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Abstract. An intensive nonlinear analysis of geomagnetic
time series from the magnetic network on Etna volcano was
carried out to investigate the dynamical behavior of magnetic
anomalies in volcanic areas. The short-term predictability of
the geomagnetic time series was evaluated to establish a pos-
sible low-dimensional deterministic dynamics. We estimated
the predictive ability of both a nonlinear forecasting tech-
nique and a global autoregressive model by comparing the
prediction errors. Our findings highlight that volcanomag-
netic signals are the result of complex processes that can-
not easily be predicted. There is slight evidence based on
nonlinear predictions, that the geomagnetic time series are to
be governed by many variables, whose time evolution could
be better regarded as arising from complex high dimensional
processes.

1 Introduction

The geomagnetic field as a whole varies in time and space,
but in general the time variations change only slightly with
position and the space changes have very little time depen-
dence. The major space changes derive from the local field
(attributable to static crustal sources), which does not change
with time, while time changes come about either from the
Earth’s core (slow secular variation) or from ionospheric and
magnetospheric current systems (diurnal solar variation and
magnetic storms) (Barraclough and De Santis, 1997; Hongre
et al., 1999). The most spectacular exceptions to this rule
have been observed close to eruptive events, when there may
be changes in the local field due to some time change in phys-
ical parameters (e.g. temperature and stress) of the volcanic
rocks that affect the magnetization.

For all practical purposes, volcanomagnetic monitoring is
concerned with detection of local field changes attributable to
the dynamics of a volcano and removal of the geomagnetic
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field variations with no geophysical significance. In general,
the spatial distribution of the secular variation and external
field fluctuations can be considered uniform (because of the
large distance of sources), and therefore simple differences
in the total intensity with respect to the simultaneous value
at a remote reference (usually located at a magnetically quiet
site) are used to reduce these effects. Differentiating these
data reduces the magnetic disturbance by about 95% (Davis
et al., 1981) and the average of these differentiated data on a
daily basis reduces the standard deviations by a factor of 10
(Mueller and Johnston, 1998). Normally, measurement ac-
curacy for these data is better than 1 nT, depending on site
separation and local magnetic gradients. After processing,
these total intensity data are routinely searched for any time
changes. Unfortunately, volcano magnetic signals are very
small and must be detected in the presence of considerable
noise. Very much larger time variations, with periods from
minutes to years, are present in these differences. For exam-
ple, also in the absence of any volcanic activity, some of the
time changes can occur because of secondary fields induced
in the crustal rocks by external current systems. Where the
electrical conductivity of the rocks of a volcano changes over
short distances, time changes can vary correspondingly. Dif-
ferences in underground conductivity between two close (or-
der of 10 km apart) sites will make the time variable fields
different, even if the primary field from the magnetosphere
is the same (Parkinson, 1983). On the other hand, vari-
able induced magnetization, due to large susceptibility con-
trasts, could locally modify a magnetic disturbance field by
an amount up to 5 nT (Davis et al., 1979).

These effects can seriously hinder the accurate detection
of volcanomagnetic signals. When we expect only a small
volcanomagnetic signal, due either to a weak volcanic ac-
tivity or to the large distance between the source zone and
the observation sites, the presence of non-volcanic changes
not only makes signal detection more difficult but may also
lead us to misinterpret data. With the improvement in data
acquisition systems and the application of noise reduction
procedures, significative magnetic field anomalies have been
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detected during main phases of volcanic activity (Del Negro
and Currenti, 2003), even if many problems still remain to be
resolved for understanding the temporal dynamics of the lo-
cal magnetic anomalies. The dependence on time of volcano-
magnetic signals is not yet completely understood, there-
fore a robust analysis, able to describe the dynamics of the
processes, could be useful to improve the comprehension of
anomalies.

