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Abstract. In this paper, we propose an HIV model with latent reservoir, delayed CTL immune
response and immune impairment in which both virus-to-cell infection and cell-to-cell viral
transmission are considered. By using Lyapunov functionals and LaSalle’s invariance principle,
it is verified that when time delay is equal to zero, the global threshold dynamics of the model is
determined by the basic reproduction ratio. With the help of uniform persistence theory for infinite
dimensional systems, we obtain the uniform persistence when the basic reproduction ratio is greater
than unity. By choosing time delay τ as a bifurcation parameter and analyzing the corresponding
characteristic equation of the system, we establish the existence of Hopf bifurcation at the
chronic-infection equilibrium. Numerical simulations are carried out to illustrate the corresponding
theoretical results.

Keywords: latent reservoir, cell-to-cell transmission, delayed CTL immune response, immune
impairment, stability, Hopf bifurcation.

1 Introduction

The human immunodeficiency virus (HIV) is a lentivirus that causes HIV infection and
over time acquired immunodeficiency syndrome (AIDS) [16]. Because of destructiveness
and complexity, researchers have been trying to find a way to cure HIV since it was
discovered in 1981. Combination antiretroviral therapy (ART) or highly active antiretro-
viral therapy (HAART) [5] have led to significantly reduced the incidence of HIV related
morbidity and mortality. Although the current therapy can reduce plasma virus to unde-
tectable, residual low-level viremia can be detected in most patients using ultrasensitive
assays [15]. That is because latently infected cells persist during treatment and release
infectious virus when activated by relevant antigens [12].
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To study the effect of latently infected cells on HIV infection dynamics, Rong et al. [18]
proposed a mathematical model including uninfected cells x(t), latently infected cells
u(t), actively infected cells y(t) and free virus v(t) to describe the effect of latently
infected cells on HIV infection dynamics:

dx(t)

dt
= λ− dx(t)− (1− ε)βx(t)v(t),

du(t)

dt
= α(1− ε)βx(t)v(t)− (µ+ δ)u(t),

dy(t)

dt
= (1− α)βx(t)v(t) + δu(t)− ay(t),

dv(t)

dt
= Nay(t)− σv(t),

(1)

where uninfected cells are produced at rate λ and die at rate d; β is the infection rate of
virus-to-cell infection, α is the fraction of infections that result in latency and ε is the ef-
ficacy of reverse transcriptase (RT) inhibitors. δ is the rate at which latently infected cells
become activated, and µ is the death rate of latently infected cells. a and σ are the death
rate of actively infected cells and free virus, respectively. N is the number of virus pro-
duced by an infected cells during its life time. All parameters are positive, and 0 < ε < 1.

It is noted that model (1) includes virus-to-cell infection only. However, cell-to-cell
transmission formed by virological synapses has great influence on virus infection, which
might be 100−1000 times faster than cell-free virus spread [14]. Moreover, virus can
persist in the presence of antiretroviral therapy that is because cell-to-cell viral trans-
mission permits the transfer of HIV without exposing the virus to extracellular envi-
ronment [20]. Accordingly, some mathematical analysis of virus model with cell-to-cell
viral transmission has been performed. For example, Lai and Zou [11] studied the global
dynamics of HIV infection model, which incorporated both virus-to-cell and cell-to-cell
viral transmissions.

As is shown in [25], antigen-specific immune response after viral infection is universal
and necessary to kill pathogens and infected cells. Faced with HIV infection, cytotoxic
T lymphocytes (CTLs) play a critical role in antiviral defense by attacking infected cells,
which are the main host immune factor that determines viral load. Furthermore, time de-
lays cannot be ignored in models for immune response [3]. That is because the generation
of new CTLs stimulated by antigen needs a period of time τ and it depends on the number
of infected cells at time t− τ [4]. In [22], Wang et al. studied the effects of time delay for
immune response on the dynamic of model with

dz(t)

dt
= cy(t− τ)− bz(t).

However, several studies found that dendritic cells (DCs) are susceptible to HIV
infection in vitro, and the modulation of DCs by HIV infection plays a key role in viral
pathogenesis [7]. During the course of HIV infection, the number and function of DCs are
gradually lost, which engenders some impairment effects for CTL inducement [17]. That
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Table 1. The descriptions of parameters in system (2).

Parameters Biological meaning
λ The rate of production of uninfected cells
d The nature death rate of uninfected cells
β1 The rate of infection by virus-to-cell
β2 The rate of transmission by cell-to-cell
f The fraction of infections leading to latency
η The fraction of infections leading to latency
µ The death rate of latently infected cells
δ The rate at which latently infected cells translate to actively infected cells
a The death rate of actively infected cells
p The remove rate of actively infected cells due to CTL immune responses
N The number of virus produced by an infected cells during its life time
σ The rate of viral clearance
τ The time delay of CTL immune response
c The proliferation rate of CTLs
b The natural death rate of CTLs
m The rate of immune impairment

is why virus evades immunity and contributes to the development of AIDS eventually [6].
In [23], Wang et al. incorporated immune impairment into viral model, where the specific
expression of CTL cells is as follows:

dz(t)

dt
= cy(t− τ)− bz(t)−my(t)z(t).

