13 research outputs found

    Thrust control, stabilization and energetics of a quadruped running robot

    Full text link
    In order to achieve powered autonomous running robots it is essential to develop efficient actuator systems, especially for generating the radial thrust in the legs. In addition, the control of the radial thrust of the legs can be a simple, effective method for stabilizing the body pitch in a running gait. This paper presents the mechanical systems, models and control strategies employed to generate and control leg thrust in the KOLT quadruped running robot. An analytical model of the electro-pneumatic leg thrusting system is presented and analyzed to evaluate its performance and to facilitate the design of control strategies. Several experiments have been conducted to estimate the energy losses and determine their origins as well as to compute the energetic efficiency of the actuation system. Two thrust control methods are also proposed and tested experimentally. The closed loop method regulates thrust through the control of the hip liftoff speed, a conceptually simple control strategy that stabilizes the body pitch in pronk and trot gaits without the need for central feedback, even on irregular terrain. The open-loop control method regulates the energy added in each hop based on the model of the actuator system. The efficacy of these models and techniques is tested in several planar trot and pronk experiments, and the results are analyzed focusing on the body stabilization, the power consumption and the energetic efficiency. © SAGE Publications 2008 Los Angeles

    System Design of a Cheetah Robot Toward Ultra-high Speed

    Get PDF
    High-speed legged locomotion pushes the limits of the most challenging problems of design and development of the mechanism, also the control and the perception method. The cheetah is an existence proof of concept of what we imitate for high-speed running, and provides us lots of inspiration on design. In this paper, a new model of a cheetah-like robot is developed using anatomical analysis and design. Inspired by a biological neural mechanism, we propose a novel control method for controlling the muscles' flexion and extension, and simulations demonstrate good biological properties and leg's trajectory. Next, a cheetah robot prototype is designed and assembled with pneumatic muscles, a musculoskeletal structure, an antagonistic muscle arrangement and a J-type cushioning foot. Finally, experiments of the robot legs swing and kick ground tests demonstrate its natural manner and validate the design of the robot. In the future, we will test the bounding behaviour of a real legged system

    Towards Automatic Discovery of Agile Gaits for Quadrupedal Robots

    Get PDF
    Developing control methods that allow legged robots to move with skill and agility remains one of the grand challenges in robotics. In order to achieve this ambitious goal, legged robots must possess a wide repertoire of motor skills. A scalable control architecture that can represent a variety of gaits in a unified manner is therefore desirable. Inspired by the motor learning principles observed in nature, we use an optimization approach to automatically discover and fine-tune parameters for agile gaits. The success of our approach is due to the controller parameterization we employ, which is compact yet flexible, therefore lending itself well to learning through repetition. We use our method to implement a flying trot, a bound and a pronking gait for StarlETH, a fully autonomous quadrupedal robot

    Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion

    Get PDF
    All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase

    On the Biomimetic Design of Agile-Robot Legs

    Get PDF
    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented

    Hierarchical controller for highly dynamic locomotion utilizing pattern modulation and impedance control : implementation on the MIT Cheetah robot

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 105-111).This thesis presents a hierarchical control algorithm for quadrupedal locomotion. We address three challenges in developing a controller for high-speed running: locomotion stability, control of ground reaction force, and coordination of four limbs. To tackle these challenges, the proposed algorithm employs three strategies. Leg impedance control provides programmable virtual compliance of each leg which achieve self-stability in locomotion. The four legs exert forces to the ground using equilibrium-point hypothesis. A gait pattern modulator imposes a desired footfall sequence. The control algorithm is verified in a dynamic simulator constructed using MATLAB and then in the subsequent experiments on the MIT Cheetah robot. The experiments on the MIT Cheetah robot demonstrates high speed trot running reaching up to the speed of 6 m/s on a treadmill. This speed corresponds to a Froude number (Fr = 7.34), which is comparatively higher than other existing quadrupedal robots.by Jongwoo Lee.S.M

