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Abstract

This thesis studies within-host virus dynamics by mathematical models, and topics dis-

cussed include viral release strategies, viral spreading mechanism, and interaction of virus

with the immune system.

Firstly, we propose a delay differential equation model with distributed delay to investi-

gate the evolutionary competition between budding and lytic viral release strategies. We find

that when an antibody is not established, the dynamics of competition depends on the respec-

tive basic reproduction numbers of the two viruses. If the basic reproductive ratio of budding

virus is greater than that of lytic virus and one, budding virus can survive. When an antibody

is established for both strains but the neutralization capacities are the same for both strains,

consequence of the competition also depends only on the basic reproduction numbers of the

budding and lytic viruses. Using two concrete forms of the viral production functions, we are

also able to conclude that budding virus will outcompete if the rates of viral production, death

rates of infected cells and neutralizing capacities of the antibodies are the same for budding

and lytic viruses. In this case, budding strategy would have evolutionary advantage. However,

if the antibody neutralization capacity for the budding virus is larger than that for the lytic

virus, lytic virus can outcompete provided that its reproductive ratio is very high. An explicit

threshold is derived.

Secondly, we consider model containing two modes for viral infection and spread, one is

the diffusion-limited free virus transmission and the other is the direct cell-to-cell transfer of

viral particles. By incorporating infection age, a rigorous analysis of the model shows that

the model demonstrates a global threshold dynamics, fully described by the basic reproduction

number, which is identified explicitly. The formula for the basic reproduction number of our

model reveals the effects of various model parameters including the transmission rates of the

two modes, and the impact of the infection age. We show that the basic reproduction number

is underestimated in the existing models that only consider the cell-free virus transmission, or

the cell-to-cell infection, ignoring the other. Assuming logistic growth for target cells, we find

that if the basic reproduction number is greater than one, the infection can persist and Hopf

bifurcation can occur from the positive equilibrium within certain parameter ranges.

Thirdly, the repulsion effect of superinfecting virion by infected cells is studied by a re-

action diffusion equation model for virus infection dynamics. In this model, the diffusion of

virus depends not only on its concentration gradient but also on the concentration of infected
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cells. The basic reproduction number, linear stability of steady states, spreading speed, and ex-

istence of traveling wave solutions for the model are discussed. It is shown that viruses spread

more rapidly with the repulsion effect of infected cells on superinfecting virions, than with

random diffusion only. For our model, the spreading speed of free virus is not consistent with

the minimal traveling wave speed. With our general model, numerical computations of the

spreading speed shows that the repulsion of superinfecting vision promotes the spread of virus,

which confirms, not only qualitatively but also quantitatively, some recent experimental results.

Finally, the effect of chemotactic movement of CD8+ cytotoxic T lymphocytes (CTLs) on

HIV-1 infection dynamics is studied by a reaction diffusion model with chemotaxis. Choos-

ing a typical chemosensitive function, we find that chemoattractive movement of CTLs due to

HIV infection does not change stability of the positive steady state of the model. However,

chemorepulsion movement of CTLs destabilizes the positive steady state as the strength of the

chemotactic sensitivity increases. In this case, Turing instability occurs, which can be Hopf

bifurcation or steady state bifurcation, and spatial heterogeneous patterns may form.

Keywords: Mathematical modeling, basic reproduction number, virus dynamics, viral re-

lease strategy, cell-to-cell infection, repulsion of superinfecting virion, viral infection-induced

CTL-chemotaxis.
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Chapter 1

Introduction

A virus is a small infectious agent that is only able to replicate inside the living cells of an

organism. Viruses are found in almost every ecosystem on Earth and known to infect most

types of organisms, including bacteria, fungi, plants, insects, vertebrates and so on. A vast

number of viruses cause diseases in humans, domestic animals or crop plants.

1.1 Virus-induced diseases

The common human diseases such as the common cold, influenza, chickenpox and cold sores

are caused by viruses. There are currently 21 families of viruses known to cause diseases

in humans. Figure 1.1 displays the main human diseases caused by different viruses. Some

of these diseases are very serious infectious diseases, such as acquired immune deficiency

syndrome (AIDS), Hepatitis, Herpes Simplex, Measles, avian influenza and SARS and so on

[47], and they are a major component of infectious diseases and continue to plague humans.

The leading infectious diseases as causes of death in 1998 and 2007 are shown in Figure 1.2.

About 3.5 million and 4.4 million deaths occurred as a result of acute respiratory diseases in

1998 and 2007 respectively, much of which are due to viruses. AIDS has killed 2.3 million and

1 million people worldwide in 1998 and 2007 respectively, and measles is still a significant

killer in developing countries. Some viruses cause major epidemics, for instance, HIV and

AIDS, Influenza, Insect-Borne Diseases, Yellow fever and Dengue. According to the World

Health Organization report on global situation and trends of HIV/AIDS, almost 70 million

people have been infected with the HIV virus and about 35 million people have died of AIDS

since the beginning of the epidemic. Although the burden of the epidemic varies considerably

between countries and regions, the epidemic continues and at the end of 2011, 34.0 million

(31.4 - 35.9 million) people and 0.8% of adults aged 15-49 years worldwide were estimated to

1
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be living with HIV.

Figure 1.1: Overview of main types of viral infection and the most notable species involved

(Wikipedia: http://en.wikipedia.org/wiki/Virus).

Most of dangerous viruses have been controlled effectively by the introduction of vaccine.

There are useful vaccines for some virus induced diseases, for example, Smallpox, measles,

Rubella, Mumps, Varicella-Zoster, Hepatitis A and Hepatitis B. The incidences of some dis-

eases, such as measles, have been dramatically reduced in some developed countries through

the use of vaccines. However, they are still leading diseases in many developing countries.

Moreover, for most serious virus-induced diseases such as Hepatitis C, Hepatitis D and HIV,

there are still no vaccines available.

Viruses have different mechanisms in causing diseases in an organism, which depends

largely on the viral species. Viruses can usually cause damage in the host via cell lysis, produc-

tion of toxic substances and cell transformation [3]. When a virus enters a cell and completes

its normal replication cycle, the host cell may undergo lysis due to a physical internal pressure

exerted by the multiplying virus or immune response. Furthermore, during the course of virus

replication, many cytotoxic viral components as well as by-products of viral replication accu-

mulate in the cell. Cell lysis and cytotoxic components cause death of the cell. In multicellular

organisms, if enough cells die, the whole organism will start to suffer the effects. Some viruses

can cause lifelong or chronic infections, where the viruses continue to replicate in the body
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Figure 1.2: Leading infectious killers in 1998 and 2007.

http://www.who.int/infectious-disease-report/pages/graph5.html

https://www.research.olemiss.edu/UMQuest/2007/Winter/ThePowerOfPartnerships.html

despite the host’s defence mechanisms. This is common in Hepatitis B virus and Hepatitis C

virus infections.

1.2 Viral life cycle and immune responses against viral in-
fections

A virus is made up of a core of genetic material, either DNA or RNA, surrounded by a protec-

tive protein coat called a capsid or nucleocapsid. For some viruses, the capsid is surrounded by

an additional lipid coat called the envelope [3]. Viral populations produce multiple copies of

themselves in a host cell utilizing the machinery and metabolism of the cell. The life cycle of

viruses differs greatly between species, but there are five basic stages in the life cycle of viruses

(see Figure 1.3): attachment, penetration/entry, uncoating, replication and release.

A viral replication cycle begins with binding of free virus to host cell through interaction

between specific viral capsid/surface proteins and cellular receptors. Following attachment, the

virus (or at least its nucleic acid) enters the host cell through receptor-mediated endocytosis

or membrane fusion. For some viruses, the genome is completely released from the capsid

during or after penetration, which is is known as “uncoating”. Viral capsid is degraded by

viral enzymes or host enzymes. In the viral replication cycle, viral genetic materials and viral
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proteins are processed in the host cell. The mechanisms of this phase depend on the type

and family of viruses. Once new viral genomes and proteins have been produced, they are

assembled into new virions. In the case of non-enveloped viruses, these newly formed virions

accumulate in the cell and are released by cell lysis, a process that kills the cell by bursting its

membrane and cell wall if present. Enveloped viruses (e.g., HIV) are often released from the

host cell by budding. During the budding process, a virus acquires the phospholipid envelope

containing the embedded viral glycoproteins. These particles can then go through additional

maturation events to give rise to infectious virus.

Figure 1.3: A typical virus replication cycle (http://en.wikipedia.org/wiki/Virus).

Within the life cycle, viruses have a relatively short extracellular period, prior to infecting

the cells, and a longer intracellular period during which they undergo replication. In most viral

infections, the immune system has mechanisms which can attack the virus in both of these

phases of its life cycle. During the protein production or viral assembling phase, antigens that

appear in the membrane of the infected cell can activate the immune response which targets

infected cells. Different mechanisms of innate (non-specific) and adaptive (specific) immunity

are used against viral infections.

The most effective mechanisms of the innate response against viral infections are mediated

by interferon and by the activation of natural killer (NK) cells. These mechanisms are mainly

aimed against infected cells. Viral infection of cells directly stimulates the production of inter-

ferons from macrophages or lymphocytes. Interferon is a cytokine which has strong anti-viral

actions, such as inhibition of both viral replication and cell proliferation, and enhancement of

the ability of natural killer cells to lyse virally infected cells. Naturally activated natural killer
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cells can recognize and lyse virally infected cells. On the other hand, the alternative pathway

of complement activation also has the effect of very effectively activating the destruction of the

viral particle [31].

Viruses are strongly immunogenic inducing both types of adaptive immune responses, hu-

moral and cellular immune responses, which are essential for antiviral defense. The contribu-

tion of each immune response varies, depending on the virus and the host. Antibodies generally

bind to virus particles in the blood and at mucosal surfaces, thereby blocking the spread of in-

fection. In contrast, effector T cells recognize and kill infected cells. Adaptive immunity acts

against both viral particles and infected cells.

Humoral response is responsible for blocking the infectivity of the virus. The viral capsid is

made of proteins and very antigenic. It induces the production of a large number of antibodies

that can have different actions against the virus. The most effective type of antiviral antibody

is “neutralizing” antibody, the antibody which binds to the virus, usually to the viral envelope

or capsid proteins, and which blocks the virus from binding to and entering into the host cell.

Neutralizing antibody is an effective form of protective immunity against viral infections, and

used for many successful viral vaccine, which work by stimulating virus-neutralizing antibody

responses.

In contrast, the cellular immune response kills the virus-infected cells expressing viral pro-

teins on their surfaces. The principal effector cells involved in clearing established viral infec-

tions are the virus specific CD8+ cytotoxic T lymphocytes (CTL). These cells recognize viral

antigens which have been synthesized within cell’s nucleus or cytosol, and which have been

degraded. Recognition of these antigens by an antigen-specific CTL usually results in the de-

struction of the infected cell. Cells infected by viruses can express on their membranes viral

antigens long before the viral assembling takes place. Thus, their destruction is a very effective

mechanism for avoiding the production of more viruses. The cytotoxicity mechanisms medi-

ated by CD8+ lymphocytes is one of the most effective mechanisms against viral infections

[31].

1.3 Mathematical modeling of virus dynamics

Mathematical modeling in epidemiology provides understanding of the underlying mecha-

nisms that influence the spread of disease and, in the process, it suggests control strategies.

For within-host virus dynamics, mathematical models based on understanding of biological in-

teractions, can also provide nonintuitive insights into the dynamics of host response to viruses

and can suggest new avenues for experimentation. In HIV infection, for example, mathemati-

cal models have been devised to describe the slow decline in the number of CD4+ T cells over
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many years, the interaction between HIV and other opportunistic infections, the emergence of

drug-resistant viruses, and the consequences of antigenic diversity and viral evolution during

single infections [34, 35, 39, 40, 46]. In HIV and Hepatitis B virus (HBV) infection, mathe-

matical models of drug treatment dynamics have provided estimates for the turnover rates of

infected cells and free virus [13, 38].

Basic reproduction number The basic reproduction number (sometimes called basic re-

production rate or basic reproductive ratio, denoted as R0) is used to measure the transmission

potential of a disease. It is thought of as the number of secondary infections produced by a

typical case of infection in a population that is totally susceptible. It can therefore be mea-

sured by counting the number of secondary cases following the introduction of an infection

into a totally susceptible population [9, 11, 23, 29, 48, 52]. The basic reproduction number is

affected by several factors: (1) the rate of contacts in the host population; (2) the probability of

infection being transmitted during contact; (3) the duration of infectiousness. In general, for

an epidemic to occur in a susceptible population, R0 must be greater than 1, so that the number

of cases is increasing. If R0 < 1, the number of cases decreases, for example, if a new vaccine

has been introduced.

Basic model A general mathematical model for the basic dynamics of virus-host cell in-

teraction was developed [34, 38, 39, 46]. The basic principles that underly models of virus

dynamics are as follows (Figure 1.4). Susceptible uninfected cells, x(t), are infected when they

meet free viruses, v(t). Infected cells, y(t), produce new virus particles that leave the cell and

find other susceptible target cells. Repeated rounds of infection result in the growth of the virus

population. Growth is limited by the availability of target cells.

dx
dt
= λ − dx − βxv,

dy
dt
= βxv − (d + α)y, (1.1)

dv
dt
= ky − uv.

Uninfected target cells are produced at a constant rate, λ, from a pool of precursor cells and

die at a rate dx. When these susceptible cells encounter with free virus articles, they become

infected at a rate βxv. The infected cells die at an additional rate αy, which is the viral caused

cell death (cytopathicity or cytotoxicity). Infected cells produce new virus particles with a rate

ky, and the free virus particles that have been released from the cells decay with a rate uv. Thus,

the average lifetime of an infected cell is 1/(d + α); the average lifetime of a free virus particle

is 1/u; the total number of virus particles produced from one infected cell is k/(d + α).



7

Figure 1.4: Schematic diagram of the basic model (1.1)

The outcome is determined by the basic reproduction number of the virus [22], which is

the average number of newly infected cells produced by a single infected cell when almost all

cells are still uninfected. For the system (1.1), the basic reproduction number of the virus is

given by

R0 =
λβk

du(d + α)
.

If R0 < 1, the infection-free equilibrium E0 = (λ/d, 0, 0) is stable. If R0 > 1, E0 is unstable

and there exists a stable positive equilibrium E∗ = (x∗, y∗, v∗), where

x∗ =
λ

dR0
, y∗ =

λ

d + α

(
1 −

1
R0

)
, v∗ =

k
u

y∗.

When R0 < 1, one cell on average produces less than one newly infected cell, and the virus

population fails to spread and goes extinct, thus the system converges to the infection-free

equilibrium E0. However, when R0 > 1, one cell on average gives rise to more than one newly

infected cell, and the infection can spread, the system will converge to the positive equilibrium

E∗. We see that the outcome is determined not only by viral, but also by host parameters.

In this model, the absorbtion of free virus particles by infection is ignored. Considering the

loss of free virus particles, the virus population equation reads [21, 24]

dv
dt
= ky − uv − βxv.

The basic model has been derived to model in vivo dynamics of HIV-1, HBV and some other

viruses infection. The further developments of the model are given as follows.
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Logistic growth If new target cells are not created at a constant rate, but created by prolif-

eration of existing cells, and the proliferation is described as a logistic function, we have the

following equation for susceptible cell population

dx
dt
= rx

(
1 −

x
K

)
− βxv.

Here r is the proliferation rate and K is the maximum capacity of cell proliferation, that is

the density at which cell proliferation shuts off. If new target cells are created not only from

sources within the body at a constant rate λ, but also by proliferation of existing cells, the

susceptible cell population follows [40]

dx
dt
= λ − dx + rx

(
1 −

x
K

)
− βxv.

Considering that the total concentration of cells is x + y, the models can be changed to the

following equations [7, 26, 50]

dx
dt
= rx

(
1 −

x + y
K

)
− βxv, or

dx
dt
= λ − dx + rx

(
1 −

x + y
K

)
− βxv.

The logistic term can destabilize the positive equilibrium, and Hopf bifurcation is expected.

Immune responses The infected cells and free virus particles can be cleared by immune

responses with CTLs and some neutralizing antibodies respectively. The basic model is ex-

tended to consider immune responses. Let z denote the magnitude of CTL response, that is, the

abundance of virus-specific CTLs. One of CTL response dynamics is given by the following

equation [34]
dz
dt
= cyz − bz,

where CTLs proliferate in response to antigenic simulation with a rate cyz. In the absence of

stimulation, CTLs decay at rate b. The parameter c denotes the CTL responsiveness, that is,

the growth rate of specific CTLs after encountering infected cells. In this model, there is a

minimum level of infected cells y necessary to stimulate a CTL response. That is, the CTL

response will increase only if cy > b. This simple model of CTL dynamics can be modified

to consider the saturation of CTL expansion as the number of CTLs grows to relatively high

numbers, which is expressed by the following equation [54]

dz
dt
=

cyz
1 + εz

− bz.

The variable ε represents the saturation level. This model has similar dynamical properties as

the previous simple model. The difference is the steady state levels of virus load and cells. If
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the saturation occurs at lower level of CTLs (high value of ε), this model is verified to a simple

one given by [5]
dz
dt
= cy − bz.

Here, the rate of CTL expansion is simply proportional to the amount of antigen, but not the

rate of CTLs. In this model, the CTL response never goes extinct provided there are antigens.

By a lytic mechanisms, CTL is assumed to kill infected cells, which is expressed by [54, 55]

dy
dt
= βxv − (d + α)y − pyz.

Infected cells are killed by CTL at a rate pyz. The parameter p specifies the rate at which CTL

kills infected cells. The CTL response also functions by nonlytic mechanisms. CTL decreases

the rate at which uninfected target cells become infected, which is expressed by the following

equations [54, 56, 57]

dx
dt
= λ − dx −

β

1 + qz
xv,

dy
dt
=

β

1 + qz
xv − (d + α)y.

(1.2)

The term qz represents the suppression/inhibition of CTL on the viral infection. Similarly, the

immune response may also reduce the rate of viral production [54],

dy
dt
= βxv −

(
d +

α

1 + qz

)
y,

dv
dt
=

k
1 + qz

y − uv.
(1.3)

In this case, the CTL immune response follows the equation [54]

dz
dt
=

cyz
(1 + qz)(1 + εz)

− bz.

Another important immune response in controlling virus infection is the antibody response.

The antibody response is modeled in a similar way as the CTL response. The main difference is

that antibody secreting B cells are activated by antigen specific CD4+ T cells which recognize

viral antigen on the surface of antigen presenting cells (APCs) such as macrophages or some

dentritic cells. Since the amount of antigen presentation by the APCs is proportional to the

abundance of free virus particles, the growth of this immune response must be proportional to

v rather than y. Denoting the antibody response by z, the model for z is given as

dz
dt
=

cvz
1 + εz

− bz,
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Once the antibody response has developed, it removes free virus particles, which is given by

equation [18]
dv
dt
= ky − uv − pvz.

Here, antibody response removes free virus particles at a rate pvz.

Antiviral drugs For retroviruses, such as HIV-1, the efficacy of antiviral drugs is estimated

by mathematical modeling. Let εRT and εPI denote the efficacy of the therapy with reverse

transcriptase (RT) inhibitors and protease inhibitors, respectively (0 ≤ εRT , εPI < 1). The newly

produced virus particles are divided into two classes, infectious virions with concentration

vI(t) and noninfectious viral particles with concentration vNI(t), to study the effect of protease

inhibitor. The virus dynamics is reformed to the following system [28],

dx
dt
= λ − dx − (1 − εRT )βxvI ,

dy
dt
= (1 − εRT )βxv − ay,

dvI

dt
= (1 − εPI)ky − uvI ,

dvNI

dt
= εPIky − uvNI .

The equation of noninfectious virions vNI is decoupled from the other first three equations. The

dynamics of the first three equations is similar to the basic model. The difference is that the

effects of drug is incorporated in the model and the basic reproduction number is changed to

R0 =
(1 − εRT )(1 − εPI)λβk

dua
.

Time delays A time delay exists in the processes of viral infection, immune control and

drug therapy. There is an intracellular time delay between infection of a cell and production of

new virus particles. Let τ be the time delay from the time of initial infection until the production

of new virions. For the basic model, incorporating this delay, the equation of infected cell

population reads [13]
dy
dt
= e−mτβx(t − τ)v(t − τ) − (d + α)y,

where τ is a constant, or

dy
dt
=

∫ ∞

0
f (τ)e−mτβx(t − τ)v(t − τ)dτ − (d + α)y,

where τ is distributed according a distribution function f (τ) [32]. The recruitment of virus-

producing cells at time t is given by the number of cells that were newly infected at time t − τ



11

and are still alive at time t. With the assumption of a constant death rate m for infected but not

yet virus-producing cells, the probability of surviving the time period form t − τ to t is e−mτ.

For the constant delay model, the basic reproduction number for this model is

R0 =
kλβe−mτ

du(d + α)
.

If R0 < 1, the infection-free equilibrium is globally asymptotically stable. If R0 > 1, the

infection-free equilibrium is unstable, and all positive solutions converge to the positive equi-

librium with all τ > 0 [25]. However, when both logistic growth of uninfected cells and this

time delay are considered, Hopf bifurcation occurs from the positive equilibrium as the delay

τ exceeds some threshold [60].

There are also a delay for activation of CD8+ T cell response. Considering this time delay,

the equation of immune response is given by [5, 37]

dz
dt
= cy(t − τ), or

dz
dt
= cy(t − τ)z(t − τ).

With drug therapy, time delays of viral productive infection and viral reproduction are consid-

ered by [32, 51]

dy
dt
= (1 − εRT )β

∫ ∞

0
f (τ)x(t − τ)v(t − τ)dτ − (d + a)y,

where f (τ) accounts for the probability of cells infected at time t − τ becoming productive at

time t.

Infection age More precisely than a discrete fixed delay, the infection age of infected cells

is considered in some models. The infected cells structure by the infection age, that is, the time

that has elapsed since an HIV virion has penetrated the cell. Let y(a, t) denotes the concentra-

tion of infected cells of infection age a at time t. Then the population of infected cells evolves

by [12, 33]
∂

∂t
y(a, t) +

∂

∂a
y(a, t) = −δ(a)y(a, t),

where δ(a) is the age-dependent per capita death rate of infected cells. Infected cells of age

zero are created by infection, that is,

y(0, t) = βx(t)v(t).

The concentration of infectious virus at time t, v(t) evolves by

d
dt

v(t) =
∫ ∞

0
P(a)y(a, t)da − uv,
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where P(a) is the viral production rate of an infected cell with age a. The functional form of

viral production kernel, P(a), and the death rate of infected cells, δ(a), need to be determined

experimentally. Two possible functions for P(a) are considered [33]. The first one is a delayed

exponential function

P(a) =

Pmax(1 − e−θ(a−a1)) if a ≥ a1,

0 else,

where θ controls how rapidly the saturation level Pmax is reached. a1 represents a delay in

virus production, that is, it takes time a1 after initial infection for the first virus particles to be

produced. The second one is a Hill type function

P(a) = Pmax
an

Kn
a + an ,

where Ka is the half-saturation level and n is a constant called the Hill coefficient. This function

allows for quick growth to a maximal level, depending upon the value of Ka, but can also

approximate the delayed effect seen in the previous function. One possible choice of δ(a) is

given by

δ(a) =

δ0 if a < a2,

δ0 + δm(1 − e−γ(a−a2)) if a ≥ a2,

where δ0 + δm is the maximal death rate, γ controls the time to reach saturation level and a2

is the delay between infection and the onset of cell-mediated killing. The term δ0 represents a

background death rate.

Age-structured models have also been developed to study the antiviral drug efficacy for HIV

infection [41]. The class of infected cells, y(a, t), is divided into two subclasses: y1(a, t) and

y2(a, t), where y1(a, t) represents the density of cells that have been infected by an HIV virion

but in which reverse transcription has not been completed at infection age a, called preRT

cell; y2(a, t) represents the density of infected cells that have completed reverse transcription at

infection age a, called postRT cell. The densities of the preRT and postRT cells are given by

y1(a, t) = γ(a)y(a, t), y2(a, t) = (1 − γ(a))y(a, t),

where γ(a) describes the proportion of infected cells those have not completed reverse tran-

scription at age a, which is a non-increasing function with the following properties: γ(a) ∈

L1[0,∞]; 0 ≤ γ(a) ≤ 1; γ(0) = 1; γ(a) = 0 for a ≥ a1; γ′(a) ≤ 0 a.e. Let η(εRT ) denote the rate

at which preRT cells revert to the uninfected stage due to the failure of reverse transcription.
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Then the model reads [41]

dx
dt
= λ − dx − βxvI +

∫ ∞

0
η(εRT )y1(a, t)da,

∂

∂t
y(a, t) +

∂

∂a
y(a, t) = −δ(a)y(a, t) −

∫ ∞

0
η(εRT )y1(a, t)da,

y(0, t) = kvI x,
dvI

dt
=

∫ ∞

0
(1 − εPI)p(a)y2(a, t)da − uvI ,

dvNI

dt
=

∫ ∞

0
εPI p(a)y2(a, t)da − uvNI .

The limiting system of this model was considered, and then the basic reproduction number

(ignoring the vNI equation) is given by

R0 =
λβK
du

,

where K is the infectious virus burst size, and

K =
∫ ∞

0
(1 − εPI)(1 − γ(a))p(a)e−

∫ a
0 (δ(s)+η(εRT )γ(s))dsda.

The model with entry and protease inhibitors is given by

dx
dt
= λ − dx − (1 − εEI)βxvI ,

∂

∂t
y(a, t) +

∂

∂a
y(a, t) = −δ(a)y(a, t),

y(0, t) = (1 − εEI)kvI x,
dvI

dt
=

∫ ∞

0
(1 − εPI)p(a)y2(a, t)da − uvI ,

dvNI

dt
=

∫ ∞

0
εPI p(a)y2(a, t)da − uvNI .

Similarly to the previous model, considering the limiting system of this model, the basic repro-

duction number (ignoring the vNI equation) is given by

R0 =
λ(1 − εEI)βK

du
,

where K is the infectious virus burst size, and

K =
∫ ∞

0
(1 − εPI)(1 − γ(a))p(a)e−

∫ a
0 δ(s)dsda.



14

These two systems have similar dynamical properties. Each of them has two equilibria respec-

tively, an infection-free equilibrium and a positive equilibrium. The infection-free equilibrium

is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1. The positive equilibrium

is locally asymptotically stable if R0 > 1 [41].

1.4 Thesis motivations and outlines

Newly formed viruses are released to the outside environment either upon lysis (lytic virus) or

by budding through the plasma membrane of the host cell (budding virus). Why some virus

choose the former while the others choose the latter? We study the evolutionary competition

of these two modes of viral release strategies in Chapter 2. Lytic viruses accumulate inside

the host cell and exit in a burst killing the host cell (see figure 1.5(a)), while budding virus are

produced and released from the host cell gradually (see Figure 1.5(b) and 1.5(c)). Most naked

viruses are released by lysis, when infected cells breaks open (cell lysis/destruction) due to the

activity of viral enzymes. Poliovirus is an example of a lytic virus. Budding is a typical feature

of enveloped viruses. Enveloped viruses often obtain their envelopes from host cell membranes

by budding. Budding occurs either at the outer cytoplasmic membrane, the nuclear membrane,

or at the membranes of the Golgi apparatus. Viruses obtaining their envelope from the cyto-

plasmic membrane are released during the budding process. Viruses obtaining their envelopes

from the membranes of the nucleus, the endoplasmic reticulum, or the Golgi apparatus are then

released by exocytosis via transport vesicles. The examples of budding virus are retroviruses,

togaviruses, orthomyxoviruses, paramyxoviruses, bunyaviruses, coronaviruses, rhabdoviruses

and hepadnaviruses. We derive a mathematical model to study the evolutionary competitive-

ness of this two types of viruses by focusing on the infection age and release strategy. More

specifically, we propose a mathematical model described by differential equations with dis-

tributed delay accounting for infection age. We first discuss the conditions for the existence

and stability of equilibria of the model. Then we choose two explicit forms of the viral produc-

tion function to investigate the effect of antibody on evolutionary competition of budding and

lytic strategies.

Virus infection and spread is generally believed to be a recursive process of the binding of

free virions to permissive target cells followed by entry, replication, making multiple copies of

themselves and releasing them to extracellular environment, and then moving to infect adjacent

target cells. New research and findings have challenged this classical view of how viruses in-

fect and spread, suggesting that both cell-free virus infection and cell-to-cell transfer of HIV-1

are important mechanisms in virus spread. In the classical mode of infection (cell-free virus
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(a) (b) (c)

Figure 1.5: Release of viruses. (a) Release of naked viruses by host cell lysis. (b)-(c) Release

of an enveloped virus by host cell budding (http://me-you-and-virus.blogspot.ca/).

infection), the virions spread around the body through freely circulating particles by the move-

ment between cells and tissues of the body via fluid-phase diffusion. This route of infection is

undoubtedly important. However, many viruses that are pathogenic for humans can also spread

between cells without diffusing through the extracellular environment by exploiting preexisting

mechanisms of physiological communication between cells [42, 43]. For example, HIV-1, her-

pes simplex virus and measles can be transported from one cell to adjacent cells without being

released. Recent studies have advanced our understanding about the mechanism of cell-to-cell

spread for some viruses [2, 16, 30, 44]. The dominant form of cell-to-cell spread for HIV-1 is

likely to be spread via virological synapse, a structure that arises between a productively HIV-

1-infected cell such as CD4+ T cell or a macrophage and an uninfected permissive target cell

[4, 8]. A stable adhesive junction is formed between two cells in a virological synapse. In the

HIV-1 virological synapse, viral assembly and budding are polarized towards the synapse, and

virus is released into the synaptic cleft before fusing with the target cell plasma membrane. An

infected cell can polarize viral budding towards the receptor-expressing target cell in a virolog-

ical synapse. Virions bud from the infected cell into a synaptic cleft, from which they fuse with

target-cell plasma membrane. Cell-to-cell spread not only facilitates rapid viral dissemination,

but may also promote immune evasion, escape from drug therapy and influence disease [27].

We consider both cell-to-cell infection mechanism and virus-to-cell infection mode by

mathematical modeling. In Chapter 3, we incorporate an infinite intracellular delay which

reflects the fact that an infected cell may remain latent forever, corresponding to various stages

during the complicated process of virus replication and the survival rate of infected cells be-

fore they become productive. First, we identify the basic reproduction number of the model,

in terms of which we discuss local stability of the infection-free equilibrium and the positive
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equilibrium. Then we prove the persistence of infection, and further explore the global stabil-

ity of the two equilibria. Our theoretical results show that the virus dynamics of the model are

fully determined by the basic reproduction number. In Chapter 4, we further consider logistic

cell growth ignoring the delay effect. We study the stability of the infection-free equilibrium

and positive equilibrium, uniform persistence of the infection. Hopf bifurcation is discussed

and illustrated numerically.

In the classical mode of virus infection and spread, the speed at which a virus can spread

within a host would be limited by how quickly it can reproduce in each cell. New research [10,

6] have challenged the classical view of how viruses spread, indicating that some viruses could

spread much faster than previously thought. Using live video microscopy, the researchers from

Imperial College London discovered that vaccinia virus, the vaccine used to eradicate smallpox,

could spread four times quicker than previously thought possible, based on the rate at which

it replicates. They disclosed the underlying mechanism for the faster spread. Videos of virus-

infected cells revealed that the virus spreads by surfing from cell to cell, using a mechanism

that allows it to bounce past the adjacent infected cells and reach uninfected cells as quickly

as possible. This can be called as viral ping-pong. The researchers believe that other viruses

also employ rapid spreading mechanisms. For instance, herpes simplex virus (HSV-1), which

causes cold sores, spreads at a faster rate than should be possible given its replication rate.