In this paper, motivated by the works of Rong et al. [18], Lai and Zou [11], Wang et
al. [22] and Wang et al. [23], we are concerned with the effects of latent reservoir, both
virus-to-cell and cell-to-cell transmissions, delayed CTL immune response and immune
impairment on the dynamics of HIV infection. To this end, we consider the following
delayed differential system:

dx(t)

dt
= λ− dx(t)− β1x(t)v(t)− β2x(t)y(t),

du(t)

dt
= fβ1x(t)v(t) + ηβ2x(t)y(t)− (µ+ δ)u(t),

dy(t)

dt
= (1− f)β1x(t)v(t) + (1− η)β2x(t)y(t)

+ δu(t)− ay(t)− py(t)z(t),
dv(t)

dt
= Nay(t)− σv(t),

dz(t)

dt
= cy(t− τ)− bz(t)−my(t)z(t),

(2)

where x(t), u(t), y(t), v(t), z(t) represent the concentrations of uninfected cells, latently
infected cells, actively infected cells, free virus and CTL immune cells at time t, respec-
tively, and other parameters are described in Table 1.
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The initial condition for system (2) takes the form

x(θ) = φ1(θ), u(θ) = φ2(θ),

y(θ) = φ3(θ), v(θ) = φ4(θ), z(θ) = φ5(θ),

φi(θ) > 0, θ ∈ [−τ, 0), φi(0) > 0, i = 1, 2, 3, 4, 5,

(3)

where (φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ)) ∈ R×R×C×R×R, C = C([−τ, 0),R) is the
Banach space of continuous real-valued functions on the interval [−τ, 0] with norm ‖φ‖ =
sup−τ6θ60 |φ(θ)|. It is well known by the fundamental theory of functional differential
equations [8] that system (2) has a unique solution (x(t), u(t), y(t), v(t), z(t)) satisfying
the initial condition (3).

This paper is organized as follows. In Section 2, we verify the positivity and bounded-
ness of solutions of system (2) with the initial condition (3). In Section 3, we get the repro-
duction ratio and establish the existence of feasible equilibria of system (2). In Section 4,
we investigate the global asymptotic stability of each of feasible equilibria. In Section 5,
we analyze the uniform persistence of system (2) when the basic reproduction ratio is
greater than unity. In Section 6, we establish the existence of Hopf bifurcation at the
chronic-infection equilibrium. In Section 7, we present numerical simulations to illustrate
the theoretical results. Besides, we perform a sensitivity analysis of basic reproduction
ratio. A brief conclusion of our paper is given in Section 8.

2 Preliminaries

Theorem 1. Under initial condition in (3), all solutions of system (2) are positive and
ultimately bounded in R× R× C × R× R.

Proof. First, we prove that x(t) is positive for all t > 0. Indeed, assuming the contrary,
let t1 ∈ [0,+∞) be the first time such that x(t1) = 0. By the first equation of system
(2), we have x′(t1) = λ > 0, and hence x(t) < 0 for all t ∈ (t1 − ε, t1), where ε is an
arbitrarily small positive constant. This contradicts x(t) > 0 for t ∈ [0, t1). It follows
that x(t) > 0 for all t > 0.

Similarly, we show that u(t), y(t), v(t) and z(t) are positive for all t > 0. Assume the
contrary, and let t2 > 0 be the first time such that y(t2) = 0. From the third equation
of system (2) we can know y′(t2) = (1− f)β1x(t2)v(t2) + δu(t2). Solving u(t2), v(t2)
from the second and forth equations of system (2), we obtain that

u(t2) =

[
φ2(0) +

t2∫
0

[
fβ1x(t)v(t) + ηβ2x(t)y(t)

]
e(µ+δ)t dt

]
e−(µ+δ)t2 ,

v(t2) =

[
φ4(0) +

t2∫
0

Nay(t)eδt dt

]
e−δt2 .
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Thus y′(t2) > 0, it follows that y(t) > 0 for all t > 0. Accordingly, from the second,
forth and fifth equations of system (2) we have

u(t) =

[
φ2(0) +

t∫
0

[
fβ1x(s)v(s) + ηβ2x(s)y(s)

]
e(µ+δ)s ds

]
e−(µ+δ)t > 0,

v(t) =

[
φ4(0) +

t∫
0

Nay(s)eδs ds

]
e−δt > 0,

z(t) = φ5(0)e
∫ t
0
(b+my(s)) ds + c

t∫
0

y(s− τ)e−
∫ t
s
(b+my(α)) dα ds > 0.

Next, we show that positive solutions of system (2) are ultimately bounded for t > 0.
Adding the first, second and third equations of system (2), we get

d(x(t) + u(t) + y(t))

dt
= λ− dx(t)− µu(t)− ay(t)− py(t)z(t)

6 λ− dx(t)− µu(t)− ay(t)

6 λ−min{a, d, µ}
(
x(t) + u(t) + y(t)

)
.

Thus lim supt→+∞(x(t) + u(t) + y(t)) 6 λ/min{a, d, µ}. Therefore, for arbitrarily
sufficiently small ε > 0, there is a T > 0 such that if t > T ,

x(t) + u(t) + y(t) 6
λ

min{a, d, µ}
+ ε.