    Thrust control, stabilization and energetics of a quadruped running robot

    No full text
    In order to achieve powered autonomous running robots it is essential to develop efficient actuator systems, especially for generating the radial thrust in the legs. In addition, the control of the radial thrust of the legs can be a simple, effective method for stabilizing the body pitch in a running gait. This paper presents the mechanical systems, models and control strategies employed to generate and control leg thrust in the KOLT quadruped running robot. An analytical model of the electro-pneumatic leg thrusting system is presented and analyzed to evaluate its performance and to facilitate the design of control strategies. Several experiments have been conducted to estimate the energy losses and determine their origins as well as to compute the energetic efficiency of the actuation system. Two thrust control methods are also proposed and tested experimentally. The closed loop method regulates thrust through the control of the hip liftoff speed, a conceptually simple control strategy that stabilizes the body pitch in pronk and trot gaits without the need for central feedback, even on irregular terrain. The open-loop control method regulates the energy added in each hop based on the model of the actuator system. The efficacy of these models and techniques is tested in several planar trot and pronk experiments, and the results are analyzed focusing on the body stabilization, the power consumption and the energetic efficiency. © SAGE Publications 2008 Los Angeles.Peer Reviewe

    Investigation of energy efficiency of hexapod robot locomotion

    Get PDF
    Disertacijoje nagrinėjamos vaikščiojančių robotų energijos sąnaudų problemos jiems judant lygiu ir nelygiu paviršiumi. Pagrindinis tyrimo objektas yra vaikščiojančio roboto valdymo, aplinkos atpažinimo bei kliūčių išvengimo žinomoje aplinkoje metodas. Energijos sąnaudų minimizavimas leistų praplėsti vaikščiojančių robotų pritaikymą ir veikimo laiką. Pagrindinis darbo tikslas – sukurti energijos sąnaudų minimizavimo metodus vaikščiojantiems robotams ir sukurti aplinkos atpažinimo ir klasifikavimo metodus bei ištirti šešiakojo roboto energijos sąnaudas jiems judant žinomoje aplinkoje. Šie metodai gali būti taikomi vaikščiojantiems daugiakojams robotams. Darbe sprendžiami šie uždaviniai: šešiakojo roboto eisenos parinkimas atsižvelgiant į energijos sąnaudas, paviršiaus kliūčių aptikimo ir perlipimo metodų sudarymas ir jų efektyvumo palyginimas. Taip pat sprendžiami uždaviniai, kurie siejasi su pėdų trajektorijos generavimo metodo kūrimu bei kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertaciją sudaro įvadas, trys skyriai, bendrosios išvados, naudotos literatūros ir autoriaus publikacijų disertacijos tema sąrašai. Įvade aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas, darbo rezultatų praktinė reikšmė, ginamieji teiginiai. Įvado pabaigoje pristatomos disertacijos tema autoriaus paskelbtos publikacijos ir pranešimai konferencijose bei disertacijos struktūra. Pirmasis skyrius skirtas literatūros apžvalgai. Jame pateikta mobiliųjų robotų energetinio efektyvumo bei energijos sąnaudų matavimo, skaičiavimo ir optimizavimo metodų analizė. Antrajame skyriuje pateiktas energetiškai efektyvaus judėjimo metodikos sudarymas vaikščiojantiems robotams. Šiame skyriuje pateiktas šešiakojo roboto matematinio ir fizinio modelių sudarymas, nelygaus paviršiaus klasifikavimo modelio sudarymas bei taktilinio kliūčių aptikimo bei perlipimo metodų sudarymas. Skyriaus gale pateikiamos išvados. Trečiajame skyriuje tiriamos energijos sąnaudų priklausomybės nuo roboto eisenos bei judėjimo parametrų, kliūčių aptikimo ir perlipimo tikslumas priklausomai nuo kliūčių skaičiaus roboto kelyje, taip pat kliūčių dydžio ir tankio įtaka roboto energijos sąnaudoms. Disertacijos tema paskelbti 9 straipsniai: keturi – Clarivate Analytics Web of Science duomenų bazės leidiniuose, turinčiuose citavimo rodiklį, trys – Clarivate Analytics Web of Science duomenų bazės „Conference Proceedings“ leidiniuose ir du – kituose recenzuojamuose mokslo leidiniuose. Disertacijos tema perskaityti 7 pranešimai konferencijose Lietuvoje bei kitose šalyse
    corecore