To investigate the temporal dynamics of geomagnetic field
in active volcanic areas, we analyzed data collected from the
magnetic monitoring network at Etna volcano (Del Negro et
al., 2002). We have been using methods based on the the-
ory of nonlinear dynamical systems to explore if there is
evidence of a possible low-dimensional nonlinear behavior
of the system. The reliability and accuracy of forecasting
models were evaluated to figure out the behavior of geomag-
netic activity, and to examine the dynamical features of the
system responsible for the magnetic anomalies. The fore-
casting models could represent a valuable tool to study the
short-term predictability of volcanomagnetic processes. Two
different autoregressive models are compared: the one is a
global linear autoregressive model and the other is a non-
linear forecasting model based on local autoregressive tech-
niques. The quality of the nonlinear predictions is evaluated
by appraising the accuracy of the forecasting with respect to
linear predictions (Cuomo et al., 1999). By comparing the
forecasting errors computed for both models, it is possible to
discern which model is more reliable for describing the dy-
namical behavior of the observed magnetic variations. The
global linear model starts out from the assumption that the
signal is generated by a stochastic process, whereas the lo-
cal linear one assumes that the underlying physical mecha-
nism is low dimensional and deterministic. The local linear
prediction is one of the several methods that are suggested
as a test for discerning chaotic behavior from measured data
(Casdagli, 1991; Farmer and Sidorowich, 1987; Tsonis et
al., 1994). Therefore this analysis permits to evaluate two
probable dynamical behaviors and distinguish randomness
from chaos. If the best forecasting occurs using the global
model, the data are well described by a linear stochastic pro-
cess, otherwise it is more consistent to support the idea of the
existence of a nonlinear deterministic motion. In this way it
will be possible to understand which are the dominant fea-
tures of the dynamical process that leads the time-dependent
magnetic anomalies.

2 Methods of analysis

We use the nonlinear prediction method of Tsonis and
Elsener (1992) to investigate the dynamical behavior of ge-
omagnetic time series. This method employs a local linear
forecasting to identify chaotic behavior in natural time series.
The idea behind using prediction as evidence of chaos is very
intuitive. The limited predictive ability of a chaotic dynami-
cal system is due to its sensitivity to initial conditions. There-
fore, it is expected that chaos is to be characterized by a de-

crease in the correlation between predicted and observed val-
ues as prediction time increases. If the system is chaotic, then
the decrease of predictive ability with prediction time gives
an estimate of the Lyapunov exponent. It is worth noting that
the average exponential rate at which initial trajectories di-
verge depends on its Lyapunov exponent. This property can
be used to distinguish chaotic behavior from randomness. In
fact, for a random signal, it is expected that the forecasting
property doesn’t depend on the prediction interval. On the
other hand, because of the sensitivity to initial conditions,
long-term forecasting is not possible for a chaotic system and
short-term prediction could be suitable using nonlinear pre-
diction. The forecasting approach is based on predicting the
future value of a data point by considering the time evolution
of its neighbors in the reconstructed phase space. The algo-
rithm is based on three fundamental steps: (i) building the
embedding state, (ii) searching the nearest neighbors at each
point, and (iii) computing the local model, relying on only
the neighboring points, to generate the predictions.

The first step is the choice of an appropriate time delay
and an embedding dimension in order to construct the de-
lay vectors, using the embedding theorem by Takens (1981).
Given a time seriesx(t), the reconstructed delay vector is
represented by:

X(tn) =
(
x(tn), x(tn − τ), x(tn − 2τ), . . .

. . . , x(tn − (E − 1)τ )
)

(1)

whereτ is the time delay andE is the embedding dimension.
The idea behind using prediction techniques to detect

chaotic behavior is supported by the nonlinear systems the-
ory. In fact, it is well known that if a deterministic dynamics
exists, it is possible to determine the location of the next point
in the reconstructed phase space by a mapf such as:

Xt+1 = f (Xt , Xt−1, . . . , Xt−E+1) (2)

The quality of forecasting basically depends on the capabil-
ity to approximate the dynamicsf . Regarding this, the dy-
namics can be analyzed in the reconstructed phase space by
the delay vectors. The procedure to reconstruct the orbits in
the pseudo-phase space is associated with the choice of the
embedding dimension and the time delay (Abarbanel, 1995).
The embedding theorem is suitable in principle for any value
of τ . From a mathematical point of view, we could arbitrarily
chooseτ value, since it is assumed that the data have infinite
precision. But in applications with real data this is never go-
ing to happen and the choice of time delay is not trivial. Un-
fortunately, a rigorous method to determine its optimal value
doesn’t exist. If the time delay is too short, the elements of
the delay vectors will not be independent enough. On the
other hand, ifτ is too large the coordinates may be uncorre-
lated and significant dynamical information could be lost.

