

group. Notice that depending on the number of sink

children in the second group, some of g of the

interfaces of the sink may be unused. In the third slot,

it is again the sink children of the first group. The

sink children of the second group occupy the fourth

slot. Hence, MODESA schedules in round robin the

sink children of the first group and the sink children

of the second group. Other nodes are scheduled in

the slots where they do not conflict. MODESA uses

the same number of slots as the FlipFlop algorithm.

It is optimal.

– When there are more than two groups, MODESA

schedules successively in the ⌊nc

g
⌋ first slots the sink

children of the ⌊nc

g
⌋ first groups. We distinguish two

subcases:

∗ If the last group contains exactly g sink children,

MODESA repeats the nc

g
first slots to schedule

the sink children until they have transmitted all

their messages.

∗ Otherwise the behavior of MODESA differs a

little insofar as in the ⌈nc

g
⌉th slot, it schedules the

p < g sink children of the last group with the g−p
first sink children of the first group. It continues

with in the next slot, the p last sink children of

the first group with the g−p first sink children of

the second group...

In both cases, MODESA maintains busy the g inter-

faces of the sink as long as possible. It is not possible

to use a lower number of slots to schedule the sink

children: MODESA is optimal for balanced trees.

97

Notice that in the example given in the proof of Theorem 5,

MODESA provides 8 slots, the optimal number.

D. Variants of MODESA

MODESA has been presented with the greedy variant for

channel allocation. In this variant, channels are allocated in

arbitrary order that is the same for all time slots. We notice that

the first channel can be saturated, whereas the others can be

empty. In order to provide load balancing, we propose several

variants:

1) Round Robin: channels are considered in a circular

order, depending on the current time slot.

2) Least used channel: we first favor the least used channel

among the whole network (i.e. the channel with the

smallest number of transmissions).

3) Least used 2-hop channel: on any node up to 2-hop from

the selected node, we compute the maximum or average

load of any channel and select the channel with the least

load.

VI. PERFORMANCE EVALUATION OF MODESA

We developped a GNU Octave [9] based simulation tool

and performed simulation with different WSN topologies. We

suppose that all nodes except the sink have a single radio

interface and we vary the number of sink radio interfaces from

1 to 3. The number of channels available at each node is equal

to the maximum of 2 and the number of sink interfaces is

equal to one, unless otherwise stated. We make vary N the

number of nodes from 10 to 100 and generate random trees

where the maximum number of children is limited to 3. We

use Galton-Watson process as a branching stochastic process

to generate random trees: each node gives birth to a random

number of children independently of the others and according

to the same distribution. In addition, we assume that the only

existing links are those in the tree. In the following, each result

is an average of 20 runs for small topologies (≤ 30 nodes) and

100 runs for large topologies.

Fig. 3. Optimality of MODESA in TS and TN configurations.

We first evaluate the optimality of MODESA considering

two types of configurations, depending on whose factor im-

poses the optimal schedule length:

• The size of the most populated subtree, denoted type TS ,

where 2n1 − 1 + δ > ⌈N−1
g

⌉;

• The number of nodes and g, denoted type TN , where

2n1 − 1 + δ ≤ ⌈N−1
g

⌉.

As depicted in Figure 3, we notice that in random trees with

100 nodes, MODESA is optimal in respectively 89% of the

TS configurations tested and 74% of the TN configurations

tested, respectively. This illustrates the merit of MODESA.

We now only consider configurations where MODESA is

not optimal and quantify the drift between MODESA and an

optimal schedule with regard to the number of slots needed.

For this purpose, we evaluate for each type of configuration the

schedule length obtained by MODESA, denoted LMODESA

and the optimal one, LOptimal. We compute the inaccuracy of

MODESA as
LMODESA−LOptimal

LOptimal
. The inaccuracy of MOD-

ESA is depicted in Figures 4(a) and 4(b) for topologies of type

TS and TN respectively. The maximal inaccuracy is 13% for

the TS and 10.5% for the TN configurations, demonstrating

the very good behavior of MODESA. The average inaccuracy

in both TS and TN configurations is below 8.5%.