Furthermore, from the forth and fifth equations of (2), for t > T ,

dv(t)

dt
6 Na

(
λ

min{a, d, µ}
+ ε

)
− σv(t),

dz(t)

dt
6 c

(
λ

min{a, d, µ}
+ ε

)
− bz(t),

which yield

lim sup
t→+∞

v(t) 6
Na( λ

min{a,d,µ} + ε)

σ
, lim sup

t→+∞
v(t) 6

c( λ
min{a,d,µ} + ε)

b
.

For arbitrary sufficiently small ε > 0, the inequalities always hold. We conclude that

lim sup
t→+∞

v(t) 6
Naλ

σmin{a, d, µ}
, lim sup

t→+∞
v(t) 6

cλ

bmin{a, d, µ}
.

Therefore, the solution of system (2) is ultimately bounded in R× R× C × R× R.
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3 Basic reproduction ratio and feasible equilibria

System (2) always has an infection-free equilibrium E0(x0, 0, 0, 0, 0), where x0 = λ/d.
In the following, we will apply the next generation matrix method [21] to compute the
basic reproduction ratio of system (2).

The infected compartments in system (2) are u, y and v, ordered (u, y, v). The non-
linear terms with new infection F and the outflow term V are given by

F =

 fβ1xv + ηβ2xy
(1− f)β1xv + (1− η)β2xy

0

 , V =

 (δ + µ)u
−δu+ ay + pyz
−Nay + σv

 .

Evaluating the derivatives of F and V at the equilibrium E0 leads the following matrixes:

F =

0 ηβ2λ
d

fβ1λ
d

0 (1−η)β2λ
d

(1−f)β1λ
d

0 0 0

 , V =

δ + µ 0 0
−δ a 0
0 −Na σ

 .

Therefore, we obtain the next-generation matrix

FV −1 =


δηβ2λ
ad(δ+µ) +

Nδfβ1λ
dσ(δ+µ)

ηβ2λ
ad + Nfβ1λ

σd
fβ1λ
dσ

δ(1−η)β2λ
ad(δ+µ) + Nδ(1−f)β1λ

dσ(δ+µ)
(1−η)β2λ

ad + N(1−f)β1λ
σd

(1−f)β1λ
dσ

0 0 0

 .

One of the eigenvalues of matrix FV −1 is 0, the other one gives the basic reproduction
ratio of system (2)

R0 = ρ(FV −1) =
aN(1− f)β1λ+ σ(1− η)β2λ

adσ
+
aNδfβ1λ+ σδηβ2λ

adσ(δ + µ)
.

In addition to the equilibrium E0, if R0 > 1, system (2) has an chronic-infection
equilibrium E1(x1, u1, y1, v1, z1), where

x1 =
λσ

dσ + (β1Na+ β2σ)y1
, u1 =

Nafβ1λy1 + σηβ2λy1
(δ + µ)(dσ + β1Nay1 + β2σy1)

,

v1 =
aNy1
σ

, z1 =
cy1

b+my1
,

and y1 is the unique positive real root of the following algebraic equation:

h2y
2 + h1y + h0 = 0

in which

h0 = −abdσδ(µ+ δ)(R0 − 1) < 0,

h1 = (µ+ δ)[m(1− f)β1λNa+m(1− η)β2λσ
− admσ − ab(β1Na+ β2σ)− cdpσ]
+ δm(Nafβ1λ+ σηβ2λ) > 0,

h2 = (µ+ δ)(β1Na+ β2σ)(am+ cp) > 0.
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4 Stability of the equilibria E0 and E1

Theorem 2. If R0 < 1, the infection-free equilibrium E0(λ/d, 0, 0, 0, 0) of system (2) is
locally asymptotically stable for all τ > 0; ifR0 > 1, E0 is unstable.

Proof. The characteristic equation of system (2) at the equilibrium E0 is

L(s) = (s+ d)(s+ b)(s3 + l2s
2 + l1s+ l0) = 0, (4)

where

l0 = aσ(µ+ δ)(1−R0) > 0,

l1 =
[
−σ(1− η)β2x0 −Na(1− f)β1x0 + aσ

]
− (1− η)β2x0(µ+ δ)− δηβ2x0 + a(µ+ δ) + σ(µ+ δ) > 0,

l2 = −(1− η)β2x0 + a+ σ + δ + µ > 0,

l3 = l1l2 − l0
=
[
−(1− η)β2x0 + a+ σ

]
l1 + σ(µ+ δ)2 + σδηβ2x0 + δfβ1x0Na

+ (δ + µ)
[
−(1− η)β2x0(µ+ δ)− δηβ2x0 + a(µ+ δ)

]
> 0.

By the Routh–Hurwitz criterion, we show that all roots of Eq. (4) have negative real parts.
Hence, the infection-free equilibrium is locally asymptotically stable whenR0 < 1.

When R0 > 1, noting that L(s) is a continuous function in respect to s, it is easy to
see that

L(0) = abd(µ+ δ)(1−R0) < 0, lim
s→+∞

L(s) = +∞,

hence Eq. (4) has at least one positive real root, and E0 is unstable.

Theorem 3. Suppose that f = η. If R0 < 1, the infection-free equilibrium E0(λ/d, 0,
0, 0, 0) of system (2) is globally asymptotically stable for all τ > 0.