The second step, in order to predict a timeL ahead oftn, is
to select a neighborhood around the pointX(tn) in the recon-
structed phase space. Because of the assumption of the de-
terministic behavior, it is reasonably expected that the evolu-
tion of the selected vector is correlated with the evolution of
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Fig. 1. Hourly mean differences of to-
tal magnetic intensity of PDN with re-
spect to DGL from October 2001 to
August 2002 (blue) and cleaned differ-
ences field after multichannel filtering
(red).

the neighboring vectors, which could provide predictions of
the future value ofX(tn) through an appropriate local model.
Given the embedding vector, we select the neighboring vec-
tors closer toX(tn), using a distance function. For computing
the distance in the reconstructed phase space, we calculate
the Euclidean norm between the pointX(tn) and all the re-
maining points in the neighborhood. For each point all past
points in the reconstructed phase space are considered, they
are tested for closeness and most of them are rejected because
they are too far away.

The third step evaluates a suitable local mapping that de-
scribes how all points belonging to the neighborhood ad-
vance to future timetn+L. Generally local averaging mod-
els and local linear models are used. The methods based
on local averaging models are particularly useful when the
data sets are sparse, because they do not require a large num-
ber of points (Sugihara and May, 1990). On the other hand,
they are less accurate than the local linear models (Kantz and
Schreiber, 1997). Since a sufficiently large number of data is
available, we prefer to employ a local linear approach defined
by:

x(tn + L) = AX(tn) (3)

whereL is the prediction interval,X(tn) is the delay vectors
andA the parameters vector. To determine these parameters
in the model, theK nearest neighbors are selected and the
linear approximation is solved for each point of the time se-
ries, because the model is valid only locally. To this end, the
search of neighborhood must be repeated for each point in the
phase space to determine the local model, associated to that
point. Since the local model, computed at each step, might
not always be the same, the whole procedure is nonlinear. To
estimate the prediction for theL step ahead, the forecasting
error is computede(L)=x(n + L)−x′(n+L). The normal-
ized mean square error (NMSE) between predictors and real
data is used to quantify the predictive ability. The NMSE(L)

of the sequenceX, is defined by:

NMSE(L) =

√√√√√√
N∑

i=1
e2
i (L)

N σ 2
Y

(4)

whereσ denotes the standard deviation of theX time series
andN the length of data. The rapid increase of the NMSE in
function of prediction time intervalL is a strong signature
of chaos (Tsonis and Elsener, 1992) since it is influenced
by the chaotic divergence of initially close trajectory. The
prediction error is affected by critical selection of the algo-
rithm parameters, such as the embedding dimensionE, the
delay timeτ , the neighborhood sizeK. We took care on the
choice of the optimal value of these parameters. Particularly,
we analyzed how the NMSE, representing the quality index
of the model, changes by varying the value of these param-
eters, which provide some relevant dynamical properties of
the system.

3 Observed data

Over the last two decades, the Laboratory of Geomagnetism
of INGV–CT has been intensively monitoring the magnetic
field on Etna volcano. We have observed significant correla-
tions between volcanic activity and changes in the local mag-
netic field, up to a few tens of nanoteslas (e.g. Del Negro et
al., 1997; Del Negro and Ferrucci, 1998; Del Negro and Cur-
renti, 2003). Detection of clear magnetic signals associated
with the renewal of the volcanic activity led to an increase
in the magnetic monitoring of Etna. Since the end of 1998
a permanent magnetic network has been set up (Del Negro
et al., 2002). All remote stations are equipped with Over-
hauser effect magnetometers (0.01 nT sensitivity) and syn-
chronously sample the Earth’s magnetic field every 10 s.
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Fig. 2. Power spectra of the simple differences (blue) and cleaned
differences (red) between PDN and DGL.

All the work has been based on data collected from Oc-
tober 2001 to August 2002 at two selected stations: DGL
and PDN, which are about 1 km far away. Before anything
else, we have used total field differences between two ad-
jacent stations because they have the advantage that noise
spikes are easily detected and edited out. In the second place,
the hourly mean data were computed (Fig. 1) and analyzed
to avoid as much as possible contamination from external
magnetic fields. Reduction of these disturbances by taking
simple differences between total field readings at space sta-
tions is unsatisfactory, because total field differences are de-
pendent on the direction of the disturbing field (Davis et al.,
1979). It is known that improvement is possible when three
component observatory data are available from a station in
the vicinity, but not necessarily immediate, of the total field
array (Davis et al., 1981). We identified and removed the
variations of ionosphere and magnetosphere origin by mul-
tichannel filtering method (Davis and Johnston, 1983) using
L’Aquila Geomagnetic Observatory component fields as in-
put to the filter. This method involves finding the multichan-
nel filters that estimate the field variation at PDN station from
the field of the DGL station and a three-component magne-
tometer. The difference is then taken between total field and
estimated field, leaving a cleaned total field. The cleaned
differences field shows that the filtering process is gainful
during both disturbed and quite days (Fig. 1).