Thus, this phenomenon discovered with vaccinia may be a common feature of some viruses.

The discovery may ultimately enable scientists to create new antiviral drugs that target this

spreading mechanism.

In Chapter 5, we study this ping-pong effect by a reaction diffusion equation model where

the diffusion of virus population depends not only on its concentration but also on the concen-

tration of infected cells. The well-posedness of the model, the basic reproduction number of

the model is obtained. For spatial heterogeneous case (some parameters depend on space loca-

tion), the basic reproduction number for the model is derived to be a spectral radius of the linear

next generation operator. We compute it numerically by orthogonal projection method. When

all the parameters do not depend on space location, we show the linear stability of steady states

of model. With a one dimensional domain, we estimate the spread rate of virus numerically

and discuss the effect of repulsion of superinfecting virions. With a one dimensional infinite

space, we analyzed the minimal traveling wave speed and existence of traveling wave solution

numerically, when the diffusion of target cell and infected cell is ignored.

In Chapter 6, we study the effect of CTL-chemotaxis response on HIV-1 infection dynam-

ics. Many motile cells and organisms, such as somatic cells, bacteria, and other single-cell
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or multicellular organisms, direct their movements according to certain chemicals in their en-

vironment. This oriented movement is called chemotaxis. In the experimental community,

chemotaxis or chemoattraction describes a directed movement of organisms up a concentration

gradients of chemotactic agents (called chemoattractant, see Figure 1.6). Conversely, chemore-

pulsion or fugetaxis is defined as a directed movement of organisms down a concentration

gradient of chemotactic agents (called chemorepellent) [49, 17]. However, in mathematical

literature, chemotaxis has a broader meaning of the directed movements of organisms toward

or away from the chemotactic agents [15]. Positive chemotaxis means chemoattraction, while

negative chemotaxis denotes chemorepulsion.

Figure 1.6: Chemoattraction and chemorepulsion (http://en.wikipedia.org/wiki/Chemotaxis).

Cell-mediated immunity depends in part on appropriate migration and localization of CTLs.

This process is regulated by chemokines and adhesion molecules [20]. Many viruses encode

chemotactically active proteins. The envelope protein gp120 of HIV-1 has been shown to act as

a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4.

Some studies [1, 19] showed that high concentrations of the viral protein CXCR4-binding

HIV-1 gp120 repels HIV-specific CTLs, while low concentration of gp120 attracts CTLs with

specific interaction with CXCR4. In HIV-1 infection dynamics, if we assume virus popula-

tion is at a quasi-steady state, the virus load is proportional to the concentration of infected

cells I(x, t). Furthermore, the concentration of gp120 is proportional to the infected cells, and

chemotaxis flux of CTLs, E(x, t), is given by J = EΨ(E, I)∇I, whereΨ(E, I) is the chemotactic

response function. Negative Ψ(E, I) indicates chemoattraction, while positive Ψ(E, I) repre-

sents chemorepulsion. Incorporating this chemotaxis term into the HIV-1 infection model, we

derive a reaction diffusion-chemotaxis model.

A challenging problem for chemotaxis models is the blow-up of solutions in finite time.

That means the whole population concentrate in a single point in a finite time. To avoid a
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blow up, various mechanisms are introduced [14, 15, 53, 58]. One mechanism is to con-

sider the volume-filling effect [36, 59], which means only a finite number of cells can be ac-

commodated at any site. If the chemotactic response function is assumed to be of the form

Ψ(u, v) := q(u)χ(v), the volume-filling effect can be described by q(u) satisfying q(Umax) =

0, and q(u) ≥ 0 for all 0 ≤ u < Umax, where Umax denotes the maximum number of cells

those can be accommodated at any site. For example, a simple form, q(u) = 1− u
Umax

. The func-

tion q(u) is considered as the probability of the cell finding a space at its neighboring location

depends upon the availability of space.

Considering the volume-filling effect, we show the global existence and well-posedness of

solutions. Linear stability of the steady states and the conditions for Turing instability and pat-

tern formation are analyzed. Assuming a constant chemotactic sensitivity function, we show

the stability of positive steady state, steady state bifurcation, Hopf bifurcation and pattern for-

mation numerically under different conditions.

The thesis ends up with a conclusion in Chapter 7, where we summarize the main results

of the thesis, and point out some possible topics for future work.
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Chapter 2

Dynamics of evolutionary competition
between budding and lytic viral release
strategies

2.1 Introduction

In the real world, there are mainly two types of viral release strategies: lytic and budding.

Viruses can be released from the host cell by lysis, a process that kills the cell by bursting its

membrane, after a period of accumulation of new virions inside the host cell. This is a feature

of many bacterial and animal naked viruses, such as many types of phages, rhinoviruses and

picornaviruses [2]. Many viruses do not lyse their host cells; instead, progeny virions are

released from the cells over a period of time by gradually budding. Enveloped viruses, such as

HIV and influenza, are typically released from host cells by this strategy (see [5], [9]). During

this process a virus acquires its envelope from cell surface membrane.

A typical viral production process consists of viral attachment (to the host cells), penetra-

tion, uncoating, replication and release. However, lytic and budding viral strains have different

life cycles. A lytic virus has a lytic cycle during which the new virions are produced and accu-

mulated inside the host cell, and released by a burst (lysis) when the number of viruses inside

becomes too large for the cell to hold. A budding virus reproduces inside and escapes the host

cell by constantly budding throughout the lifespan of the infected cell.

There is some research on the kinetics of viral production. Coombs [4] examined the

optimal virus production schedules by considering the trade-off between viral replication and

cell death rate. Burst size, defined as the expected number of virions produced over the lifetime

of an infected cell, was considered as viral reproductive fitness. It was found that if viral
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production rate and cell mortality rate are linked, replicating at the maximal rate so that the

burst size is maximized, may not be the optimal strategy for virus, even if natural selection

favors viral strains whose virion production rate maximizes viral burst size. The optimal viral

production rate may be lower than the maximum viral production rate, or may not be a constant,

meaning that it may vary with the time or the age of the infected cell, depending on the trade-

off between cell mortality and viral production. In a subsequent work, Gilchrist et al. [6] used

an age-structured model of virus dynamics to study the optimal viral fitness. It was shown

that trade-offs between virion production and immune system clearance of infected cells could

lead natural selection to favor production rates lower than the one that maximizes burst size.

Nelson et al. [10] also used an age structured model to study the influence of different profiles

of nonconstant viral production rate and nonconstant infected cell death rate on HIV infection

dynamics. As for lytic virus, Wang et al. (see [13],[14]) studied the optimal lysis time and

phage fitness. It was found that a delay in lysis time can lead to production of more progeny

per infected host. Therefore, there is a trade-off between a present immediate linear gain by

extending the vegetative cycle of phage and a future uncertain exponential gain derived from

lysing the current host and releasing the progeny virion.

Komarova [8] studied the evolutionary competition between budding and lytic strategies.

It was concluded that if all the parameters, such as the rate of viral production, cell lifespan

and neutralizing capacity of antibodies, were the same for the lytic and budding viruses, the

budding life-strategy would have a large evolutionary advantage because it is advantageous for

an organism to reproduce earlier in life rather than later, given that the offspring is the same in

both cases. However when the antibody effect is considered, the difference in removal capacity

of the antibodies against budding and lytic virions could make lytic virus evolutionarily more

competitive. Newly produced virions of a budding virus exit the host cell gradually and are

immediately attacked by antibodies, while that of a lytic strain exit all at once, in a burst, and

if there are sufficiently many of them, they can ”flood” the immune system making it less

effective.

Komarova [8] used the Euler-Lotka equation for the host cell population and reaction diffu-

sion equations for antibody flooding effect. The disadvantage of the Euler-Lotka model is that

it only models a steady state of viral spread, when the uninfected host cells are freely available.

In this chapter, we aim at providing an alternative perspective by focusing on the infection age

and release strategy. More specifically, we propose a mathematical model described by ordi-

nary differential equations with distributed delay accounting for infection age. By analyzing

this structured model system, we study the evolutionary competition between these two viral

productive strategies.

The rest of this chapter is organized as follows. In Section 2, we present an age structured
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model and its simplified form with distributed delay. In Section 3, we prove that all the so-

lutions of our model are positive and bounded. In Section 4, the equilibria of the model and

their stability are discussed. In Section 5, we give two explicit forms of the viral production

function and investigate the effect of antibody on evolutionary competition of budding and lytic

strategies. The chapter is ended by Section 6, where in addition to conclusion, some discussion

is also presented.

2.2 Model formulation

Age structured models have been used to study the within-host dynamics for HIV (see [10],

[6], [11]). We use an age structured model for the infected cell population. The infection age,

a, is the time lapsed since a cell was infected by a virus. Suppose that T (t) is the density of

uninfected target cells at time t; VB(t) is the density of virus produced by the budding strategy

at time t (we call it budding virus); VL(t) is the density of virus produced by the lytic strategy

at time t (we call it lytic virus); T ∗B(t, a) is the density of infected cells at infection age a at

time t, which are infected by budding virus; T ∗L(t, a) is the density of infected cells at infection

age a and at time t, which are infected by lytic virus; A(t) is the density of antibody at time

t. By infection, budding virus and lytic virus compete for uninfected target cells. Assuming

mass action infection mechanism, we propose the following system of differential equations to

describe the competition dynamics of budding and lytic viruses:

dT (t)
dt
= H − dT T (t) − βBT (t)VB(t) − βLT (t)VL(t),

∂T ∗B(t, a)
∂t

+
∂T ∗B(t, a)
∂a

= −dT ∗B(a)T ∗B(t, a),

∂T ∗L(t, a)
∂t

+
∂T ∗L(t, a)
∂a

= −dT ∗L(a)T ∗L(t, a),

dVB(t)
dt

=

∫ τ∗

τB

γB(a)T ∗B(t, a)da − dVVB(t) − ηBVB(t)A(t),

dVL(t)
dt

=

∫ τ∗

τL

γL(a)T ∗L(t, a)da − dVVL(t) − ηLVL(t)A(t),

dA(t)
dt
= p(VB(t) + VL(t))A(t) − dAA(t) − ηBVB(t)A(t) − ηLVL(t)A(t).

(2.1)

Here, βB and βL represent the infection rates of budding virus and lytic virus respectively.

γB(a) and γL(a) are the virion production rates from infected cells with an infection age a by

budding strategy and by lytic strategy respectively. τB and τL denote the ages when the infected

cells begin to release new virions by budding and lysis respectively. p is the activation rate of

antibodies. ηB and ηL are the neutralization rates of antibodies for budding virus and lytic virus
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respectively.

We assume that viruses are introduced at time t = 0, meaning that there is neither virus

nor infection for t ∈ [−τ∗, 0), and infection occurs at t = 0 immediately after introduction of

viruses. Accordingly

T ∗B(0, a) = 0, T ∗L(0, a) = 0, for all a > 0.

The infected cells of age zero come from the new infections, that is

T ∗B(t, 0) = βBT (t)VB(t), T ∗L(t, 0) = βLT (t)VL(t).

Now, for the budding virus, the dynamics are determined by the following initial-boundary

value problem: 
∂T ∗B(t, a)

∂t
+
∂T ∗B(t, a)
∂a

= −dT ∗B(a)T ∗B(t, a),

T ∗B(t, 0) = βBT (t)VB(t),

T ∗B(0, a) = 0,∀a > 0.

(2.2)

Solving this problem by the method of characteristics, we obtain

T ∗B(t, a) =

βBT (t − a)VB(t − a)e−
∫ a

0 dT∗B
(ξ)dξ

, t ≥ a,

0, t < a.

Similarly, we have

T ∗L(t, a) =

βLT (t − a)VL(t − a)e−
∫ a

0 dT∗L
(ξ)dξ

, t ≥ a,

0, t < a.

Substituting the above formulas for T ∗B(t, a) and T ∗L(t, a) into VB and VL equations in (6.1), and

by our assumptions that VB(θ) = 0, VL(θ) = 0, for all θ ∈ [−τ∗, 0), we obtain the following

model system:

dT (t)
dt
= H − dT T (t) − βBT (t)VB(t) − βLT (t)VL(t),

dVB(t)
dt

=

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ

βBT (t − a)VB(t − a)da − dVVB(t) − ηBVB(t)A(t),

dVL(t)
dt

=

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βLT (t − a)VL(t − a)da − dVVL(t) − ηLVL(t)A(t),

dA(t)
dt
= p(VB(t) + VL(t))A(t) − dAA(t) − ηBVB(t)A(t) − ηLVL(t)A(t).

(2.3)

In the rest of the chapter, we shall investigate the dynamics of this system.
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2.3 Positivity and boundedness of solutions

LetX = C([−τ∗, 0],R4) be the Banach space of continuous functions with supremum norm. By

the fundamental theory of FDEs [7], we know that there is a unique solution (T (t),VB(t),VL(t), A(t))

to the system with given initial conditions (T (θ),VB(θ),VL(θ), A(θ)) ∈ X. Due to the biological

meanings of the unknown functions, we need to further assume that the initial functions T (θ),

VB(θ), VL(θ), and A(θ) satisfy

 T (θ) ≥ 0, VB(θ) = 0, VL(θ) = 0, A(θ) ≥ 0, for all θ ∈ [−τ∗, 0),

T (0) > 0, VB(0) > 0, VL(0) > 0, A(0) > 0.
(2.4)

The following theorem addresses the well-posedness of the model (2.3).

Theorem 2.3.1 Let (T (t),VB(t),VL(t), A(t)) be a solution of the system (2.3) satisfying (2.4).

Then T (t), VB(t), VL(t) and A(t) are non-negative and bounded for all t ≥ 0.

Proof From the first and last equations of the system (2.3), we have

T (t) = T (0)e−
∫ t

0 (dT+βBVB(ξ)+βLVL(ξ))dξ +

∫ t

0
He−

∫ t
η

(dT+βBVB(ξ)+βLVL(ξ))dξdη > 0,

A(t) = A(0)e
∫ t

0 [pVB(ξ)+pVL(ξ)−dA−ηBVB(ξ)−ηLVL(ξ)]dξ > 0.

Next, we show that VB(t) > 0 for all t ∈ (0,∞). Otherwise, there exists a first time t1 > 0 such

that VB(t1) = 0 and VB(t) > 0 for t ∈ [0, t1). This would lead to

dVB(t1)
∂t

=

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ

βBT (t1 − a)VB(t1 − a)da > 0.

This implies VB(t) is negative in a small left neighborhood of t1, a contradiction. Therefore,

VB(t) > 0 for all t > 0. Similarly, we can prove VL(t) > 0 for all t > 0.

To prove the boundedness, let γ̄B = maxa∈[τB,τ∗] γB(a), γ̄L = maxa∈[τL,τ∗] γL(a), γ̄ = max{γ̄B, γ̄L},

dT ∗ = min{minτB≤a≤τ∗ , dT ∗B(a),minτL≤a≤τ∗ dT ∗L(a)} and η = min{ηB, ηL}. Define

G(t) = γ̄
∫ τ∗

τB

e−dT∗aT (t − a)da + VB(t) + VL(t) +
η

p
A(t).
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By the nonnegativity of solutions, it follows that

dG(t)
dt

= Hγ̄
∫ τ∗

τB

e−dT∗ada − dT γ̄

∫ τ∗

τB

e−dT∗aT (t − a)da

−γ̄

∫ τ∗

τB

e−dT∗a[βBT (t − a)VB(t − a) + βLT (t − a)VL(t − a)]da

+

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ

βBT (t − a)VB(t − a)da − dVVB(t) − ηBVB(t)A(t),

+

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βLT (t − a)VL(t − a)da − dVVL(t) − ηLVL(t)A(t)

+η(VB(t) + VL(t))A(t) −
dAη

p
A(t) −

ηηB

p
VB(t)A(t) −

ηηL

p
VL(t)A(t)

≤ Hγ̄
∫ τ∗

τB

e−dT∗ada − dT γ̄

∫ τ∗

τB

e−dT∗aT (t − a)da − dVVB(t) − dVVL(t) − dA
η

p
A(t)

≤ Q − dG(t),

where Q = Hγ̄
∫ τ∗

τB
e−dT∗ada > 0 and d = min{dT , dV , dA} > 0. Therefore, lim supt→∞G(t) ≤

Q/d, implying that G(t) is bounded, and so are T (t), VB(t), VL(t) and A(t).

2.4 Equilibria and their stability

Let

R(0)
B =

βBHKB

dVdT
, R(0)

L =
βLHKL

dVdT
,

R(1)
B = R(0)

B − σB, R(1)
L = R(0)

L − σL.

where

KB =

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξda, KL =

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξda,

σB =
βBdA

dT (p − ηB)
, σL =

βLdA

dT (p − ηL)
.

Here, e−
∫ a

0 dT∗B
ξdξ denotes the age-specific survival probability of an infected cell infected by

budding virus, i.e., the probability of an infected cell remaining alive at infection age a. Thus,

KB is the total number of new virions produced by one infected cell, infected by budding

virus, over its whole lifespan. We call KB the burst size of budding virus. Similarly, KL is the

burst size of lytic virus. Notice that 1/dV is the life span of budding virus in the absence of

antibody, H/dT is the cell density without infection, and βB is the infection rate. Hence, one

budding virus, once inoculated into an environment containing H/dT uninfected cells, can lead

to βBH/(dT dV) infected cells. These infected cells then produce the amount βBHKB/(dT dV) of
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new virions. Therefore, R(0)
B gives the reproductive ratio of the budding virus in the absence of

antibody (also referred to as the basic reproductive number). In parallel, R(0)
L is the reproductive

ratio of the lytic virus in the absence of antibody. Note that σB accounts for the clearance rate

of antibody for budding virus. Thus, R(1)
B is the reproductive ratio of budding virus when the

antibody for budding virus is established. Similarly, R(1)
L is the reproductive ratio of lytic virus

when the antibody for lytic virus is established.

For system (2.3), there always exists an infection free equilibrium E0 =
(
T (0), 0, 0, 0

)
, where

T (0) = H/dT . Other possible equilibria are summarized below:

(I) If R(0)
B > 1, there exists an equilibrium E10 =

(
T (10),V (10)

B , 0, 0
)
, where

T (10) =
dV

KBβB
, V (10)

B =
dT

βB

(
R(0)

B − 1
)
.

(II) If R(0)
L > 1, there exists an equilibrium E01 =

(
T (01), 0,V (01)

L , 0
)
, where

T (01) =
dV

KLβL
, V (01)

L =
dT

βL

(
R(0)

L − 1
)
.

(III) If R(0)
B = R(0)

L > 1, there are infinitely many equilibria of the form Ê =
(
T̂ , V̂B, V̂L, 0

)
,

where

T̂ =
dV

KBβB
, βBV̂B + βLV̂L = dT (R(0)

B − 1).

(IV) If p > ηB and R(1)
B > 1, there exists an equilibrium E20 =

(
T (20),V (20)

B , 0, A(20)
)
, where

T (20) =
H

dT (1 + σB)
, V (20)

B =
dA

p − ηB
, A(20) =

dV

ηB(1 + σB)

(
R(1)

B − 1
)
.

(V) If p > ηL and R(1)
L > 1, there exists an equilibrium E02 =

(
T (02), 0,V (02)

L , A(02)
)
, where

T (02) =
H

dT (1 + σL)
, V (02)

L =
dA

p − ηL
, A(02) =

dV

ηL(1 + σL)

(
R(1)

L − 1
)
.

(VI) The positive equilibrium E22 =
(
T (22),V (22)

B ,V (22)
L , A(22)

)
, where

T (22) =
H(ηL − ηB)

dT

(
R(0)

B ηL − R(0)
L ηB

) , A(22) =
dV

(
R(0)

L − R(0)
B

)
R(0)

B ηL − R(0)
L ηB

,

V (22)
B =

dT ( H
T (22)dT

− 1 − σL)σB

βB(σB − σL)
, V (22)

L =
dT ( H

T (22)dT
− 1 − σB)σL

βL(σL − σB)
,

exists in any of the following cases:
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(VI-1) σB > σL, ηL > ηB, R(0)
L > R(0)

B , and

R(0)
B
ηL

ηB
+ (1 + σL)(1 −

ηL

ηB
) > R(0)

L > R(0)
B
ηL

ηB
+ (1 + σB)(1 −

ηL

ηB
).

(VI-2) σB > σL, ηL < ηB, R(0)
L < R(0)

B , and

R(0)
B
ηL

ηB
+ (1 + σB)(1 −

ηL

ηB
) > R(0)

L > R(0)
B
ηL

ηB
+ (1 + σL)(1 −

ηL

ηB
).

(VI-3) σB < σL, ηL > ηB, R(0)
L > R(0)

B , and

R(0)
B
ηL

ηB
+ (1 + σB)(1 −

ηL

ηB
) > R(0)

L > R(0)
B
ηL

ηB
+ (1 + σL)(1 −

ηL

ηB
).

(VI-4) σB < σL, ηL < ηB, R(0)
L < R(0)

B , and

R(0)
B
ηL

ηB
+ (1 + σL)(1 −

ηL

ηB
) > R(0)

L > R(0)
B
ηL

ηB
+ (1 + σB)(1 −

ηL

ηB
).

We now consider the stability of some equilibria. The following result suggests that if

the basic reproductive ratios of both budding virus and lytic virus are less than one, then the

population sizes of both budding virus and lytic virus will approach zero as t → ∞ and the

antibody cannot be established.

Theorem 2.4.1 The equilibrium E0 = (H/dT , 0, 0, 0) is globally asymptotically stable if R(0)
B <

1 and R(0)
L < 1.

Proof First we consider local stability of the equilibrium E0. Linearizing the system (2.3) at

equilibrium E0 leads to

du1(t)
dt
= −dT u1(t) − βB

H
dT

u2(t) − βL
H
dT

u3(t),

du2(t)
∂t
=

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ

βB
H
dT

u2(t − a)da − dVu2(t),

du3(t)
dt
=

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βL
H
dT

u3(t − a)da − dVu3(t),

du4(t)
dt
= −dAu4(t).

(2.5)

The characteristic equation of this linear system is

J0(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + dT βB

H
dT

βL
H
dT

0

0 λ + dV − βB
H
dT

K̄B(λ) 0 0

0 0 λ + dV − βL
H
dT

K̄L(λ) 0

0 0 0 λ + dA

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,
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where

K̄B(λ) =
∫ τ∗

τB

γB(a)e−
(∫ a

0 dT∗B
(ξ)dξ+λa

)
da, K̄L(λ) =

∫ τ∗

τL

γL(a)e−
(∫ a

0 dT∗L
(ξ)dξ+λa

)
da.

It is obvious that λ1 = −dT < 0 and λ2 = −dA < 0 are two eigenvalues and the other eigenvalues

are determined by

λ + dV = βB
H
dT

K̄B(λ),

and

λ + dV = βL
H
dT

K̄L(λ),

which are equivalent respectively to

λ

dV
+ 1 = R(0)

B
K̄B(λ)

KB
, (2.6)

and

λ

dV
+ 1 = R(0)

L
K̄L(λ)

KL
. (2.7)

We need to show that under the conditions of the theorem, all roots of (2.6) and (2.7) have

negative real parts. Let λ = x + iy be a root of (2.6). We show that x < 0. Otherwise, x ≥ 0

implies ∣∣∣K̄B(λ)
∣∣∣ ≤ ∫ τ∗

τB

γB(a)
∣∣∣∣∣e−(∫ a

0 dT∗B
(ξ)dξ+λa

)∣∣∣∣∣ da ≤
∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξda = KB.

Thus, if R(0)
B < 1, then ∣∣∣∣∣ λdV

+ 1
∣∣∣∣∣ ≥ 1,

∣∣∣∣∣∣R(0)
B

K̄B(λ)
KB

∣∣∣∣∣∣ < 1,

a contradiction to (2.6). Therefore, x < 0 under R(0)
B < 1, implying that all roots of (2.6) have

negative real parts if R(0)
B < 1. Similarly, if R(0)

L < 1, then all roots of (2.7) also have negative

real parts. It follows from [7], that the equilibrium E0 is locally asymptotically stable if R(0)
B < 1

and R(0)
L < 1.

To show that E0 is globally asymptotically stable, it is sufficient to show that E0 is globally

attractive. By the positivity of solutions, we have

dT (t)
dt

= H − dT T (t) − βBT (t)VB(t) − βLT (t)VL(t),

≤ H − dT T (t).

This implies

lim sup
t→∞

T (t) ≤
H
dT
. (2.8)
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Denote

R(0)
B (ε) =

βB(H + ε)KB

dVdT
, R(0)

L (ε) =
βL(H + ε)KL

dVdT
.

Let ε > 0 be sufficiently small such that R(0)
B (ε) < 1 and R(0)

L (ε) < 1. For such an ε > 0, by

(2.8), there exists a t∗ > 0 such that

T (t) ≤
H + ε

dT
, for t ≥ t∗.

Thus,

dVB(t)
∂t

≤
H + ε

dT

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ

βBVB(t − a)da − dVVB(t),

dVL(t)
dt

≤
H + ε

dT

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βLVL(t − a)da − dVVL(t).

We consider the following auxiliary linear system
dw2(t)
∂t

=
H + ε

dT

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ

βBw2(t − a)da − dVw2(t),

dw3(t)
dt

=
H + ε

dT

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βLw3(t − a)da − dVw3(t).
(2.9)

Notice that the two equations in (2.9) are the same as the second and third equations in (2.5)

except that H is replaced by H + ε. Thus, the characteristic equation of (2.9) is the product

of two equations of the form (2.6) and (2.7) with H replaced by H + ε. Thus, R(0)
B (ε) < 1 and

R(0)
L (ε) < 1 ensure that all eigenvalues of (2.9) have negative real parts, and hence, the trivial

solution of (2.9) is globally (since (2.9) is linear) asymptotically stable, meaning that every

solution (w2(t),w3(t)) → (0, 0) as t → ∞. Notice that (2.9) is a co-operative delay system. By

the comparison theorem ([12]), we conclude that lim
t→∞

(VB(t),VL(t))T = (0, 0).

Finally, the first and the last equations of (2.3) form a system which has the following

autonomous system as the limit system.
dw1(t)

dt
= H − dT w1(t),

dw4(t)
dt

= −dAw4(t).

Obviously, every solution of this system approaches (H/dT , 0). By the theory of asymptotically

autonomous systems (see, e.g., [3]), for any positive solution (T (t),VB(t),VL(t), A(t)) of (2.3),

T (t) → H/dT and A(t) → 0 as t → ∞, and therefore, (T (t),VB(t),VL(t), A(t)) → (H/dT , 0, 0, 0)

as t → ∞. That is, E0 is globally attractive, completing the proof.
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The following result indicates that if the basic reproductive ratio for the budding virus are

greater than one and exceeds the basic reproductive ratio for the lytic virus, then the budding

virus can survive when the antibody effect is not established.

Theorem 2.4.2 Assume that R(0)
B > 1 and R(0)

B > R(0)
L . If either (i) p ≤ ηB; or (ii) p > ηB and

R(1)
B < 1, then the equilibrium E10 is locally asymptotically stable. If R(0)

B < R(0)
L , or p > ηB and

R(1)
B > 1, then this equilibrium is unstable.

Proof Linearizing system (2.3) at equilibrium E10 gives

du1(t)
dt
= −dT u1(t) − βBV (10)

B u1(t) − βBT (10)u2(t) − βLT (10)u3(t),

du2(t)
dt
=

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ[βBV (10)

B u1(t − a) + βBT (10)u2(t − a)]da − dVu2(t) − ηBV (10)
B u4(t),

du3(t)
dt
=

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βLT (10)u3(t − a)da − dVu3(t),

du4(t)
dt
= (p − ηB)V (10)

B u4(t) − dAu4(t).

The characteristic equation of this linear system is∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + dT + βBV (10)

B βBT (10) βLT (10) 0

−βBV (10)
B K̄B(λ) λ + dV − βBT (10)K̄B(λ) 0 ηBV (10)

B

0 0 λ + dV − βLT (10)K̄L(λ) 0

0 0 0 λ + dA − (p − ηB)V (10)
B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

One eigenvalue is

λ1 = −dA + (p − ηB)V (10)
B =

dA

σB

(
R(1)

B − 1
)
.

It is clear that if p ≤ ηB, then λ1 < 0. If p > ηB but R(1)
B < 1, we also have λ1 < 0; and if

R(1)
B > 1, then λ1 > 0.

The other eigenvalues are determined by

λ + dV = βLT (10)K̄L(λ), (2.10)

and

(λ + dT )(λ + dV) + (λ + dV)βBV (10)
B − (λ + dT )βBT (10)K̄B(λ) = 0. (2.11)

Equation (2.10) is equivalent to

λ

dV
+ 1 =

R(0)
L

R(0)
B

K̄L(λ)
KL

. (2.12)
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By a similar argument to that in analyzing (2.6), we conclude that all roots of (2.10) have

negative real parts if R(0)
B > R(0)

L . Equation (2.11) is equivalent to

(λ + dT )(λ + dV) + (λ + dV)dT (R(0)
B − 1) − (λ + dT )dV

K̄B(λ)
KB

= 0,

which can be further rewritten as

(λ + dT R(0)
B )

(
λ

dV
+ 1

)
= (λ + dT )

K̄B(λ)
KB

. (2.13)

Let λ = x + iy be a root of (2.13). If x ≥ 0, then by R(0)
B > 1, we have

∣∣∣λ + dT R(0)
B

∣∣∣ > |λ + dT | ,

∣∣∣∣∣ λdV
+ 1

∣∣∣∣∣ ≥ 1,

∣∣∣∣∣∣ K̄B(λ)
KB

∣∣∣∣∣∣ ≤ 1.

Therefore, ∣∣∣∣∣∣(λ + dT R(0)
B )

(
λ

dV
+ 1

)∣∣∣∣∣∣ >
∣∣∣∣∣∣(λ + dT )

K̄B(λ)
KB

∣∣∣∣∣∣ .
This is a contradiction to equation (2.13). Therefore, if R(0)

B > 1, then x < 0 for equation (2.13),

implying that all roots of (2.13) have negative real parts.

In summary, we have shown that under the assumption that R(0)
B > 1 and R(0)

B > R(0)
L , if either

(i) p < ηB, or (ii) p > ηB and R(1)
B < 1, then all roots of the characteristic equation have negative

real parts and hence equilibrium E10 is locally asymptotically stable.

If p > ηB and R(1)
B > 1, then λ1 > 0 implying that E10 is unstable. For case that R(0)

B < R(0)
L ,

let

ψ(λ) =
λ

dV
+ 1 −

R(0)
L

R(0)
B

K̄L(λ)
KL

.

Then

ψ(0) = 1 −
R(0)

L

R(0)
B

< 0.

On the other hand, ψ(λ) → +∞, as λ → +∞. Thus, there exists a λ∗ > 0 such that ψ(λ∗) = 0,

that is, (5.9) has a positive root, implying that E10 is unstable. The proof is completed.

Parallel to Theorem 3.3.2, we have the following conclusion about the lytic virus when the

antibody effect against lytic virus is not established.

Theorem 2.4.3 Assume that R(0)
L > 1 and R(0)

L > R(0)
B . If (i) p < ηL; or (ii) p > ηL and R(1)

L < 1,

then the equilibrium E01 is locally asymptotically stable. If R(0)
L < R(0)

B or p > ηL and R(1)
L > 1,

then this equilibrium is unstable.
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Assume that R(0)
B > 1 and p > ηB. Then when R(1)

B passes the value 1, E10 loses its stability,

giving rise to the equilibrium E20. The following theorem describes the stability of E20, charac-

terizing the conditions under which the budding virus will persist in the presence of established

antibody.