Proof. Let (x(t), u(t), y(t), v(t), z(t)) be any positive solution of system (2) with initial
condition (3). Define

A1(t) = x(t)− x0 − x0 ln
x(t)

x0
+

δ

δ + µ(1− η)
u(t) +

δ + µ

δ + µ(1− η)
y(t)

+
β1x0
σ

v(t) +
a(δ + µ)(1−R0)

cδ + cµ(1− η)
z(t) +

a(δ + µ)(1−R0)

δ + µ(1− η)

t∫
t−τ

y(θ) dθ.

Calculating the derivative of A1(t) along positive solutions of system (2) and using the
equality λ = dx0 yields

dA1(t)

dt
= dx0

(
2− x(t)

x0
− x0
x(t)

)
− ab(δ + µ)(1−R0)

cδ + cµ(1− η)
z(t)

−
[
am(δ + µ)(1−R0)

cδ + cµ(1− η)
+

p(δ + µ)

δ + µ(1− η)

]
y(t)z(t). (5)
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It follows from Eq. (5) that Ȧ1(t) 6 0 if R0 < 1. Furthermore, Ȧ1(t) = 0 holds if and
only if x(t) = λ/d, u(t) = 0, y(t) = 0, v(t) = 0 and z(t) = 0. It can be verified
that M0 = {E0} ⊂ Ω is the largest invariant subset of {(x(t), u(t), y(t), v(t), z(t)):
Ȧ1(t)=0}. By LaSalle’s invariance principle, we conclude that the infection-free equilib-
riumE0 of system (2) is globally asymptotically stable for all τ > 0 under the assumption
f = η.

Theorem 4. Suppose that f = η. IfR0 > 1, the chronic-infection equilibriumE1(x1, u1,
y1, v1, z1) of system (2) is globally asymptotically stable when τ = 0.

Proof. Let (x(t), u(t), y(t), v(t), z(t)) be any positive solution of system (2) with initial
condition (3). Define

dA2(t)

dt
= x(t)− x1 − x1 ln

x(t)

x1
+

δ

δ + µ(1− η)

(
u(t)− u1 − u1 ln

u(t)

u1

)
+

δ + µ

δ + µ(1− η)

(
y(t)− y1 − y1 ln

y(t)

y1

)
+
β1x1
σ

(
v(t)− v1 − v1 ln

v(t)

v1

)
+

p(δ + µ)y1
2b(δ + µ(1− η))z1

(
z(t)− z1

)2
.

Calculating the derivative of A2(t) along positive solutions of system (2) yields

dA2(t)

dt
=

(
1− x1

x(t)

)(
λ− dx(t)− β1x(t)v(t)− β2x(t)y(t)

)
+

δ

δ + µ(1− η)

(
1− u1

u(t)

)(
fβ1x(t)v(t) + ηβ2x(t)y(t)− µu(t) + δu(t)

)
+

δ + µ

δ + µ(1− η)

(
1− y1

y(t)

)
×
(
(1− f)β1x(t)v(t) + δu(t) + (1− η)β2x(t)y(t)− ay(t)− py(t)z(t)

)
+
β1x1
σ

(
1− v1

v(t)

)(
Nay(t)− σv(t)

)
+

p(δ + µ)y1
b(δ + µ(1− η))z1

(z(t)− z1)
(
cy(t)− bz(t)−my(t)z(t)

)
. (6)

Substituting equalities λ = dx1 + β1x1v1 + β2x1y1, fβ1x1v1 + ηβ2x1y1 = (µ+ δ)u1,
ay1 = (1−η)β1x1v1+(1−η)β2x1y1+ δu1−py1z1, Nay1 = σv1, cy1−my1z1 = bz1
into Eq. (6) yields

dA2(t)

dt
= dx1

(
2− x(t)

x1
− x1
x(t)

)
+

(δ + µ)(1− η)β2x1y1
δ + µ(1− η)

(
2− x1

x(t)
− x(t)

x1

)
+

δηβ1x1v1
δ + µ(1− η)

(
4− x1

x(t)
− x(t)v(t)u1

x1v1u(t)
− y1u(t)

y(t)u1
− v1y(t)

v(t)y1

)
+

(δ + µ)(1− η)β1x1v1
δ + µ(1− η)

(
3− x1

x(t)
− x(t)v(t)y1

x1v1y(t)
− v1y(t)

v(t)y1

)
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+
δηβ2x1y1

δ + µ(1− η)

(
3− x1

x(t)
− x(t)y(t)u1

x1y1u(t)
− y1u(t)

y(t)u1

)
− p(δ + µ)y1
b(δ + µ(1− η))z1

(
b+my(t)

)(
z(t)− z1

)2
. (7)

It follows from Eq. (7) that Ȧ2(t) 6 0. Furthermore, Ȧ2(t) = 0 holds if and only if
x(t) = x1, u(t) = u1, y(t) = y1, v(t) = v1 and z(t) = z1. It can be verified that M0 =
{E1} ⊂ Ω is the largest invariant subset of {(x(t), u(t), y(t), v(t), z(t)): Ȧ2(t) = 0}.
By LaSalle’s invariance principle, we conclude that the chronic-infection equilibrium
E1 of system (2) is globally asymptotically stable when τ = 0 under the assumption
f = η.

