156,013 research outputs found

    Non-linear analysis of geomagnetic time series from Etna volcano

    No full text
    International audienceAn intensive nonlinear analysis of geomagnetic time series from the magnetic network on Etna volcano was carried out to investigate the dynamical behavior of magnetic anomalies in volcanic areas. The short-term predictability of the geomagnetic time series was evaluated to establish a possible low-dimensional deterministic dynamics. We estimated the predictive ability of both a nonlinear forecasting technique and a global autoregressive model by comparing the prediction errors. Our findings highlight that volcanomagnetic signals are the result of complex processes that cannot easily be predicted. There is slight evidence based on nonlinear predictions, that the geomagnetic time series are to be governed by many variables, whose time evolution could be better regarded as arising from complex high dimensional processes

    Non-linear analysis of geomagnetic time series from Etna volcano

    Get PDF
    An intensive nonlinear analysis of geomagnetic time series from the magnetic network on Etna volcano was carried out to investigate the dynamical behavior of magnetic anomalies in volcanic areas. The short-term predictability of the geomagnetic time series was evaluated to establish a possible low-dimensional deterministic dynamics. We estimated the predictive ability of both a nonlinear forecasting technique and a global autoregressive model by comparing the prediction errors. Our findings highlight that volcanomagnetic signals are the result of complex processes that cannot easily be predicted. There is slight evidence based on nonlinear predictions, that the geomagnetic time series are to be governed by many variables, whose time evolution could be better regarded as arising from complex high dimensional processes

    ANALYSIS OF STOCK PRICE PREDICTION USING DATA MINING APPROACH

    Get PDF
    Financial forecasting is one of the most interesting subjects within the area of machine learning studies. Forecasting stock prices is challenging due to the nature of stock prices that are usually non-linear, complex and noisy. This paper would be discussing the most prominent forecasting method which is the time-series forecasting and its machine learning tools used to create the prediction. The aim of this project is to study the data mining approach on predicting stock price that offers accuracy and sustains its reliability in the system. Using Data Mining approach in training the algorithms that will produce the best results based on Public Listed Companies‟ stock price data that dates back until 1998. This system utilizes Artificial Neural Network and Support Vector Machine as its main inference engine with numerous methods to measure the accuracy of both. It is anticipated that this analysis would become a platform for producing a prediction application that is reliable for usage in the future

    Forecasting industrial production indices with a new singular spectrum analysis forecasting algorithm

    Get PDF
    Existing time series analysis and forecasting approaches struggle to produce accurate results in application to time series with complex trend, such as those commonly displayed by indices of industrial production (IIPs). In this study, a new version of the Singular Spectrum Analysis (SSA) technique is developed, namely the Separate Trend and Seasonality (SSA‑STS) forecasting algorithm. Its performance is compared to those of benchmark, classical times series forecasting methods, including Basic SSA (the core version of SSA), ARIMA, Exponential Smoothing (ETS) and Neural Network (NN). The methods in this study are applied to both simulated and real data. The latter includes twenty four monthly series of seasonally unadjusted IIPs of various sectors for the UK, Germany and France. Using the out-of-sample forecasts, the results of this newly developed SSA‑STS algorithm were compared to the other aforementioned forecasting schemes by the means of pooled Root-Mean-Square-Error (RMSE). The pooling is done based on the number of steps ahead the forecasts extend, allowing for the performance of the methods to be evaluated on short and long horizons. The Kolmogorov–Smirnov Predictive Accuracy (KSPA) statistical test is applied to certify whether the errors produced by SSA‑STS are statistically significantly smaller than those of all the benchmark methods. Since this new technique is based on separate trend and seasonality forecasting, it overcomes the difficulties in forecasting series with complex trends and seasonality, thus demonstrating a clear advantage over other methods in such particular cases

    АРХІТЕКТУРА НЕЙРОМЕРЕЖЕВОГО КОМПЛЕКСУ ДЛЯ ПРОГНОЗУВАННЯ ЧАСОВИХ ПОСЛІДОВНОСТЕЙ НА ОСНОВІ НЕЙРОМЕРЕЖЕВОГО СПЕКТРАЛЬНОГО АНАЛІЗУ

    Get PDF
    The architecture of the neural network complex for prediction of time sequences is developed based on neural network spectral analysis. The advantages of the neural network are given spectral analysis in comparison with existing methods of singular spectral analysis. The approach to forecasting the trend and other components of the time series, which characterizes it is characterized by increased precision and stability of the forecast. The variant of improvement of the architecture-tours with neural networks of generalized regression. The neural network complex developed before it is entirely applicable for the analysis and forecasting of non-stationary processes occurring in complex dynamic systems.Розроблено архітектуру нейромережевого комплексу для прогнозування часових послідовностей на основі нейромережевого спектрального аналізу. Наведено переваги нейромережевого спектрального аналізу в порівнянні з існуючими методами сингулярного спектрального аналізу. Запропоновано підхід до прогнозування тренду та інших складових часового ряду, який характеризується підвищеною точністю та стабільністю прогнозу. Подано варіант удосконалення архітектури за допомогою нейромереж узагальненої регресії. Розроблений нейромережевий комплекс доцільно застосовувати для аналізу та прогнозування нестаціонарних процесів, що протікають в складних динамічних системах