Theorem 2.4.4 Assume that p > ηB and R(1)
B > 1. If

R(0)
L < 1 + σB +

ηL

ηB

(
R(1)

B − 1
)
, (2.14)

the equilibrium E20 is locally asymptotically stable; if

R(0)
L > 1 + σB +

ηL

ηB

(
R(1)

B − 1
)
, (2.15)

this equilibrium is unstable.

Proof Firstly, note that p > ηB and R(1)
B > 1 imply R(0)

B > 1. Linearizing the system (2.3) at E20

leads to

du1(t)
dt
= −dT u1(t) − βBV (20)

B u1(t) − βBT (20)u2(t) − βLT (20)u3(t),

du2(t)
dt
=

∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξ[βBV (20)

B u1(t − a) + βBT (20)u2(t − a)]da − dVu2(t)

− ηBA(20)u2(t) − ηBV (20)
B u4(t),

du3(t)
dt
=

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξ

βLT (20)u3(t − a)da − dVu3(t) − ηLA(20)u3(t),

du4(t)
dt
= (p − ηB)A(20)u2(t) + (p − ηL)A(20)u3(t) + (p − ηB)V (20)

B u4(t) − dAu4(t).

The characteristic equation of this linear system is

J20(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
λ + dT + βBV (20)

B βBT (20)

−βBV (20)
B K̄B(λ) λ + dV + ηBA(20) − βBT (20)K̄B(λ)

0 0

0 −(p − ηB)A(20)

βLT (20) 0

0 ηBV (20)
B

λ + dV + ηLA(20) − βLT (20)K̄L(λ) 0

−(p − ηL)A(20) λ + dA − (p − ηB)V (20)
B

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The roots of this equation are determined by

λ + dV + ηLA(20) − βLT (20)K̄L(λ) = 0, (2.16)
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and ∣∣∣∣∣∣∣∣∣∣
λ + dT + βBV (20)

B βBT (20) 0

−βBV (20)
B K̄B(λ) λ + dV + ηBA(20) − βBT (20)K̄B(λ) ηBV (20)

B

0 −(p − ηB)A(20) λ + dA − (p − ηB)V (20)
B

∣∣∣∣∣∣∣∣∣∣ = 0.

(2.17)

Equation (2.16) is equivalent to

λ + dV +
ηL

ηB

dV

1 + σB

(
R(1)

B − 1
)
= R(0)

L
dV

1 + σB

K̄L(λ)
KL

,

which can be further rewritten as

1 + σB

dV
λ + 1 + σB +

ηL

ηB

(
R(1)

B − 1
)
= R(0)

L
K̄L(λ)

KL
. (2.18)

Let λ = x+ iy be a root of (2.18). If x ≥ 0, then the left hand side of the equation (2.18) satisfies∣∣∣∣∣1 + σB

dV
λ + 1 + σB +

ηL

ηB

(
R(1)

B − 1
)∣∣∣∣∣ ≥ 1 + σB +

ηL

ηB

(
R(1)

B − 1
)
,

and the right hand side of the equation satisfies∣∣∣∣∣∣R(0)
L

K̄L(λ)
KL

∣∣∣∣∣∣ ≤ R(0)
L .

Therefore, if (2.14) holds, then the above two inequalities contradict to each other. Thus x < 0

if (2.14) holds, implying that all roots of (2.18) have negative real parts.

Equation (2.17) is equivalent to

λ
[
(λ + dT )

(
λ + dV + ηBA(20)

)
+ βBV (20)

B

(
λ + dV + ηBA(20)

)
− βBT (20)K̄B(λ)(λ + dT )

]
+ηBV (20)

B (p − ηB)A(20)
(
λ + dT + βBV (20)

B

)
= 0,

which is further equivalent to1 + σB
λ

dT
+ 1

 1 + σB

dVR(0)
B

λ + 1

 + dA

λ

1 − 1

R(0)
B

 1 + σB
λ

dT
+ 1

 = K̄B(λ)
KB

. (2.19)

Let λ = x + iy be a root of (2.19). If x ≥ 0, by R(0)
B > 1, the right hand side of the equation

(2.19) satisfies ∣∣∣∣∣∣ K̄B(λ)
KB

∣∣∣∣∣∣ ≤ 1,
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and the left hand side of the equation satisfies∣∣∣∣∣∣∣
1 + σB

λ
dT
+ 1

 1 + σB

dVR(0)
B

λ + 1

 + dE

λ

1 − 1

R(0)
B

 1 + σB
λ

dT
+ 1


∣∣∣∣∣∣∣

>

∣∣∣∣∣∣∣
1 + σB

λ
dT
+ 1

 1 + σB

dVR(0)
B

λ + 1


∣∣∣∣∣∣∣

> 1,

leading to a contradiction to (2.19). Thus x < 0, implying that all roots of (2.19) have negative

real parts.

In summary, we conclude that if (2.14) holds, then the equilibrium E20 is locally asymptot-

ically stable.

Let

ψ(λ) =
1 + σB

dV
λ + 1 + σB +

ηL

ηB

(
R(1)

B − 1
)
− R(0)

L
K̄L(λ)

KL
.

Then ψ(λ)→ ∞ as λ→ ∞. On the other hand

ψ(0) = 1 + σB +
ηL

ηB

(
R(1)

B − 1
)
− R(0)

L < 0,

provided that (2.15) holds. Therefore, there exists a λ∗ > 0, such that ψ(λ∗) = 0. This means

the equation (2.18) has at least one positive eigenvalue, implying that the equilibrium E20 is

unstable. The proof of the theorem is completed.

Similarly, for lytic virus we have the following result when the antibody effect is estab-

lished.

Theorem 2.4.5 Assume that p > ηL and R(1)
L > 1. If

R(0)
B < 1 + σL +

ηB

ηL

(
R(1)

L − 1
)
, (2.20)

the equilibrium E02 is locally asymptotically stable; if

R(0)
B > 1 + σL +

ηB

ηL

(
R(1)

L − 1
)
, (2.21)

this equilibrium is unstable.

The conditions for the existence and stability of some equilibria are summarized in Table

2.1. We see that if p < ηB and p < ηL, there may only be three equilibria E0, E01, and E10

(except the equilibrium line Ê), whose stability are determined by basic reproductive ratios

R(0)
B and R(0)

L . If R(0)
B > 1 and R(0)

B > R(0)
L , E10 is locally asymptotically stable. If R(0)

L > 1 and

R(0)
L > R(0)

B , E01 is locally asymptotically stable. In this case, the antibody does not play a role
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in the long-term virus dynamics, this is because when p is too small (p < ηB and p < ηL),

activation of new antibodies cannot satisfy the demand on antibodies involved in neutralization

of the virus for both strains. In the following discussion, we always assume that p > ηB or

p > ηL.

Table 2.1: The conditions for the existence and stability of the equilibria
Equilibrium existence L.A.S.

E0 Always R(0)
B < 1 and R(0)

L < 1
E10 R(0)

B > 1 R(0)
B > R(0)

L and {p < ηB, or p > ηB and R(1)
B < 1}

E01 R(0)
L > 1 R(0)

L > R(0)
B and {p < ηL, or p > ηL and R(1)

L < 1}
E20 p > ηB, R(1)

B > 1 R(0)
L < R(0)

B
ηL
ηB
+ (1 + σB)(1 − ηL

ηB
)

E02 p > ηL, R(1)
L > 1 R(0)

L > R(0)
B
ηL
ηB
+ (1 + σL)(1 − ηL

ηB
)

The bifurcation diagrams in different cases are given by figures from Figure 2.1 to Figure

2.3, representing the three cases ηB > ηL, ηB = ηL, ηB < ηL respectively.
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Figure 2.1: The stability regions (S i; i = 1, ..., 13) of equilibria (Ei j; i, j = 0, 1, 2) with respect

to R(0)
B and R(0)

L , when ηB > ηL: (a) σB > σL, (b) σB < σL, (c) σB = σL.

For the case ηB > ηL, the bifurcation diagram is shown in Figure 2.1, in which, the first

quadrant of R(0)
B −R(0)

L plane is divided into sub-regions with appropriate shadings, representing

the stability of the different equilibria. The shadings are given in such a way that regions with

the same shading pattern share the same stable equilibrium. For example, in Figure 2.1(a)

where σB > σL, the stability regions of equilibria Ei j (i, j = 0, 1, 2) with respect to R(0)
B and R(0)

L

are denoted by S i; i = 1, ..., 13. Here the solid diagonal line is R(0)
L = R(0)

B ; the dash-dot line

is R(0)
L = R(0)

B
ηL
ηB
+ (1 + σB)(1 − ηL

ηB
); and the dashed line is R(0)

L = R(0)
B
ηL
ηB
+ (1 + σL)(1 − ηL

ηB
).

In the regions shaded with vertical lines (S 1, S 3 and S 5), E10 is locally asymptotically; in

regions shaded with southwest-northeast lines (S 6, S 7 and S 8), E20 is locally asymptotically

stable. In these six regions, budding virus outcompetes. Similarly, in the regions shaded with
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horizontal lines (i.e., S 2 and S 4), E01 is locally asymptotically stable; in the regions shaded

with northwest-southeast lines (i.e., S 9, S 10 and S 11), E02 is locally asymptotically stable. In

these five regions, lytic virus outcompetes. In the regions with overlap shadings, there are

two locally asymptotically stable equilibria. For instance, in S 13 both E20 and E02 are locally

asymptotically stable; and in S 12, both E10 and E01 are locally asymptotically stable. In these

two regions with overlap shadings (S 12 and S 13), in addition to the two locally stable boundary

equilibria (E10 and E01, or E20 and E02) there is also a positive equilibrium E22 whose stability

is undetermined. In the region S 0, the disease-free equilibrium E0 is locally asymptotically

stable. Table 2.2 summarizes the situations in these regions.

In Figure 2.1(b), σB > σL. As is shown in this figure, existence and stability of equilibria

are the same as Figure 2.1(a) in all regions other than S 5, S 12 and S 13, the situation of which

is shown in Table 2.3: in both regions S 12 and S 13 there is no stable equilibrium except the

positive equilibrium E22 whose stability is undetermined. Figure 2.1(c) covers the case σB =

σL. Comparing Figure 2.1(c) with Figure 2.1(a) and Figure 2.1(b), there is no region S 5, S 12

and S 13. The existence and stability of equilibria in all other regions remain the same as Figure

2.1(a) and Figure 2.1(b).

Table 2.2: Stability regions of the equilibria corresponding to Figure 2.1(a)
Region existence L.A.S. Possibly S.

S 0 E0 E0 −

S 1 E0, E10 E10 −

S 2 E0, E01 E01 −

S 3 E0, E10, E01 E10 −

S 4 E0, E01, E10 E01 −

S 5 E0, E01, E10, E02 E10 −

S 6 E0, E10, E20 E20 −

S 7 E0, E10, E01, E20 E20 −

S 8 E0, E10, E01, E20, E02 E20 −

S 9 E0, E01, E02 E02 −

S 10 E0, E01, E10, E02 E02 −

S 11 E0, E01, E10, E02,E20 E02 −

S 12 E0, E01, E10, E02, E22 E10, E02 E22

S 13 E0, E10, E01, E20, E02, E22 E20, E02 E22

By symmetry, we have Figure 2.2 for the case ηB < ηL which is parallel to Figure 2.1.

Tables parallel to Table 2.2 and Table 2.3 can be drawn but are omitted here.

If ηB = ηL, the positive equilibrium E22 does not exist. Furthermore, there are no regions

S 12 and S 13. The properties of equilibria in all other regions are same as Figure 2.1(a) for

Figure 2.3(a), Figure 2.1(b) for Figure 2.3(b), Figure 2.1(c) for Figure 2.3(c).



41

Table 2.3: Stability regions of the equilibria corresponding to Figure 2.1(b)
Region existence L.A.S. Possibly S.

S 5 E0, E01, E10, E20 E01 −

S 12 E0, E01, E10, E20, E22 − E22

S 13 E0, E10, E01, E20, E02, E22 − E22
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Figure 2.2: The stability regions of equilibria with respect to R(0)
B and R(0)

L , when ηB < ηL: (a)

σB < σL, (b) σB > σL, (c) σB = σL.
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Figure 2.3: The stability regions of equilibria with respect to R(0)
B and R(0)

L , when ηB = ηL: (a)

σB > σL, (b) σB < σL, (c) σB = σL.

From the above analysis, we know that if p < min{ηB, ηL}, the antibody cannot establish

and the dynamics of the model (2.3) are determined by basic reproductive ratios R(0)
B and R(0)

L .

If R(0)
B > max{1,R(0)

L }, the budding strategy is advantageous over the lytic strategy; if R(0)
L >

max{1,R(0)
B }, the lytic strategy is advantageous. If max{R(0)

B ,R
(0)
L } < 1, neither strategy will

succeed since both strains will eventually go to extinction.
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If p > ηB or p > ηL, antibody may have effect on the dynamics, depending on the antibody

mediated reproductive ratios R(1)
B and R(1)

L . If p > max{ηB, ηL} and max{R(1)
B ,R

(1)
L } < 1, the

dynamical behavior of the model also only depends on the basic reproductive ratios R(0)
B and

R(0)
L . If R(1)

B > 1 or R(1)
B > 1, antibody will affect the dynamics, since there exists the stable

equilibrium E20 or E02 or E22.

We also see from Figure 2.3 that if the neutralizing capacities of the antibodies for bud-

ding and lytic viruses are the same (i.e., ηB = ηL), the evolutionary dominance of budding

or lytic virus is also determined by the basic reproductive ratios R(0)
B and R(0)

L , regardless of

p < min{ηB, ηL} or p > min{ηB, ηL}, in the sense that when R(0)
B > max{1,R(0)

L }, then E10 or

E20 is locally asymptotically stable, implying that budding virus can survive. Similarly, if

R(0)
L > max{1,R(0)

B }, then E01 or E02 is locally asymptotically stable.

2.5 Influence of antibody effect on the evolutionary competi-
tion between budding and lytic strategies

From the above results on the dynamics of the model (2.3), we see that the impact of the

production/release strategies for new virions is reflected by the dependence of the reproductive

ratios on KB and KL, the burst sizes of budding virus and lysis virus under the respective

production/release strategies represented by γB(a) and γL(a) and the initial releasing time τB

and τL. In this section, we consider two particular forms for the release strategy functions

γB(a) and γB(a), by which we hope to obtain more information on the impact of antibody and

the release strategy. To this end, we assume that the total number of virions replicated from an

infected cell without considering cell death is the same for all strategies, that is,∫ τ∗

τB

γB(a)da =
∫ τ∗

τL

γL(a)da = N (a constant). (2.22)

The first possible candidate for the viral production kernel function is the one used in [10]

which has the form

γ(a) =

 m1

(
1 − e−m2(a−τ)

)
if a ≥ τ,

0 if a < τ.
(2.23)

Here m2 controls how rapidly the saturation level m1 is reached, while τ ≥ 0 is the initial

releasing time. For this production kernel, the constraint equation∫ τ∗

τ

γ(a)da ≡ N, (2.24)

defines a trade-off relation of τ, m1 and m2, which is

m1

(
τ∗ − τ +

1
m2

(
e−m2(τ∗−τ) − 1

))
= N, (2.25)
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or equivalently,

m1 =
Nm2

m2(τ∗ − τ) +
(
e−m2(τ∗−τ) − 1

) . (2.26)

Figure 2.4 demonstrates the strategy function γ(a) with N = 100 and τ = 30 fixed and m1

determined by the trade-off equation (2.26) for some values of m2 and τ. As is shown in Figure

2.4, larger m2 will make γ(a) to approach the saturation level m1 faster. Smaller τ represents

the budding strategy and larger τ accounts for lytic strategy.
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Figure 2.4: γ(a) function given by (2.23) under the constraint (2.26), with N = 100, τ∗ = 30.

m2 = 0.5 in (a) and m2 = 2 in (b); different curves correspond to different values of τ: τ =

5, 10, 15, 20, 25. Smaller τ represents the budding virus and large τ accounts for lytic virus.

Another candidate for γ(a) has the following form which was used in [1]:

γ(a) =


k1(a − τ)

k2 + (a − τ)2 if a ≥ τ,

0 ifa ≤ τ,
(2.27)

This function is not monotone, and it has the maximum k1/(2
√

k2) at a = τ +
√

k2. Here k2

determines how rapidly the maximum is reached. For this function, the calculation gives∫ τ∗

τ

γ(a)da =
k1

2
ln

(
1 +

(τ∗ − τ)2

k2

)
,

thus, the constraint (2.24) reads

k1 =
2N

ln
(
1 + (τ∗−τ)2

k2

) . (2.28)

Similarly, Figure 2.5 shows the behavior of γ(a) given by (2.27) for some values of the

parameters. As is in Figure 2.4, we also fix N = 100 and τ = 30. k2 is fixed at k2 = 2 in

Figure 2.5(a) and at k2 = 20 in Figure 2.5(b), the plots are for τ = 5, 10, 15, 20, 25 respectively
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with k1 determined by (2.28). We can see from Figure 2.5 that with small k2, γ(a) reaches the

maximum rapidly. Furthermore, for small τ, there is a small surge in viral production with

a subsequent long period of low level viral production; in contrast, for large τ, there is a big

surge in viral production. Again, small τ accounts for the scenario of budding strategy while

large τ explains lytic strategy.
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Figure 2.5: γ(a) function given by (2.27) under the constraint (2.28) with N = 100 and τ∗ =

30 fixed. k2 = 2 in (a) and k2 = 20 in (b); different curves correspond to values of τ =

5, 10, 15, 20, 25 respectively. Small τ accounts for budding strategy and large τ explains lytic

strategy.

For the above two concrete forms of γ(a), if we further assume that the death rate of in-

fected cells is constant: dT ∗(a) = dT ∗ , we can calculate the total number of new virions pro-

duced/released by an infected cell under the strategy γ(a) as

K(τ) =
Nm2

[
m2

(
e−dT∗τ − e−dT∗τ

∗
)
− dT ∗e−dT∗τ

∗

+ dT ∗e−m2(τ∗−τ)−dT∗τ
∗
]

dT ∗(m2 + dT ∗)
[
m2(τ∗ − τ) + e−m2(τ∗−τ) − 1

] , (2.29)

for γ(a) given by (2.23), and

K(τ) =
2Ne−dT∗τ

∫ τ∗−τ

0
a

k2+a2 e−dT∗ada

ln
(
1 + (τ∗−τ)2

k2

) , (2.30)

for γ(a) given by (2.27). One can explore the dependence of K(τ) on τ, as well as on m2 and

k1, to obtain more information. For example, numeric plotting shows that these two functions

are both decreasing in τ (see Figure 2.6).

When dT ∗(a) is not constant, it is generally difficult to obtain an explicit formula for K,

but numerical calculation can still give some information. To illustrate this, we consider the
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Figure 2.6: Burst size K(τ), with viral production kernel γ(a) given by (2.23) in (a) and γ(a)

given by (2.27) in (b). N = 100, τ∗ = 30, k2 = 2 and m2 = 2 are fixed and dT ∗ taking different

values.

following death rate function proposed in [10]:

dT∗(a) =

δ0 a < τ0,

δ0 + δ1

(
1 − e−δ2(a−τ0)

)
a ≥ τ0,

(2.31)

where δ0 is the background death rate, τ0 is the delay between infection and the onset of cell-

mediated killing or the beginning of cell death due to the viral cytopathic effects, δ0 + δ1 is the

maximal death rate and δ2 controls how quickly it approaches the saturation level. Figure 2.7

shows some plots of this function for some parameter values.
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Figure 2.7: The death rate function dT ∗(a) of infected cells when δ0 = 0.02, δ1 = 0.6, and

τ0 = 5 are fixed and δ2 taking 0.02, 0.1 and 0.5 respectively.
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For this death function, if τ0 ≤ τ, the burst size reads

K(τ) :=
∫ τ∗

τ

γ(a)e−
∫ a

0 dT∗ (ξ)dξda = eδ1τ0+
δ1
δ2

∫ τ∗

τ

γ(a)e−
[
(δ0+δ1)a+ δ1δ2 e−δ2(a−τ0)

]
da; (2.32)

if τ0 > τ,

K(τ) =
∫ τ0

τ

γ(a)e−δ0ada + eδ1τ0+
δ1
δ2

∫ τ∗

τ0

γ(a)e−
[
(δ0+δ1)a+ δ1δ2 e−δ2(a−τ0)

]
da. (2.33)

Numeric plots in Figure 2.8 and Figure 2.9 also show how the values of τ and δ2 affect K(τ),

e.g., K(τ) is indeed decreasing in both τ and δ2.
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Figure 2.8: The burst size K(τ) when death rate function is given by (2.31): (a) with viral

production kernel (2.23); (b) with viral production kernel (2.27). N = 100, τ∗ = 30, k2 = 2 and

τ0 = 5.
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Figure 2.9: The burst sizes, K(τ), with (a) viral production kernel (2.23), (b) viral production

kernel (2.27), are decreasing functions of τ. When N = 100, τ∗ = 30, k2 = 2, τ0 = 10. and

death rate function (2.31).
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The above framework enables us to compare the burst sizes KB and KL when the strategies

γB(a) and γL(a) have the same form of either (2.23) or (2.27). For example, suppose

γB(a) =

 m1

(
1 − e−m2(a−τB)

)
if a ≥ τB,

0 if a < τB;
γL(a) =

 m1

(
1 − e−m2(a−τL)

)
if a ≥ τL,

0 if a < τL,
(2.34)

where τB < τL. If the infected cells have the same death rate for both virus, i.e., dT ∗B(a) = dT ∗L(a),

then ∫ τ∗

τB

γB(a)e−
∫ a

0 dT∗B
(ξ)dξda >

∫ τ∗

τL

γL(a)e−
∫ a

0 dT∗L
(ξ)dξda (2.35)

that is, KB > KL. If we further assume that the budding virus and lytic virus have the same

infection rate, βB = βL, then R(0)
B > R(0)

L holds, implying that the budding strategy would have

evolutionary advantage and would be favored. If the neutralization capacity of the antibodies

against budding virus is larger than that of lytic virus, ηB > ηL, then σB > σL assuming also

that βB = βL.

From the bifurcation diagram Figure 2.1 and Table 2.2, we see that lytic virus can survive

if the basic reproductive ratio satisfies

R(0)
L > max

{
1,min

{
R(0)

B ,R
(0)
B
ηL

ηB
+ (1 + σB)

(
1 −

ηL

ηB

)}}
.

Similarly, budding virus can survive if

R(0)
B > max

{
1,min

{
R(0)

L ,R
(0)
L
ηB

ηL
+ (1 + σL)

(
1 −

ηB

ηL

)}}
.

Both viruses can survive, if R(0)
L < R(0)

B and

R(0)
B
ηL

ηB
+ (1 + σL)

(
1 −

ηL

ηB

)
< R(0)

L < R(0)
B
ηL

ηB
+ (1 + σB)

(
1 −

ηL

ηB

)
.

With the assumption that dT ∗B = dT ∗L and (2.22), we also have (2.35) and further, R(0)
B > R(0)

L

if βB = βL. Moreover, from Figure 2.1, we see that lytic virus should have very high basic

reproductive ratio in order to survive, say R(0)
L > (1 + σB)(1 + ηL

ηB
) + ηL

ηB
R(0)

B (the equilibrium E02

is stable, in region S 11 where R(0)
B > R(0)

L ). From Figure 2.2, we know that if ηL > ηB, the lytic

virus cannot survive, since R(0)
B > R(0)

L (both E10, E20 are unstable).

We see that if the neutralization capacities of antibodies against budding and lytic virus are

different, the dynamical behavior is not only determined by the basic reproductive ratios R(0)
B

and R(0)
L , but also by other parameters measuring antibody effects, such as ηB, ηL, σB and σL.
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2.6 Discussion and Conclusion

In this chapter, proposed and analyzed is a mathematical model with distributed delays that

describes the competition of budding and lytic virus within a host. Budding virus is featured by

a longer release period of new virions, while lytic virus is characterized by a long accumulation

period but a shorter release period of new virions. These motivate us to use the infection age

a and an age structured model to govern the populations of the target cell and virus. Two viral

release strategies are distinguished by two beginning ages of viral release, τB for budding and

τL for lytic, as well as by two viral production functions, γB and γL.

We have analyzed the dynamical behavior of the model (2.3). More specifically, we studied

the global asymptotical stability of the infection free equilibrium E0; and we have also estab-

lished local asymptotical stability of E01, E10, E02 and E20 which accounting for a scenario that

among the two viruses, only one can survive within the host. The local stability depends on

R(0)
B and R(0)

L , the respective basic reproductive ratios in the absence of antibody, and on R(1)
B

and R(1)
L which are the respective reproductive ratios in the presence of antibody. If p < ηB and

p < ηL, there are only three equilibrium E0, E01, and E10 (except the equilibrium line Ê), whose

stability are determined by basic reproductive ratios R(0)
B and R(0)

L . If R(0)
B < 1 and R(0)

L < 1, E0 is

locally asymptotically stable; if R(0)
B > 1 and R(0)

B > R(0)
L , E10 is locally asymptotically stable; if

R(0)
L > 1 and R(0)

L > R(0)
B , E01 is locally asymptotically stable. In this case, the antibody does not

have any effect on the long-term dynamics. However, when p > ηB and/or p > ηL, the antibody

will have effect on the dynamical behavior of the model. If ηB = ηL, that is, the neutralization

capacity of antibody is the same for both budding and lytic viruses, then, whether the budding

virus or the lytic virus can survive depends on the basic reproductive ratios R(0)
B and R(0)

L (see

Figure 2.3). Yet, if ηB > ηL or ηB < ηL, the positive equilibrium occurs in some regions in the

R(0)
B -R(0)

L plane. Bistability may arise in these regions. For example, in Figure 2.1, in region

S 12, both E10 and E02 are locally stable; and in region S 13, both E02 and E20 are locally stable.

We have considered two concrete forms of functions for the viral production kernel, as

a function of the infection age. To study the evolutionary competition of budding and lysis

strategies, we assume that the total amount of virions replicated during the lifespan of infected

cell is the same for both strains, without considering the release procedure and cell death.

Under such a circumstance, the burst size of the budding virus is greater than that of the lytic

virus (i.e., KB > KL) provided that dT ∗B = dT ∗L . If the budding virus and lytic virus have a same

infection rate, βB = βL, then R(0)
B > R(0)

L always holds. This means that if the rate of viral

production, the infected cell lifespan and neutralizing capacity of the antibodies were the same

for the budding and lytic viruses, the budding virus would outcompete the lytic virus. In this

case, budding strategy would have evolutionary advantage. If the neutralization capacities of
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the antibodies against the budding virus and lytic virus are different, then the lytic virus can

survive as long as the reproductive ratio R(0)
L is very high.

Using a diffusion model for virus and antibody, Komarova [8] observed that if the produc-

tion rate of the virions and the efficacy of the antibodies were the same for a budding and a

lytic virus, the lytic virus would always be significantly less efficient in spreading, and thus the

lytic strategy would be evolutionary disadvantageous. Lytic virus can be competitive against

budding virus if the antibodies are less effective against lytic virions than they are against bud-

ding virions. This is because the effect of antibody flooding increases the rate of spread of lytic

virions. In this work, we do not consider the diffusion effect of antibodies; instead, we use an

ordinary differential equation model with distributed delays accounting for the release strate-

gies. Our model can also predict a possibility that lytic virus may have evolutionary advantage

when the efficacies of antibodies are different for the two viruses. Thus this work offers an al-

ternative view point for the scenario that a lytic virus can also outcompete budding virus under

certain circumstances.
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Chapter 3

Modeling HIV-1 virus dynamics with both
virus-to-cell infection and cell-to-cell
transmission

3.1 Introduction

It is known that the primary target cell for Human Immunodeficiency Virus Type 1 (HIV-1) in-

fection is the CD4+T cell. For decades it was believed that the spreading of HIV-1 within a host

was mainly through free circulation of the viral particles, with a repeated process consisting of

attachment of viruses to T cells, fusion of viruses into the T cells, replication and assembling of

viruses inside the infected T cells, release of newly produced viral particles from the infected

cells, and diffusion of the released viral particles to catch other T cells. However, recent stud-

ies have revealed that a large amount of viral particles can also be transferred from infected

cells to uninfected cells through the formation of virally induced structures termed virological

synapses [14].

Indeed, the direct cell-to-cell transmission of HIV-1 is found to be a more potent and ef-

ficient means of virus propagation than the virus-to-cell infection mechanism. Cell-to-cell

spread not only facilitates rapid viral dissemination, but may also promote immune invasion

and thereby, influence the disease [24]. Cell-to-cell spread of HIV-1 may reduce the effective-

ness of neutralizing antibodies and viral inhibitors. However, it is unclear whether this mecha-

nism of HIV-1 viral spread is susceptible or resistant to inhibition (by neutralizing antibodies)

and to entry inhibition, causing some controversies in this field of studies [3, 25]. Despite these

controversies, it is commonly agreed that the high efficiency of infection by large numbers of

virions is likely to result in a transfer of multiple virions to a target cell [7, 15]. In particular, a

52
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recent study published in Nature [39] shows that cell-to-cell spread of HIV-1 does reduce the

efficacy of antiretroviral therapy, because cell-to-cell infection can cause multiple infections

of target cells, which can in turn reduce the sensitivity to the antiretroviral drugs.

While HIV-1 can pass directly from an infected T cell to an uninfected and receptor-bearing

T cell via virological synapses or membrane nanotubes, many other viruses also have some

mechanisms to support their cell-to-cell transmissions [35, 36, 37]. For example, murine

leukemia virus (MLV) moves between fibroblasts either by polarized assembly and budding

at intact intercellular junctions [28] or by crossing adhesive bridges formed by filopodia [38].

Herpes simplex virus type-1 (HSV-1) can spread between a fibroblast and a T cell via a virolog-

ical synapse while it can also move between fibroblasts by assembly and budding at basolateral

intercellular junctions [37]. In fact, the cell-to-cell spread mode has been adopted by a va-

riety of animal virus families, including Asfar, Flavi, Herpes, Paramyxo, Pox, Rhabdo, and

Retroviridae.

To compare the two transmission modes, Dimitrov et al. [8] studied the kinetics of HIV-1

accumulation in cell culture supernatants during multiple rounds of infections by viral produc-

tion models. They found that the infection rate constant is the critical parameter that affects

the kinetics of HIV-1 infection, and furthermore the infectivity of HIV-1 during cell-to-cell

transmission is greater than the infectivity of cell-free viruses. Dixit and Perelson [9] stud-

ied the kinetics of HIV-1 infection by exploring the mechanisms of multiple infections. They

found that multiple infections can be caused by both cell-free infection mode and cell-to-cell

transmission mode. In cell-to-cell transfer mode, by contact of a target cell, an infectious cell

can transfer multiple virions or genomes. However, in cell-free mode, multiple genomes are

acquired one by one in a series of infectious contacts of a target cell with free virions.