5 Persistence of infection

In this section, we will prove the uniform persistence of system (2) whenR0 > 1.
LetX be a metric space with metric d. Suppose thatX0 is an open set inX ,X0 ⊂ X ,

X0 ∩X0 = ∅ and X0 ∪X0 = X . Furthermore, Q(t) is a C0-semigroup of X satisfying

Q(t) : X0 → X0, X0 → X0. (8)

Let Q∂(t) = Q(t) | X0, and let A∂ be the global attractor for Q∂(t).

Lemma 1. (See Hale and Waltman [9].)Suppose that Q(t) satisfies (8) and the following
conditions are valid:

(i) Q(t) is point dissipative in X .
(ii) There is a t0 > 0 such that Q(t) is compact for t > t0.

(iii) Ã∂ =
⋃
x∈A∂

is isolated and has an acyclic covering M̃ = {M1,M2, . . . ,Mn}.
(iv) W s(Mi) ∩X0 = ∅, i = 1, 2, . . . , n.

Then Q(t) is uniformly persistent in the sense that there exists ε > 0 such that, for any
x ∈ X0, lim infx→+∞ d(Q(t)X,X0) > ε, where d is the distance of Q(t)x from X0.

By applying Lemma 1 to system (2), we obtain the following result.

Theorem 5. If R0 > 1, system (2) is uniformly persistent, i.e., for all solutions of
system (2) with initial condition (3), there exists an ε > 0 such that

lim inf
t→+∞

x(t) > ε, lim inf
t→+∞

u(t) > ε, lim inf
t→+∞

y(t) > ε,

lim inf
t→+∞

v(t) > ε, lim inf
t→+∞

z(t) > ε.

Proof. Let X = C([−τ, 0], R5
+0). Define

X0 =
{
(φ1, φ2, φ3, φ4, φ5) ∈ X: φ2(θ) ≡ 0, φ3(θ) ≡ 0, φ4(θ) ≡ 0, φ5(θ) ≡ 0

}
,

X0 = X/X0.
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It is easy to see that X0 ∩X0 = ∅ and X0 ∪X0 = X . Basic analysis of (2) implies that
X0 is a positive invariant set for system (2). The positive invariance of X0 follows from
Theorem 1 and simple analysis of (2) when any initial component is zero. Therefore, (8)
is satisfied.

For any initial condition (φ1, φ2, φ3, φ4, φ5) ∈ X , define Q(t) for t > 0 as

Q(t)(φ1, φ2, φ3, φ4, φ5) :=
(
x(t), u(t), y(t), v(t), z(t)

)
,

where (x(t), u(t), y(t), v(t), z(t)) is the solution of (2) with initial condition (φ1, φ2, φ3,
φ4, φ5). Then {Q(t)}t>0 is a C0−semigroup. By Theorem 1, we have that Q(t)(φ1, φ2,
φ3, φ4, φ5) is dissipative in X and hence condition (i) in Lemma 1 is satisfied.

Next, it is easy to know that the equations in the right-side of system (2) are in C1,
and the solutions of system (2) with initial conditions (3) are ultimately bounded. Con-
dition (ii) in Lemma 1 follows from the smoothing property of solutions of neutral delay
differential equations [10] that there is a t0 > 0 such that Q(t) is compact for t > t0.

Note that system (2) has an unique boundary equilibrium E0(λ/d, 0, 0, 0, 0). For any
initial condition (φ1, φ2, φ3, φ4, φ5) ∈ X0, we have u(t) ≡ 0, y(t) ≡ 0, v(t) ≡ 0,
z(t) ≡ 0 for all t > 0 and x(t)→ λ/d as t→ +∞. Hence {E0} contains all ω-limit sets
in X0. By Theorem 2, we have that E0 is unstable if R0 > 1. Then {E0} is isolated and
has an acyclic covering, condition (iii) in Lemma 1 is satisfied.

Since

R0 =
aN(1− f)β1λ+ σ(1− η)β2λ

adσ
+
aNδfβ1λ+ σδηβ2λ

adσ(δ + µ)

=
aNβ1λ[(1− f)µ+ δ]

adσ(δ + µ)
+
β2λ[(1− η)µ+ δ]

adσ(δ + µ)
> 1,

we can choose ε > 0 sufficiently small such that

aσ(µ+ δ) + pσε(µ+ δ)

aNβ1[(1− f)µ+ δ] + β2[(1− η)µ+ δ]
<
λ

d
− ε. (9)

Now we show that W s(E0) ∩ X0 = ∅. Suppose W s(E0) ∩ X0 6= ∅, there exists
a positive solution (x(t), u(t), y(t), v(t), z(t)) such that (x(t), u(t), y(t), v(t), z(t)) →
(λ/d, 0, 0, 0, 0) as t→ 0. For ε > 0 sufficiently small satisfying (9), there is t0 > 0 such
that when t > t0, we have x(t) > λ/d − ε, z(t) 6 ε. Hence, it follows from system (2)
for t > t0,

du(t)

dt
> fβ1

(
λ

d
− ε
)
v(t) + ηβ2

(
λ

d
− ε
)
y(t)− (µ+ δ)u(t),

dy(t)

dt
> (1− f)β1

(
λ

d
− ε
)
v(t) + (1− η)β2

(
λ

d
− ε
)
y(t)

+ δu(t)− ay(t)− py(t)ε,
dv(t)

dt
= Nay(t)− σv(t).
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Consider the following auxiliary system:

du1(t)

dt
= fβ1

(
λ

d
− ε
)
u3(t) + ηβ2

(
λ

d
− ε
)
u2(t)− (µ+ δ)u1(t),

du2(t)

dt
= (1− f)β1

(
λ

d
− ε
)
u3(t) + (1− η)β2

(
λ

d
− ε
)
u2(t)

+ δu1(t)− (a+ pε)u2(t),

du3(t)

dt
= Nau2(t)− σu3(t).

