6,239 research outputs found

    Virus Replication Strategies and the Critical CTL Numbers Required for the Control of Infection

    Get PDF
    Vaccines that elicit protective cytotoxic T lymphocytes (CTL) may improve on or augment those designed primarily to elicit antibody responses. However, we have little basis for estimating the numbers of CTL required for sterilising immunity at an infection site. To address this we begin with a theoretical estimate obtained from measurements of CTL surveillance rates and the growth rate of a virus. We show how this estimate needs to be modified to account for (i) the dynamics of CTL-infected cell conjugates, and (ii) features of the virus lifecycle in infected cells. We show that provided the inoculum size of the virus is low, the dynamics of CTL-infected cell conjugates can be ignored, but knowledge of virus life-histories is required for estimating critical thresholds of CTL densities. We show that accounting for virus replication strategies increases estimates of the minimum density of CTL required for immunity over those obtained with the canonical model of virus dynamics, and demonstrate that this modeling framework allows us to predict and compare the ability of CTL to control viruses with different life history strategies. As an example we predict that lytic viruses are more difficult to control than budding viruses when net reproduction rates and infected cell lifetimes are controlled for. Further, we use data from acute SIV infection in rhesus macaques to calculate a lower bound on the density of CTL that a vaccine must generate to control infection at the entry site. We propose that critical CTL densities can be better estimated either using quantitative models incorporating virus life histories or with in vivo assays using virus-infected cells rather than peptide-pulsed targets

    Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures

    No full text
    Here, using an integrative experimental and computational approach, Imle et al. show how cell motility and density affect HIV cell-associated transmission in a three-dimensional tissue-like culture system of CD4+ T cells and collagen, and how different collagen matrices restrict infection by cell-free virions

    Study of Virus Dynamics by Mathematical Models

    Get PDF
    This thesis studies virus dynamics within host by mathematical models, and topics discussed include viral release strategies, viral spreading mechanism, and interaction of virus with the immune system. Firstly, we propose a delay differential equation model with distributed delay to investigate the evolutionary competition between budding and lytic viral release strategies. We find that when antibody is not established, the dynamics of competition depends on the respective basic reproduction numbers of the two viruses. If the basic reproductive ratio of budding virus is greater than that of lytic virus and one, budding virus can survive. When antibody is established for both strains but the neutralization capacities are the same for both strains, consequence of the competition also depends only on the basic reproduction numbers of the budding and lytic viruses. Using two concrete forms of the viral production functions, we are also able to conclude that budding virus will outcompete if the rates of viral production, death rates of infected cells and neutralizing capacities of the antibodies are the same for budding and lytic viruses. In this case, budding strategy would have evolutionary advantage. However, if the antibody neutralization capacity for the budding virus is larger than that for the lytic virus, lytic virus can outcompete provided that its reproductive ratio is very high. An explicit threshold is derived. Secondly, we consider model containing two modes for viral infection and spread, one is the diffusion-limited free virus transmission and the other is the direct cell-to-cell transfer of viral particles. By incorporating infection age, a rigorous analysis of the model shows that the model demonstrates a global threshold dynamics, fully described by the basic reproduction number, which is identified explicitly. The formula for the basic reproduction number of our model reveals the effects of various model parameters including the transmission rates of the two modes, and the impact of the infection age. We show that basic reproduction number is underestimated in the existing models that only consider the cell-free virus transmission, or the cell-to-cell infection, ignoring the other. Assuming logistic growth for target cells, we find that if the basic reproduction number is greater than one, the infection can persist and Hopf bifurcation can occur from the positive equilibrium within certain parameter ranges. Thirdly, the repulsion effect of superinfecting virion by infected cells is studied by a reaction diffusion equation model for virus infection dynamics. In this model, the diffusion of virus depends not only on its concentration gradient but also on the concentration of infected cells. The basic reproduction number, linear stability of steady states, spreading speed, and existence of traveling wave solutions for the model are discussed. It is shown that viruses spread more rapidly with the repulsion effect of infected cells on superinfecting virions, than with random diffusion only. For our model, the spreading speed of free virus is not consistent with the minimal traveling wave speed. With our general model, numerical computations of the spreading speed shows that the repulsion of superinfecting vision promotes the spread of virus, which confirms, not only qualitatively but also quantitatively, some recent experimental results. Finally, the effect of chemotactic movement of CD8+ cytotoxic T lymphocytes (CTLs) on HIV-1 infection dynamics is studied by a reaction diffusion model with chemotaxis. Choosing a typical chemosensitive function, we find that chemoattractive movement of CTLs due to HIV infection does not change stability of the positive steady state of the model. However, chemorepulsion movement of CTLs destabilizes the positive steady state as the strength of the chemotactic sensitivity increases. In this case, Turing instability occurs, which can be Hopf bifurcation or steady state bifurcation, and spatial heterogeneous patterns may form

    Complexity of the Inoculum Determines the Rate of Reversion of SIV Gag CD8 T Cell Mutant Virus and Outcome of Infection