Dynamical system models have been widely and effectively used to model viral infection

dynamics. Most existing models only considered virus-to-cell infection mechanism. Among

such models is the following classic and basic model proposed in [1, 30, 31, 32] which de-

scribes the virus dynamics within a host by a system of ordinary differential equations:
dT (t)

dt = h − dT T (t) − βV(t)T (t),

dT ∗(t)
dt = βV(t)T (t) − δT ∗(t),

dV(t)
dt = bT ∗(t) − cV(t),

(3.1)

where T (t), T ∗(t) and V(t) are the concentrations of uninfected T cells, infected T cells, and free

viral particles at time t respectively. The model assumes that uninfected T cells are produced

at a constant rate h, infected by free virions at a rate βV(t)T (t). The free virions are produced

from the infected cells at a rate bT ∗(t). Uninfected T cells, infected T cells and free virions
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are lost at rates dT T (t), δT ∗(t) and cV(t) respectively. For this model, the virus dynamics are

fully determined by an important parameter, called the basic reproduction number and given

by R0 = βhb/cδdT , in the following sense: if R0 < 1, then V(t) → 0 and T ∗(t) → 0 as t → ∞

implying infection cannot persist; while if R0 > 1 the virus will persist in the host [22].

Based on (3.1), there have been a variety of modifications/generalizations of (3.1) resulted

from incorporating into (3.1) various factors/effects, such as immune responses (CTLs), non-

linear infection rate, latencies in virus infection and replications, and drug therapies etc. For

details see, e.g., [17, 29, 41, 42, 43, 44, 45] and the references cited therein. Among these

generalizations is the following model proposed and studied by Nelson and Perelson [29]:

dT
dt = h − dT T − (1 − nrt)βVIT,

dT ∗
dt =

∫ ∞
0

f (s)e−µs(1 − nrt)βVI(t − s)T (t − s)dτ − δT ∗,

dVI
dt = (1 − np)NδT ∗ − cVI ,

dVNI
dt = npNδT ∗ − cVNI ,

(3.2)

where nrt and np are the efficacy of reverse transcriptase (RT) inhibitor and protease inhibitor

respectively, and VI and VNI are the populations of infectious and non-infectious virions re-

spectively. Here, a time delay, s, from the time of initial infection until the production of new

virions, is considered, and assumed to vary according to according to a probability distribu-

tion f (s). The term e−ms accounts for the survive rates of cells that are infected at time t and

becoming productively infected s time units later. Note that the VNI equation in (3.2) is decou-

pled from the other three equations which, by renaming the parameters, constitute the model

system of the form investigated in Zhu and Zou[44]. We point out that, as in (3.1), all those

variations in [17, 29, 41, 42, 43, 44, 45] have assumed that uninfected T cells can only be in-

fected by the attachment of free virions, while the mechanism of cell-to-cell transmission has

been neglected.

As far as cell-to-cell infection is concerned, much less has been done in mathematical

modeling. Culshaw et al. [4] studied the cell-to-cell spread of HIV-1 by the model
dT
dt = rT (t)

(
1 − T (t)+T ∗(t)

K

)
− βT (t)T ∗(t),

dT ∗
dt = β

′
∫ t

−∞
T (s)T ∗(s) f (t − s)e−msds − δT ∗(t).

(3.3)

Here, a logistic growth for the uninfected cells is assumed with r being the intrinsic growth

rate of uninfected cells, and K being the effective carrying capacity of the host. Assuming

that f (u) is a probability distribution, the integral in (3.3) reflects the variance of productivity

of virions by infected cells at different infection ages. We see that in this model, only cell-
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to-cell infection is considered (at rate βT (t)T ∗(t)), while virus-to-cell infection mechanism is

neglected, in contrast to (3.1) and its variations/modifications.

Recently, Komarova et al. [18] studied the relative contribution of free-virus and synaptic

transmission to the spread of HIV-1 using a dynamical system model. With data fitting they

determined that the two transmission pathways contribute approximately equally to the growth

of the virus population. Komarova et al. [19, 20] further investigated the effect of synaptic

transmission on virus dynamics and viral fitness in HIV infection. More specifically, using

dynamical system models, they discussed the cell-to-cell transmission in different contexts

such as multiple infection and different viral synaptic strategies, and explored the effect of

different strategies of the virus on the basic reproductive ratio of the virus. In a more recent

chapter [21], using a virus infection dynamical model with multiple infections, Komarova et

al. explored the role of synaptic transmission in susceptibility of HIV infection to antiretroviral

drugs. They found that multiple infection via synapses does not simply reduce susceptibility to

treatment, which depends on the relative probability of individual virions to infect a cell during

cell-free virus and synaptic transmission.

In this chapter, we propose a dynamical system model that incorporates both cell-to-cell

infection mechanism and virus-to-cell infection mode. As in [4, 29, 44], we also consider

infection age. But we will adopt the simpler production mechanism for uninfected cells as in

(3.1) and (3.2). We also consider a well-mixed situation and no multiple infection for both

modes of transmission. All these considerations lead to the following model:
dT (t)

dt = h − dT T (t) − β1T (t)V(t) − β2T (t)T ∗(t),

dT ∗(t)
dt =

∫ ∞
0

[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]e−µs f (s)ds − δT ∗(t),

dV(t)
dt = bT ∗(t) − cV(t),

(3.4)

where β1 is the infection rate of free virus, β2 is the infection rate of productively infected cells.

The infected cells may die or be cleared at rate µ before becoming productively infected, and

thus, after a time period of length s, only a proportion e−µs survives. The time for infected

cells to become productively infected may vary from individuals to individuals, and hence, a

distribution function f (s) is introduced to account such variance. For mathematical tractabil-

ity, yet without losing the major biological feature, we assume that f : [0,∞) → [0,∞) has

compact support, f (s) ≥ 0 and
∫ ∞

0
f (s) ds = 1. Other parameters in (3.4) are as in (3.1) and

are self-explanatory.

In the rest of this chapter, we will analyze the model (3.4). In Section 2, we address the

well-posedness of (3.4) by verifying the positivity and boundedness of solutions of system

(3.4) with reasonable initial data. In Section 3, we identify the basic reproduction number R0
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of the model, in terms of which we discuss local stability of the infection-free equilibrium and

the positive equilibrium. In Section 4, we prove the persistence of infection under R0 > 1,

and in Section 5, we further explore the global stability of the two equilibria. Our theoretical

results show that the virus dynamics governed by (3.4) are fully determined by R0. Thus, the

dependence of R0 on the model’s parameters may reveal some insights on the virus spread in

the presence of both infection modes, and we discuss this in Section 5.

We conclude this introduction by pointing out the main difference of this work from [18, 19,

20, 21]. The dynamical system models in [18, 19, 20, 21] are all given by ordinary differential

equations. Such ODE models have neglected the effect of infection ages which correspond to

various stages during the complicated process of virus replication (see,e.g., [4, 29, 44]), and

the survival rate of infected cells before they become productive. Our model (3.4) incorporates

not only both cell-to-cell infection mechanism and virus-to-cell infection mode, but also an

infinite intracellular delay which reflects the fact that an infected cell may remain latent forever.

Moreover, in this work, in addition to the derivation of the basic reproduction number, the

global dynamics of the model are completely and analytically obtained.

3.2 Positivity and boundedness of solutions

The model (3.4) is a system of integro-differential equations with infinite delays. For such a

system, the phase space needs to be equipped with some norm that accounts for fading memory.

In other words, we need to specify a continuous and non-decreasing function g : (−∞, 0) →

[1,∞) satisfying (i) g(0) = 1; (ii) g(s + t)/g(s) → 1 uniformly on (−∞, 0] as t → 0−; and (iii)

g(s) → ∞ as s → −∞. For details on this topic, see. e.g., [10, 13, 23]. For the purpose of this

chapter, we choose g(s) = e−∆s with ∆ ∈ (0, µ/2). Accordingly, the phase space is given by

C∆ :=

φ ∈ C((−∞, 0],R) :
φ(θ)e∆θ is uniformly continous on (−∞, 0]

and supθ≤0{|φ(θ)|e∆θ} < ∞

 , (3.5)

equipped with the norm ‖φ‖ = supθ≤0{|φ(θ)|e∆θ}.

For a given function u(t) = (x(t), y(t), z(t)) : (∞, τ] → R3 (τ > 0), we follow the standard

notation to define ut ∈ C∆ × C∆ × C∆ by ut(θ) = (xt(θ), yt(θ), zt(θ)) = u(t + θ) = (x(t + θ), y(t +

θ), z(t + θ)) respectively for θ ∈ (−∞, 0]. By the fundamental theory of functional differential

equations [10, 13, 23], we know that for any initial function φ ∈ C∆ × C∆ × C∆, (3.4) has a

unique solution (T (t),T ∗(t),V(t)) satisfying (T0,T ∗0 ,V0) = φ.

The fact that all unknown variables in the model are populations suggests that we only need

to consider non-negative initial functions, i.e, initial functions taken from the natural positive



57

cone of this phase space given by X := C+
∆
× C+

∆
× C+

∆
where C+

∆
= {φ ∈ C∆ : φ(θ) ≥ 0, for θ ∈

(−∞, 0]}.

For an initial function φ = (φ1, φ2, φ3) ∈ X, if φ2(θ) = 0 = φ3(θ) for all θ ∈ (−∞, 0],

(i.e, there is no initial innoculation/invasion of both viruses and infectious cells), one easily

sees (e.g., by uniqueness of solution) that the T ∗(t) and V(t) components of the corresponding

solution remain zero for all t ≥ 0. However if either φ2(θ) > 0 or φ3(θ) > 0 for some θ ∈

(−∞, 0], these two components of the corresponding solution should remain positive for all

t > 0. It is also reasonable to expect that a solution should remain bounded. The following

theorem establishes these properties of well-posedness for the model (3.4).

Theorem 3.2.1 Let (T (t),T ∗(t),V(t)) be the solution of the system (3.4) with initial conditions

φ ∈ X0 := {φ = (φ1, φ2, φ3) ∈ X : either φ2(θ) > 0 or φ3(θ) > 0 for some θ ∈ (−∞, 0]}. (3.6)

Then T (t), T ∗(t) and V(t) are all positive and bounded for t > 0.

Proof. Let a(t) = dT + β1T ∗(t) + β2V(t). From the first equation in (3.4), we then have

T (t) = e
∫ t

0 a(ξ) dξT (0) +
∫ t

0
e
∫ t
ξ

a(θ) dθh dξ > 0 for t ≥ 0.

Next, we prove the positivity of T ∗(t) and V(t). Denote by r(t) the integral term in the

second equation of (3.4). From the second and the third equations in (3.4), one obtains

T ∗(t) = e−δtT ∗(0) +
∫ t

0
e−δ(t−ξ)r(ξ) dξ, V(t) = e−ctV(0) +

∫ t

0
e−c(t−ξ) bT ∗(ξ) dξ,

which together with φ ∈ X0 implies that T ∗(t) > 0 and V(t) > for small t > 0. We now show

T ∗(t) > 0 and V(t) > 0 for all t > 0. Otherwise, there exists t2 > 0 such that min{T (t2),V(t2)} =

0 for the first time. If T ∗(t2) = 0, T ∗(t) > 0 for 0 ≤ t < t2, and V(t) > 0 for 0 ≤ t ≤ t2, then

dT ∗(t2)
dt

=

∫ ∞

0
[β1T (t2 − s)V(t2 − s) + β2T (t2 − s)T ∗(t2 − s)]e−µs f (s)ds > 0,

which is a contradiction with T ∗(t2) = 0, T ∗(t) > 0 for 0 ≤ t < t2. If V(t2) = 0, V(t) > 0 for

0 ≤ t < t2, and T ∗(t) > 0 for 0 ≤ t ≤ t2, then

dV(t2)
dt

= bT ∗(t2) > 0,

which is also a contradiction. Therefore, T ∗(t) > 0 and V(t) > 0 for all t > 0.

To prove boundedness, firstly by the positivity of solutions we have

dT (t)
dt

< h − dT T (t).
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It follows that lim supt→∞ T (t) ≤ h/dT , implying T (t) is bounded.

Next, we prove the boundedness of T ∗(t) and V(t). To this end, we define

G(t) =
∫ ∞

0
e−µs f (s)T (t − s)ds + T ∗(t) +

δ

2b
V(t).

Since T (t) is bounded and
∫ ∞

0
f (s) ds is convergent, the integral in G(t) is well-defined and

differentiable with respect to t. Moreover, when taking time derivative of G(t), the order of the

differentiation and integration can be switched. Thus, we have

dG(t)
dt

= h
∫ ∞

0
e−µs f (s)ds − dT

∫ ∞

0
e−µs f (s)T (t − s)ds

−

∫ ∞

0
e−µs f (s)[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]ds

+

∫ ∞

0
e−µs f (s)[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]ds − δT ∗(t)

+
δ

2
T ∗(t) − c

δ

2b
V(t)

= h
∫ ∞

0
e−µs f (s)ds − dT

∫ ∞

0
e−µs f (s)T (t − s)ds −

δ

2
T ∗(t) − c

δ

2b
V(t)

≤ hη − dG(t),

where

η =

∫ ∞

0
e−µs f (s)ds, d = min

{
dT ,

δ

2
, c

}
> 0. (3.7)

Therefore, lim supt→∞G(t) ≤ hη/d, implying that lim supt→∞ T ∗(t) ≤ hη/d and lim supt→∞ V(t) ≤

2bhη/δd. Hence T ∗(t) and V(t) are also bounded.

3.3 Local stability of equilibria and the basic reproduction
number

System (3.4) has the infection-free equilibrium E0 = (h/dT , 0, 0). In order to determine the

stability of E0, we consider the linearization of (3.4) at E0:

du1(t)
dt

= −dT u1(t) − β1
h
dT

u3(t) − β2
h
dT

u2(t),

du2(t)
dt

=

∫ ∞

0

[
β1

h
dT

u3(t − s) + β2
h
dT

u2(t − s)
]

e−µs f (s)ds − δu2(t), (3.8)

du3(t)
dt

= bu2(t) − cu3(t).
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The characteristic equation of this linear system is given by∣∣∣∣∣∣∣∣∣∣
λ + dT β2h/dT β1h/dT

0 λ + δ − η̄(λ)β2h/dT −η̄(λ)β1h/dT

0 −b λ + c

∣∣∣∣∣∣∣∣∣∣ = 0, (3.9)

where

η̄(λ) =
∫ ∞

0
e−(µ+λ)s f (s)ds.

We see that (3.9) has an eigenvalue λ1 = −dT < 0, and other eigenvalues are determined by

[λ + δ − η̄(λ)β2h/dT ](λ + c) − η̄(λ)β1bh/dT = 0.

That is

(λ + δ)(λ + c) = (λ + c)η̄(λ)β2h/dT + η̄(λ)β1bh/dT

= η̄(λ)
(
λ

hβ2

dT
+ R0

cδ
η

)
=
δη̄(λ)
η

(λR02 + cR0),

or (
λ

δ
+ 1

)
(λ + c) = R0

η̄(λ)
η

(
R02

R0
λ + c

)
, (3.10)

where η = η̄(0) and

R01 =
hηβ1b
dTδc

, R02 =
hηβ2

dTδ
, R0 = R01 + R02. (3.11)

We first consider the case R0 < 1. We show that if λ = x + iy is a solution of (3.10), then

x < 0. Otherwise, x ≥ 0 would imply∣∣∣∣∣λδ + 1
∣∣∣∣∣ ≥ 1, |λ + c| >

∣∣∣∣∣R02

R0
λ + c

∣∣∣∣∣ , ∣∣∣∣∣ η̄(λ)
η

∣∣∣∣∣ ≤ 1,

and thus ∣∣∣∣∣(λδ + 1
)

(λ + c)
∣∣∣∣∣ >

∣∣∣∣∣∣R0
η̄(λ)
η

(
R02

R0
λ + c

)∣∣∣∣∣∣ ,
a contradiction to (3.10). Therefore, all roots of (3.10) have negative real parts when R0 < 1,

implying that E0 is locally asymptotically stable.

Next we consider the case R0 > 1. Let

ψ(λ) :=
(
λ

δ
+ 1

)
(λ + c) − R0

η̄(λ)
η

(
R02

R0
λ + c

)
.

Then ψ(0) = c(1 − R0) < 0. On the other hand, note that

η̄(λ) =
∫ ∞

0
e−(µ+λ)s f (s)ds ≤

∫ ∞

0
f (s)ds = 1,
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Thus,

ψ(λ) ≥
(
λ

dT ∗
+ 1

)
(λ + c) − R0

1
η

(
R02

R0
λ + c

)
=

1
dT ∗

λ2 +

(
c

dT ∗
+ 1 −

R02

η

)
λ −
R0c
η
→ ∞ as λ→ ∞,

implying limλ→+∞ ψ(λ) = +∞. Therefore, there exists a positive (real) number λ∗ such that

ψ(λ∗) = 0. This means, if R0 > 1, (3.10) has a positive eigenvalue, and hence E0 is unstable.

Summarizing the above analysis, we have proven the following theorem on the local sta-

bility/instability of E0.

Theorem 3.3.1 Let R0 be as in (3.11). If R0 < 1, the infection-free equilibrium E0 is locally

asymptotically stable; if R0 > 1, E0 is unstable.

When R0 > 1, model system (3.4) has a unique positive equilibrium Ē = (T̄ , T̄ ∗, V̄) given

by

T̄ =
δc

η(β1b + β2c)
=

h
dT

1
R0
, T̄ ∗ =

dT c
β1b + β2c

(R0 − 1), V̄ =
b
c

T̄ ∗ =
bdT

β1b + β2c
(R0 − 1). (3.12)

Linearizing (3.4) at Ē yields

du1(t)
dt

= −dT u1(t) − β1V̄u1(t) − β1T̄ u3(t) − β2T̄ ∗u1(t) − β2T̄ u2(t),

du2(t)
dt

=

∫ ∞

0

[
β1T̄ u3(t − s) + β1V̄u1(t − s) + β2T̄ u2(t − s) + β2T̄ ∗u1(t − s)

]
e−µs f (s)ds

−δu2(t),
du3(t)

dt
= bu2(t) − cu3(t).

The characteristic equation of this linear system is given by

J̄(λ) =

∣∣∣∣∣∣∣∣∣∣
λ + dT + β1V̄ + β2T̄ ∗ β2T̄ β1T̄

−η̄(λ)(β1V̄ + β2T̄ ∗) λ + δ − η̄(λ)β2T̄ −η̄(λ)β1T̄

0 −b λ + c

∣∣∣∣∣∣∣∣∣∣ = 0.

Noticing that dT + β1V̄ + β2T̄ ∗ = dTR0, we have

J̄(λ) =

∣∣∣∣∣∣∣∣∣∣
λ + dTR0 β2T̄ β1T̄

η̄(λ)(λ + dT ) λ + δ 0

0 −b λ + c

∣∣∣∣∣∣∣∣∣∣ = 0,
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or

(λ + dTR0)(λ + δ)(λ + c) − bβ1T̄ η̄(λ)(λ + dT ) − β2T̄ η̄(λ)(λ + dT )(λ + c) = 0.

This equation is equivalent to

(λ + dTR0)(λ + δ)(λ + c) = bβ1T̄ η̄(λ)(λ + dT ) + β2T̄ η̄(λ)(λ + dT )(λ + c)

= (λ + dT )η̄(λ)T̄ [bβ1 + β2(λ + c)]

= (λ + dT )η̄(λ)
(
λ

hβ2

dTR0
+

cδ
η

)
= (λ + dT )

δη̄(λ)
η

(
λ
R02

R0
+ c

)
,

that is

(λ + dTR0)
(
λ

δ
+ 1

)
(λ + c) = (λ + dT )

η̄(λ)
η

(
λ
R02

R0
+ c

)
. (3.13)

Assume λ = x + iy is a solution of (3.13). We show that x < 0 if R0 > 1. Otherwise, x ≥ 0

would imply

|λ + dTR0| > |λ + dT | ,

∣∣∣∣∣λδ + 1
∣∣∣∣∣ ≥ 1, |λ + c| >

∣∣∣∣∣λR02

R0
+ c

∣∣∣∣∣ , ∣∣∣∣∣ η̄(λ)
η

∣∣∣∣∣ ≤ 1,

and thus ∣∣∣∣∣(λ + dTR0)
(
λ

δ
+ 1

)
(λ + c)

∣∣∣∣∣ >
∣∣∣∣∣∣(λ + dT )

η̄(λ)
η

(
λ
R02

R0
+ c

)∣∣∣∣∣∣ .
This is a contradiction to (3.13). Therefore, if R0 > 1, then all roots of (3.13) have negative

real parts, implying that Ē is locally asymptotically stable. Thus, we have proven the following

theorem.

Theorem 3.3.2 Let R0 be as in (3.11). If R0 > 1, model system (3.4) has a positive equilibrium

Ē given by (3.12) which is locally asymptotically stable.

Theorem 6.2.2 and Theorem 3.3.2 show that R0 defined by (3.11) determines whether or

not an infection caused by a small inoculation/invasion of virus can persist. Indeed, R0 is the

basic reproduction number of the model (3.4).

We can justify R01 and R02 in (3.11) from biological point of view. R01 can be rewritten as

R01 = β1
h
dT
·

1
δ
· η ·

b
c
,

where h/dT is the total number of uninfected cells when all cells are uninfected; β1 is the

infection rate by free viruses; 1/δ is the life span of infected cells; η is the total survive rate

of infected cells at all ages; b is the burst size of viruses; 1/c is the virus clearance rate;



62

b/c represents the total amount of virus particles produced efficiently from one infected cell.

Therefore, R01 means the total number of newly infected cells that arise from any one infected

cell when almost all cells are uninfected, where the infection occurs by free virus infection

of cells, that is the basic reproduction number corresponding to virus-to-cell infection mode.

Similarly rewriting R02 as

R02 = β2
h
dT
·

1
δ
· η

where β2 is the infection rate by the cell-to-cell transfer; 1/δ is the life span of infected cells; η

is the total survival rate of infected cells at all ages. Therefore, R02 means the total number of

newly infected cells that arise from any one infected cell when almost all cells are uninfected,

where the infection occurs by virus-to-cell transfer, that is the basic reproduction number cor-

responding to cell-to-cell infection mode.

To see this mathematically, we just need to look at the linearization of (3.4) at the infection

free equilibrium E0, that is, system (3.8), which carries all information of virus dynamics when

the virus population is very small. Note that variables u2(t) and u3(t) correspond to T ∗(t) and

V(t), and at low densities these two variables are governed only by the last two equations

(decoupled from the first one). Let u(t) = (u2(t), u3(t))T , then the equations of u2 and u3 in (3.8)

can be rewritten as

d
dt

u(t) =
∫ ∞

0
Bu(t − s)e−µs f (s)ds −Cu(t),

where

B =

 β2
h

dT
β1

h
dT

0 0

 , C =

 δ 0

−b c

 .
We assume the initial distributions of u2(t) and u3(t) are ψ(θ) = (ψ2(θ), ψ3(θ)), then without

new infection these populations evolve as

S 0(t)ψ := e−Ctψ.

If new infection occurs at time t = 0, since there is a time delay s, from the time of initial

infection until becoming productively infectious, the total distributions of the new infection
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populations are

Lψ : =
∫ ∞

0

∫ ∞

s
Be−C(t−s)ψe−µs f (s)dtds

=

∫ ∞

0
B

∫ ∞

s
e−C(t−s)dt · ψe−µs f (s)ds

=

∫ ∞

0
BC−1ψe−µs f (s)ds

= BC−1ψ

∫ ∞

0
e−µs f (s)ds

= BC−1ηψ.

Notice that

C−1 =
1
cδ

 c 0

b δ

 , BC−1 =
1
cδ

 cβ2
h

dT
+ bβ1

h
dT

β1δ
h

dT

0 0

 .
Therefore,

R0 = ρ(L) = ρ(BC−1)η =
1
cδ

[
β2c

h
dT
+ β1b

h
dT

]
=
β1hbη
dT cδ

+
β2hη
dTδ

.

Making use of the result and procedure on basic reproduction number for structured models

(here there is the structure in infection age) in [40], we confirm that R0 is the basic reproduction

number.

3.4 Persistence of infection

In this section, we will show that the model system is persistent when R0 > 1. Such a property

itself is of some biological significance, in addition, it will be used in constructing Lyapunov

functional in Section 5 to prove the global stability of the positive equilibrium.

Due to the infinite delay in the model, the solution semi-flow of (3.4)-(3.6) may not be

compact, and this brings in some mathematical challenge. In the following, just as in Röst and

Wu [34], we will apply a theorem in Hale and Watman [11] to achieve our goal. To this end, let

S (t), t > 0, be the solution semi-flow of model system (3.4)-(3.6). Then, we shall make use of

the following theorem to the semi-flow S (t) on X, which does not require S (t) to be compact.

Theorem 3.4.1 (Hale and Watman [11, Theorem 4.2]) Suppose we have the following:

(i) X0 is an open and dense set in X with X0 ∪ X0 = X and X0 ∩ X0 = ∅;

(ii) S (t) satisfies S (t)X0 ⊂ X0 and S (t)X0 ⊂ X0 for t > 0;
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(iii) S (t) is point dissipative in X;

(iv) γ+(U) is bounded in X if U is bounded in X;

(v) S (t) is asymptotically smooth;

(vi) A = ∪x∈Abω(x) is isolated and has an acyclic covering Q = ∪k
i=1Qi, where Ab is the global

attractor of S (t) restricted to X0;

(vii) For each Qi ∈ Q, W s(Qi) ∩ X0 = ∅, where W s refers to the stable set.

Then S (t) is uniformly persistent, that is, there is a σ > 0 such that for any x ∈ X0,

lim inf
t→∞

d(S (t)x, X0) ≥ σ.

Applying the above theorem, we can prove the following persistence result for (3.4)-(3.6).

Theorem 3.4.2 For system (3.4), if R0 > 1, then the solution semi-flow S (t) is uniformly per-

sistent, that is, there exists a σ > 0 such that any solution of (3.4)-(3.6) satisfies

lim inf
t→∞

T (t) ≥ σ, lim inf
t→∞

T ∗(t) ≥ σ, lim inf
t→∞

V(t) ≥ σ.

Proof Let X0 be as in (3.6) and

X0 = {φ = (φ1, φ2, φ3) ∈ X : φ2(θ) = φ3(θ) = 0 for all θ ∈ (−∞, 0]} .

We just need to verify the conditions in Theorem 3.4.1. (i) is obvious and (ii) has been

confirmed in Section 2. We now prove (iii), that is, the solutions of (3.4)-(3.6) are ulti-

mately bounded. By lim supt→∞ T (t) ≤ h/dT , we know that, there exists an N1 > 0 such

that T (t) ≤ h/dT + 1 for all t > N1. Let M1 be the maximum of T (t) on [0,N1]. Then for any

0 < t ≤ N1, we have

‖Tt‖ = sup
−∞<θ≤0

|Tt(θ)|e4θ = sup
−∞<s≤t

|T (s)|e4se−4t

≤ max
{
‖φ1‖e−4t,M1e4te−4t} ≤ max {‖φ1‖,M1} ,

and for t > N1, we obtain

‖Tt‖ = sup
−∞<θ≤0

|Tt(θ)|e4θ = sup
−∞<s≤t

|T (s)|e4se−4t ≤ max
{
‖φ1‖e−4t,M1e4N1e−4t, h/dT + 1

}
.

Thus, there is an N2 > N1 such that

‖φ1‖e−4t ≤ h/dT + 1 and M1e4N1e−4t ≤ h/dT + 1, for t ≥ N2,



65

and therefore,

‖Tt‖ ≤ h/dT + 1 =: TM for t ≥ N2. (3.14)

Similarly, from lim supt→∞ T ∗(t) ≤ hη/d and lim supt→∞ V(t) ≤ 2bhη/δd (see proof of Theorem

6.2.1), we know that there exist N3 > 0 and N4 > 0 such that

‖T ∗t ‖ ≤ hη/d + 1 =: T ∗M for t ≥ N3 (3.15)

‖Vt‖ ≤ 2bhη/δd + 1 =: VM for t ≥ N4. (3.16)

Thus, the solution (T (t),T ∗(t),V(t)) is ultimately bounded, that is, S (t) is point dissipative in

X, proving (iii).

Noticing that the three bounds in (3.14), (3.15) and (3.16) are all independent of initial

functions, condition (iv) is verified.

Next we verify condition (v): S (t) is asymptotically smooth, that is, for any bounded subset

U of X, for which S (t)U ⊂ U for t ≥ 0, there exists a compact setM such that d(S (t)U,M)→

0 as t → ∞. Let U be an arbitrarily given bounded set in X, and (Tt,T ∗t ,Vt) be the segment of

solution with initial condition (φ1, φ2, φ3) ∈ U. Set

M1 =
{
φ ∈ C+

∆
: supθ≤0 φ(θ)e

4
2 θ ≤ TM

}
,

M2 =
{
φ ∈ C+

∆
: supθ≤0 φ(θ)e

4
2 θ ≤ T ∗M

}
,

M3 =
{
φ ∈ C+

∆
: supθ≤0 φ(θ)e

4
2 θ ≤ VM

}
,

and letM = M1 × M2 × M1. It follows from Lemma 3.2 in Burton and Hutson [6] thatM

is compact in X. Then, by using exactly the same argument in proving limt→∞ d(Et,M) = 0 in

the proof of Theorem 6.1 in Röst and Wu [34], we conclude that

lim
t→∞

d(Tt,M1) = 0, lim
t→∞

d(T ∗t ,M2) = 0, lim
t→∞

d(Vt,M3) = 0.

Therefore, S (t) is asymptotically smooth, proving (v).

For condition (vi), it is obvious that A = {E0} and it is isolated, where E0 = (h/dT , 0, 0).

Thus the covering Q is simply Q = {E0}, which is acyclic because there is no orbit connecting

E0 to itself in X0.

Finally, we verify (vii). To show W s(E0) ∩ X0 = ∅, we suppose the opposite, that is there

exists a solution ut ∈ X0 such that

lim
t→∞

T (t) =
h
dT
, lim

t→∞
T ∗(t) = 0, lim

t→∞
V(t) = 0.
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Note that R0 > 1 is equivalent to

h
dT

(
β1b
c
+ β2

) ∫ ∞

0
e−µs f (s)ds > δ.

Choose ε > 0 be sufficiently small such that(
h
dT
− ε

) (
β1b
c
+ β2

) ∫ ∞

0
e−µs f (s)ds > δ. (3.17)

For this ε, there exists a τ0 > 0 such that T (t) > h/dT − ε for all t > τ0. Truncating the integral

in (3.17), there is another τ1 > 0 such that(
h
dT
− ε

) (
β1b
c
+ β2

) ∫ τ1

0
e−µs f (s)ds > δ. (3.18)

Let τ2 = τ0 + τ1. Then for t ≥ τ2, we have

dT ∗

dt
≥

∫ τ1

0
[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]e−µs f (s)ds − δT ∗(t)

=

∫ t

t−τ1

[β1T (ξ)V(ξ) + β2T (ξ)T ∗(ξ)]e−µ(t−ξ) f (t − ξ)dξ − δT ∗(t)

≥

(
h
dT
− ε

) ∫ t

t−τ1

[β1V(ξ) + β2T ∗(ξ)]e−µ(t−ξ) f (t − ξ)dξ − δT ∗(t)

=

(
h
dT
− ε

) ∫ τ1

0
[β1V(t − s) + β2T ∗(t − s)]e−µs f (s)ds − δT ∗(t). (3.19)

This suggests the following comparison system for (T ∗(t),V(t)),
n′1(t) =

(
h
dT
− ε

) ∫ τ1

0
[β1n2(t − s) + β2n1(t − s)]e−µs f (s)ds − δn1(t),

n′2(t) = bn1(t) − cn2(t),
for t ≥ τ2. (3.20)

Notice that this is a monotone system, and hence, by the comparison theorem and the limit

limt→∞ T ∗(t) = 0 and limt→∞ V(t) = 0, one should have limt→∞(n1(t), n2(t)) = (0, 0). On the

other hand, the two equations for n1(t) and n2(t) are in the same forms of the second and

third equations in (3.8) except the upper limit∞ in the integral is replaced by τ1 and the h/dT is

perturbed to h/dT−ε. Repeating the same argument for proving the instability of E0 in Theorem

6.2.2 and replacing the condition R0 > 1 by (3.18), we conclude that the characteristic equation

of (3.20) has a positive real eigenvalue, a contradiction to limt→∞(n1(t), n2(t)) = (0, 0). Thus,

we have W s(E0) ∩ X0 = ∅, confirming condition (vii).