 0

 5

 10

 15

 10 20 30 40 50 60 70 80 90 100

In
a
c
c
u
ra

c
y
 %

Number of nodes

Max
Average

(a)

 0

 5

 10

 15

 10 20 30 40 50 60 70 80 90 100

In
a
c
c
u
ra

c
y
 %

Number of nodes

Max
Average

(b)
Fig. 4. Inaccuracy of MODESA in (a) TS configurations (b) TN configu-
rations.

We now detail the performances of MODESA in terms

of schedule length, throughput, radio switches per node in

a schedule and buffer size, considering various multichannel

configurations.

Figure 5(a) depicts the total number of slots for MODESA

considering different numbers of channels. We observe that

even when the sink has a single radio interface, the use of

multichannel drastically decreases the TDMA cycle length:

for example with 100 nodes, the use of only two channels

decreases the number of slots by 12.82% (20 slots). With a

single interface of the sink, the best performances are achieved

when the number of channels is equal to two. When the sink is

equipped with multiple interfaces, we observe also a reduction

of the number of slots. Moreover, we notice that there is no

interest to equip the sink with a number of radio interfaces

greater than the number of its children. We also observe that

it is useless to have a number of channels higher than the

number of sink interfaces when this latter is greater than 1.

In addition, reducing the radio state switches is crucial

to save the energy of sensors. Therefore, for each node, we

compute its number of switches as the number of times the

node alternates between the sleep and active radio states in a

cycle. Figure 5(b) shows that the number of switching between

active ad sleep states is decreased by the only use of two

98

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
s
lo

ts

Number of nodes

MODESA(1i;1ch)
MODESA(1i;2ch)
MODESA(2i;2ch)
MODESA(3i;3ch)

(a)

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

ra
d

io
 (

s
le

e
p

/a
c
ti
v
e

)
c
h

a
n

g
e

s

Number of nodes

MODESA(1i;1ch)
MODESA(1i;2ch)
MODESA(2i;2ch)
MODESA(3i;3ch)

(b)

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

M
a

x
 n

u
m

b
e

r
o

f
b

u
ff

e
r

Number of nodes

MODESA(1i;1ch)
MODESA(1i;2ch)
MODESA(2i;2ch)
MODESA(3i;3ch)

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

Number of nodes

MODESA(1i;1ch)
MODESA(1i;2ch)
MODESA(2i;2ch)
MODESA(3i;3ch)

(d)

Fig. 5. MODESA performance regarding (a) the number of required slots (b)
the number of radio switches (c) the maximum buffer size (d) the throughput.

channels for a sink with one or two interfaces, and a number

of channels equal to the number of sink interfaces otherwise.

Another parameter which directly affects the execution of

MODESA is the maximum number of buffers. So we also

evaluate the maximum number of buffers required in a node

during a TDMA cycle. Figure 5(c) demonstrates that MOD-

ESA with a single channel ensures the smallest number of

required buffers. In multichannel wireless networks, the single

radio interface uses more buffers than multi radio interfaces.

This can be explained by the parallel transmissions allowed

by the presence of at least two channels.

Finally, we evaluate the throughput. This latter is defined as

the number of times where the sink receives packets divided

by the total number of slots. As illustrated in Figure 5(d),

the use of multi radio interfaces achieves higher throughput.

Moreover, in case of sink equipped with one radio interface,

the use of multichannel guarantees higher throughput than

the single channel network.

We now focus on different variants of MODESA that tend

to balance a channel load as said in Section V. We notice that

all these variants of MODESA provide the same number of

slots. On the first hand, we analyse the impact of variants of

MODESA on the number of channel switches per node.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

c
h

a
n

n
e

l
s
w

it
c
h

e
s

Number of nodes

Greedy(1i;3ch)
Round Robin(1i;3ch)

Least Used(1i;3ch)
Least Used 2-hop(1i;3ch)

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

c
h

a
n

n
e

l
s
w

it
c
h

e
s

Number of nodes

Greedy(2i;3ch)
Round Robin(2i;3ch)

Least Used(2i;3ch)
Least Used 2-hop(2i;3ch)

(b)
Fig. 6. Channel switching in case of sink equipped with (a) 1 interface and
3 channels (b) 2 interfaces and 3 channels

Figure 6 shows that all these variants of MODESA achieve

a small number of channel switches leading to a minimized

medium access time. As expected, the greedy variant achieves

99

the lowest number of switches. As illustrated in the Fig-

ures 6(a) and 6(b), greedy has the same behaviour in the two

curves. This can be explained by the fact that with one or two

interfaces for the sink, two channels are sufficient to schedule

nodes transmissions. The greedy variant does not use the third

channel.