In Fig. 2 are shown the power spectra of simple differences
and cleaned differences between DGL and PDN stations.
The analysis of the simple differences power spectra clearly
shows prominent peaks centered around diurnal components
at the period of 8, 12 and 24 h. Although these variations are
the most regular of the all geomagnetic changes, they tend
not to repeat exactly itself but relevant differences could be
noted from day to day (Okeke and Hamano, 2000). The day-
to-day variability is thought to arise from the variations of
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Fig. 3. NMSE versus the time delay.

the solar and geomagnetic activity. These diurnal magnetic
variations are filtered out in the cleaned differences power
spectra. After having removed the dominant periodic compo-
nents, the power spectra of filtered differences appears to be
aperiodic and broad band. The spectrum does not show any
privileged frequencies, but rather a linear decay which links
the whole range of frequency domain (Fig. 2). These char-
acteristics are consistent with the behavior of almost all non-
linear dynamical systems or chaotic ones (Kostelich, 1997).
The broad band spectrum claims that a possible nonlinear
deterministic component could be present in cleaned differ-
ences field. Nevertheless, it is worth noting that a broad band
spectrum can correspond either to a low dimensional chaotic
system or a stochastic time series. An obvious distinction be-
tween deterministic and stochastic processes is not so simple.
Therefore, we look at the nonlinear prediction approaches as
a way to provide evidences on the mechanism generating the
time dependent variations.

4 Predictions

Before computing the local model over cleaned differences
field, we firstly have to face the proper choice of the time de-
lay and the embedding dimension. As described by Sugihara
and May (1990), the local model can suggest by itself the best
values for the embedding. In fact, once the suitable embed-
ding is reached, the predictability remains unchanged even if
theE andτ values are increased. For a prediction time in-
terval of L=1, we estimate the prediction improvement for
different values ofE andτ . When the nearest neighbors in
the reconstructed phase space are searched, one should avoid
using neighbors in phase space that lie on the same trajectory
segment, because they contain only little information about
the underlying deterministic dynamics. Delay vectors, which
are close in the phase space, are also close in time because
of continuous time evolution. Therefore, in the local linear
method, points close in time are to be rejected. In practice,
to prevent a temporal correlation, we divide the time series
into two parts: a learning data setX1 and a testing data
set X2. The first part of the seriesX1 is used to find the
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Fig. 4. Determination ofτ using average mutual information (AMI)
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closest neighbors of a point inX2, on which the forecast is
performed and the NMSE is computed.

Having fixed the neighbor sizeK at 50% of available data,
we firstly look for the better value ofτ . The quality of pre-
diction is evaluated for different values ofτ andE. For each
τ , an average of the NMSE overE is computed and the re-
sults are shown in Fig. 3. The predictions seem to be slightly
sensitive to the choice ofτ , even if they are more precise for
lowerτ . A general method for the choice of the time delay is
based on the search for the first relative minimum of the aver-
age mutual information (AMI) (Abarbanel, 1995). However,
the AMI function, computed over our data set, just gradually
declines without any clearly detectable minima (Fig. 4). In
such a case, the advice of Abarbanel et al. (1993) is to take
τ=1. Under these circumstances an exact choice of time de-
lay is not deemed to be critical and, after choosing a time
delay ofτ=1, we test the ability of the local prediction as a
function ofE. The optimal value of the embedding dimen-
sion is evaluated by computing the minimum of the following
R coefficient:

R(Ei) = 〈NMSE(L, Ei)〉 (5)

whereL = 1 . . . 20 andEi = 1 . . . 20.
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Fig. 6. The normalized mean square error (NMSE) for different
values of prediction time interval (L=1, . . . , 20) vs. neighbor size
K.