Now, by Theorem 3.4.1, there exists a σ1 > 0 such that lim inft→∞ d(S (t)φ, X0) ≥ σ1 for

every φ ∈ X0, implying that the T ∗ and V components of the solution with initial function

φ ∈ X0 satisfy

lim inf
t→∞

‖T ∗t ‖ ≥ σ1 and lim inf
t→∞

‖Vt‖ ≥ σ1.
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By similar estimates as in the proof of Theorem 2.1, we obtain

lim inf
t→∞

T ∗(t) > σ1 and lim inf
t→∞

V(t) > σ1. (3.21)

It remains to show the persistence of T (t). From (3.14) and (3.15), we have

dT (t)
dt

> h − (dT + β1TM + β2T ∗M)T (t) for t ≥ N5,

where N5 = max{N3,N4}. This means that whenever T (t) < σ2 := h/(dT + β1TM + β2T ∗M)

with t ≥ N5, T (t) will be increasing, which implies that lim inft→∞ T (t) > σ2/2. Taking σ =

min{σ1, σ2/2}, the proof of the theorem is completed.

3.5 Global stability of equilibria

In this section, we prove that E0 is actually globally asymptotically stable when R0 < 1, and so

is Ē provided that R0 > 1. Therefore, the model (3.4) demonstrates global threshold dynamics.

We shall achieve our goal by constructing an appropriate Lyapunov functional. The form of

our Lyapunov functional is motivated by the Lyapunov function in [16], and similar functionals

have recently been applied to many other models, including some with infinite delays, see e.g.,

[26, 27] and the references therein.

We first deal with the global asymptotic stability of E0 under R0 < 1.

Theorem 3.5.1 If R0 < 1, the infection-free steady state E0 is indeed globally asymptotically

stable.

Proof. Let T0 = h/dT , and (T (t),T ∗(t),V(t)) be a solution of system (3.4)-(3.6) satisfying

T (t) > 0. Let

Ψ01(T,T ∗,V)(t) = T (t) − T0 ln
T (t)
T0
+

1
η

T ∗(t) +
hβ1

cdT
V(t).
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Calculating the time derivative of Ψ01 along (3.4), we have

d
dt
Ψ01(t) =

(
1 −

T0

T (t)

)
[h − dT T (t) − β1T (t)V(t) − β2T (t)T ∗(t)]

+
1
η

[∫ ∞

0
[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]e−µs f (s)ds − δT ∗(t)

]
+

hβ1

dT c
[bT ∗(t) − cV(t)]

= dT T0

(
2 −

T0

T (t)
−

T (t)
T0

)
− β1T (t)V(t) − β2T (t)T ∗(t) + β1T0V(t) + β2T0T ∗(t)

+
1
η

∫ ∞

0
[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]e−µs f (s)ds −

δ

η
T ∗(t)

+
hβ1

dT c
[bT ∗(t) − cV(t)]

= dT T0

(
2 −

T0

T (t)
−

T (t)
T0

)
+ β1T0V(t) + β2T0T ∗(t) −

δ

η
T ∗(t)

+
hβ1

dT c
[bT ∗(t) − cV(t)] −

1
η

∫ ∞

0
f (s)e−µs[β1T (t)V(t) + β2T (t)T ∗(t)

−β1T (t − s)V(t − s) − β2T (t − s)T ∗(t − s)]ds

= dT T0

(
2 −

T0

T (t)
−

T (t)
T0

)
+
δ

η
(R0 − 1)T ∗(t) −

1
η

∫ ∞

0
f (s)e−µs[β1T (t)V(t)

+β2T (t)T ∗(t) − β1T (t − s)V(t − s) − β2T (t − s)T ∗(t − s)]ds. (3.22)

In light of the integral term in (3.22), we define

Ψ02(T,T ∗,V)(t) =
∫ ∞

0
f (s)e−µs

∫ t

t−s
[β1T (τ)V(τ) + β2T (τ)T ∗(τ)]dτds.

Then,

d
dt
Ψ02(t) =

∫ ∞

0
f (s)e−µs[β1T (t)V(t)+ β2T (t)T ∗(t)− β1T (t − s)V(t − s)− β2T (t − s)T ∗(t − s)]ds.

Using Ψ01(t) and Ψ02(t), we define the following functional

Ψ0(t) = Ψ01(t) +
1
η
Ψ02(t).

Then
d
dt
Ψ0(t) = dT T0

(
2 −

T0

T (t)
−

T (t)
T0

)
+
δ

η
(R0 − 1)T ∗(t). (3.23)

Notice that

2 −
T0

T (t)
−

T (t)
T0
≤ 0,

for all T (t) > 0, and the equality holds if and only if T (t) = T0. Hence if R0 < 1, then

Ψ′0(t) ≤ 0. Let E = {(T (t),T ∗(t),V(t)) : Ψ′0(t) = 0} and M be the largest invariant set in E. By
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the LaSalle invariance principle (e.g., [12, Theorem 5.3.1], or [23, Theorem 2.5.3]), all non-

negative solutions tend to M. Note that Ψ′0(t) = 0 if and only if T (t) = T0 and T ∗(t) = 0. Using

this and the invariance of M, we easily see that M is indeed the singleton M = {E0}, showing

that every non-negative solution with T (t) > 0 indeed approaches E0. Hence E0 is globally

attractive under R0 < 1, which, together with local stability of E0 established in Section 3,

confirms the global asymptotic stability of E0 under R0 < 1.

For Ē, we also have

Theorem 3.5.2 If R0 > 1, then any solution u(t) = (Tt,T ∗t ,Vt) of (3.4)-(3.6) converges to the

positive equilibrium Ē, that is,

lim
t→∞

(T (t),T ∗(t),V(t)) = (T̄ , T̄ ∗, V̄).

Proof. For convenience of notations, we denote P(x) = x − 1 − ln x and let

Ψ1(T,T ∗,V)(t) = T (t) − T̄ ln
T
T̄
+

1
η

[
T ∗(t) − T̄ ∗ ln

T ∗(t)
T̄ ∗

]
+
β1T̄ V̄
T̄ ∗b

[
V(t) − V̄ ln

V(t)
V̄

]
,

Ψ11(T,V)(t) =
∫ ∞

0
e−µs f (s)

∫ t

t−s
P

(
T (τ)V(τ)

T̄ V̄

)
dτds,

Ψ12(T,T ∗)(t) =
∫ ∞

0
e−µs f (s)

∫ t

t−s
P

(
T (τ)T ∗(τ)

T̄ T̄ ∗

)
dτds.

By the boundedness and persistence of solutions established in Sections 2 and 4, and the as-

sumption that f (s) has compact support, we know that the above functions are well defined for

large t. Let

Ψ2(t) = Ψ1(t) +
β1T̄ V̄
η
Ψ11(t) +

β2T̄ T̄ ∗

η
Ψ12(t).

Taking derivative of Ψ2(t) and making use of the equations defining the positive equilibrium Ē,

we obtain, after simplifications, the following:

d
dt
Ψ2(t) =

dT

T̄

(
2 −

T̄
T (t)
−

T (t)
T̄

)
+
β1T̄ V̄
η

∫ ∞

0
e−µs f (s)

[
3 −

T̄
T (t)

−
T̄ ∗T (t − s)V(t − s)

T ∗(t)T̄ V̄
−

T ∗(t)V̄
T̄ ∗V(t)

+ ln
T (t − s)V(t − s)

T (t)V(t)

]
ds (3.24)

+
β2T̄ T̄ ∗

η

∫ ∞

0

[
2 −

T̄
T (t)
−

T (t − s)T ∗(t − s)
T̄T ∗(t)

+ ln
T (t − s)T ∗(t − s)

T (t)T ∗(t)

]
ds.

Notice that

2 −
T̄

T (t)
−

T (t)
T̄
≤ 0. (3.25)
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Also note that P(x) ≥ 0 for all x ∈ (0,∞) and P(x) = 0 if and only if x = 1. Making use of this

function P(x), we have

3 −
T̄

T (t)
−

T̄ ∗T (t − s)V(t − s)
T ∗(t)T̄ V̄

−
T ∗(t)V̄
T̄ ∗V(t)

+ ln
T (t − s)V(t − s)

T (t)V(t)

= −P
(

T̄
T (t)

)
− P

(
T̄ ∗T (t − s)V(t − s)

T ∗(t)T̄ V̄

)
− P

(
T ∗(t)V̄
T̄ ∗V(t)

)
≤ 0, (3.26)

and

2 −
T̄

T (t)
−

T (t − s)T ∗(t − s)
T̄T ∗(t)

+ ln
T (t − s)T ∗(t − s)

T (t)T ∗(t)

= −P
(

T̄
T (t)

)
− P

(
T (t − s)T ∗(t − s)

T̄T ∗(t)

)
≤ 0, (3.27)

for all T (t), T ∗(t), V(t) > 0. Thus Ψ′2(t) ≤ 0. Let E = {(T (t),T ∗(t),V(t)) : Ψ′2(t) = 0} and let M

be the largest invariant set in E. By the LaSalle invariance principle (e.g., [12, Theorem 5.3.1],

or [23, Theorem 2.5.3]) and Theorem 6.2.1, every positive solution tends to M.

It remains to show that M = {Ē}. From (3.25), (3.26) and (3.27), we know that

d
dt
Ψ2(t) = 0

⇔


T (t) = T̄ , T̄ ∗T (t − s)V(t − s) = T ∗(t)T̄ V̄ , T ∗(t)V̄ = T̄ ∗V(t),

T (t − s)V(t − s) = T (t)V(t), T (t − s)T ∗(t − s) = T̄T ∗(t),

T (t − s)T ∗(t − s) = T (t)T ∗(t).

⇔

 T (t) = T̄ , T ∗(t)V̄ = T̄ ∗V(t),

T (t − s)V(t − s) = T̄V(t), T (t − s)T ∗(t − s) = T̄T ∗(t).

Applying T ∗(t)V̄ = T̄ ∗V(t) to the third equation in (3.4), we have dV(t)
dt = 0, meaning that V(t)

is a constant; this in turn implies that T ∗ is also a constant. Since T (t) = T̄ , by the uniqueness

of the positive equilibrium, we then conclude that T ∗(t) = T̄ , V(t) = V̄ . Therefore, M = {Ē},

that is, Ē is globally attractive for all positive solutions. The global attractivity and the local

stability of Ē proved under R0 > 1 lead to the global asymptotic stability of Ē, completing the

proof.

3.6 Conclusion and discussion

HIV-1 has two predominant infection modes: the classical virus-to-cell infection and cell-to-

cell spread. In the classical virus-to-cell infection, viruses released from infected cells ran-

domly move around to find a new target cell to infect. Recently, it was revealed that HIV-1
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infection may also occur by the transfer of viruses through direct contact between infected cells

and uninfected cells via certain structures, for example membrane nanotubes or macromolec-

ular adhesive contacts termed virological synapses [37]. During this cell-to-cell transmission,

many viral particles can be simultaneously transferred from infected to uninfected CD4+ T

cells.

In this chapter, we have considered a mathematical model to describe presence of both of

these two transmission modes. By a rigorous analysis, we have shown that the model has a

threshold dynamics. Such a threshold dynamics is fully determined by the basic reproduction

number R0 in the sense that the infection-free equilibrium E0 is globally asymptotically stable

if R0 < 1, and when R0 > 1, E0 yields to a globally asymptotically stable positive equilibrium

Ē implying the infection will persist.

Examining the formula for the basic reproduction number R0, we found that it is larger

than that given in existing models that only considered one infection mode. Indeed, note that

when β1 = 0, meaning that infection is exclusively through cell-to-cell transmission, which

is the scenario of the work in [4], the basic reproduction number R0 reduces to R02. This

would be the basic reproduction number of the corresponding model that ignores the virus-

to-cell infection mode. Similarly, when β2 = 0, R0 reduces to R01 which is exactly the basic

reproduction number for the corresponding model that neglects the cell-to-cell transmission

mechanism. Therefore, we see that our model not only reveals that the basic reproduction

number of the model that neglects either the cell-to-cell spread or virus-to-cell infection is

under-evaluated, but also tells precisely by how much it is under-evaluated, reflected by the

relation R0 = R01 + R02 and the formulas for R01 and R02 in (3.11). This formula also reflects

the impact of the infection age through the distribution function f (s).

When applying models only considering cell-to-cell transmission or infection by cell-free

viruses to experimental data, parameters are always estimated to be an average of the effect of

both modes of transmission. Thus, the estimate of R0 based on a model neglecting cell-to-cell

transmission is not the exact basic reproductive number of the model with infection by cell-free

mode, but an average of both modes of infections.

Cell-to-cell spread not only facilitates rapid viral dissemination, but may also promote im-

mune invasion and influence disease [24]. Cell-to-cell spread of HIV-1 may also reduce the

effectiveness of neutralizing antibodies and viral inhibitors. However, it is unclear whether

this mode of viral spread is susceptible or resistant to inhibition by neutralizing antibodies and

entry inhibition. There are ongoing controversies in this field of study [3, 25]. Considering

the antiretrovial therapy of reverse transcriptase (RT) inhibitor and incorporating the efficacy
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of the RT inhibitor in same way as in [29] (see (3.2)), our model (3.4) now reads

dT (t)
dt = h − dT T (t) − (1 − n1)β1V(t)T (t) − (1 − n2)β2T (t)T ∗(t),

dT ∗(t)
dt =

∫ ∞
0

f (s)e−µs[(1 − n1)β1T (t − s)V(t − s),

+(1 − n2)β2T (t − s)T ∗(t − s)] ds − δT ∗(t),

dV(t)
dt = bT ∗(t) − cV(t),

(3.28)

where n1 denotes the efficacy of the RT inhibitor inhibiting the virus-to-cell infection; n2 repre-

sents the efficacy of the RT inhibitor with respect to the cell-to-cell channel. Comparing (3.28)

to (3.4), we see that the basic reproduction number for (3.28) is

R̂0 =
(1 − n1)β1ηhb

dTδc
+

(1 − n2)β2ηh
dTδ

=: R̂01 + R̂02.

It follows that if the RT inhibitor is very effective for inhibition of virus-to-cell infection,

then large n1 would make R̂01 less than one, meaning that the virus would be eliminated by the

therapy in the absence of cell-to-cell transmission (β2 = 0). However, if cell-to-cell transmis-

sion co-exists (β2 > 0) and is less sensitive to the RT inhibitor, then n2 could be small, such

that R̂02 > 1. Thus R̂0 > 1, meaning the virus would persist. The virus can be cleared if and

only if the RT inhibitor is effective for both modes of infections, such that R̂0 < 1.

In our model, we do not consider multiple infection per cell which may occur by synaptic

transmission. However, the high efficiency of infection by large numbers of virions is likely

to result in a transfer of multiple virions to a target cell [7, 15]. Komarova et al. [19, 20]

considered multiple infection during the cell-to-cell transmission by mathematical modeling

and explored the effect of different strategies of the virus (that is, the number of viruses passed

per synapse) on the basic reproductive ratio of the virus. They showed that the strategy of single

virus transmission per synapse maximizes the reproductive ratio if the synapses can be formed

quickly and the process of infection is independent of the number of resident viruses, while

strategies with intermediate numbers of viruses transferred correspond to the highest values of

the basic reproductive number if the synapse formation is slow or if the multiplicity of infection

strongly influences the kinetic of virus production. Multiple infection of the same cell may

waste a large number of viruses that could otherwise enter uninfected target cells, hence fewer

newly infected cells are generated and the infection eventually cannot be maintained for larger

numbers of transferred viruses.

Multiple infections may reduce the sensitivity to antiretroviral therapies. Sigal et al. [39]

showed that cell-to-cell spread of HIV-1 is sufficient to reduce the efficacy of antiretroviral

therapy. A possible explanation is that the cell-to-cell transmission may play a significant

role for multiple infection per target cell which reduced sensitivity to drugs. They found that
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virus-to-cell infection was efficiently prevented by tenofovir and efavirenz. In the presence of

tenofovir, virus-to-cell infection declined thirty-fold. But once infection became established,

cell-to-cell transfer through direct contact between cells become possible (likely dominant), the

infection is much less affected by the presence of drugs. Sigal et al. [39] attempted to explain

why highly potent regimens that target several different steps in the HIV-1 life cycle cannot shut

down replication, despite reducing HIV-1 replication to very low levels, which could be due to

cell-to-cell transfer of multiple virions and the drugs’ inability to inhibit replication when virus

levels are high.

However, Permanyer et al. [33] argued that the results of Sigal et al. depend on their par-

ticular experimental conditions and that the results therefore might not be correct. Permanyer

et al. also pointed out that the conclusion of drug resistent of cell-to-cell transfer by Sigal

et al. was obtained under the incorrect assumption that each virus transferred will lead to a

productive infection. They found that antiretroviral drugs, such as the reverse transcriptase

inhibitors zidovudine and tenofovir, and the attachment inhibitor IgGb120, are able to block

virus replication with similar efficacy to cell-free virus infections. That indicates that cell-to-

cell transmission may not allow for ongoing virus replication in the presence of antiretroviral

therapy.

Komarova et al. [21] explored the role of synaptic transmission in susceptibility of HIV-1

infection to antiretroviral drugs, using a virus infection dynamical model with multiple infec-

tions. They found that multiple infection via synapses does not simply reduce susceptibility to

treatment, which depends on the relative probability of individual virions to infect a cell dur-

ing cell-free virus and cell-to-cell virus transmission. If this probability is higher for cell-free

virus transmission, then susceptibility to antiretroviral drugs is lowest when a single virus is

transferred per synapse, which maximizes the release of free virus. On the other hand, if the

infection probability is higher for synaptic transmission, then they found that the susceptibil-

ity to antiretroviral drugs is minimized for an intermediate number of virions transferred per

synapse. It needs further experimental investigations to determine whether the virus persist by

synaptic transmission during antiretroviral therapy.

HIV-1 infection can be very effectively suppressed with antiretroviral therapy, a combina-

tion of drugs that block various steps in the HIV-1 lifecycle such as the ability of the virus

to reversely transcribe its RNA genome to DNA (RT-inhibitor), integrate DNA into the cell

genome, or make viable new virions by the cleavage of viral protein precursors (protease in-

hibitor). However, these antiretroviral therapies cannot completely eliminate HIV-1 infection,

and the infection can re-establish itself within weeks after therapy interruption. The main rea-

son is the existence of reservoir of infected cells that are insensitive to drugs, which could be

latently infected cells consisting of those that are quiescent in the genomically integrated form,
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long-lived infected cells, or those on ongoing transmission cycles called ongoing replication.

It is believed that the reservoir of infected cells is enough to cause a huge rebound in viral load

within weeks after stopping an antiretroviral treatment. Considering an antiretroviral therapy

in the presence of both cell-free and cell-to-cell transmissions seems to be an interesting yet

worthy project.

In our model (3.4), we have assumed that target cells T (t) are produced at a constant rate

h and has a constant death rate dT . It would be more reasonable to consider density dependent

production rate. One possibility is to assume a logistic growth for the healthy cells in the

absence of infection, as in [5]. We leave this as a future project.
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[34] Röst G. and Wu J., SEIR epidemiological model with varying infectivity and infinite

delay, Math. Biosci., Vol 5. No 2 (2008) 389-402.

[35] Sattentau Q., Avoiding the void: cell-to-cell spread of human viruses, Nat. Rev. Micro-

biol., 6 (2008) 28-41.

[36] Sattentau Q., Cell-to-cell spread of retroviruses, Viruses, 2 (2010) 1306-1321.

[37] Sattentau Q., The direct passage of animal viruses between cells, Current Opinion in

Virology, 1 (2011) 396-402.



78

[38] Sherer N.M., Lehmann M.J., Jimenez-Soto L.F., Horensavitz C., Pypaert M. and Mothes

W., Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission,

Nat. Cell Biol., 9 (2007) 310-315.

[39] Sigal A., Kim J.T., Balazs A.B., Dekel E., Mayo A., Milo R. and Baltimore D., Cell-to-

cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477

(2011) 95-98.

[40] Thieme H.R., Spectral bound and reproduction number for infinite-dimensional popula-

tion structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009) 188-211.

[41] Wang K., Wang W. and Liu X., Global Stability in a viral infection model with lytic and

nonlytic immune response, Computers and Mathematics with Applications, 51 (2006)

1593-1610.

[42] Wang K., Wang W., Pang H. and Liu X., Complex dynamic behavior in a viral model

with delayed immune response, Physica D., 226 (2007) 197-208.

[43] Yuan Z. and Zou X., Global threshold dynamics in an HIV virus model with nonlinear in-

fection rate and distributed invasion and production delays, Math. Biosci. Eng., 10 (2013)

483-498.

[44] Zhu H. and Zou X., Impact of delays in cell infection and virus production on HIV-1

dynamics, Mathematical Medicine and Biology, 25 (2008) 99-112.

[45] Zhu H. and Zou X., Dynamics of a HIV-1 Infection model with cell-mediated immune

response and intracellular delay, Disc. Cont. Dyan. Syst. B., 12 (2009) 511-524.



Chapter 4

Modeling cell-to-cell spread of HIV-1 with
logistic target cell growth

4.1 Introduction

HIV-1 has two predominant infection modes, the classical cell-free infection and direct cell-

to-cell transfer. In the classical mode, viruses released from infected cells travel some distance

to find a new target cell to infect. Recently, it was revealed that HIV-1 can be transferred

from infected cells to uninfected cells through direct contact via some structures, for example

membrane nanotubes or macromolecular adhesive contacts termed virological synapses [5, 6,

7]. During the cell-to-cell transfer, many viral particles can be simultaneously transferred from

infected CD4+ T cells to uninfected ones.

In the preceding chapter, we incorporated the two modes of viral transmission into a classic

model leading to the following model system

dT (t)
dt
= H − dT T (t) − β1T (t)V(t) − β2T (t)T ∗(t),

dT ∗(t)
dt

=

∫ ∞

0
[β1T (t − s)V(t − s) + β2T (t − s)T ∗(t − s)]e−ms f (s)ds − dT ∗T ∗(t),

dV(t)
dt
= γT ∗(t) − dVV(t).

(4.1)

Here T (t), T ∗(t) and V(t) are the concentrations of susceptible CD4+ T cells (target cells),

productively infected T cells and free virus particles at time t respectively. A time delay, s,

from the time of initial infection until the production of new virions, is considered, and s is

assumed to be distributed according to a probability distribution f (s). Target cells are infected

by free virus particles and infectious cells at rates β1T (t)V(t) and β2T (t)T ∗(t) respectively. e−ms

represents the survival rate of infected cells during the time delay s. Target cells are recruited

79
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at a constant rate H. Free viruses are released by infected cells at a rate γT ∗(t). The loss

rate of target cells, productively infected cells and free virus are dT T (t), dT ∗T ∗(t) and dVV(t)

respectively. We found that the basic reproduction number was underestimated by some models

when only one mode of virus spread was considered. In this model, we have assumed that

target T cells have a constant source term and an exponential death rate. This is mainly for the

purpose of reducing the difficulty level in analyzing the model, since introduction of delay into

the model has already made the model an infinite dimensional system.

It is more realistic to assume that the population of the CD4+ T cells have a logistic growth

function. De Boer and Perelson [3] considered the cell-free virus infection with logistic cell

growth by model

dT (t)
dt
= αT T (t)

(
1 −

Ttot

Tmax

)
− (β + γ)T (t)V(t),

dI(t)
dt
= βT (t)V(t) − δI I(t),

dV(t)
dt
= pI(t) − cV(t),

(4.2)

where T (t) I(t) and V(t) represent uninfected target cell counts, productively infected T cell

counts and free HIV-1 virus loads at time t respectively. Here, target cells grow at a rate αT

and this growth is limited by a carrying capacity, Tmax cells. Ttot is the total number of T cells,

Ttot = T + I. β is a true infection rate and γ combines all other virus-induced depletion of the

CD4+ T cells. δI represents the turnover rate of productively infected T cells. Virus particles

are produced by productively infected cells at a rate p and cleared at a per capita rate c. In

this model, we see that infected cells are produced only by the route that free viruses infect

uninfected T cells. Mathematical analysis of this model can be found in [4] when γ = 0.

Although the notation in [4] is different from that in (4.2) and the model is about HBV, the

model in [4] have the same properties as model (4.2) mathematically when γ = 0. It was

found that when the basic reproduction number is less than one, the infection cannot establish.

When the basic reproduction number is greater than one, the infection can persist and Hopf

bifurcation may occur, that is, (4.2) has periodic solutions for some range parameters.

Culshaw et al. [1] studied the cell-to-cell spread of HIV-1 by model

dC
dt
= rCC(t)

(
1 −

C(t) + I(t)
CM

)
− kIC(t)I(t),

dI
dt
= k′I

∫ t

−∞

C(u)I(u)F(t − u)du − µI I(t),
(4.3)

where C(t) and I(t) represent the concentration of uninfected target cells and productively

infectious cells respectively. Target cells assume logistic growth rate. rC indicates the effective
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reproductive rate of target cells. CM denotes the effective carrying capacity of the system.

Target cells are infected by productively infectious cells at a rate kIC(t)I(t). kI/k′I represents

the fraction of infected cells surviving the incubation period. It is assumed here that the cells

those productively infectious at time t were infected u time units ago, where u is distributed

according to a probability distribution F(u). For the corresponding ODE models, the positive

equilibrium is globally stable, while delay models exhibit Hopf bifurcations. We see that in this

model, the infection is assumed to spread directly from infected cells to target cells, neglecting

cell-free virus infection.

In this chapter, we study the virus dynamics which combines diffusion-limited cell-free

virus transmission and cell-to-cell transfer of HIV-1, and the effects of cell-to-cell transfer of

HIV-1 on the virus dynamics with logistic cell growth. We use the same notation as in model

(4.1), and consider the following model

dT (t)
dt
= rT (t)

(
1 −

T (t) + αT ∗(t)
TM

)
− β1T (t)V(t) − β2T (t)T ∗(t),

dT ∗(t)
dt

= β1T (t)V(t) + β2T (t)T ∗(t) − dT ∗T ∗(t),

dV(t)
dt
= γT ∗(t) − dVV(t),

(4.4)

where r is target cell growth rate, and this growth is limited by a carrying capacity of target

cells, TM. The constant α represents the limitation of infected cell imposed on the cell growth

of target cells, generally α ≥ 1. In this model, we do not consider any delay effect.

For mathematical convenience, we rescale the model (4.4) by

u(t) =
T (t)
TM

, w(t) =
T ∗(t)
TM

, v(t) =
dT ∗

γTM
V(t), t̃ = dT ∗t,

ρ1 =
β1γTM

d2
T ∗

, ρ2 =
β2TM

dT ∗
, δ =

r
dT ∗

, µ =
dV

dT ∗
,

then the nondimensionalized model reads
du(t)

dt
= δu(t) [1 − u(t) − αw(t)] − ρ1u(t)v(t) − ρ2u(t)w(t),

dw(t)
dt

= ρ1u(t)v(t) + ρ2u(t)w(t) − w(t), (4.5)

dv(t)
dt

= w(t) − µv(t).

The rest of the chapter is organized as follows. Nonnegativity and boundedness of solutions

of system (4.5) are given in Section 2. Stability of the infection-free equilibrium is discussed in

Section 3. Uniform persistence of the infection is shown in Section 4. Stability of the positive

equilibrium and Hopf bifurcation are analyzed in Section 5. Hopf bifurcation is illustrated

numerically in Section 6. In Section 7, we give our conclusion and discussion.
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4.2 Nonnegativity and boundedness of solutions

Assume initial conditions for system (4.5) are given as follows:

u(0) = u0 > 0, w(0) = w0 > 0, v(0) = v0 > 0, and u0 + w0 ≤ 1. (4.6)

Since the right hand side functions of (4.5) satisfy Lipschitz condition, there is a unique solution

(u(t),w(t), v(t)) ∈ C([0,+∞),R+) to system (4.5) with the initial condition (4.6).

Theorem 4.2.1 Let (u(t),w(t), v(t)) be a solution of system (4.5) satisfying the initial condition

(4.6). Then the solution is positive and bounded: 0 < u(t) ≤ 1, 0 < w(t) ≤ 1, 0 < v(t) < v0 +
1
µ
,

for all t ≥ 0. Moreover, u(t) + w(t) ≤ 1, for all t ≥ 0.

Proof To prove the positivity of solutions, we suppose by contradiction that ti, i = 1, 2, 3, are

the first times when u(t), w(t), v(t) reach zero respectively, and t0 = min{t1, t2, t3}.

First, if t0 = t1, we assume t1 , t2 and t1 , t3. Then u(t1) = 0, w(t1) > 0, v(t1) > 0, and

u(t),w(t), v(t) > 0 for all t ∈ [0, t1). From the first and second equations in (4.5), we observe

that

d
dt

[u(t) + w(t)] = δu(t)[1 − (u(t) + w(t))] − δ(α − 1)u(t)w(t) − w(t), ∀t ∈ [0, t1]. (4.7)

It is easy to see that u(t) + w(t) ≤ 1. In fact, for any t∗ ∈ [0, t1] such that u(t∗) + w(t∗) = 1, we

have
d
dt

[u(t) + w(t)]|t=t∗ = −δ(α − 1)u(t∗)w(t∗) − w(t∗) ≤ −w(t∗) < 0. (4.8)

This means u(t)+w(t) ≤ 1, for all t ∈ [0, t1]. Thus we have u(t) < 1 and w(t) < 1, for t ∈ [0, t1].

From the third equation in (4.5), we see that

dv(t)
dt
≤ 1 − µv(t),

which means

v(t) ≤ e−µt

[
v(0) +

1
µ

(eµt − 1)
]
≤ v(0)e−µt +

1
µ
, t ∈ [0, t1]. (4.9)

Again from the first equation in (4.5), we have

du(t)
dt
≥ −[ρ1v(t) + (ρ2 + δα)w(t)]u(t), t ∈ [0, t1],

thus

u(t) ≥ u(0)e−
∫ t

0 [ρ1v(s)+(ρ2+δα)w(s)]ds, t ∈ [0, t1]. (4.10)

We know from (4.9) and (4.10) that

u(t1) ≥ u(0)e−
∫ t1

0

[
ρ1

(
v(0)e−µs+ 1

µ

)
+(ρ2+δα)

]
ds = u(0)e−

[
v(0)ρ1(1−e−µt1 )+

(
ρ1

1
µ+ρ2+δα

)
t1
]
> 0,
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which contradicts with u(t1) = 0.

Secondly, if t0 = t2, w(t2) = 0, u(t2) ≥ 0, v(t2) ≥ 0, and u(t),w(t), v(t) > 0 for t ∈ [0, t2),

then from the second equation in (4.5), we have

dw(t)
dt
≥ −w(t), t ∈ [0, t2],

thus

w(t2) ≥ w(0)e−t2 > 0,

which is in contradiction with w(t2) = 0. Notice that this case includes all the cases of t2 , t1

or t2 , t3 or t1 = t2 , t3 or t2 = t3 , t1 or t1 = t2 = t3.