Figure 7 depicts channels loads achieved by different MOD-

ESA variants. As illustrated, the least used variant outperforms

greedy, Round Robin and least used 2-hop in balancing

the number of times a particular channel is used. Hence,

it minimizes the co-channel interferences. However, Round

Robin provides the best trade off between the implementation

simplicity and a channel load balancing.

(a)

(b)

Fig. 7. Channel load in topology with 100 nodes and sink equipped with a)
1 interface and 3 channels (b) 2 interfaces and 3 channels

VII. CONCLUSION

In this paper we have shown how multichannel commu-

nications contribute to achieve the application requirements

in an aerospace WSN. They increase network capacity by

allowing parallel transmissions and improve communication

reliability by avoiding noisy channels. Our key results in this

paper are twofold. First, we have generalized the state of the

art results for the optimal number of slots required by a raw

data convergecast in multichannel WSNs in case of a sink

equipped with k ≥ 1 radio interfaces. We have shown also

that for a sink with a single interface, it is useless to have a

number of channels higher than two, since the optimal number

of slots is already reached with two channels. For a sink with

k multiple radio interfaces, k > 1, k channels are sufficient to

get the optimal schedule length. As a second contribution, we

have proposed our MODESA algorithm and have proved its

optimality in many multichannel topologies of WSNs. Simula-

tion results show that MODESA needs a small buffer size and

reduces the number of radio active/sleep switches per node

in a cycle. In addition, we described variants of MODESA

that balance traffic load between channels. Furthermore, we

can improve MODESA by adopting the behavior of FlipFlop

when there are exactly one or two groups, making it optimal

even in case of unbalanced trees.

REFERENCES

[1] R. Soua, P. Minet, A survey on multichannel assignment protocols in

wireless sensor networks, IFIP Wireless Days, Niagara Falls, Ontario,
Canada, October, 2011.

[2] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, M. Nixon, Wire-

lessHART: Applying Wireless Technology in Real-Time Industrial Process

Control, In. Proc. IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’08), St. Louis, MO, United States, April,
2008.

[3] H. Zhang, P. Soldati, M. Johansson, Optimal Link scheduling and channel

Assignment for convergecast in linear WirelessHART Networks, In. Proc.
international conference on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks (WiOPT’09), Seoul, Korea, June, 2009.

[4] Y. Wu, J. Stankovic, T. He, S. Lin, Realistic and efficient multi-channel

communications in wireless sensor networks, In. Proc. INFOCOM’08,
Phoenix, AZ, USA, 2008.

[5] Y. Kim, H. Shin, H. Cha, Y-MAC: An Energy-Efficient Multi-channel

MAC Protocol for Dense Wireless Sensor Networks, In. Proc. IPSN’08,
St. Louis, Missouri, USA, 2008.

[6] B. Raman, K. Chebrolu, S. Bijwe, V. Gabale, PIP: A Connection-

Oriented, Multi-Hop, Multi-Channel TDMA-based MAC for High

Throughput Bulk Transfer , In. Proc. ACM Conference on Embedded
Networked Sensor Systems (Sensys 2010), Zurich, Switzerland, Novem-
ber, 2010.

[7] O. D. Incel,A. Gosh, B. Krishnamachari, K. Chintalapudi, Fast data

Collection in Tree-Based Wireless Sensor Networks, IEEE Transactions
on Mobile computing, vol. 1, pp. 86-99, 2012.

[8] http://www.gnu.org/software/glpk/
[9] http://www.gnu.org/software/octave/

100