An improvement is obtained whenE increases, even if the
R doesn’t go below 0.36 (Fig. 5). The optimum embedding
dimension seems to be about 10, as theR coefficient does not
improve for higher values. The statistical properties of the
local model also depend on the neighborhood size that leads
the locality of the approximation. The behavior of NMSE is
analyzed with respect to the number of neighborsK. In this
regard,K works as a smoothing parameter. The smallerK

is, the more local the approximation is. On the other hand,
the neighborhood size should be large enough to compute a
statistically valid local model. Moreover, the smallest dis-
tance between the reference point and its neighbors has to be
greater than the noise amplitude; otherwise the possible de-
terministic properties of the system are hidden. In our case,
we evaluate the NMSE forK number bigger than 1% of the
learning data set. For differentL values the trend of NMSE in
function of the number of the nearest neighbors is shown in
Fig. 6. The NMSE always grows exponentially and reaches
rapidly its highest value. It remains unchanged forK bigger
than 25%.

After the best parameter of the local model have been cho-
sen, we compare the local linear model with respect to a
global linear model having the sameE andτ parameters, and
we look for difference between the local and global proper-
ties. The NMSE is evaluated for the global model and the
local one as the time predictionL increases (Fig. 7). It is
worth noting that the prediction error strongly depends on
prediction time interval, revealing the unpredictability of fu-
ture values for long time steps.

5 Conclusions

We have analyzed geomagnetic time series (lasting about one
year) from Etna volcano, using the local prediction and the
global linear methods. Our aim is to determine if there is
evidence for understanding and describing the temporal dy-
namics of volcanomagnetic signals. A common problem in
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the study of aperiodic and irregular signals is to establish
whether the underlying process is governed by low dimen-
sional deterministic dynamics or by some non-deterministic
rules, which cannot be described with finite numbers of state
variables. Conventional spectral analysis is not able to dis-
tinguish chaos from random signals, since in both cases the
signals have continuous broad band power spectra. So the
prediction ability was evaluated.

Applying the local forecasting algorithm on the magnetic
data, the NMSE prediction error does not exhibit a signifi-
cant minimum for anyK value less than the samples num-
ber. Increasing the number of neighborsK used for estimat-
ing the model, the local linear prediction becomes a global
linear one. Best predictions are achieved for the largestK,
highlighting that the global autoregressive model seems to
be superior. A rapid increase of NMSE is observed as the
time prediction interval increases, for both global and local
prediction models. However, comparing the predictive abil-
ity of the two forecasting approaches, the global model is
always better than the local one. Since the time series is bet-
ter modeled by a linear stochastic autoregressive process, it
claims that the degrees of freedom of the system are not few.
Moreover, in agreement with the hypothesis of high dimen-
sionality of the system, the quality of predictions increases
with the number of neighbors used to compute the model.

These results could have important implications on the
study of the dynamical behavior of the volcanomagnetic sig-
nals. They underline that volcanomagnetic signals are the
result of complex processes that cannot be easily predicted.
The geomagnetic time series seem to be governed by many
variables whose time evolution could be better regarded as
arising from stochastic processes. The application of non-
linear forecasting techniques has not provided strong evi-
dence of nonlinear deterministic dynamics in volcanomag-
netic data.

Acknowledgements.We are indebted to all personal of Geo-
magnetism Laboratory of INGV–CT who guarantee the regular
working of the permanent magnetic network on Etna volcano. The
manuscript gained in clarity thanks to constructive criticisms by

L. Chua and A. De Santis. This research was carried out in the
frame of the TecnoLab, the laboratory for technological advance
in geophysics organized by DIEES–UNICT and INGV–CT, and
benefited of support by project EPOT of the Gruppo Nazionale per
la Vulcanologia.

Edited by: R. Grimshaw
Reviewed by: two referees

References

Abarbanel, H. D. I.: Analysis of observed chaotic data, Springer
Verlag, 1995.

Abarbanel, H., Brown, R., Sidorowich, J., Tsimring, L.: The anal-
ysis of observed Chaotic data in physical systems, Reviews of
Modern Physics, 65, 1331–1392, 1993.

Barraclough, D. R. and De Santis, A.: Some possible evidence for
a chaotic geomagnetic field from observational data, Phys. Earth
Planet. Inter., 99, 207–220, 1997.

Casdagli, M.: Chaos and deterministic versus stochastic nonlinear
modeling, J. Roy. Stat. Soc., 54, 303–328, 1991.