Thirdly, if t0 = t3, v(t3) = 0, u(t3) ≥ 0, w(t3) ≥ 0, and u(t),w(t), v(t) > 0 for t ∈ [0, t3), then

from the third equation in (4.5), we have

dv(t)
dt
≥ −µv(t), t ∈ [0, t3],

thus

v(t3) ≥ v(0)e−µt3 > 0,

which is in contradiction with v(t3) = 0. This case includes the cases of t3 , t1 or t3 , t2 or

t3 = t1 , t2. So far we have considered all the cases and found a contradiction for each case.

Therefore, there is no such ti, i = 1, 2, 3, exist. This means u(t),w(t), v(t) > 0, for t ≥ 0.

With the positivity of the solution (u(t),w(t), v(t)), we know that (4.7) (4.8) and (4.9) hold

for all t ≥ 0. Therefore,

u(t) + w(t) ≤ 1, v(t) ≤ v(0) +
1
µ
, ∀t ≥ 0.

This completes the proof.

Furthermore, from (4.9), we see that

v(t) ≤ e−µt

(
v(0) −

1
µ

)
+

1
µ
.

Therefore, if v(0) ≤ 1
µ
, then v(t) ≤ 1

µ
for all t ≥ 0.

In fact, we can see from Lemma 4.4.1 and Lemma 4.4.2 shown later, that the set

Y :=
{

(u,w, v) ∈ R3
∣∣∣∣∣ u ≥ 0, w ≥ 0, v ≥ 0, u + w ≤ 1, v ≤

1
µ

}
,

is invariant for the solution semiflow of (4.5).
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4.3 Stability of the infection-free equilibrium

For model (4.5), the basic reproduction number is given by

R0 =
ρ1 + µρ2

µ
= R01 + R02, R01 =

ρ1

µ
, R02 = ρ2.

The system (4.5) has three equilibria: the trivial equilibrium E0 = (0, 0, 0), the infection-free

equilibrium E1 = (1, 0, 0) and the positive equilibrium Ē = (ū, w̄, v̄), where

ū =
µ

ρ1 + µρ2
=

1
R0
, w̄ =

δ

R0 + δα

(
1 −

1
R0

)
, v̄ =

1
µ

w̄.

We can easily see that for model (4.4), the basic reproduction number is R0 = R01 +R02, where

R01 =
TMβ1γ

dT ∗dV
, R02 =

TMβ2

dT ∗
.

In the following, we consider stability of equilibria for model (4.5).

Theorem 4.3.1 For system (4.5),

(i) The trivial equilibrium E0 is always unstable;

(ii) If R0 < 1, the infection-free equilibrium E1 is locally asymptotically stable.

If R0 > 1, E1 is unstable.

Proof To discuss local stability, we consider linearized system of (4.5). The Jacobian matrix

of (4.5) at E0 is given by

J0 =


δ 0 0

0 −1 0

0 1 −µ

 .
We see that J0 has a positive eigenvalue λ = δ. Therefore, E0 is always unstable.

The Jacobian matrix of (4.5) at E1 is given by

J1 =


−δ −(δα + ρ2) −ρ1

0 ρ2 − 1 ρ1

0 1 −µ

 .
We see that it has an eigenvalue λ1 = −δ < 0, and other eigenvalues are given by eigenvalues

of the matrix

J10 =

 ρ2 − 1 ρ1

1 −µ

 ,
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that is, the roots of characteristic equation

λ2 + a1λ + a2 = 0, (4.11)

where

a1 = µ + 1 − ρ2,

a2 = µ (1 − ρ2) − ρ1 = µ(1 − R0).

We see that if R0 < 1, then a1 > 0, a2 > 0, and all eigenvalues have negative real parts. If

R0 > 1, then a2 < 0, and J10 has at least one positive eigenvalue. Therefore, E1 is locally

asymptotically stable if R0 < 1, and unstable if R0 > 1.

Theorem 4.3.2 If R0 < 1, the infection-free equilibrium E1 is globally asymptotically stable.

Proof We have to prove that limt→+∞(u,w, v) = (1, 0, 0). Since u(t) ≤ 1 for all t ≥ 0, we have
dw(t)

dt
≤ ρ1v(t) + ρ2w(t) − w(t),

dv(t)
dt

≤ w(t) − µv(t).

For the linear cooperative system
dw̃(t)

dt
= ρ1ṽ(t) + ρ2w̃(t) − w̃(t), (4.12)

dṽ(t)
dt

= w̃(t) − µṽ(t),

there exists a principal eigenvalue λ0 associated with strictly positive eigenvector ξ0. It then

follows that the linear system (4.12) admits a solution (w̃, ṽ) = eλ0tξ0. By the comparison

principle, it follows that

(w, v) ≤ eλ0tξ0, ∀t ≥ 0.

From (4.11), we see that λ0 < 0 if R0 < 1. Therefore, if R0 < 1, we have

lim
t→+∞

w(t) = 0, lim
t→+∞

v(t) = 0.

Then the first equation in (4.5) is asymptotic to the following equation
dũ(t)

dt
= δũ(t)[1 − ũ(t)],

which is the logistic equation. It is easy to see that limt→+∞ ũ(t) = 1. By the asymptotic

autonomous semiflow theory (Corollary 4.3 in [11]), we have

lim
t→+∞

u(t) = 1.

Thus, if R0 < 1, then

(u,w, v)→ (1, 0, 0), as t → +∞.

This completes the proof the theorem.
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4.4 Uniform persistence of infection

Notice that when u0 = 0, the unique solution of (4.5)-(4.6) is given by

u(t) = 0, w(t) = w0e−t, v(t) = e−µt

[
v0 + w0

∫ t

0
e(µ−1)sds

]
, ∀t > 0. (4.13)

We see that w(t) → 0 and v(t) → 0 as t → +∞. Therefore, if u0 = 0, the system cannot be

persistent. To discuss the persistence of system (4.5), we consider the following solution space:

X :=
{

(u,w, v) ∈ R3
∣∣∣∣∣ u > 0, w ≥ 0, v ≥ 0, u + w ≤ 1, v ≤

1
µ

}
,

the interior subspace of X:

X0 := {(u,w, v) ∈ X | w > 0 and v > 0 } ,

the boundary of X0:

∂X0 := X\X0 = {(u,w, v) ∈ X | w = 0 or v = 0 } ,

and

M∂ := {(u0,w0, v0) ∈ ∂X0| Φt(u0,w0, v0) ∈ ∂X0, t ≥ 0},

where Φt is the solution semiflow defined by (4.5).

Lemma 4.4.1 The sets X and X0 are positively invariant for the solution semiflow Φt defined

by (4.5). Moreover,

M∂ = {(û, 0, 0)| 0 < û ≤ 1}.

Proof When u0 > 0, we consider the different cases of w0 and v0:

(i) If w0 = 0 and v0 = 0, then

u(t) =
u0

u0 + [1 − u0]e−δt
> 0, w(t) = 0, v(t) = 0, ∀t ≥ 0. (4.14)

(ii) If w0 = 0 and v0 > 0, then

d
dt

w(0) = ρ1u(0)v(0) = ρ1u0v0 > 0.

Thus, for small ε > 0, w(t) > 0 for t ∈ (0, ε). We assume t2 to be the first time when w(t)

reaches zero other than t = 0. By the same argument as the proof of Theorem 4.2.1, we obtain

that u(t) > 0, w(t) > 0 and v(t) > 0.

(iii) If w0 > 0 and v0 = 0, then

d
dt

v(0) = w(0) = w0 > 0.
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Like case (ii), it follows that u(t) > 0, w(t) > 0 and v(t) > 0.

(iv) If w0 > 0 and v0 > 0, from Theorem 4.2.1, we have u(t) > 0, w(t) > 0 and v(t) > 0.

In summary, sets X and X0 are positively invariant for the solution semiflow Φt defined by

(4.5). Moreover,

M∂ = {(û, 0, 0)| 0 < û ≤ 1}.

This completes the proof of the lemma.

Lemma 4.4.2 If R0 > 1, there exists an η0 > 0 such that the solution (u(t),w(t),v(t)) of (4.5)

with initial value (u0,w0, v0) ∈ X0 satisfies

lim
t→∞

sup ‖(u(t),w(t), v(t)) − (u1, 0, 0)‖ ≥ η0,

where u1 = 1.

Proof We see that J10 is a quasi-positive matrix. By Corollary 4.3.2 in [8], λ0(u1) = max{Reλ|λ ∈

σ(J10)} is an eigenvalue of J10, called the principle eigenvalue, where σ(J10) is the set of eigen-

values of matrix J10. From Theorem 4.3.1, we know that if R0 > 1, then λ0(u1) > 0. By

continuity, we have λ0(u1 − η0) > 0, for sufficiently small η0. To prove the lemma, we suppose

by contradiction that given any ε > 0,

lim
t→∞

sup ‖(u(t),w(t), v(t)) − (u1, 0, 0)‖ < ε,

for a solution with some initial value (u0,w0, v0) ∈ X0. In particular,

lim
t→∞

sup ‖(u(t),w(t), v(t)) − (u1, 0, 0)‖ < η0,

for a solution with some initial value (u0,w0, v0) ∈ X0. Then for this solution, there exists a

t0 > 0 such that u(t) > u1 − η0, w(t) < η0, v(t) < η0, for t > t0. Thus, from the second equation

in (4.5), we have

dw(t)
dt

≥ ρ1(u1 − η0)v(t) + ρ2(u1 − η0)w(t) − w(t).

It is easy to see that λ0(u1 − η0) is the principal eigenvalue of the linear cooperative system

dw̃(t)
dt

= ρ1(u1 − η0)ṽ(t) + ρ2(u1 − η0)w̃(t) − w̃(t),

dw̃(t)
dt

= w̃(t) − µṽ(t). (4.15)

Let (ξ1, ξ2)T be the strictly positive eigenvector associated with λ0(u1 − η0), then (w̃, ṽ)T =

eλ0(u1−η0)t(ξ1, ξ2)T is a solution of (4.15). Since w(t) > 0, v(t) > 0, there exists a ζ > 0, such that

(w(t0), v(t0))T ≥ ζ(w̃(t0), ṽ(t0))T . By the comparison principle, we have

(w(t), v(t))T ≥ ζeλ0(u1−η0)t(ξ1, ξ2)T ,∀t ≥ t0.
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Since λ0(u1 − η0) > 0, it follows that w(t) and v(t) are unbounded. Thus we obtain the contra-

diction and prove the lemma.

Theorem 4.4.3 For system (4.5), if R0 > 1, the infection is uniformly persistent with respect

to (X0, ∂X0), in the sense that there exists an η > 0 such that

lim inf
t→∞

w(t) ≥ η, lim inf
t→∞

v(t) ≥ η. (4.16)

Proof By Lemma 4.4.1,X0 is positively invariant for the solution semiflowΦt defined by (4.5).

Furthermore, Φt is compact and point dissipative. By Theorem 1.1.3 in [15], there is a global

attractor A for Φt.

Let M = (1, 0, 0). From the proof of Lemma 4.4.1, we know that M∂ is the maximal

compact invariant set in ∂X0. From (4.14), we see that ∪x∈M∂
ω(x) = {M}. Lemma 4.4.2 implies

that M is an isolated invariant set in X, and W s(M) ∩ X0 = ∅, where W s(M) is the stable set of

M. Furthermore, there is no cycle in M∂ from M to M.

Define a continuous function p : X→ R+ by

p(x) = min{w0, v0}, ∀x = (u0,w0, v0) ∈ X.

Then from Lemma 4.4.1, we see that p−1(0,max{1, 1/µ}) ⊂ X0, and that p(x) > 0 for x ∈ X0.

Moreover, if p(x) > 0, then x ∈ X0. Thus, p is a generalized distance function for the semiflow

Φt : X→ X. It follows from Theorem 3 in [9] that there exists an η > 0 such that

min
x∈ω(y)

p(x) > η, ∀y ∈ X0.

Therefore,

lim inf
t→∞

w(t) ≥ η, lim inf
t→∞

v(t) ≥ η,

which completes the proof the theorem.

Remark If R0 > 1, the target cell population u(t) is uniformly weakly persistent in the sense

that there exists some η > 0 such that

lim sup
t→∞

u(t) ≥ η. (4.17)

In fact, if (4.17) is not true, then by the definition lim sup
t→∞

u(t) = lim
t→∞

sup
τ≥t

u(τ), for any ε > 0

there exists a t1 > 0 such that sup
τ≥t1

u(τ) < ε, thus u(t) < ε for t ≥ t1. This means lim
t→∞

u(t) = 0. In

this case, the second equation in (4.5) is asymptotic to the following equation

dw̃(t)
dt
= −w̃(t),

which has only one equilibrium w̃ = 0. By the asymptotic autonomous semiflow theory (Corol-

lary 4.3 in [11]), w(t) → 0 as t → ∞. Similarly, from the third equation in (4.5), v(t) → 0 as

t → ∞. These contradict with (4.16), that is, the uniform persistence of w(t) and v(t).
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4.5 Stability of the positive equilibrium Ē and Hopf bifurca-
tion

In this section we consider stability of the positive equilibrium Ē. Noticing that

δ (1 − 2ū − αw̄) − ρ1v̄ − ρ2w̄ = −δū = −
δ

R0
,

ρ1v̄ + ρ2w̄ =
(
ρ1

µ
+ ρ2

)
w̄ =

δ(R0 − 1)
R0 + δα

,

µ(1 − ρ2ū) − ρ1ū = µ − (ρ2µ + ρ1)
1
R0
= 0,

the Jacobian matrix of (4.5) at Ē is given by

J̄ =


− δ
R0

−( δα
R0
+ ρ2ū) −ρ1ū

ρ1v̄ + ρ2w̄ ρ2ū − 1 ρ1ū

0 1 −µ

 .
The corresponding characteristic equation is

λ3 + b1λ
2 + b2λ + b3 = 0, (4.18)

where

b1 =
δ

R0
+ µ + 1 −

ρ2

R0
=

δ

R0
+ µ +

R01

R0
> 0,

b2 =
δ

R0
(1 − ρ2ū + µ) + µ(1 − ρ2ū) − ρ1ū + (ρ1v̄ + ρ2w̄)

(
δα

R0
+ ρ2ū

)
=

δ

R0

(
1 + µ −

ρ2

R0

)
+
δ(R0 − 1)
R0 + δα

(
δα

R0
+
ρ2

R0

)
=

δ

R0

(
µ +
R01

R0

)
+

δ

R0

R02 + δα

R0 + δα
(R0 − 1) > 0,

b3 =
δ

R0
(1 − ρ2ū)µ + ρ1ū(ρ1v̄ + ρ2w̄) − ρ1ū

δ

R0
+ µ(ρ1v̄ + ρ2w̄)

(
δα

R0
+ ρ2ū

)
= (ρ1v̄ + ρ2w̄)

[
ρ1ū + µ

(
δα

R0
+ ρ2ū

)]
=

δ(R0 − 1)
R0 + δα

(
δα

R0
+ 1

)
µ

=
δµ

R0
(R0 − 1) > 0,
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b1b2 − b3

=
δ

R0

{(
δ

R0
+ µ +

R01

R0

) [(
µ +
R01

R0

)
+
R02 + δα

R0 + δα
(R0 − 1)

]
− µ(R0 − 1)

}
=

δ

R0

{(
δ

R0
+
R01

R0

) [(
µ +
R01

R0

)
+
R02 + δα

R0 + δα
(R0 − 1)

]
+ µ

(
µ +
R01

R0

)
− µ

R01

R0 + δα
(R0 − 1)

}
=

δ

R0


(
δ

R0
+
R01

R0

)
R02 + δα

R0 + δα
(R0 − 1) +

δ

R0

(
µ +
R01

R0

)
+

(
µ +
R01

R0

)2

− µ
R01

R0 + δα
(R0 − 1)


=

δµ

ρ1 + µρ2

{(
δµ

ρ1 + µρ2
+

ρ1

ρ1 + µρ2

)
ρ2 + δα

ρ1 + µρ2 + µδα
(ρ1 + µρ2 − µ)

+
δµ

ρ1 + µρ2

(
µ +

ρ1

ρ1 + µρ2

)
+

(
µ +

ρ1

ρ1 + µρ2

)2

−
ρ1

ρ1 + µρ2 + µδα
(ρ1 + µρ2 − µ)

 .
We denote

b1(p)b2(p) − b3(p) = G(p)F(p),

where

p = (ρ1, ρ2, µ, δ, α),

G(p) =
δµ

(ρ1 + µρ2)3(ρ1 + µρ2 + µδα)
,

F(p) = (δµ + ρ1)(ρ1 + µρ2)(ρ2 + δα)(ρ1 + µρ2 − µ) + δµ[µ(ρ1 + µρ2) + ρ1][(ρ1 + µρ2) + µδα]

+[µ(ρ1 + µρ2) + ρ1]2[(ρ1 + µρ2) + µδα] − ρ1(ρ1 + µρ2)2(ρ1 + µρ2 − µ).

We see that if R0 > 1, then bi > 0, i = 1, 2, 3. Thus, if b1b2 − b3 > 0 then Ē is locally

asymptotically stable by the Routh-Hurwitz criterion, and if b1b2 − b3 < 0, Ē is unstable.

Since G(p) > 0, the sign of b1(p)b2(p) − b3(p) is determined by the sign of F(p). If there is a

p̄ = (ρ̄1, ρ̄2, µ̄, δ̄, ᾱ) such that F(p̄) = 0, then there is a Hopf bifurcation at Ē, by Theorem 2 in

[14]. In fact, when p = p̄, we have b3(p̄) = b1(p̄)b2(p̄), and further the characteristic equation

(4.18) has a negative root λ̄1 = −b1(p̄) and a pair of pure imaginary roots λ̄2,3 = ±i
√

b2(p̄).

First, we consider Hopf bifurcation at Ē choosing ρ1 as the bifurcation parameter, that is,

the parameters (ρ2, µ, δ, α) are fixed at (ρ̄2, µ̄, δ̄, ᾱ) while ρ1 changes near ρ̄1. Then F(p) is a

function of ρ1, which can be expressed in the following form

F(ρ1)

= −ρ4
1 + (δα + ρ2 + 1 − 3µρ2 + µ

2 + 3µ)ρ3
1

+(3µ3ρ2 + µ
3δα + δµρ2 + δµ

2 + 2ρ2
2µ + 2δαµρ2 + δµ + δ

2µα + 6µ2ρ2 + 2µ2δα − 3ρ2
2µ

2)ρ2
1

+(δαµ2ρ2
2 + 2δµ2ρ2

2 + δ
2µ3α + 2δ2µ2αρ2 − ρ

2
2µ

2 + 2δµ3ρ2 − δαµ
2ρ2 + 2µ4ρ2δα

+3µ4ρ2
2 + ρ

3
2µ

2 + 3µ3ρ2
2 − µ

3ρ3
2 + 2µ3ρ2δα)ρ1

−δ2µ3αρ2 + µ
5ρ3

2 + δµ
3ρ3

2 + b2µ3αρ2
2 − δµ

3ρ2
2 + δµ

4ρ2
2 + µ

5ρ2
2δα + δ

2µ4ρ2α,
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where we omit the bar of (ρ̄2, µ̄, δ̄, ᾱ) for notational convenience. We see that if ρ1 = 0, then

R0 = ρ2 > 1, and

F(0) = µ3ρ2(ρ2 + δα)[δ(ρ2 − 1) + µ2ρ2 + δµ] > 0.

On the other hand, limρ1→+∞ F(ρ1) = −∞. Therefore, F(ρ1) = 0 has at least one positive root.

Proposition 4.5.1 Assume that parameters (ρ2, µ, δ, α) are fixed. If R0 > 1 and F(ρ1) > 0, then

Ē is locally asymptotically stable. If there exists a critical value ρ̄1 > 0 such that R0 > 1 and

F(ρ̄1) = 0, then a Hopf bifurcation occurs at Ē when ρ1 passes through the critical value ρ̄1.

By the similar arguments, we can obtain the following results about different bifurcation pa-

rameters.

Proposition 4.5.2 Assume that parameters (ρ1, µ, δ, α) are fixed. If R0 > 1 and F(ρ2) > 0, then

Ē is locally asymptotically stable. If there exists a critical value ρ̄2 > 0 such that R0 > 1 and

F(ρ̄2) = 0, then a Hopf bifurcation occurs at Ē when ρ2 passes through the critical value ρ̄2.

Here, F(p) is a function of ρ2:

F(ρ2)

= (ρ1µ
2 + µ5 + µ3δ − µ3ρ1)ρ3

2

+(µ2δαρ1 + δ
2µ3α − ρ1µ

2 + 3µ3ρ1 + 2ρ2
1µ − µ

3δ + δµ4 + 2δµ2ρ1 + µ
5δα + 3µ4ρ1 − 3µ2ρ2

1)ρ2
2

+(2µ3ρ1δα + δµρ
2
1 + 2ρ1δ

2µ2α + 2ρ2
1µδα + 2µ4ρ1δα + δ

2µ4α − δ2µ3α − µ2δαρ1 + ρ
3
1

+3µ3ρ2
1 + 6µ2ρ2

1 − 3µρ3
1 + 2δµ3ρ1)ρ2

+ρ3
1 + δµρ

2
1 + δ

2µαρ2
1 + µ

2ρ3
1 + µ

3ρ2
1δα − ρ

4
1 + δ

2µ3ρ1α + 2µ2ρ2
1δα + δµ

2ρ2
1 + 3µρ3

1 + ρ
3
1δα,

where we also omit the bar of (ρ̄2, µ̄, δ̄, ᾱ) for notational convenience.

4.6 Numerical simulation

We choose the baseline parameters in model (4.4) as r = 0.1, TM = 1000, dT ∗ = 0.4, γ = 850

and dV = 3 [2, 10]. Then for model (4.5), we have δ = 0.25, µ = 7.5. We set α = 1.2 and use

ρ1 and ρ2 as bifurcation parameters.

Notice that if ρ1 = 0, then R0 = ρ2 and

b1b2 − b3 =
δ

ρ2
2

[
δ(ρ2 − 1) + δµ + µ2ρ2

]
.

Thus, if R0 = ρ2 > 1, b1b2 − b3 > 0. Therefore, Ē is locally asymptotically stable for all

δ, α, µ > 0, ρ2 > 1 and ρ1 = 0. This is the case when there is only cell-to-cell transmission,

which is considered by Culshaw et al. [1] for α = 1.
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When ρ1 > 0, the surface F(ρ1, ρ2) is shown in Figure 4.1. We see that Ē is also locally

asymptotically stable, when ρ1 and ρ2 satisfy R0 > 1, ρ1 < ρ̄1 and ρ2 < ρ̄2, where (ρ̄1, ρ̄2) is at

the intersection curve of the two surface in Figure 4.1, F(ρ̄1, ρ̄2) = 0.

Figure 4.1: The surface of F(ρ1, ρ2), when δ = 0.2, α = 1.2, µ = 10.

First, we consider ρ1 as a bifurcation parameter. Assume β2 = 0.65×10−3, then ρ2 = 1.625.

When the parameters are fixed at δ = 0.25, α = 1.2, µ = 7.5 and ρ2 = 1.625, F(ρ1) = 0 has

a positive root ρ1 = 79.98204093, a negative root ρ1 = −13.50810411 and a pair of conjugate

complex roots ρ1 = −10.68071841±0.2299679133i. Thus ρ̄1 = 79.98204093 is a critical value

for bifurcation. Since R0 ≥ ρ2 > 1, we see that if 0 ≤ ρ1 < ρ̄1, Ē is locally asymptotically

stable, while it is unstable if ρ1 ≥ ρ̄1 (see Figure 4.3 and Figure 4.4). When ρ1 = ρ̄1, there is a

Hopf bifurcation, and a family of periodic solutions bifurcate from Ē (see Figure 4.5).

When ρ1 = ρ̄1, J̄ has a pair of pure imaginary eigenvalues λ = ±0.4531462285 i and a

negative real eigenvalue λ = −8.3881137969. In the following, we determine the bifurcation

direction and stability, magnitudes and periods of the bifurcated periodic solutions by applying

the normal form theory and Maple program developed by Yu [13] using computer algebra sys-

tem. First we transform the fixed point to the origin and let ρ1 = ρ̄1 + ε, and then transform the

Jacobian matrix of system (4.5) evaluated at the trivial equilibrium solution to Jordan canonial

form. By the linear transformation
u

w

v

 =


ū

w̄

v̄

 + P


x1

x2

x3

 , (4.19)
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Figure 4.2: The function F(ρ1) has only positive root ρ̄1 = 79.98204093.

where
ū

w̄

v̄

 =


0.08137178429

0.01824228214

0.002432304285

 , P =


0.9127757680 0.0000000000 0.4946210560

0.0025286175 −0.4048829165 −0.5771230032

−0.0029139233 −0.0538083311 0.6498300164

 ,
system (4.5) is transformed to

dxi

dτ
= Fi(x1, x2, x3; ε), i = 1, 2, 3, (4.20)

where

F1 = 0.4531462284x2 + ε(−0.0001967387 − 0.0019711916x1 + 0.0043523250x2

−0.053757844x3) + ε(0.0488215521x1x2 − 0.5881732311x1x3 + 0.0264557501x3x2

+0.0026438705x2
1 − 0.3194996052x2

3) + O(ε)

−0.0206649222x2
1 − 46.2688096803x1x3 + 4.6229780433x1x2

−25.0663848848x2
3 + 2.5051303527x3x2,

F2 = −0.4531462284x1 + ε(−0.0004372035 − 0.0043804908x1 + 0.0096719770x2

−0.1194636492x3) + ε(0.1084939488x1x2 − 1.3070710312x1x3 + 0.0587914287x3x2

+0.0058753550x2
1 − 0.7100096645x2

3) + O(ε)

+0.4616677914x2
1 − 102.6557485267x1x3 + 10.0041479776x1x2

−55.7633503054x2
3 + 5.4211148132x3x2,
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F3 = −8.3881137969x3 + ε(−0.0000370843 − 0.0003715599x1 + 0.0008203919x2

−0.0101330897x3) + ε(0.0092026229x1x2 − 0.1108677664x1x3 + 0.0049867790x3x2

+0.0004983566x2
1 − 0.0602241070x2

3) + O(ε)

+0.0381351380x2
1 − 8.7077514501x1x3 + 0.8491105307x1x2

−4.7298128146x2
3 + 0.4601217101x3x2.

It is easy to see that the Jacobian matrix of system (4.20) at x = (0, 0, 0) is in the Jordan

canonical form

J =


0 0.4531462284 0

−0.4531462284 0 0

0 0 −8.3881137969

 . (4.21)

The general normal form can be written in polar coordinates as

dr
dτ
= r(ν0ε + ν1r2) + O(ε2r, εr3, r5),

dθ
dτ
= ω0 + τ0ε + τ1r2 + O(ε2, εr2, r4).

For system (4.20), ω0 = 0.4531462284 corresponds to the pair of the pure imaginary eigenval-

ues. ν0 and τ0 can be found from linear analysis. By the theory in [12], we have

ν0 =
1
2

(
∂2F1

∂x1∂ε
+
∂2F2

∂x2∂ε

)∣∣∣∣∣∣
ε=0, xi=0

= (0.0048359885 + 0.0542469744x1 + 0.0293957144x3)|xi=0

= 0.0048359885,

τ0 =
1
2

(
∂2F1

∂x2∂ε
−
∂2F2

∂x1∂ε

)∣∣∣∣∣∣
ε=0, xi=0

= (0.0021902454 − 0.0542469744x2 + 0.6535355156x3 − 0.0058753550x1)|xi=0

= 0.0021902454.

On the other hand, ν1 and τ1 are determined by nonlinear analysis. Applying the Maple pro-

gram developed in [13] to system (4.20), setting ε = 0, we obtain

ν1 = −0.09674296998, τ1 = −2.380920393.

Therefore, the normal form of the system (4.20) up to third order is given by

dr
dτ
= r(0.0048359885ε − 0.09674296998r2), (4.22)

dθ
dτ
= 0.4531462284 + 0.0021902454ε − 2.380920393r2.



95

System (4.25) has equilibrium solutions r̄ = 0 and r̄2 = 0.0499880095ε. The solution r̄ = 0

corresponds to the equilibrium solution Ē of the original system (4.5). Linearization of the

equation dr/dτ indicates that r̄ = 0 (Ē) is stable for ε < 0, that is ρ1 < ρ̄1. When ε increases

from negative values and crosses zero, a Hopf bifurcation occurs and the amplitude of the

periodic solution is given by

r̄ = 0.2235799845
√
ε, ε > 0.

Since ν1 < 0, the Hopf bifurcation is supercritical and the bifurcation limit cycle is stable. The

amplitude of the bifurcating limit cycle is r̄ = 0.2235799845
√
ε, and the frequency is

ω = 0.4531462284 − 0.1168272258ε.
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Figure 4.3: Trajectories of system (4.5), when ρ1 = 20. We have R0 = 4.291666666, and Ē is

locally asymptotically stable, where Ē = (0.233009709, 0.041759907, 0.005567988).
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Figure 4.4: Trajectories of system (4.5), when ρ1 = 70. We have R0 = 10.958333333, and Ē is

locally asymptotically stable, where Ē = (0.091254753, 0.020179391, 0.002690585).
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Figure 4.5: Trajectories of system (4.5), when ρ1 = 80. We have R0 = 12.291666667,

and Hopf bifurcation occurs at Ē, and there is a stable limit cycle. Here Ē =

(0.081355932, 0.018239128, 0.002431884).
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Similarly, if we fix δ = 0.25, α = 1.2, µ = 7.5 and ρ1 = 70, F(ρ2) = 0 has only one

positive root ρ̄2 = 24.06639452 (see Figure 4.6) and two negative roots ρ2 = −9.466977953

and ρ2 = −10.77608331. Thus ρ̄2 = 24.06639452 is a critical value of bifurcation. When

0 ≤ ρ2 < ρ̄2, Ē is locally asymptotically stable (see Figure 4.7), while it is unstable if ρ2 ≥ ρ̄2.

When ρ2 = ρ̄2, there is a Hopf bifurcation, and a family of periodic solutions bifurcates from

Ē (see Figure 4.8).

Figure 4.6: The function F(ρ2) has only one positive root ρ̄1 = 24.06639452.

Let ρ2 = ρ̄2 + ε and the linear transformation (4.19) with
ū

w̄

v̄

 =


0.0299403637

0.0071963462

0.0009595128

 , P =


−0.0074850909 −0.7295387145 −2.0958254600

0.2403560052 −0.2794433946 2.0958254600

0 1 −7.5000000000

 ,
then system (4.5) is transformed to

dxi

dτ
= Fi(x1, x2, x3; ε), i = 1, 2, 3, (4.23)

where

F1 = 0.4832999609x2 + ε(−0.0002317009 − 0.0069984666x1 + 0.0138985043x2

+0.0068913568x3) + ε(0.2597749886x1x3 + 0.1053782781x3x2 − 0.0009634203x2
1

+0.0655698598x2
3 + 0.4178786217x1x2) + O(ε)

−0.0069840861x2
1 − 57.1550777084x1x3 + 14.0708577570x1x2

−14.4126015770x2
3 + 3.5483096890x3x2,
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F2 = −0.4832999610x1 + ε(−0.0004807986 − 0.0145223983x1 + 0.0288405483x2

+0.0143001366x3) + ε(0.5390546324x1x3 + 0.2186686613x3x2 − 0.0019991770x2
1

+0.1360628938x2
3 + 0.8671327754x1x2) + O(ε)

+0.4526901833x2
1 − 118.5331112012x1x3 + 28.9297201243x1x2

−29.9198000655x2
3 + 7.2953339441x3x2,

F3 = −7.7869284856x3 + ε(−0.0000303249 − 0.0009159543x1 + 0.0018190263x2

+0.0009019358x3) + ε(0.0339991640x1x3 + 0.0137918334x3x2 − 0.0001260918x2
1

+0.0085817362x2
3 + 0.0546916540x1x2) + O(ε)

+0.0276954677x2
1 − 7.4762260736x1x3 + 1.8251427125x1x2

−1.8870738072x2
3 + 0.4602542135x3x2.