    Stock market forecasting using artificial neural networks

    Get PDF
    Forecasting events has always been of great interest for human beings. The basic examples of this process are forecasting the weather and environmental disasters. To forecast is the process of collecting information in order to complete and expand them suitably for future. Today, globalization of economic and competes in this regard for observing investors and recognition of profit making and trusting markets, such as currency and stock market, which are highly complex, is now one of the most important umbrages of investors. For forecasting in capital markets such as stock or currency, there exist different methods, like, regression, time series, genetics algorithm and fundamental analysis. From non-liner methods which might be used in different forecasting bases are Artificial Neural Networks ANN. ANN are one of the newest inventions of mankind which are used in variety of different scientific fields. Use of investors of technology and computer algorithms for forecasting has caused more profit and better business opportunities. ANN is a part of dynamic systems which by processing on data of time series, drive the roles and science of these data and register it with the structure of the network. This system is based on computational intelligence which copies the human’s mind feature in processing. In this survey, besides discussing the ANN for analyzing and processing data and also studying new methods, it is concluded that ANN are an appropriate model for forecasting capital markets such as stock and currency

    Stock market forecasting using artificial neural networks

    Get PDF
    Forecasting events has always been of great interest for human beings. The basic examples of this process are forecasting the weather and environmental disasters. To forecast is the process of collecting information in order to complete and expand them suitably for future. Today, globalization of economic and competes in this regard for observing investors and recognition of profit making and trusting markets, such as currency and stock market, which are highly complex, is now one of the most important umbrages of investors. For forecasting in capital markets such as stock or currency, there exist different methods, like, regression, time series, genetics algorithm and fundamental analysis. From non-liner methods which might be used in different forecasting bases are Artificial Neural Networks ANN. ANN are one of the newest inventions of mankind which are used in variety of different scientific fields. Use of investors of technology and computer algorithms for forecasting has caused more profit and better business opportunities. ANN is a part of dynamic systems which by processing on data of time series, drive the roles and science of these data and register it with the structure of the network. This system is based on computational intelligence which copies the human’s mind feature in processing. In this survey, besides discussing the ANN for analyzing and processing data and also studying new methods, it is concluded that ANN are an appropriate model for forecasting capital markets such as stock and currency

    Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework

    Full text link
    [EN] Epidemiology-based models have shown to have successful adaptations to deal with challenges coming from various areas of Engineering, such as those related to energy use or asset management. This paper deals with urban water demand, and data analysis is based on an Epidemiology tool-set herein developed. This combination represents a novel framework in urban hydraulics. Specifically, various reduction tools for time series analyses based on a symbolic approximate (SAX) coding technique able to deal with simple versions of data sets are presented. Then, a neural-network-based model that uses SAX-based knowledge-generation from various time series is shown to improve forecasting abilities. This knowledge is produced by identifying water distribution district metered areas of high similarity to a given target area and sharing demand patterns with the latter. The proposal has been tested with databases from a Brazilian water utility, providing key knowledge for improving water management and hydraulic operation of the distribution system. This novel analysis framework shows several benefits in terms of accuracy and performance of neural network models for water demand.Navarrete-López, CF.; Herrera Fernández, AM.; Brentan, BM.; Luvizotto Jr., E.; Izquierdo Sebastián, J. (2019). Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework. Water. 11(246):1-17. https://doi.org/10.3390/w11020246S11711246Fecarotta, O., Carravetta, A., Morani, M., & Padulano, R. (2018). Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions. Resources, 7(4), 73. doi:10.3390/resources7040073Creaco, E., & Pezzinga, G. (2018). Comparison of Algorithms for the Optimal Location of Control Valves for Leakage Reduction in WDNs. Water, 10(4), 466. doi:10.3390/w10040466Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O., & Siriwardene, N. (2018). Re-engineering traditional urban water management practices with smart metering and informatics. Environmental Modelling & Software, 101, 256-267. doi:10.1016/j.envsoft.2017.12.015Adamowski, J., & Karapataki, C. (2010). Comparison of Multivariate Regression and Artificial Neural Networks for Peak Urban Water-Demand Forecasting: Evaluation of Different ANN Learning Algorithms. Journal of Hydrologic Engineering, 15(10), 729-743. doi:10.1061/(asce)he.1943-5584.0000245Caiado, J. (2010). Performance of Combined Double Seasonal Univariate Time Series Models for Forecasting Water Demand. Journal of Hydrologic Engineering, 15(3), 215-222. doi:10.1061/(asce)he.1943-5584.0000182Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005Msiza, I. S., Nelwamondo, F. V., & Marwala, T. (2008). Water Demand Prediction using Artificial Neural Networks and Support Vector Regression. Journal of Computers, 3(11). doi:10.4304/jcp.3.11.1-8Tiwari, M., Adamowski, J., & Adamowski, K. (2016). Water demand forecasting using extreme learning machines. Journal of Water and Land Development, 28(1), 37-52. doi:10.1515/jwld-2016-0004Vijayalaksmi, D. P., & Babu, K. S. J. (2015). Water Supply System Demand Forecasting Using Adaptive Neuro-fuzzy Inference System. Aquatic Procedia, 4, 950-956. doi:10.1016/j.aqpro.2015.02.119Zhou, L., Xia, J., Yu, L., Wang, Y., Shi, Y., Cai, S., & Nie, S. (2016). Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans. International Journal of Environmental Research and Public Health, 13(4), 355. doi:10.3390/ijerph13040355Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. (2016). Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model. Energies, 9(2), 109. doi:10.3390/en9020109Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175. doi:10.1016/s0925-2312(01)00702-0Herrera, M., García-Díaz, J. C., Izquierdo, J., & Pérez-García, R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series. Stochastic Analysis and Applications, 29(6), 998-1007. doi:10.1080/07362994.2011.610161Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664-2675. doi:10.1016/j.asoc.2010.10.015Campisi-Pinto, S., Adamowski, J., & Oron, G. (2012). Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy. Water Resources Management, 26(12), 3539-3558. doi:10.1007/s11269-012-0089-yBrentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. doi:10.1016/j.cam.2016.02.009Di Nardo, A., Di Natale, M., Musmarra, D., Santonastaso, G. F., Tzatchkov, V., & Alcocer-Yamanaka, V. H. (2014). Dual-use value of network partitioning for water system management and protection from malicious contamination. Journal of Hydroinformatics, 17(3), 361-376. doi:10.2166/hydro.2014.014Scarpa, F., Lobba, A., & Becciu, G. (2016). Elementary DMA Design of Looped Water Distribution Networks with Multiple Sources. Journal of Water Resources Planning and Management, 142(6), 04016011. doi:10.1061/(asce)wr.1943-5452.0000639Panagopoulos, G. P., Bathrellos, G. D., Skilodimou, H. D., & Martsouka, F. A. (2012). Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS. Water Resources Management, 26(5), 1347-1363. doi:10.1007/s11269-011-9962-3Buchberger, S. G., & Nadimpalli, G. (2004). Leak Estimation in Water Distribution Systems by Statistical Analysis of Flow Readings. Journal of Water Resources Planning and Management, 130(4), 321-329. doi:10.1061/(asce)0733-9496(2004)130:4(321)Candelieri, A. (2017). Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Water, 9(3), 224. doi:10.3390/w9030224Padulano, R., & Del Giudice, G. (2018). Pattern Detection and Scaling Laws of Daily Water Demand by SOM: an Application to the WDN of Naples, Italy. Water Resources Management, 33(2), 739-755. doi:10.1007/s11269-018-2140-0Bloetscher, F. (2012). Protecting People, Infrastructure, Economies, and Ecosystem Assets: Water Management in the Face of Climate Change. Water, 4(2), 367-388. doi:10.3390/w4020367Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling & Software, 54, 88-107. doi:10.1016/j.envsoft.2013.12.018Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G., & Mendes, J. F. F. (2012). Localization and Spreading of Diseases in Complex Networks. Physical Review Letters, 109(12). doi:10.1103/physrevlett.109.128702Danila, B., Yu, Y., Marsh, J. A., & Bassler, K. E. (2006). Optimal transport on complex networks. Physical Review E, 74(4). doi:10.1103/physreve.74.046106Herrera, M., Izquierdo, J., Pérez-García, R., & Montalvo, I. (2012). Multi-agent adaptive boosting on semi-supervised water supply clusters. Advances in Engineering Software, 50, 131-136. doi:10.1016/j.advengsoft.2012.02.005Maslov, S., Sneppen, K., & Zaliznyak, A. (2004). Detection of topological patterns in complex networks: correlation profile of the internet. Physica A: Statistical Mechanics and its Applications, 333, 529-540. doi:10.1016/j.physa.2003.06.002Lloyd, A. L., & Valeika, S. (2007). Network models in epidemiology: an overview. World Scientific Lecture Notes in Complex Systems, 189-214. doi:10.1142/9789812771582_0008Hamilton, I., Summerfield, A., Oreszczyn, T., & Ruyssevelt, P. (2017). Using epidemiological methods in energy and buildings research to achieve carbon emission targets. Energy and Buildings, 154, 188-197. doi:10.1016/j.enbuild.2017.08.079Bardet, J.-P., & Little, R. (2014). Epidemiology of urban water distribution systems. Water Resources Research, 50(8), 6447-6465. doi:10.1002/2013wr015017De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865Hamilton, I. G., Summerfield, A. J., Lowe, R., Ruyssevelt, P., Elwell, C. A., & Oreszczyn, T. (2013). Energy epidemiology: a new approach to end-use energy demand research. Building Research & Information, 41(4), 482-497. doi:10.1080/09613218.2013.798142Herrera, M., Ferreira, A. A., Coley, D. A., & de Aquino, R. R. B. (2016). SAX-quantile based multiresolution approach for finding heatwave events in summer temperature time series. AI Communications, 29(6), 725-732. doi:10.3233/aic-160716Padulano, R., & Del Giudice, G. (2018). A Mixed Strategy Based on Self-Organizing Map for Water Demand Pattern Profiling of Large-Size Smart Water Grid Data. Water Resources Management, 32(11), 3671-3685. doi:10.1007/s11269-018-2012-7Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. doi:10.1007/s10618-007-0064-zAghabozorgi, S., & Wah, T. Y. (2014). Clustering of large time series datasets. Intelligent Data Analysis, 18(5), 793-817. doi:10.3233/ida-140669Yuan, J., Wang, Z., Han, M., & Sun, Y. (2015). A lazy associative classifier for time series. Intelligent Data Analysis, 19(5), 983-1002. doi:10.3233/ida-150754Rasheed, F., Alshalalfa, M., & Alhajj, R. (2011). Efficient Periodicity Mining in Time Series Databases Using Suffix Trees. IEEE Transactions on Knowledge and Data Engineering, 23(1), 79-94. doi:10.1109/tkde.2010.76Schmieder, R., & Edwards, R. (2011). Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets. PLoS ONE, 6(3), e17288. doi:10.1371/journal.pone.0017288Valimaki, N., Gerlach, W., Dixit, K., & Makinen, V. (2007). Compressed suffix tree a basis for genome-scale sequence analysis. Bioinformatics, 23(5), 629-630. doi:10.1093/bioinformatics/btl681Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M., Harrow, J., … Tress, M. L. (2014). Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Human Molecular Genetics, 23(22), 5866-5878. doi:10.1093/hmg/ddu309Bermudez-Santana, C. I. (2016). APLICACIONES DE LA BIOINFORMÁTICA EN LA MEDICINA: EL GENOMA HUMANO. ¿CÓMO PODEMOS VER TANTO DETALLE? Acta Biológica Colombiana, 21(1Supl), 249-258. doi:10.15446/abc.v21n1supl.51233Cai, L., Li, X., Ghosh, M., & Guo, B. (2009). Stability analysis of an HIV/AIDS epidemic model with treatment. Journal of Computational and Applied Mathematics, 229(1), 313-323. doi:10.1016/j.cam.2008.10.067Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024Brentan, B. M., Meirelles, G., Herrera, M., Luvizotto, E., & Izquierdo, J. (2017). Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Mathematical Problems in Engineering, 2017, 1-10. doi:10.1155/2017/6343625Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L., & Armstrong, B. (2013). Time series regression studies in environmental epidemiology. International Journal of Epidemiology, 42(4), 1187-1195. doi:10.1093/ije/dyt092HELFENSTEIN, U. (1991). The Use of Transfer Function Models, Intervention Analysis and Related Time Series Methods in Epidemiology. International Journal of Epidemiology, 20(3), 808-815. doi:10.1093/ije/20.3.808Herrera, M., Abraham, E., & Stoianov, I. (2016). A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management, 30(5), 1685-1699. doi:10.1007/s11269-016-1245-6Jung, D., Choi, Y., & Kim, J. (2016). Optimal Node Grouping for Water Distribution System Demand Estimation. Water, 8(4), 160. doi:10.3390/w8040160Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2012). Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2), 275-309. doi:10.1007/s10618-012-0250-5Cassisi, C., Prestifilippo, M., Cannata, A., Montalto, P., Patanè, D., & Privitera, E. (2016). Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna. Pure and Applied Geophysics, 173(7), 2365-2386. doi:10.1007/s00024-016-1284-1McCreight, E. M. (1976). A Space-Economical Suffix Tree Construction Algorithm. Journal of the ACM, 23(2), 262-272. doi:10.1145/321941.321946Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series clustering – A decade review. Information Systems, 53, 16-38. doi:10.1016/j.is.2015.04.007Warren Liao, T. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857-1874. doi:10.1016/j.patcog.2005.01.02
    corecore