(10)

Clearly, system (10) has a unique equilibrium (0, 0, 0). The characteristic equation of (10)
at the equilibrium (0, 0, 0) takes the form

G(s) = s3 + g2s
2 + g1s+ g0 = 0,

where

g0 = −
(
λ

d
− ε
)(
aNβ1

(
(1− f)µ+ δ

)
+ β2

(
(1− η)µ+ δ

))
+ aσ(δ + µ) + pσε(µ+ δ),

g1 = −β2(1− η)
(
λ

d
− ε
)
(µ+ δ) + a(µ+ δ) + pε(µ+ δ) + σ(µ+ δ)

+ aσ + pσε− σβ2(1− η)
(
λ

d
− ε
)
+Naβ1

(
λ

d
− ε
)
− δηβ2

(
λ

d
− ε
)
,

g2 = −β2(1− η)
(
λ

d
− ε
)
+ a+ pε+ σ + µ+ δ.

If R0 > 1, it is easy to see that for real s, lims→+∞G(s) = +∞, and it follows from
Eq. (9) that

G(0) = −
(
λ

d
− ε
)[
aNβ1

(
(1− f)µ+ δ

)
+ β2

(
(1− η)µ+ δ

)]
+ σ(δ + µ)(a+ pε)

< 0.

Therefore, G(s) = 0 has at least one positive real root. Hence, the unique equilibrium
(0, 0, 0) is unstable. It follows from that u1 → +∞, u2 → +∞ and u3 → +∞ as t→
+∞. By comparison, we obtain that u(t) → +∞, y(t) → +∞ and v(t) → +∞ as
t→+∞. This contradicts limt→+∞(x(t), u(t), y(t), v(t), z(t))=(λ/d, 0, 0, 0, 0). Hence
W s(E0) ∩X0= ∅, condition (iv) in Lemma 1 is satisfied. This completes the proof.

6 Hopf bifurcation

In this section, we will identify parameter regimes in which the time delay can destabi-
lize the stability of chronic-infection equilibrium E1(x1, u1, y1, v1, z1) and lead to Hopf
bifurcation.
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The characteristic equation of system (2) at equilibrium E1(x1, u1, y1, v1, z1) is of
the form

s5 + l4s
4 + l3s

3 + l2s
2 + l1s+ l0 +

(
h3s

3 + h2s2 + h1s+ h0
)
e−sτ = 0, (11)

where

l0 =
−mpσλy1z1

x1
(µ+ δ)−Naβ1λ

[
µ(1− f) + δ

]
(b+my1)− σδηβ2λ(b+my1)

+
σλ

x1
(b+my1)(µ+ δ)(−(1− η)β2x1 + a+ pz1)

+ δ(Naβ1 + σβ2)(µ+ δ)u1(b+my1)

+ (Naβ1 + σβ2)(µ+ δ)(b+my1)
(
(1− f)β1x1v1 + (1− η)β2x1y1

)
,

l1 =
−mpλy1z1

x1
(σ + µ+ δ)−mpσ(µ+ δ)y1z1

+ σ(b+my1)(µ+ δ)
[
−(1− η)β2x1 + a+ pz1

]
+Naβ1x1(b+my1)

[
(1− f)β1v1 + (1− η)β2y1

]
−Na(1− f)β1λ(b+my1)

+
σλ

x1
(b+my1)

[
µ+ δ − (1− η)β2x1 + a+ pz1

]
− σδηβ2x1(b+my1) + β2x1(b+my1 + σ)(µ+ δ)

(
(1− f)β1v1 + (1− η)β2y1

)
+Naβ1x1δ(fβ1v1 + ηβ2y1)

+ β2x1(b+my1 + σ)(µ+ δ)
(
(1− f)β1v1 + (1− η)β2y1

)
− σδηβ2x1(b+my1) + β2x1δ(b+my1 + σ)(fβ1v1 + ηβ2y1)

−Naβ1x1
(
µ(1− f) + δ

)(
b+my1 +

λ

x1

)
+

λ

x1
(b+my1 + σ)(µ+ δ)

[
−(1− η)β2x1 + a+ pz1

]
+
[
σβ2(b+my1) +Naβ1(µ+ δ)

][
(1− f)β1x1v1 + (1− η)β2x1y1

]
− δηβ2λ(b+my1 + σ),

l2 = β2x1δ(fβ1v1 + ηβ2y1) + σ(b+my1)

(
λ

x1
+ µ+ δ − (1− η)β2x1 + a+ pz1

)
+Naβ1x1

[
(1− f)β1v1 + (1− η)β2y1

]
+ (b+my1 + σ)(µ+ δ)

[
−(1− η)β2x1 + a+ pz1

]
+

λ

x1
(µ+ δ)

(
−(1− η)β2x1 + a+ pz1

)
+ β2x1(b+my1 + σ)

