2,246 research outputs found

    Optical fibre local area networks

    Get PDF

    Multiple access satellite communication final report, 20 aug. 1962 - 20 aug. 1963

    Get PDF
    Multiple access satellite communication system

    The Design of FTTH Network

    Get PDF
    The aim of this thesis is to explain the problems of optical access networks with wavelength division multiplexers, main purpose is to demonstrate the difference between theoretical and real measurement. The work is divided into several thematic areas. The introduction outlines the basic of telecommunications, fiber optics lasers, single mode, multimode, lasers fibers cables & cores, splitters division multiplexing system, there are known solutions discussed fundamental wavelength multiplexes and their possible combinations. The following chapter deals with the active elements such as AON, PON, which are essential part xWDM systems such as optical lasers, detectors and amplifiers. Another chapter focuses on passive elements, which form a key part of the wavelength multiplex. Methods of measurement of WDM/PON networks are discussed in the following part. The next section describes the topology used active and passive optical networks. The penultimate part of the work consists of architecture & technology of xWDM such as GPON and WDM-PON networks and comparing their transmission parameters. The final part of the paper presents the results of practical experimental measurements of optical access networks with wavelengths division multiplex while these results are compared with the theoretical output & methods of Optical lost test, OTDR & LSPM, with advantage & disadvantage of every methods. The second part of practical is the draft to the connection resident housing units of 30 houses, boarding-house (10 rooms) and 2 shops, 20 km distant from exchange. With comparing the possibilities of two options- passive and active optical network- PON system – WDM- Wave multiplex. Suggest the possibility of measuring and monitoring the created network.The aim of this thesis is to explain the problems of optical access networks with wavelength division multiplexers, main purpose is to demonstrate the difference between theoretical and real measurement. The work is divided into several thematic areas. The introduction outlines the basic of telecommunications, fiber optics lasers, single mode, multimode, lasers fibers cables & cores, splitters division multiplexing system, there are known solutions discussed fundamental wavelength multiplexes and their possible combinations. The following chapter deals with the active elements such as AON, PON, which are essential part xWDM systems such as optical lasers, detectors and amplifiers. Another chapter focuses on passive elements, which form a key part of the wavelength multiplex. Methods of measurement of WDM/PON networks are discussed in the following part. The next section describes the topology used active and passive optical networks. The penultimate part of the work consists of architecture & technology of xWDM such as GPON and WDM-PON networks and comparing their transmission parameters. The final part of the paper presents the results of practical experimental measurements of optical access networks with wavelengths division multiplex while these results are compared with the theoretical output & methods of Optical lost test, OTDR & LSPM, with advantage & disadvantage of every methods. The second part of practical is the draft to the connection resident housing units of 30 houses, boarding-house (10 rooms) and 2 shops, 20 km distant from exchange. With comparing the possibilities of two options- passive and active optical network- PON system – WDM- Wave multiplex. Suggest the possibility of measuring and monitoring the created network.

    Robust distributed resource allocation for cellular vehicle-to-vehicle communication