Cuomo, V., Lapenna, P., Macchiato, M., Serio, C., and Telasca, L.:
Stochastic behoviour and scaling laws in geoelectrical signals
measured in a seismic area of southern Italy, Geophys. J. Int.,
Vol 139, 889–894, 1999.

Currenti, G., Del Negro, C., Fortuna, L., Vicari, A.: Nonlinear iden-
tification of complex geomagnetic models: an innovative ap-
proach, Nonlinear Phenomena in Complex Systems, 6:1, 524–
533, 2003.

Davis, P. M., Stacey, F. D., Zablocki, C. J., and Olson, J. V.: Im-
proved signal discrimination in tectonomagnetism: discovery of
a volcanomagnetic effect at Kilauea, Hawaii, Phys. Earth Planet.
Inter., 19, 331–336, 1979.

Davis, P. M., Jackson, D. D., Searls, C. A., and McPherron, R. L.:
Detection of tectonomagnetic events using multichannel predic-
tive filtering, J. Geophys. Res., 86, 1731–1737, 1981.

Davis, P. M. and Johnston, M. J.: Localized geomagnetic field
changes near active faults in California 1974–1980, J. Geophys.
Res., 88, 9452–9460, 1983.

Del Negro, C. and Currenti, G.: Volcanomagnetic signal associated
with the 2001 flank eruption of Mt. Etna, Geophys. Res. Lett.,
30, 7, 2003

Del Negro, C., Ferrucci, F., and Napoli, R.: The Permanent Network
for Magnetic Surveillance of Mt. Etna: Changes in the Geomag-
netic Total Intensity Observed in 1995, Acta Vulcanologica, 9,
1–7, 1997.

Del Negro, C. and Ferrucci, F.: Magnetic history of a dyke on Mt.
Etna, Geophys. J. Int., 133, 451–458, 1998.

Del Negro, C., Napoli, R., and Sicali, A.: Automated system for
magnetic monitoring of active volcanoes, Bull. Volcanol., 64,
94–99, 2002.

Farmer, J. D. and Sidorowich, J. J.: Predicting chaotic time series,
Phys. Rev. Lett., 59, 845, 1987.

George, B., Renuka, G., Satheesh Kumar, K., Anil Kumar, C. P., and
Venugopal, C.: Nonlinear time series analysis of the fluctuations
of the geomagnetic horizontal field, Ann. Geophysicae, 20, 175–
183, 2001.

Hongre, L., Sailhac, P., Alexandrescu, M., andDubois, J.: Nonlinear
and multifractal approaches of geomagnetic field, Phys. Earth
Planet. Inter., 110, 157–190, 1999.



G. Currenti et al.: Non-linear analysis of geomagnetic time series from Etna volcano 125

Kantz, H. and Schreiber, Th.: Nonlinear Time Series Analysis,
Cambridge Univ. Press, Cambridge, 1997.

Kostelich, E. J.: The analysis of chaotic time-series data, Systems
and Control Letters, 31 313–319, 1997.

Mueller, R. J. and Johnston, M. J. S.: Review of magnetic field
monitoring near active faults and volcanic calderas in California:
1974–1995, Phys. Earth Planet. Inter., 105, 131–144, 1998.

Okeke, F. N. and Hamano, Y.: Daily variations of geomagnetic H D
and Z-field at equatorial latitudes, Earth Planets Space, 52, 237-
243, 2000.

Parkinson, W. D.: Introduction to geomagnetism, Scottish Aca-
demic Press, 1983.

Price, C. P., Prickard, D., and Bischoff, J. E.: Nonlinear in-
put/outputof the auroral electrojet index, J. Geophys. Res., 99,
13 227–13 238, 1994.

Sugihara, G. and May, R. M.: Nonlinear forecasting as a way of dis-
tinguishing chaos from measurement error in time series, Nature,
344, 734–741, 1990.

Takens, F.: Detecting strange attractors in turbulence, Springer Lec.
Notes in Math., Springer-Verlag, New York, 898, 366–381, 1981.

Tsonis, A. A. and Elsner, J. B.: Nonlinear prediction as a way of dis-
tinguishing chaos from random fractal sequences, Nature, 358,
217–220, 1992.

Tsonis, A. A., Triantafyllou, G. N., and Elsner, J. B.: Searching
for determinism in observed data: a review of the issue involved,
Nonlin. Proc. Geophys, 1, 12–25, 1994.