[
(1− f)β1v1 + (1− η)β2y1

]
−mpy1z1

(
µ+ δ +

λ

x1

)
+

λ

x1
(b+my1 + σ)(µ+ δ + a+ pz1 − δηβ2x1)
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+ β2x1(µ+ δ)
(
(1− f)β1v1 + (1− η)β2y1 − (1− η)β2x1

)
−Na(1− f)β1x1

(
b+my1 +

λ

x1

)
,

l3 = −mpy1z1 −Na(1− f)β1x1 +
λ

x1

[
µ+ δ − (1− η)β2x1 + a+ pz1

]
− δηβ2x1 + σ(b+my1) + β2x1

[
(1− f)β1v1 + (1− η)β2y1

]
+ (b+my1 + σ)

(
λ

x1
+ µ+ δ − 1− (1− η)β2x1 + a+ pz1

)
+ (µ+ δ)

[
−(1− η)β2x1 + a+ pz1

]
,

l4 = b+my1 + σ +
λ

x1
+ µ+ δ − (1− η)β2x1 + a+ pz1,

h0 =
cpy1σλ

x1
(µ+ δ), h1 = cpy1

[
λ

x1
(σ + µ+ δ) + σ(µ+ δ)

]
,

h2 = cpy1

(
σ + µ+ δ +

λ

x1

)
, h3 = cpy1.

When τ > 0, if iω (ω > 0) is a solution of Eq. (11), separating real and imaginary parts,
we have

l4ω
4 − l2ω2 + l0 =

(
h2ω

2 − h0
)
cosωτ −

(
h3ω

3 − h1ω
)
sinωτ,

ω5 − l3ω3 + l1ω =
(
h3ω

3 − h1ω
)
cosωτ +

(
h2ω

2 − h0
)
sinωτ.

(12)

Squaring and adding the two equations of Eq. (12), it follows that

ω10 + k4ω
8 + k3ω

6 + k2ω
4 + k1ω

2 + k0 = 0, (13)
where

k0 = l20 − h20, k1 = −2l0l2 + l21 + 2h0h2 − h21,

k2 = l22 + 2l0l4 − 2l1l3 − h22 + 2h1h3,

k3 = −2l2l4 + l23 + 2l1 − h23, k4 = l24 − 2l3.

Letting ξ = ω2, Eq. (13) becomes

H(ξ) = ξ5 + k4ξ
4 + k3ξ

3 + k2ξ
2 + k1ξ + k0 = 0. (14)

Suppose now that Eq. (14) has positive real roots. Without loss of generality, we assume
that Eq. (14) has m (1 6 m 6 5) positive roots denoted respectively as ξ1 < ξ2 < · · · <
ξm. Then Eq. (13) has m positive roots ωj =

√
ξj (1 6 j 6 m). According to Eq. (12),

we get

cos(ωjτ) =
(l4ω

4
j − l2ω2

j + l0)(h2ω
2
j − h0) + (ω5

j − l3ω3
j + l1ωj)(h3ω

3
j − h1ωj)

(h2ω2
j − h0)2 + (h3ω3

j − h1ωj)2

= ϕ(ωj).
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Thus

τ jn =
arccosϕ(ωj)

ωj
+

2nπ

ωj
,

where j = 1, 2, . . . ,m and n ∈ N+. Then ±iωj are a pair of purely imaginary roots
of Eq. (13) with τ = τ jn. Let s(τ) = α(τ) + iω(τ) be the root of Eq. (11) satisfying
α(τ jn) = 0 and ω(τ jn) = ωj . Define

τ0 = min
16j6m

{
τ j(0)
}
, ω0 = ωj0. (15)

Substituting s(τ) into Eq. (11) and calculating the derivative with respect to τ , we obtain(
ds

dτ

)−1
=

5s4 + 4l4s
3 + 3l3s

2 + 2l2s+ l1
−s(s5 + l4s4 + l3s3 + l2s2 + l1s+ l0)

+
3h3s

2 + 2h2s+ h1
s(h3s3 + h2s2 + h1s+ h0)

− τ
s
.

Direct calculation yields

(
d(Re s)

dτ

)−1∣∣∣∣
τ=τ0

=
(5ω4

0 − 3l3ω
2
0 + l1)(ω

5
0 − l3ω3

0 + l1ω0)

(ω5
0 − l3ω3

0 + l1ω0)2 + (l4ω4
0 − l2ω2

0 + l0)2

− (2l2ω0 − 4l4ω
3
0)(l4ω

4
0 − l2ω2

0 + l0)

(ω5
0 − l3ω3

0 + l1ω0)2 + (l4ω4
0 − l2ω2

0 + l0)2

+
(3h3ω

2
0 − h1)(−h3ω3

0) + h1ω0 + 2h2ω0(−h2ω2
0 + h0)

(h3ω3
0 − h1ω0)2 + (h0 − h2ω2

0)
2

.

From Eq. (12) we conclude that(
ω5
0 − l3ω3

0 + l1ω0

)2
+
(
l4ω

4
0 − l2ω2

0 + l0
)2

=
(
h3ω

3
0 − h1ω0

)2
+
(
h0 − h2ω2

0

)2
.

Thus (
d(Re s)

dτ

)−1∣∣∣∣
τ=τ0

= ω0
H ′(ω2

0)

(h3ω3
0 − h1ω0)2 + (h0 − h2ω2

0)
2
.