    Get PDF
    Escape mutant (EM) virus that evades CD8+ T cell recognition is frequently observed following infection with HIV-1 or SIV. This EM virus is often less replicatively “fit” compared to wild-type (WT) virus, as demonstrated by reversion to WT upon transmission of HIV to a naïve host and the association of EM virus with lower viral load in vivo in HIV-1 infection. The rate and timing of reversion is, however, highly variable. We quantified reversion to WT of a series of SIV and SHIV viruses containing minor amounts of WT virus in pigtail macaques using a sensitive PCR assay. Infection with mixes of EM and WT virus containing ≥10% WT virus results in immediate and rapid outgrowth of WT virus at SIV Gag CD8 T cell epitopes within 7 days of infection of pigtail macaques with SHIV or SIV. In contrast, infection with biologically passaged SHIVmn229 viruses with much smaller proportions of WT sequence, or a molecular clone of pure EM SIVmac239, demonstrated a delayed or slow pattern of reversion. WT virus was not detectable until ≥8 days after inoculation and took ≥8 weeks to become the dominant quasispecies. A delayed pattern of reversion was associated with significantly lower viral loads. The diversity of the infecting inoculum determines the timing of reversion to WT virus, which in turn predicts the outcome of infection. The delay in reversion of fitness-reducing CD8 T cell escape mutations in some scenarios suggests opportunities to reduce the pathogenicity of HIV during very early infection

    A stochastic multi-scale model of HIV-1 transmission for decision-making: application to a MSM population.

    Get PDF
    BackgroundIn the absence of an effective vaccine against HIV-1, the scientific community is presented with the challenge of developing alternative methods to curb its spread. Due to the complexity of the disease, however, our ability to predict the impact of various prevention and treatment strategies is limited. While ART has been widely accepted as the gold standard of modern care, its timing is debated.ObjectivesTo evaluate the impact of medical interventions at the level of individuals on the spread of infection across the whole population. Specifically, we investigate the impact of ART initiation timing on HIV-1 spread in an MSM (Men who have Sex with Men) population.Design and methodsA stochastic multi-scale model of HIV-1 transmission that integrates within a single framework the in-host cellular dynamics and their outcomes, patient health states, and sexual contact networks. The model captures disease state and progression within individuals, and allows for simulation of therapeutic strategies.ResultsEarly ART initiation may substantially affect disease spread through a population.ConclusionsOur model provides a multi-scale, systems-based approach to evaluate the broader implications of therapeutic strategies

    Viral Dynamics of Delayed CTL-inclusive HIV-1 Infection Model With Both Virus-to-cell and Cell-to-cell Transmissions

    Get PDF
    We consider a mathematical model that describes a viral infection of HIV-1 with both virus-tocell and cell-to-cell transmission, CTL response immune and four distributed delays, describing intracellular delays and immune response delay. One of the main features of the model is that it includes a constant production rate of CTLs export from thymus, and an immune response delay. We derive the basic reproduction number and show that if the basic reproduction number is less than one, then the infection free equilibrium is globally asymptotically stable; whereas, if the basic reproduction number is greater than one, then there exist a chronic infection equilibrium, which is globally asymptotically stable in absence of immune response delay. Furthermore, for the special case with only immune response delay, we determine some conditions for stability switches of the chronic infection equilibrium. Numerical simulations indicate that the intracellular delays and immune response delay can stabilize and/or destabilize the chronic infection equilibrium

    Implications of CTL-Mediated Killing of HIV-Infected Cells during the Non-Productive Stage of Infection

    Get PDF
    Patients infected with HIV exhibit orders of magnitude differences in their set-point levels of the plasma viral load. As to what extent this variation is due to differences in the efficacy of the cytotoxic T lymphocyte (CTL) response in these patients is unclear. Several studies have shown that HIV-infected CD4+ T cells also present viral epitopes that are recognized by CTLs before the productive stage of infection, i.e., during the intracellular eclipse phase before the infected cell starts to produce new viral particles. Here, we use mathematical modeling to investigate the potential impact of early killing of HIV-infected cells on viral replication. We suggest that the majority of CTL-mediated killing could occur during the viral eclipse phase, and that the killing of virus-producing cells could be substantially lower at later stages due to MHC-I-down-regulation. Such a mechanism is in agreement with several experimental observations that include CD8+ T cell depletion and antiretroviral drug treatment. This indicates a potentially important role of CTL-mediated killing during the non-productive stage of HIV-infected cells

    Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    Get PDF
    Upon infection of a new host, human immunodeficiency virus (HIV) replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV). First, we found that the mode of virus production by infected cells (budding vs. bursting) has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral dose. These results suggest that, in order to appropriately model early HIV/SIV dynamics, additional factors must be considered in the model development. These may include variability in monkey susceptibility to infection, within-host competition between different viruses for target cells at the initial site of virus replication in the mucosa, innate immune response, and possibly the inclusion of several different tissue compartments. The sobering news is that while an increase in model complexity is needed to explain the available experimental data, testing and rejection of more complex models may require more quantitative data than is currently available

    Dynamics analysis of an HIV infection model with latent reservoir, delayed CTL immune response and immune impairment

    Get PDF
    In this paper, we propose an HIV model with latent reservoir, delayed CTL immune response and immune impairment in which both virus-to-cell infection and cell-to-cell viral transmission are considered. By using Lyapunov functionals and LaSalle’s invariance principle, it is verified that when time delay is equal to zero, the global threshold dynamics of the model is determined by the basic reproduction ratio. With the help of uniform persistence theory for infinite dimensional systems, we obtain the uniform persistence when the basic reproduction ratio is greater than unity. By choosing time delay as a bifurcation parameter and analyzing the corresponding characteristic equation of the system, we establish the existence of Hopf bifurcation at the chronic-infection equilibrium. Numerical simulations are carried out to illustrate the corresponding theoretical results
    • …
    corecore