It is easy to see that the Jacobian matrix of system (4.23) at x = (0, 0, 0) is in the Jordan

canonical form

J =


0 0.4832999610 0

−0.4832999610 0 0

0 0 −7.7869284856

 . (4.24)

For system (4.23), ω0 = 0.4832999610 corresponds to the pair of the pure imaginary eigenval-

ues. ν0 and τ0 can be derived from linear analysis similarly to the previous case, we have

ν0 =
1
2

(
∂2F1

∂x1∂ε
+
∂2F2

∂x2∂ε

)∣∣∣∣∣∣
ε=0, xi=0

= (0.0144202741 + 0.1093343306x3 + 0.4335663877x1)|xi=0

= 0.0144202741,

τ0 =
1
2

(
∂2F1

∂x2∂ε
−
∂2F2

∂x1∂ε

)∣∣∣∣∣∣
ε=0, xi=0

= (0.0072611992 − 0.2695273162x3 + 0.0019991770x1 − 0.4335663877x2)|xi=0

= 0.0072611992.

On the other hand, ν1 and τ1 are determined by nonlinear analysis. Applying the Maple pro-

gram developed in [13] to system (4.20) again, setting ε = 0, we obtain

ν1 = −0.2039007979, τ1 = −21.07423997.

Therefore, the normal form of the system up to third order is given by

dr
dτ
= r(0.0144202741ε − 0.2039007979r2), (4.25)

dθ
dτ
= 0.4832999610 + 0.0072611992ε − 21.07423997r2.
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System (4.25) has equilibrium solutions r̄ = 0 and r̄2 = 0.2039007979ε. The solution r̄ = 0

corresponds to the equilibrium solution Ē of the original system (4.5). Linearization of the

equation dr/dτ indicates that r̄ = 0 (Ē) is stable for ε < 0, that is ρ2 < ρ̄2. When ε increases

from negative to cross zero, a Hopf bifurcation occurs and the amplitude of the periodic solu-

tion is

r̄ = 0.2659360998
√
ε, ε > 0.

Since ν1 < 0, the Hopf bifurcation is supercritical and the bifurcation limit cycle is stable. The

amplitude of the bifurcating limit cycle is r̄ = 0.2235799845
√
ε, and the frequency is

ω = 0.4832999610 − 1.4831513940ε.
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Figure 4.7: Trajectories of system (4.5), when ρ2 = 1. We have R0 = 10.333333333, and Ē is

locally asymptotically stable, where Ē = (0.096774194, 0.021235716, 0.002831429).



101

0.026
0.028

0.03
0.032

4

6

8

10

x 10
−3

0.5

1

1.5

2

x 10
−3

u

t=0

w

v

(a)

0.026 0.027 0.028 0.029 0.03 0.031 0.032
5.5

6

6.5

7

7.5

8

8.5

9
x 10

−3

u

w

(b)

0 100 200 300 400 500
0.026

0.027

0.028

0.029

0.03

0.031

0.032

t

u

(c)

0 100 200 300 400 500
5.5

6

6.5

7

7.5

8

8.5

9
x 10

−3

t

w

(d)

Figure 4.8: Trajectories of system (4.5), when ρ2 = 25. We have R0 = 34.333333333,

and Hopf bifurcation occurs at Ē, and there is a stable limit cycle. Here Ē =

(0.029126214, 0.007008232, 0, 0009344309783).



102

4.7 Conclusion and discussion

In this chapter, we considered the direct cell-to-cell transfer of HIV-1 in addition to cell-free

virus transmission by mathematical modeling. We found that the basic reproduction number

R0 is larger than that of previous models which just considered cell-free virus spread mode. In

fact, R0 is the sum of the basic reproduction number determined by cell-free virus infection,

R01, and that determined by cell-to-cell infection, R02.

When cell-free spread of HIV-1 is only considered, we have β2 = 0 in (4.4), and the model

(4.4) becomes the model (4.2) with γ = 0 or the model considered in [4]. We see from the

analysis in [4] that the basic reproduction number is R01 =
TMβ1γ

dT∗dV
. When R01 < 1, the infection

cannot establish. When R01 > 1, the infection can persist, and for some large β1 the Hopf bifur-

cation occurs, that is a family of periodic solutions bifurcates from the positive equilibrium Ē.

This property is very similar to the case when cell-to-cell transfer is considered simultaneously.

However, the basic reproduction number R01 is only a part of R0, the basic reproduction num-

ber of (4.4), that is, the case when both transmission modes exist. On the other hand, we see

from Figure 4.1 that the bifurcation critical point ρ̄1 decreases as ρ̄2 increases. Therefore, the

bifurcation critical point β̄1 decreases as β̄2 increases. That means the periodic solutions occur

for smaller infection rate of cell-free mode β1, when cell-to-cell transfer establishes compared

with the case when only cell-free mode is considered.

In contrast, when only cell-to-cell transfer is considered, β1 = 0 in (4.4). We know from the

analysis in [1] that the basic reproduction number is R02 =
TMβ2
dT∗

. The infection cannot establish

if R02 < 1, while it persists if R02 > 1. Furthermore, the positive equilibrium Ē is stable if

R02 > 1, and there are no Hopf bifurcation and periodic solutions. Since R02 is only a part of

R0, the basic reproduction number is also underestimated when the cell-to-cell mode is only

considered. The dynamical behavior of the system is very different from the case when both

infection modes are considered where Hopf bifurcation and periodic solutions occur for some

values of infection rates β1 and β2, that is, for some ρ1 and ρ2.

The nonlinear term, that is the logistic growth of target cells, leads to the Hopf bifurcation

and periodic solutions of the system for some range of parameter values. With stable periodic

solutions, the concentration of infected cells and virus load cannot stabilize at a constant level,

but show oscillations. This is important for experimental or clinic estimation of virus load. Due

to the periodic oscillation, lower (or higher) virus load detected at a moment does not indicate

the same lower (or higher) load for a long time. The oscillations of viral load levels in the

plasma are also plausible under the effects of immune responses or delays in the virus infection

dynamics [2].

In the model (4.5), we do not consider any delay effects, such as the delay from the time of
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initial infection until the production of new virions. Culshaw et al. [1] considered this delay

for the cell-to-cell infection model and found that there is a Hopf bifurcation for some critical

values of the delay time. For the model (4.5), if we consider delay effects, there may be Hopf

bifurcations for some delay time. This needs further study.
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Chapter 5

Repulsion effect on superinfecting virions
by infected cells

5.1 Introduction

Viruses are usually thought to spread across susceptible cells through an iterative process,

consisting of attachment to a target cell, entry, replication, and release of new virions, and

which then move on to infect other uninfected target cells. According to such an understanding,

the spreading speed of virus would be limited by how quickly virus can reproduce in infected

cells. However, a recent study published in Science [9] reveals that vaccinia virus spreads

much faster than previously thought. Using live video microscopy, the authors of [9] found

that the vaccinia virus was spreading across one cell fourfold faster than its replication cycle

should allow. Indeed, vaccinia virus spreads across one cell every 1.2 hours on average, but in

vaccinia viral replication kinetics, new virions are formed only 5 to 6 hours after infection, or

in virus-induced cell motility, a cell starts to move 5 to 6 hours after infection.

In seeking an explanation for this phenomenon, a new mechanism was discovered, that

is, the repulsion of superinfecting virions by infected cells [9]. Indeed, a peculiar feature of

vaccinia infection is the formation of actin tails, which propel virus particles towards other cells

late during infection, promoting spread of virus from cell to cell. The authors of [9] observed

that an infected cell can produce two important proteins, called A33 and A36, and express

them on the cell’s outer membrane shortly after infection, which mark the cell as infected.

The two proteins are necessary and sufficient to induce formation of actin tails after binding

extracellular enveloped vaccinia (EEV) virus. When other cell-free vaccinia viral particles

reach the infected cell and come into contact with these proteins, they induce the host cell to

form a new actin tail projection, which propels viral particles away and toward other cells that

106
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they can infect. This way, the superinfection is blocked, and the free particles bounce from one

cell surface to another until they reach an uninfected cell. This mechanism accelerates virus

spread, since virus spreads by surfing from cell to cell, bouncing past the already-infected cells

and quickly reaching distant uninfected cells without the need to replicate in each cell on the

way.

It is believed that some other viruses may also employ such mechanisms to speed up their

spread. For instance, herpes simplex virus (HSV-1), which has replication kinetics similar to

vaccinia virus, also spreads faster than predicted by their replication kinetics. Considering

this repulsion effect of infected cells on superinfecting virions, we see that the spread rate of

viruses should depend on the density of infected cells, and high density of infected cells should

promote the spread of viruses. We wish to explore this effect quantitatively by mathematical

models.

Mathematical modeling has been shown to be an effective and valuable approach to un-

derstand the within host dynamics of virus infection and spread. The dynamics of HIV-1,

hepatitis B virus (HBV) and human T cell leukemia type-1 (HTLV-1) infections have been

analyzed in detail with the help of mathematical models. Most of these works are based on

the assumption that cells and viruses are well mixed, and hence, ignore the mobility of cells

and viruses. However, spatial structure is very important for virus dynamics. In the study of

evolutionary competitiveness of lytic virus, Komarova [15] considered the spatial dynamics of

viral spread by a diffusion model, and found that lytic viruses can be evolutionary competitive

due to the mechanism that they exit an infected cell in a large burst such that the antibodies

are flooded and a large proportion of virions can escape the immune system and spread to new

cells. The efficacy of the flooding depends on the diffusion rate of the antibodies. Wang and

Wang [27] developed a reaction diffusion model to simulate the infection and spread of HBV.

They assumed that susceptible host cells and infected cells cannot move, while viruses move

according to Fickian diffusion. For this model, they discussed existence of traveling wave so-

lutions and minimal wave speed. In a subsequent paper, Gan et al. [10] considered the effect of

the time delay accounting for the lag from the time of infection to the time when the infected

cell becomes productively infectious. Xu and Ma [31] considered the saturation response of

the infection rate.

In this chapter, we consider the repulsion effect of infected cells on the spread of virus in the

within host environment. Denoting by T (t, x), T ∗(t, x) and V(t, x) the concentrations of target

cells, infected cells and free virus particles at time t at location x respectively, we consider the

following general virus infection dynamic model,
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∂T
∂t
= DT∆T + h(x) − dT T − β(x)TV,

∂I
∂t
= DT∆I + β(x)TV − dI I, (5.1)

∂V
∂t
= ∇ · (DV(I)∇V) + γ(x)I − dVV.

This model system is based on some assumptions. Firstly, the within host environment is

spatially heterogenous, that is, the target cell production rate h(x), infection rate β(x) and free

virus production rate γ(x) may depend on the spatial location x. The death rate of target cells,

infected cells and viruses are constants, denoted by dT , dT ∗ and dV respectively. Secondly,

target cells and infected cells can move, following the Fickian diffusion, meaning that the

flux of these cells are proportional to their concentration gradient and go from regions of high

concentration to regions of low concentration, with the same diffusion rate DT , that is,

~JT = −DT∇T, ~JI = −DT∇I.

Notice that the diffusion rate of the cells may be much slower in contrast to the spreading rate

of viruses, and is thus often neglected in literature. Thirdly, the flux of free viral particles

depends not only on its concentration gradient but also on the concentration of infected cell in

the following form
~JV = DV(I)(−∇V).

The repulsion of the superinfecting virions observed in [9] suggests that high concentration

of infected cells promotes spread of viruses toward uninfected target cells. Therefore, DV(I)

should be an increasing function of the local concentration of infected cells I(t, x). We assume

DV(I) = D0 + g(I),

where D0 represents random diffusion rate of free virions, and g ∈ C2(R+,R+) is an increasing

function of I, representing the motility of free virions due to repulsion of superinfecting virions

by infected cells. If there is no infected cell, then there is no repulsion effect, meaning that g(I)

should satisfy g(0) = 0.

The rest of the chapter is organized as follows. In Section 2, we discuss the well-posedness

of the model (5.1), derive the basic reproduction number R0 of the system (5.1) and calculate

R0 numerically. For the model (5.1), mathematical proof of stability of steady states is difficult

to approach. However, when all the parameters h(x), β(x) and γ(x) do not depend on space

location x, we can establish the linear stability of steady states of system (5.1). In Section 3,
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we numerically estimate the spreading rate of virus and discuss the effect of repulsion of su-

perinfecting virions. Section 4 discuss existence of traveling wavefront solutions to the model

and their numerical simulations when the diffusion of target cells and infected cells is ignored.

Finally, we present conclusions and discussions in Section 5.

5.2 In a bounded domain

In this section, we consider an open bounded domainΩ ⊂ R3 with smooth boundary ∂Ω. Under

such a scenario, we examine the dynamics of the model. More precisely, we will investigate

the dynamics of the system

∂T
∂t
= DT∆T + h(x) − dT T − β(x)TV,

∂I
∂t
= DT∆I + β(x)TV − dI I, x ∈ Ω, t > 0, (5.2)

∂V
∂t
= ∇ · (DV(I)∇V) + γ(x)I − dVV,

with zero-flux boundary conditions

∂T
∂ν
=
∂I
∂ν
=
∂V
∂ν
= 0, ∀x ∈ ∂Ω, t > 0, (5.3)

and initial conditions

T (0, x) = T0(x) > 0, I(0, x) = I0(x) ≥ 0, V(0, x) = V0(x) ≥ 0, ∀x ∈ Ω. (5.4)

Well-posedness of the model

First, we address the well-posedness of the problem (5.2)-(5.4). As usual, we denote by R3
+ the

positive cone in R3, i.e.,

R3
+ = {w = (T, I,V)T ∈ R3 | T ≥ 0, I ≥ 0,V ≥ 0}.

Let p > 3 so that the space W1,p(Ω,R3) is continuously embedded in the continuous function

space C(Ω,R3) (see, e.g., [1]). Since the unknowns T, I and V are populations, we only need

to consider the following solution space

X+ :=
{

w ∈W1,p(Ω,R3) | w(Ω̄) ⊂ R3
+ and

∂w
∂ν
= 0 on ∂Ω

}
.

We see that the system (5.2)-(5.3) can be rewritten as the following abstract quasi-linear parabolic

system  wt +A(w)w = F (x,w), x ∈ Ω, t > 0,

Bw = 0, x ∈ ∂Ω, t > 0
(5.5)
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where

A(z)w = −
∑

j,k

∂ j(a jk(z)∂kw), Bw =
∂w
∂ν
,

and

a jk = a(z)δ jk, 1 ≤ j, k ≤ n, a(z) =


DT 0 0

0 DT 0

0 0 DV(z3)

 ,
for z = (z1, z2, z3) ∈ R3

+ (here δ jk is the Kronecker delta function), and

F (x,w) = (h(x) − dT T − β(x)TV, β(x)TV − dI I, γ(x)I − dVV)T,

for w = (T, I,V). It is obvious that a(z) ∈ C2(R3
+,L(R3

+)), where we identified L(R3
+) with the

space of 3 × 3 real matrices. Since DV(I) ≥ D0 > 0, the eigenvalues of a(z) are positive for

each z ∈ R3
+. Moreover, the boundary value problem (A,B) is normally elliptic (see, e.g. [3]).

Theorem 5.2.1 There exists a constant τ0 depending on the initial data (T0, I0,V0) such that

the system (5.2), with no-flux boundary condition (5.3) and the initial condition (5.4), has a

unique maximal classical solution (T, I,V) defined on [0, τ0) ×Ω such that

(T, I,V) ∈ C([0, τ0),X) ∩ C2,1((0, τ0) × Ω̄,R3).

Moreover, the solution satisfies T (t, x) ≥ 0, I(t, x) ≥ 0, V(t, x) ≥ 0, for all (t, x) ∈ [0, τ0) ×Ω.

Proof As mentioned above, the system (5.5) is normally elliptic and triangular (in fact diag-

onal). According to Theorem 1 [2] or Theorem 14.4 and Theorem 14.6 [3], (5.5)-(5.4) has

a unique classical solution on a maximal interval [0, τ0). The non-negativity of the solution

follows from Theorem 15.1 [3]. The proof is completed.

We can actually show that τ0 = ∞ in the above theorem, that is, the solution exists globally.

Theorem 5.2.2 For every initial data (T0, I0,V0), (5.2)-(5.3)-(5.4) has a unique solution de-

fined on [0,∞) ×Ω.

Proof By Theorem 5.2 in [2] and the non-negativeness of the solution confirmed in Theorem

5.2.1, it suffices to prove that the solution (T, I,V) is bounded above by some positive values.

From the T and I equations in (5.2), we see that

∂

∂t
(T + I) = DT∆(T + I) + h(x) − dT T − dI I

≤ DT∆(T + I) + h̄ − dm(T + I),
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where h̄ = maxx∈Ω h(x) and dm = min{dT , dI}. By Lemma 1 in [19], h̄/dm is the globally

attractive steady state for the scalar parabolic equations

∂w(t, x)
∂t

= DT∆w(t, x) + h̄ − dmw(t, x), x ∈ Ω, t > 0,

∂w(t, x)
∂ν

= 0, x ∈ ∂Ω, t > 0.

The parabolic comparison theorem ([25], Theorem 7.3.4) implies that T + I is bounded. This

together with the non-negativity of T and I further implies that both T (t, x) and I(t, x) are

bounded. We assume 0 ≤ T (t, x) ≤ TM, 0 ≤ I(t, x) ≤ IM.

Let γ̄ = maxx∈Ω{γ(x)}, and VM = γ̄IM/dV . For any given I, define the operator P by

PV = Vt − ∇ · (DV(I)∇V) − γ(x)I + dVV.

For any solution (T, I,V) of the system (5.2)-(5.3)-(5.4), we have PV = 0. On the other hand,

PVM = dVVM − γ(x)I ≥ dVVM − γ̄IM = 0 = PV.

On the boundary ∂Ω, we have ∂VM
∂ν
= 0. Thus V = VM is an upper solution of the V equation in

the system (5.2)-(5.3). By the comparison principle, we obtain that V(t, x) ≤ VM. Therefore,

the solution (T, I,V) is bounded, and hence, it exists globally.

Basic reproduction number

Let X := C(Ω̄,R3) be the Banach space of continuous functions with supremum norm ‖·‖X.

Denote by X+ the positive cone of X, i.e., X+ = C(Ω̄,R3
+). Then X+ induces a partial order,

making (X,X+) strongly ordered space. Similarly, let Y := C(Ω̄,R) and Y+ := C(Ω̄,R+).

Suppose that for each t > 0, S 1(t) and S 2(t) : Y → Y, are the strongly continuous semigroups

associated with DT∆−dI and D0∆−dV subject to homogeneous Neumann boundary conditions

respectively, that is, [
S 1(t)φ

]
(x) = e−dI t

∫
Ω

Γ(x, y, t,DT )φ(y)dy,

[
S 2(t)φ

]
(x) = e−dV t

∫
Ω

Γ(x, y, t,D0)φ(y)dy,

for any φ1, φ2 ∈ Y, t > 0, where Γ(x, y, t,DT ) and Γ(x, y, t,D0) are the Green functions asso-

ciated with DT∆ and D0∆ subject to homogenous Neumann boundary conditions respectively.

It then follows that for each t > 0, S i(t) : Y → Y, i = 1, 2, is compact and strongly positive

([25], Corollary 7.2.3). Therefore, S (t) = (S 1(t), S 2(t)) is a positive C0-semigroup.
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Setting I(t, x) = 0 and V(t, x) = 0 in the T equation in (5.2) leads to

∂T (t, x)
∂t

= DT∆T (t, x) + h(x) − dT T (t, x), x ∈ Ω, t > 0,

∂T (t, x)
∂ν

= 0, x ∈ ∂Ω, t > 0.
(5.6)

From Lemma 1 in [19], we know (5.6) admits a unique positive steady state T̂ (x), which is

globally attractive in C(Ω̄,R). This means that the model system (5.2) has a unique infection-

free steady state E0 = (T̂ (x), 0, 0).

Linearizing (5.2) at the infection-free steady state E0, we obtain the linearized system

∂u1

∂t
= DT∆u1 − dT u1 − β(x)T̂ (x)u3,

∂u2

∂t
= DT∆u2 + β(x)T̄ (x)u3 − dIu2,

∂u3

∂t
= D0∆u3 + γ(x)u2 − dVu3,

(5.7)

subject to the boundary conditions

∂u1

∂ν
=
∂u2

∂ν
=
∂u3

∂ν
= 0, ∀x ∈ ∂Ω, t > 0.

We see that the equations for u2 and u3, which correspond to the infectious compartments,

are decoupled from u1, and these two equations constitute a cooperative system. Substituting

u2(x, t) = eλtφ1(x) and u3(x, t) = eλtφ2(x) into equations of u2 and u3, we obtain the following

eigenvalue problem

λφ1(x) = DT∆φ1(x) + β(x)T̂ (x)φ2(x) − dIφ1(x),

λφ2(x) = D0∆φ2 + γ(x)φ1(x) − dVφ2(x), (5.8)
∂φ1(x)
∂ν

=
∂φ2(x)
∂ν

= 0, ∀x ∈ ∂Ω, t > 0,

where φ = (φ1, φ2) ∈ Y × Y.

From Theorem 7.6.1 in [25] we have the following result.

Lemma 5.2.3 The eigenvalue problem (5.8) has a principal eigenvalue λ0(D0,DT , T̂ (x)) asso-

ciated with a strictly positive eigenvector.

This means that λ0 is a real eigenvalue with algebraic multiplicity one, and Re(λ) < λ0 for any

other eigenvalue λ of (5.8). Furthermore, λ0 has a corresponding eigenvector φ0(x) = (φ01, φ02)

satisfying φ0(x) � 0, and any other nonnegative eigenvector of (5.8) is a positive multiple of

φ0(x).
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Next, as in Wang & Zhao [28] and Guo et al. [11], we follow the framework of Thieme [26]

to obtain the basic reproduction number of the model (5.2). To this end, we define a positive

linear operator by

C(φ)(x) = (C1(φ)(x),C2(φ)(x)), ∀φ = (φ1, φ2) ∈ Y × Y, x ∈ Ω̄,

where

C1(φ)(x) = β(x)T̂ (x)φ2(x), C2(φ)(x) = γ(x)φ1(x).

Assume that there are no infected cells and free virus initially, that is, the system is near the

infection-free steady state; and viruses are introduced at time t = 0 and infection occurs imme-

diately. The distribution of initial infected cells and free viruses are assumed to be (φ1(x), φ2(x))

(at time t = 0). Then as time evolves, those distributions reach ([S 1(t)φ1](x), [S 2(t)φ2](x)) at

time t. Thus, the total distribution of new infected cells is∫ ∞

0
β(x)T̂ (x)[S 2(t)φ2](x)dt =

[∫ ∞

0
C1(S (t)φ)dt

]
(x),

and the total distribution of new free viruses is∫ ∞

0
γ(x)[S 1(t)φ1](x)dt =

[∫ ∞

0
C2(S (t)φ)dt

]
(x).

Therefore, the next generation operator L is given by

L(φ) :=
∫ ∞

0
C(S (t)φ)dt = C

(∫ ∞

0
S (t)φdt

)
.

The basic reproduction number of the model (5.2) is defined to be the spectral radius of L, that

is,

R0 := r(L).

Using the theory developed by Thieme [26] about spectral bound and basic reproduction

number, we then obtain the following Lemma. The proof is very similar to that of Wang and

Zhao ([28], Lemma 2.2).

Lemma 5.2.4 R0 − 1 has the same sign as λ0.

When all parameters are location independent (spatially homogeneous), we can actually

find an explicit formula for the basic reproduction number R0, as given in the following theo-

rem.

Theorem 5.2.5 Assume that β(x), γ(x) and h(x) are positive constants so that T̂ (x) = h
dT

. Then

R0 =

√
βhγ

dT dVdI
.
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Proof Note that L is a compact and positive linear operator. For any ε > 0, we define

Cε(φ) = εφ +C(φ), ∀φ ∈ Y × Y,

Lε(φ) = Cε

(∫ ∞

0
S (t)φdt

)
, ∀φ ∈ Y × Y.

Then Lε is strongly positive linear operator. By the Krein-Rutmann theorem, the spectral radius

of Lε, r(Lε) > 0, is the unique eigenvalue of Lε with a strongly positive eigenvector. Since∫
Ω

Γ(x, y, a,DT )dy = 1 and
∫
Ω

Γ(x, y, t,D0)dy = 1, ∀x ∈ Ω, t > 0, we have

C1

(∫ ∞

0
S (t)αdt

)
=

∫ ∞

0
βT̂ S 2(t)α2dt =

βT̂
dV
α2,

C2

(∫ ∞

0
S (t)αdt

)
=

∫ ∞

0
γS 1(t)α1dt =

γ

dI
α1,

for any α := (α1, α2) ∈ R2. Thus

Lε(α) = Mεα, ∀α ∈ R,

where

Mε =

 ε/dI βT̂/dV

γ/dI ε/dV

 .
Since Mε is positive, its spectral radius r(Mε) is an eigenvalue with a positive eigenvector in

R2. It follows from the uniqueness of the eigenvalue of Lε with a positive eigenvector that

r(Lε) = r(Mε). Letting ε→ 0+, we then obtain

R0 = r(L) = r(L0) = r(M0) =

√
βT̂γ
dVdI

=

√
βhγ

dT dVdI
.

The proof is completed.

Remark Note that, here we define the basic reproduction number as the spectral radius of

the next generation operator/matrix [8, 26, 28], which gives the mean number of new infec-

tions per infective in any class of infected cell population and virus population, per generation.

However, in rest of the thesis, we define the basic reproduction number as the total number

of newly infected cells (or viral particles) produced by one infected cell (or virus) during its

lifetime, assuming all other target cells are susceptible [13]. By this definition, we have the

basic reproduction number

R2
0 =

βhγ
dT dVdI

.
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The dynamics of the model are always determined by whether R0 exceeds 1. Thus, these

two definitions of the basic reproduction number will not affect the dynamics of the model

mathematically.

For spatial heterogeneous case, that is, if at least one of the model parameters h(x), β(x)

and γ(x) depends on the space location x, we cannot derive an explicit formula for R0 = r(L).

However, we can compute the spectral radius of the linear operator L numerically by using the

orthogonal projection method in computation of eigenvalues for compact linear operators [6].

For the sake of convenience, we consider Ω = (0, 1), to demonstrate this numerical method.

We use Fourier projection [14], where the orthonormal basis is assumed to be ek(x) = e2kπxi,

k ∈ N, and then use the Galerkin method. For Ω = (0, 1), the Green’s function associated with

D∆, subject to homogenous Neumann boundary condition, assumes the following explicit form

[12]

Γ(x, y, t,D) = 1 + 2
∞∑

n=1

e−Dn2π2t cos(nπx) cos(nπy).

For the operator L, the Galerkin matrix is

Bn =

 0 A(1)
n

A(2)
n 0

 ,
where

A(1)
n =

(
a(1)

jk

)
n×n

, A(2)
n =

(
a(2)

jk

)
n×n

.

Here,

a(1)
jk =

∫ 1

0
e j(x)

∫ 1

0
K1(x, y)ek(y)dydx, a(2)

jk =

∫ 1

0
e j(x)

∫ 1

0
K2(x, y)ek(y)dydx.

Then we have

K1(x, y) = β(x)T̂ (x)

 1
dV
+ 2

∞∑
n=1

1
D0n2π2 + dV

cos(nπx) cos(nπy)

 ,
K2(x, y) = γ

 1
dI
+ 2

∞∑
n=1

1
DT n2π2 + dI

cos(nπx) cos(nπy)

 .
Figure 5.1 and Figure 5.2 are the plots of the numeric computations of the spectral radius

of L with the following baseline parameters

h = 105, dT = 0.1, dI = 0.1, dV = 5, γ = 500, β(x) = 5 × 10−10x2,

showing how the basic reproduction number R0 depends on the diffusion rate of infected cells

DT , the basic diffusion rate of free virus D0, and virus production rate γ respectively. Note that

in the spatially homogeneous case, the diffusion coefficients have no impact on R0.
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Figure 5.1: The basic reproduction number R0 is a decreasing function of D0 and DT , where

(a) DT = 0.00001, and (b) D0 = 0.0001.
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Figure 5.2: The basic reproduction number R0 is an increasing function of γ. Here D0 =

0.0001, DT = 0.00001.
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Steady states and their linear stability

For the model (5.2)-(5.3)-(5.4), by the biological meaning of the basic reproduction number

R0, it is expected that the infection-free steady state E0 = (T̄ (x), 0, 0) is asymptotically stable if

R0 < 1, and there should exist a positive steady state if R0 > 1. However, it is mathematically

difficult to prove these expectations when the model parameters are space dependent. In the

rest of the chapter, we only focus on the case when h(x), β(x) and γ(x) are all positive constants.

In such a spatial homogeneous case, in addition to the infection-free steady state E0 =

(h/dT , 0, 0), system (5.2) also has the positive steady state Ē = (T̄ , Ī, V̄) whenever R0 > 1,

where

T̄ =
h

dTR
2
0

, Ī =
dT dV

βγ
(R2

0 − 1), V̄ =
dT

β
(R2

0 − 1).

Here, R0 is the basic reproduction number of (5.2) with h, γ and β being constants, which has

been determined before, that is,

R2
0 =

βhγ
dT dVdI

.

Note that E0 and Ē (if R0 > 1) are also the steady states in the absence of spatial diffusions,

and in such case, it has been shown in [16] that E0 is globally asymptotically stable if R0 ≤ 1;

Ē is globally asymptotically stable if R0 > 1. For the model (5.2) with diffusions and with

no-flux boundary condition, we have the following results on the linear stability of E0 and Ē.

Theorem 5.2.6 If R0 < 1, the infection-free steady state E0 is linearly stable; if R0 > 1, the

positive steady state Ē is linearly stable.

Proof Linearizing the system (5.2) at the infection-free steady state E0 = (h/dT , 0, 0), we

obtain the linear system
∂

∂t
u(t, x) = (D∆ + A)u(t, x),

where

D =


DT 0 0

0 DT 0

0 0 D0

 , A =


−dT 0 −βh/dT

0 −dI βh/dT

0 γ −dV

 , u =


u1

u2

u3

 .
Notice that ∇ · (DV(I)∇V) = D

′

V(I)∇I · ∇V + DV(I)∆V , DV(I) = DV(Ī) + D
′

V(Ī)(I − Ī) + h.o.t..

The corresponding characteristic polynomial of this linearized system is

| λI + Dk2 − A |= 0, (5.9)

where k is the wavenumber, λ is the eigenvalue which determines temporal growth [21]. The

steady state E0 is linearly stable if all eigenvalues have negative real parts.
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Substituting the two matrices A and D into (5.9), we obtain

∣∣∣∣∣∣∣∣∣∣
λ + DT k2 + dT 0 βh/dT

0 λ + DT k2 + dI −βh/dT

0 −γ λ + D0k2 + dV

∣∣∣∣∣∣∣∣∣∣ = 0.

One eigenvalue is λ = −DT k2 − dT < 0 for all integer k ≥ 0, and the other eigenvalues are

determined by

λ2 + a1(k2)λ + a2(k2) = 0,

where

a1(k2) = (DT + D0)k2 + dI + dV ,

a2(k2) = (DT k2 + dI)(D0k2 + dV) − γβh/dT

= DT D0k4 + (DT dV + D0dI)k2 + dIdV − γβh/dT .