    Get PDF
    Mit Release 14 des LTE Standards unterstützt dieser die direkte Fahrzeug-zu-Fahrzeug-Kommunikation über den Sidelink. Diese Dissertation beschäftigt sich mit dem Scheduling Modus 4, einem verteilten MAC-Protokoll ohne Involvierung der Basisstation, das auf periodischer Wiederverwendung von Funkressourcen aufbaut. Der Stand der Technik und eine eigene Analyse des Protokolls decken verschiedene Probleme auf. So wiederholen sich Kollisionen von Paketen, wodurch manche Fahrzeuge für längere Zeit keine sicherheitskritischen Informationen verbreiten können. Kollisionen entstehen vermehrt auch dadurch, dass Hidden-Terminal-Probleme in Kauf genommen werden oder veränderliche Paketgrößen und -raten schlecht unterstützt werden. Deshalb wird ein Ansatz namens "Scheduling based on Acknowledgement Feedback Exchange" vorgeschlagen. Zunächst wird eine Funkreservierung in mehrere ineinander verschachtelte Unter-Reservierungen mit verschiedenen Funkressourcen unterteilt, was die Robustheit gegenüber wiederholenden Kollisionen erhöht. Dies ist die Grundlage für eine verteilte Staukontrolle, die die Periodizitätseigenschaft nicht verletzt. Außerdem können so veränderliche Paketgrößen oder -raten besser abgebildet werden. Durch die periodische Wiederverwendung können Acknowledgements für Funkressourcen statt für Pakete ausgesendet werden. Diese können in einer Bitmap in den Padding-Bits übertragen werden. Mittels der Einbeziehung dieser Informationen bei der Auswahl von Funkressourcen können Hidden-Terminal-Probleme effizient vermieden werden, da die Acknowledgements auch eine Verwendung dieser Funkressource ankündigen. Kollisionen können nun entdeckt und eine Wiederholung vermieden werden. Die Evaluierung des neuen MAC-Protokolls wurde zum großen Teil mittels diskreter-Event-Simulationen durchgeführt, wobei die Bewegung jedes einzelnen Fahrzeuges simuliert wurde. Der vorgeschlagene Ansatz führt zu einer deutlich erhöhten Paketzustellrate. Die Verwendung einer anwendungsbezogenen Awareness-Metrik zeigt, dass die Zuverlässigkeit der Kommunikation durch den Ansatz deutlich verbessert werden kann. Somit zeigt sich der präsentierte Ansatz als vielversprechende Lösung für die erheblichen Probleme, die der LTE Modus 4 mit sich bringt.The LTE Standard added support for a direct vehicle-to-vehicle communication via the Sidelink with Release 14. This dissertation focuses on the scheduling Mode 4, a distributed MAC protocol without involvement of the base station, which requires the periodic reuse of radio resources. The state of the art and a own analysis of this protocol unveil multiple problems. For example, packet collisions repeat in time, so that some vehicles are unable to distribute safety-critical information for extended periods of time. Collisions also arise due to the hidden-terminal problem, which is simply put up with in Mode 4. Additionally, varying packet sizes or rates can hardly be supported. Consequently, an approach called "Scheduling based on Acknowledgement Feedback Exchange" is proposed. Firstly, a reservation of radio resources is split into multiple, interleaved sub-reservations that use different radio resources. This increases the robustness against repeating collisions. It is also the basis for a distributed congestion control that does not violate the periodicity. Moreover, different packet rates or sizes can be supported. The periodic reuse of radio resources enables the transmission of acknowledgements for radio resources instead of packets. These can be transmitted in a bitmap inside the padding bits. Hidden-terminal problems can be mitigated by considering the acknowledgements when selecting radio resources as they announce the use of these radio resources. Collisions can also be detected and prevented from re-occurring. The evaluation of the MAC protocol is mostly performed using discrete-event simulations, which model the movement of every single vehicle. The presented approach leads to a clear improvement of the packet delivery rate. The use of an application-oriented metric shows that the communication robustness can be improved distinctly. The proposed approach hence presents itself as a promising solution for the considerable problems of LTE Mode 4

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Intelligent aerial store & foreword packet repeater

    Get PDF
    A communication framework capable of rapid deployment and adaptive wireless support was designed and implemented using an unmanned aerial vehicle equipped with a 900 MHz, frequency- hopping transceiver configured as a store and forward packet repeater. Users with or without line of sight propagation between one another can automatically connect through the packet repeater and employ the aerial platform for extended data transfer. The airborne vehicle accommodates dynamic re-positioning in response to varying radio link conditions, thus supporting communication between highly mobile and/or line of sight-obstructed users even as the network topology evolves. Using open source and custom written software applications, as well as specially modified radio firmware, a command and data-logging environment was designed to monitor, control and initialize radio network conditions and vehicle platforms in real time. Careful real world evaluation of the developed system has demonstrated a robust platform capable of improvement to a user\u27s communication performance

    Vehicular Visible Light Communications

    Get PDF
    Vehicular communications are foreseen to play a key role to increase road safety and realize autonomous driving. In addition to the radio frequency (RF)-based dedicated short range communication (DSRC) and long-term evolution (LTE) communication technologies, vehicular visible light communication (V2LC) is proposed as a complementary solution, utilizing readily deployed vehicle light emitting diode (LED) lights as transmitter with image sensors such as photodetector (PD) and camera as the receivers. V2LC fundamentals including transmitter and receiver characteristics with dimming capabilities are reviewed in this chapter. Depending on the field measurements using off-the-shelf automotive LED light, communication constraints are demonstrated. Moreover, considering the line-of-sight (LoS) characteristics, security aspects of V2LC is compared with the DSRC for a practical vehicle-to-vehicle (V2V) communication scenario. Finally, superiority of V2LC in terms of communication security with the proposed SecVLC method is demonstrated through simulation results
    corecore