Since ω0 > 0 and (h3ω
3
0 − h1ω0)

2 + (h0 − h2ω2
0)

2 > 0, it follows that

sign

{
d(Re s)

dτ

∣∣∣∣
τ=τ0

}
= sign

{(
d(Re s)

dτ

)−1∣∣∣∣
τ=τ0

}
= sign

{
H

′
(ω2

0)
}
.

From what has been discussed above we have the following result.

Theorem 6. Let ω0 and τ0 be defined by (15). If R0 > 1, the following conclusions are
valid.

(i) If Eq. (14) has no positive root, the equilibriumE1 is locally asymptotically stable
for τ > 0.

(ii) If Eq. (14) has at least one positive root, the equilibrium E1 is locally asymp-
totically stable for 0 6 τ < τ0 and becomes unstable for τ > τ0. Further, if
H ′(ω2

0) > 0, system (2) undergoes a Hopf bifurcation at E1 when τ = τ0.
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7 Simulation and discussion

In this section, we want to illustrate the theoretical results for system (2) by numerical
simulations. Here we choose initial condition (20, 0.6, 5, 400, 5), and the relevant param-
eter values of system (2) are listed in Table 2.

We choose parameter values being listed in Table 2. By calculation, we get R0 =
39.9733 > 1, τ0 = 1.743, and system (12) has a chronic-infection equilibrium E1(21.98,
0.6227, 7.321, 365.1, 11.74). From Theorem 6 we derived that the equilibrium E1 is
locally asymptotically stable when 0 6 τ < τ0 and becomes unstable for τ > τ0.
Numerical simulations illustrate this fact (see Figs. 1 and 2), and system (2) undergoes
a Hopf bifurcation at E1 when τ = τ0 (see Fig. 3).

Table 2. The data of parameters of system (2).

Parameters values Unit Source Parameters values Unit Source

λ 10 cells/mm3/day [24] a 0.5 day−1 [18]
d 0.03 day−1 [24] p 0.08 mm3/cells/day [23]
β1 0.001 mm3/virion/day [24] N 200 mm3/cells/day−1 [24]
β2 0.01 mm3/virion/day [1] σ 2 day−1 [1]
f 0.001 – [18] τ varied day Assume
η 0.003 – [24] c 0.65 mm3/cells/day [24]
µ 0.01 day−1 [19] b 0.06 day−1 [24]
δ 0.01 day−1 [19] m 0.05 cells−1/day Assume

Figure 1. The immune-activated equilibrium E1(21.98, 0.6227, 7.321, 365.1, 11.74) of system (2) is locally
asymptotically stable when R0 > 1 and τ = 1 < τ0.
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Figure 2. The immune-activated equilibrium E1(21.98, 0.6227, 7.321, 365.1, 11.74) of system (2) becomes
unstable when R0 > 1 and τ = 3 > τ0.
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Figure 3. The bifurcation diagram of system (2) when λ = 10, d = 0.03, σ = 2, c = 0.065 and the other
parameter values are the same as those in Table 2.
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Figure 4. Tornado plot of partial rank correlation coefficients in respect to R0.

We have shown that the disease will die out if R0 < 1, and if R0 > 1, the virus and
the CTL cells persist in the host. In addition, as shown in Fig. 3, we see that a thresh-
old τ0 for the CTL immune delay was identified to characterize the existence of Hopf
bifurcation at the chronic-infection equilibrium E∗ when the CTL immune delay cross it.
This implies that the CTL immune delay τ plays an important role in destabilizing the
chronic-infection equilibrium and leading to periodic oscillation.

In terms of the treatment of HIV infection, we pay more attention to antiretroviral
therapies, which is directly related to viral production rate and viral remove rate. Be-
sides, it is noted that the antiviral activity of bNAbs results from antigen-binding site-Env
interactions that block entry of cell-free virions as well as viral cell-cell transmission
in vivo [2]. Since the basic reproduction ratio R0 is a threshold determining the global
dynamics of the model, we analyze the effect of parameters β1, β2, a, N and σ on R0

by LHS with 500 samples and partial rank correlation coefficient [13]. As we can see in
Fig. 4, β1, β2 andN are positive correlative variables, while others are negative correlative
variables.

8 Conclusion

In this paper, we have considered an HIV infection model with latent reservoir, both
virus-to-cell and cell-to-cell transmissions, delayed CTL immune response and immune
impairment. By a rigorous mathematical analysis, it was shown that the global dynamics
of system (2) is completely determined by basic reproduction ratio R0. Supposing that
f = η, ifR0 < 1, it was verified that the infection-free equilibriumE0 is globally asymp-
totically stable, and time delay has no effect on the dynamics of system (2). IfR0 > 1, the
infection-free equilibriumE0 becomes unstable, and the chronic-infection equilibriumE1

is globally asymptotically stable when τ = 0. On the other hand, the threshold of CTL
immune delay is calculated to characterize the existence of Hopf bifurcation at chronic-
infection equilibrium E1 when CTL immune delay crosses it. This implies that the CTL
immune delay τ plays an important role in destabilizing the chronic-infection equilibrium
and leading to periodic oscillation. Biologically, this explains the sudden jump in viral
load among patients with viral suppression under ART when ART is stopped.
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