We see that a1(k2) > 0 for all k, and a2(k2) > 0, if dIdV −γβh/dT > 0, that is, if R0 =
γβh

dIdV dT
< 1.

Therefore, if R0 < 1, the steady state E0 is linearly stable.

Similarly, linearizing (5.2) at Ē = (T̄ , Ī, V̄) gives

∂

∂t
u(t, x) = (D̄∆ + Ā)u(t, x),

where

D̄ =


DT 0 0

0 DT 0

0 0 DV(Ī)

 , Ā =


−dT − βV̄ 0 −βT̄

βV̄ −dI βT̄

0 γ −dV

 , u =


u1

u2

u3

 .
The corresponding characteristic equation is

∣∣∣∣∣∣∣∣∣∣
λ + DT k2 + dT + βV̄ 0 βT̄

−βV̄ λ + DT k2 + dI −βT̄

0 −γ λ + DV(Ī)k2 + dV

∣∣∣∣∣∣∣∣∣∣ = 0,

that is,

λ3 + b1(k2)λ2 + b2(k2)λ + b3(k2) = 0, (5.10)
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where

b1(k2) = (2DT + DV(Ī))k2 + (dT + dI + dV) > 0,

b2(k2) = [D2
T + 2DT DV(Ī)]k4

+[DT dI + DT (dT + βV̄) + DT dV + DV(Ī)(dT + βV̄) + DT dV + DV(Ī)dI]k2

+(dT + βV̄)dI + (dT + βV̄)dV > 0,

b3(k2) = D2
T DV(Ī)k6 + [D2

T dV + DT DV(Ī)dI + DT DV(Ī)(dT + βV̄)]k4

+[DT (dT + βV̄)dV + DV(Ī)(dT + βV̄)dI]k2

+βV̄dIdV > 0.

b1(k2)b2(k2) − b3(k2)

= (2DT + DV(Ī))[D2
T + 2DT DV(Ī)]k6

+{[(2DT + DV(Ī))][DT dI + (DT + DV(Ī))(dT + βV̄) + 2DT dV + DV(Ī)dI]

+[D2
T + 2DT DV(Ī)](dT + dI + dV)}k4 + {(2DT + DV(Ī))[(dT + βV̄)dI + (dT + βV̄)dV]

+[DT dI + (DT + DV(Ī))(dT + βV̄) + 2DT dV + DV(Ī)dI](dT + dI + dV)}k2

+(dT + dI + dV)[(dT + βV̄)dI + (dT + βV̄)dV]

−D2
T DV(Ī)k6 − [D2

T dV + DT DV(Ī)dI + DT DV(Ī)(dT + βV̄)]k4

−[DT (dT + βV̄)dV + DV(Ī)(dT + βV̄)dI]k2

−βV̄dIdV

≥ 4D2
T DV(T̄ )k6

+{2DT [DT dI + DV(Ī)(dT + βV̄) + 2DT dV + DV(Ī)dI] + [D2
T + 2DT DV(Ī)]dT }k4

+{DT [(dT + βV̄)dI + (dT + βV̄)dV]

+[DT dI + (DT + DV(Ī))(dT + βV̄) + 2DT dV + DV(Ī)dI](dT + dI + dV)}k2

+(dT + dI)[(dT + βV̄)dI + (dT + βV̄)dV]

> 0.

By the Routh-Hurwitz Criteria, we know that all eigenvalues of (5.10) have negative real parts,

and therefore, the positive steady state Ē is linearly stable if it exists.

5.3 Spreading speed in the case Ω = R

In the above section, we have seen that in a bounded domain setting, the repulsion effect of

infected cells does not change the threshold dynamics characterized by R0. Note that it has
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been observed in the experiment [9] that the repulsion effect accelerates the spreading rate of

viruses across cells. In this section, we use the model (5.1) to quantitatively investigate the

spreading rate of the virus and see how the repulsion effect will affect the spreading speed.

Unfortunately, due to the dependence of DV(I) on I, to the author’s knowledge, the existing

theories for spreading speed do not apply to (5.1). While a new theory needs to be developed,

we will explore this topic numerically here. As in most studies on this topic, we consider the

domain Ω = R for the spatial variable x, mainly for the convenience in discussing this topic.

To proceed, we choose the following particular function for the diffusion of free virus:

DV(I) = D0 +
aI

b + I
. (5.11)

Here the repulsion effect is characterized by g(I) = aI
b+I , which satisfies g(0) = 0 and is an

increasing function of I. The parameter a indicates the saturation level and b describes how

quickly g(I) increases to its saturation level (see Figure 5.3).
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Figure 5.3: The diffusion function of virus DV(I) = D0 + aI/(b + I), where we take D0 = 0.01,

a = 0.45.

The baseline parameter values are taken from [5] as: h = 107, β = 5 × 10−10, γ = 500,

T = 0.1 dV = 5, dI = 0.1 D0 = 0.0001 and b = 1. In this case, the basic reproduction number is

R0 =
√

50, and the positive steady state is (T̄ , Ī, V̄) = (0.2×107, 9.8×107, 9.8×109). Since our

focus is on the repulsion effect, for convenience, here we neglect the mobility of target cells

(both infected and uninfected), that is, we assume DT = 0.

We consider different initial distribution functions T0(x), I0(x) and V0(x), and observe, by

numerical simulations, the evolution of virus population. First, when the initial distributions
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assume

T0(x) = 107, I0(x) = 0, V0(x) =


0 x < 0

100 x = 0

0 x > 0

,

meaning that 100 viruses are initially innoculated at the the location x = 0. Numerical results

are plotted in Figure 5.4(a) for a = 0 (no repulsion effect) and a = 0.45 (with repulsion effect).

From the numerical results, we can estimate the asymptotic spreading speed using the method

described by Neubert and Parker [22]. More precisely, the slope of boundaries of inner (outer)

triangle region in Figure 5.4(b) is the spreading speed of free virus population in the absence

(presence) of repulsion effect.
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Figure 5.4: (a) The evolution of V(t, x) from the initial distribution V0(x), where dashed line

(red): a = 0, solid line (black): a = 0.45. (b) The contour of (a).

We see from Figure 5.4(b) that when there is no repulsion effect (a = 0), the spreading

speed of virus is approximately equal to c = 0.304, while in the presence of repulsion effect

(a > 0), virus spreads more quickly: for a = 0.45, the spreading speed is approximately

c = 1.547, which is more than five times faster than the spreading speed without repulsion

effect. This is in close agreement with experimental results observed in Doceul’s experiment

[9]. Indeed, it was observed [9] that vaccinia virus spreads across one cell every 1.2 hours,

but in vaccinia replication kinetics, new virions are formed only 5 to 6 hours after infection.

In other words, the vaccinia virus spreads across one cell more quickly than the rate at which

it replicates (1.2 hours vs 5-6 hours). As pointed out in [7, 9], and confirmed by our model

simulations, such a faster spreading speed is attributed to repulsion effect of superinfecting

virions by infected cells.
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For different initial distributions, the virus population also spreads at the same speed as

c = 0.304 for the case without repulsion effect and c = 1.547 for the case with repulsion effect.

Figure 5.5 gives the numeric simulation results on the evolution of virus population described

by the model (5.1) for the following initial distribution,

T0(x) = 107, I0(x) = 0, V0(x) =


0 x ≤ −6π

50(1 + cos(x/π)) −6π < x ≤ 6π

0 x > 6π

.
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Figure 5.5: (a) The initial distribution V0(x). (b) The evolution of V(t, x) from the initial

distribution, where Dashed line (red): a = 0, Solid line (black): a = 0.45. (c) The contour of

(b).
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5.4 Existence of traveling wave solutions in the case Ω = R

Traveling wavefront solutions are a class of solutions which are in a particular form incor-

porating the time variable and spatial variable through a moving coordinate. Such a solution

describes the spatial transition from one steady state to another. For traveling wavefronts con-

necting an unstable steady state and a stable steady state, typically there is a minimal wave

speed, which is closely related to the spreading speed discussed in the preceding section. In-

deed, there have been many works confirming that in many model systems the two speeds

coincide (mainly monotone systems), while there are also model systems in which the two

speeds are different (see, e.g., [17, 18]).

In this section, we will explore the existence of traveling wavefront connecting the infection

free steady state E0 and the infection steady state Ē, all under the same assumptions/scenario

as in the preceding section. That is, we still consider the case Ω = R and assume that target

cells and infected cells do not move while viral particles diffuse, and consider the following

model

∂T
∂t
= h − dT T − βTV,

∂I
∂t
= βTV − dI I, (5.12)

∂V
∂t
= ∇ · (DV(I)∇V) + γI − dVV.

Rescaling the model (5.12) by

t̃ = dT t, x̃ = x,

u = (dT/h)T, w = (dT/h)I, v = (β/dT )V,

ρ1 = dI/dT , ρ2 = γβh/d3
T , ρ3 = dV/dT ,

D(w) = DV(h/dT w)/dT ,

we obtain (dropping the tildes on t and x)

∂u
∂t
= 1 − u − uv,

∂w
∂t
= uv − ρ1w, (5.13)

∂v
∂t
= ∇ · (D(w)∇v) + ρ2w − ρ3v.

This rescaled system has two steady states E0 = (1, 0, 0) and Ē = (ū, w̄, v̄) where

ū =
ρ1ρ3

ρ2
, w̄ =

ρ2 − ρ1ρ3

ρ1ρ2
, v̄ =

ρ2 − ρ1ρ3

ρ1ρ3
.
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Obviously, E0 and Ē are just result of rescaling E0 and Ē in preceding sections, and Ē is bi-

ologically meaningful (positive) iff ρ2 > ρ1ρ3 which is equivalent to R0 =
√
γβh/dT dIdV =√

ρ2/ρ1ρ3 > 1.

Traveling wave solutions of (5.13) are solutions of the form ũ(x, t) = u(x + ct), w̃(x, t) =

w(x + ct), ṽ(x, t) = v(x + ct) where c > 0 represents the speed of traveling wave solutions.

Substituting this solution form into (5.13), we obtain

cu′ = 1 − u − uv,

cw′ = uv − ρ1w, (5.14)

cv′ = D′(w)w′v′ + D(w)v′′ + ρ2w − ρ3v,

where prime denotes differentiation with respect to the wave variable s = x + ct.

Letting z = v′, system (5.14) is rewritten as

u′ =
1
c

(1 − u − uv),

w′ =
1
c

(uv − ρ1w),

v′ = z,

z′ =
1

D(w)

[
cz −

1
c

D′(w)(uv − ρ1w)z − ρ2w + ρ3v
]
,

(5.15)

which has two steady states E′0 = (1, 0, 0, 0) and E′1 = (ū, w̄, v̄, 0) when R0 > 1. We consider

the existence of solutions of (5.14) satisfying the asymptotic boundary conditions

lim
s→−∞

(u(s),w(s), v(s), z(s)) = (1, 0, 0, 0), lim
s→∞

(u(s),w(s), v(s), z(s)) = (ū, w̄, v̄, 0), (5.16)

which accounts for transition from the infection-free steady state E0 to the infection steady

state Ē.

Behaviors of solutions of (5.15) near E′0 is typically determined by the linearization of

(5.15) at E′0. Straightforward calculations give the Jacobian matrix of (5.15) at E′0 as

J0 =


−1/c 0 −1/c 0

0 −ρ1/c 1/c 0

0 0 0 1

0 −ρ2/D0 ρ3/D0 c/D0

 .
It has an eigenvalue λ = −1/c which is negative for all c > 0. So, we only need to consider

other eigenvalues which are determined by

P(λ) := λ3 + a1λ
2 + a2λ + a3 = 0,
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where

a1 =
D0ρ1 − c2

cD0
, a2 = −

ρ1 + ρ3

D0
< 0, a3 =

ρ2 − ρ1ρ3

cD0
> 0.

Since P(0) = a3 > 0 and P(−∞) = −∞, P(λ) = 0 has a negative root. By the Descartes’

rule of signs and by the Routh-Hurwitz criterion, the other two roots of P(λ) = 0 are either

positive and real, or a pair of conjugate complex numbers. In the latter case, the complex

eigenvalues imply the oscillations of solutions of (5.15) near E′0, implying the w and v will

take negative values (making solutions biologically meaningless), and thus (5.15)-(5.16) cannot

have positive solutions, meaning that (5.13) cannot have traveling wavefronts connecting E0

and Ē. Therefore, in order for (5.13) to have traveling wavefronts connecting E0 and Ē, it is

necessary P(λ) = 0 to have a pair of positive real roots (counting multiplicity).

Note that P′(λ) = 3
(
λ2 + 2a1

3 λ +
a2
3

)
and P′(λ) = 0 has a unique positive root

λ∗ =
1
3

(
−a1 +

√
a2

1 − 3a2

)
.

Since P(0) = a3 > 0 and P′(0) = a2 < 0, we conclude that P(λ) = 0 has two positive real roots

if and only if P(λ∗) < 0. From P′(λ∗) = 0, we obtain that

λ∗2 +
2a1

3
λ∗ +

a2

3
= 0, λ∗3 +

2a1

3
λ∗2 +

a2

3
λ∗ = 0.

Using these equations to simplify the form of P(λ∗), we obtain

P(λ∗) =
a1

3
λ∗2 +

2a2

3
λ∗ + a3

=
2
3

(
a2 −

a2
1

3

)
λ∗ + a3 −

a1a2

9

=
1
27

[
−2

(
a2

1 − 3a2

)3/2
+ 27a3 + 2a3

1 − 9a1a2

]
.

It then follows that

P(λ∗) < 0 ⇔ 27a3 + 2a3
1 − 9a1a2 ≤ 0,

OR 27a3 + 2a3
1 − 9a1a2 > 0 AND 4

(
a2

1 − 3a2

)3
>

(
27a3 + 2a3

1 − 9a1a2

)2
;

P(λ∗) > 0 ⇔ 27a3 + 2a3
1 − 9a1a2 > 0 AND 4

(
a2

1 − 3a2

)3
<

(
27a3 + 2a3

1 − 9a1a2

)2
.

Let Q1(c) := 27a3+2a3
1−9a1a2, then Q1(c) = 1

D3
0c3

(
d0c6 + d1c4 + d2c2 + d3

)
, where d0 = −2,

d1 = −3D0(ρ1 − 3ρ3), d2 = 3D2
0(9ρ2 − 6ρ1ρ3 + ρ

2
1) > 0 and d3 = 2ρ3

1D3
0 > 0. By the Descarte’s

rule of signs, Q̄1(c) := d0c6 + d1c4 + d2c2 + d3 = 0 has a unique positive root c∗0 > 0. Since

Q̄1(0) = d3 > 0, we see that Q̄1(c) > 0 if 0 < c < c∗0, and Q̄1(c) < 0 if c > c∗0. Furthermore,

Q1(c∗0) = 0, Q1(c) > 0 if 0 < c < c∗0, and Q1(c) < 0 if c > c∗0.
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Let Q2(c) := 4
(
a2

1 − 3a2

)3
−
(
27a3 + 2a3

1 − 9a1a2

)2
, then Q2(c) = 27

D4
0c4

(
b0c6 + b1c4 + b2c2 + b3

)
where bi, i = 0, 1, 2, 3, are given by

b0 = 4ρ2 + ρ
2
1 + ρ

2
3 − 2ρ1ρ3,

b1 = D0

(
6ρ2ρ1 + 2ρ3

1 − 8ρ1ρ
2
3 + 4ρ3

3 + 18ρ2ρ3 + 2ρ2
1ρ3

)
,

b2 = D2
0

(
8ρ3

1ρ3 − 8ρ2
1ρ

2
3 + ρ

4
1 + 36ρ2ρ1ρ3 − 6ρ2ρ

2
1 − 27ρ2

2

)
,

b3 = 4D3
0

(
ρ4

1ρ3 − ρ2ρ
3
1

)
.

(5.17)

Note that b0 > 0, b1 > 0, b3 < 0. Again by the Descartes’ rule of signs,

Q(c) := b0c6 + b1c4 + b2c2 + b3 = 0, (5.18)

has a unique positive root c∗ > 0. Since Q(0) = b3 < 0, we see that Q(c) < 0 if 0 < c < c∗, and

Q(c) > 0 if c > c∗. Therefore, Q2(c∗) = 0, Q2(c) < 0 if 0 < c < c∗, and Q2(c) > 0 if c > c∗.

Note that a2
1(c) − 3a2 > 0 for all c > 0. Thus, Q2(c∗0) = a2

1(c∗0) − 3a2 > 0, implying c∗ < c∗0.

In summary, we have obtained:

P(λ∗) < 0 ⇔ Q2(c) ≤ 0, OR, Q2(c) > 0 AND Q1(c) > 0

⇔ c ≥ c∗0 (hence c > c∗), OR, 0 < c < c∗0 AND c > c∗

⇔ c > c∗;

P(λ∗) > 0 ⇔ Q2(c) > 0 AND Q1(c) < 0

⇔ 0 < c < c∗0 AND c < c∗

⇔ 0 < c < c∗.

Thus, for any c ∈ (0, c∗), system (5.13) has no traveling wavefront solutions with speed c that

connects E0 and Ē.

From the definition of Q(c), we obtain

Q(
√

D0ρ1) = D3
0ρ1

[
4ρ1(ρ1 + ρ3)3 − 27(ρ2 − ρ1ρ3)2

]
.

It is easy to see that Q3(ρ1) := 4ρ1(ρ1 +ρ3)3 is strictly increasing function of ρ1, and Q3(0) = 0,

Q3(+∞) = +∞; Q4(ρ1) := 27(ρ2 − ρ1ρ3)2 is strictly decreasing function of ρ1 when ρ2 > ρ1ρ3,

and Q4(0) = 27ρ2
2. Therefore, Q(

√
D0ρ1) has a unique positive root ρ∗1, such that Q(

√
D0ρ1) < 0

for 0 < ρ1 < ρ
∗
1, and Q(

√
D0ρ1) > 0 for ρ1 > ρ

∗
1. By the property of Q(c), we have

√
D0ρ1 < c∗

for 0 < ρ1 < ρ∗1;
√

D0ρ1 > c∗ for ρ1 > ρ∗1 and c∗ =
√

D0ρ
∗
1, where ρ1 is determined by (5.20).

Therefore, we obtain the following information about c∗:
c∗ >

√
D0ρ1 if 0 < ρ1 < ρ

∗
1,

c∗ =
√

D0ρ1 if ρ1 = ρ
∗
1,

c∗ <
√

D0ρ1 if ρ1 > ρ
∗
1,

(5.19)
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where for given ρ2 and ρ3, ρ∗1 is the unique positive root of the equation

2
√

3
9
√
ρ1(ρ1 + ρ3)3/2 + ρ1ρ3 = ρ2. (5.20)

Although we cannot obtain an explicit formula for c∗, we can numerically calculate it when

the model parameters are given. To demonstrate this, we choose the same baseline parameters

of (5.12) as those in the preceding section. Then for the rescaled model (5.13), we have ρ1 =

1.0, ρ2 = 2500, ρ3 = 50, ū = 0.02, w̄ = 0.98, v̄ = 49. Under the rescaling, the function given in

(5.11) is scaled to

D(w) =
1
dT

(
D0 +

ahw
dT b + hw

)
.

When D0 = 0.0001 for the original system (5.12), that is D(0) = 0.001 for the rescaled system

(5.13), numerically solving (5.18), we obtain c∗ = 0.2214 for (5.13). This means that the c∗

for original system (5.12) is c∗ = 0.02214, since the rescaling is t̃ = dT t, x̃ = x and dT = 0.1.

Numerically plotting the solutions of (5.18) also shows that c∗ is an increasing function of

D(0), that is, an increasing function of D0 (see Figure 5.6).
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Figure 5.6: Impact of D(0) on c∗.

We have seen that for c ∈ (0, c∗), there is no traveling wavefront with speed c that con-

nects E0 and Ē. It is expected that c∗ is indeed the minimal wave speed in the sense that for

every c > c∗, (5.13) actually has traveling wavefront with speed c that connects E0 and Ē.

Unfortunately, we cannot theoretically prove this at the present. In the following, we will ex-

plore this numerically. To this end, we use the method developed by Beyn [4]. Firstly, the

infinite interval is truncated to a finite interval [τ−, τ+]. Then we consider the boundary-value

problem (5.15) and (5.16) on this finite interval with additional projection conditions (see [4],
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Section 3) and phase conditions ([4], Section 4). We solve the boundary value problem by BVP

solver bvp4c in Matlab. The solutions y(s) = (u(s),w(s), v(s), z(s)) are split into two segments,

y1(s) = (u1,w1, v1, z1) on [0, τ+], and y2(s) = (u2,w2, v2, z2) on [0, τ−], and the interval [τ−, τ+]

is projected onto [−1, 1], such that y1(s) = y(sτ+) and y2(s) = y(sτ−). Thus, we need to consider

the following 8-dimensional ODE system,

y′1 = τ+ f (y1), y′2 = τ− f (y2), s ∈ [0, 1]. (5.21)

We see that y1(s) and y2(s) should satisfy the boundary condition

y1(0) = y2(0). (5.22)

Let ξd be an estimate of the derivative y′(0) and ξ0 be an estimate of y(0). Then we get the

phase condition

ξT
d (y1(0) − ξ0) = 0. (5.23)

Let A− and A+ be the Jacobian matrix of (5.15) at E′0 and E′1 respectively. Let the eigenvec-

tors which span stable subspace of A± be columns of B±s, the eigenvectors which span unstable

subspace of A± be columns of B±u, and construct

B± = (B±uB±s), B−1
± =

 L±u

L±s

 ,
where the rows of L±s and L±u form a basis for the stable and unstable subspaces of AT

± respec-

tively. The projection conditions are given by

L+u(y1(1) − E′0) = 0, L+u(y2(1) − E′1) = 0. (5.24)

We solve ODE problem (5.21) with boundary conditions (5.22), (5.23) and (5.24), by Matlab,

where ξd and ξ0 are chosen to be ξd = ((ū − 1)/2, w̄/2, v̄/2, 0) and ξ0 = ((ū + 1)/2, w̄/2, v̄/2, 0).

The Jacobian of (5.15) at E′0 is A− = J0, and that at E′1 is

A+ =


−(1 + v̄)/c 0 −ū/c 0

v̄/c −ρ1/c ū/c 0

0 0 0 1

0 −ρ2/D(w̄) ρ3/D(w̄) c/D(w̄)

 .
Setting the parameters as in previous discussions, we can now numerically solve for the trav-

eling wave solutions.

In the absence of repulsion effect, that is a = 0, the critical value c∗ is obtained by solving

the equation (5.18) which is c∗ = 0.2214. Numerical simulations of the model (5.13) are given
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in Figure 5.7 and Figure 5.8. It is seen that for c < c∗, w(s) and v(s) go to negative for some

values of s, and hence the system (5.13) cannot have traveling wave solution; while for any

c > c∗, there exists traveling wave solution for (5.13). For example, c = 0.23, the wave profiles

of u(s) and w(s) are shown in Figure 5.7, v(s) is shown in Figure 5.8(a). For different values

of wave speed c, the traveling wave solutions have different wave profiles. Figure 5.8(b) shows

the wave profiles of v(s) for c = 0.23, c = 5 and c = 10. In this case, our numerical results show

that c∗ = 0.2214 is indeed that minimal wave speed for system (5.13), and hence, the minimal

wave speed for the original system (5.12) should be c∗ = 0.02214 which is much smaller than

the spreading speed c = 0.304 established in the preceding section.

In the presence of repulsion effect, that is a > 0, solving (5.18) still gives c∗ = 0.2214 since

(5.18) is independent of a. But our simulations show that this critical value is not minimal

wave speed in this case. Fixing a = 0.45, from the simulation results shown in Figure 5.9, we

see that w(s) and v(s) go to negative for some values of s when c = 5 > c∗. This means for

c = 5, there is no traveling wavefront for (5.13). In fact, numerical simulations show that this

is also the case for c ≤ 13. However for c = 14, the system (5.13) has traveling wavefront

(see Figure 5.10). This implies that the minimal wave speed is between 13 and 14. Obviously,

this minimal wave speed is also different from the spreading speed c = 1.547 established in the

preceding section. From these numerical results, we see that in the presence of repulsion effect,

the linearized system will not determine the minimal wave speed for the original system, that

it, the minimal wave speed is not linearly deterministic.
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Figure 5.7: Wave profiles when a = 0 and c = 0.23: (a) profile of u(s); (b) profile of w(s).



130

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

s

v(
s)

(a)

−3 −2 −1 0 1 2 3
0

10

20

30

40

50

s

v(
s)

 

 

c=2.23
c=5
c=10

(b)

Figure 5.8: Wave profiles of v(s) when a = 0: (a) c = 0.23; (b) c = 0.23, 5, 10.
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Figure 5.9: For a = 0.45, when c = 5, there is no traveling wave solution, since w(s) and v(s)

go to negative for some s.

5.5 Conclusion and discussion

In this chapter, we propose a general virus infection dynamic model to describe the new mech-

anism reported in [9] that can speed up the spread of virus within host. This new mechanism

is called the repulsion of superinfecting virions by infected cells. Although this mechanism

was discovered for vaccinia virus, it was pointed out in [9] that some other viruses may also

have this kind of rapid spreading mechanisms. With our general model, we have numerically

confirmed the experimental results reported in Doceul et al. [9], that is, the repulsion of su-

perinfecting virions (a > 0) accelerates the spread of free viral particles. This model has the

potential to be used for predicting the spreading speed for other virus with similar repulsion
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Figure 5.10: For a = 0.45, when c = 14, there exists a traveling wave solution. (a) The wave

profile of u(s) and w(s), (b) The wave profile of v(s).

effect.

In many mathematical and epidemiological models, especially for scalar equation or coop-

erative systems, the asymptotic spreading speed can be characterized as the slowest speed of

traveling wave front solutions connecting an unstable steady state and a stable steady state (see,

e.g., [17] and the references therein). Fisher equation is such a model (classical). Such a result

is very useful, since the slowest wave speed is more easily to be calculated than the spreading

speed.

As far as spreading speed goes, under some conditions, the linear determinacy holds for

cooperative systems ([29]), that is, the spreading rate of the full nonlinear model agrees with

the spreading rate of the system linearized about the leading edge of the invasion. For example,

Lewis et al. [18] obtained some parameter ranges for the Lotka-Volterra competition model, for

which the spreading speed is linearly determined. They also derived a set of sufficient condi-

tions for linear determinacy in a spatially explicit two-species discrete-time competition model.

However, linear determinacy is not always valid, especially for complicated models, such as,

competition models and prey-predator models. When linear determinacy does not hold, spread

rates may exceed linearly determined predictions. There are also cases that different species in

a model system may have different spreading speeds [17, 30]. In our model, the linear deter-

minacy does not hold and the spreading rate is much larger than linearly determined minimal

wave speed in the presence of repulsion effect. This may be due to the complexity of the virus

dynamic system, which is neither a cooperative system nor a competitive system. In fact, the

target cell population and free virus population have a relationship similar to a prey-predator

system, while infected cells and free viruses are cooperative. In our model, the minimal wave

speed, given by the linearized analysis at infection-free steady state, is only true for the case



132

when there is no repulsion effect (a = 0). If repulsion of superinfecting virions is present, the

minimal wave speed would be much higher than the linearly determined wave speed.

Besides the classical route of cell-free virus spread, many viruses can spread through cell-

to-cell transmission [23], that is, viruses move between cells without diffusing through the

extracellular environment. For instance, HIV-1 and HTLV-1 can spread from cell to cell by

virological synapses or cell membrane nanotubes [24]; murine leukemia virus (MLV) can es-

tablish filopodial bridges for efficient cell-to-cell transmission [20]; Herpes simplex virus type-

1 (HSV-1) can move between fibroblasts by polarized assembly and budding at basolateral

intercellular junctions [24]; Vaccinia virus can also spread through cell-to-cell by projection

on actin tails [23]. We do not consider this route of spread in this chapter, and leave it for a

separate research project.
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Chapter 6

A reaction diffusion system modeling
HIV-1 infection dynamics with
CTL-chemotaxis

6.1 Introduction

Some living organisms or cells, such as somatic cells and lymphocytes, have the ability to

detect certain chemicals in their environment and adapt their movement accordingly, moving

either toward or away from the chemical stimulus. This phenomenon is called chemotaxis or

generally chemosensitive movement. In the mathematical literature, the term chemotaxis is

used broadly to describe general chemosensitive movement responses, including chemoattrac-

tion (positive chemotaxis) and chemorepulsion (negative chemotaxis). However, in the exper-

imental community, for example, in leukocytes trafficking mechanism, the term chemotaxis is

defined only as chemoattraction, that is, an active movement of leukocytes toward chemoki-

netic agents, while chemorepulsion is referred to as fugetaxis, describing the active movement

of leukocytes away from chemokinetic agents. In this chapter, we use chemotaxis as the gen-

eral chemosensitive movement, either chemoattraction (positive chemotaxis) or chemorepul-

sion (negative chemotaxis).

Cytotoxic T lymphocytes (CTL), or effector CD8+ T cells, play a critical role in host de-

fense against human immunodeficiency virus type 1 (HIV-1) infection. Normally, effector T

cells leave lymph nodes and traffic to peripheral sites of infection. However, in HIV-1 infec-

tion, the majority of HIV-1 replication occurs in lymphoid tissues. To implement their antiviral

activity, CTL must migrate reversely back into infected lymphoid tissues, and remain within

them. Thus the recruitment of CTL is very important for the clearance of HIV-1. The move-
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ment of lymphocytes between the circulatory system and specific tissues is coordinated by

chemokines and their receptors. For example, inflammatory chemokines guide effector T cells

to exit lymphoid tissues and home to peripheral sites of infection. HIV-1 infection and replica-

tion in the lymphoid tissues changes its the chemotactic and cellular environments. As HIV-1

disease progresses, the homing ability of CTL to infected lymph nodes may be disrupted, due

either to reduced lymph node chemokine levels or reduced CTL chemokine receptor expres-

sion, and thus affect the cytotoxic effect of CTL in advanced HIV-1 infection [5].

Many viruses encode chemotactically active proteins. For instance, the envelope pro-

tein gp120 of HIV-1 has been shown to act as a T-cell chemoattractant via binding to the

chemokine receptor and HIV-1 coreceptor CXCR4. However, some studies [4, 13] showed

that HIV-specific CTL move toward or away from the CXCR4-binding HIV-1 gp120 in a

concentration-dependent manner. The high concentration of CXCR4-binding HIV-1 gp120

repels HIV-specific CTL, while low concentration of gp120 attracts CTL with specific interac-

tion with CXCR4. The repellant activity of HIV-1 gp120 on CTL causes the active movement

of HIV-1-specific CTL away from the site of infection, which allows the virus to evade immune

recognition and invade immune system.

In this chapter, we study the effect of chemotactic movement of CTL during HIV-1 infection

by mathematical modeling. We denote T (x, t), I(x, t) and E(x, t) as the population density of

uninfected CD4+ T cells, infected CD4+ T cells and CTL at location x at time t respectively.

Assuming the virus population to be at a quasi-steady state [12], we consider the following

model.

∂T
∂t
= DT∆T + h − dT T − βT I,

∂I
∂t
= DT∆I + βT I − dI I − pIE, (6.1)

∂E
∂t
= DE∆E + ∇ · [EΨ(E, I)∇I] +

cEI
1 + ηE

− dEE.

Here, we assume that uninfected CD4+ T cells are recruited at a constant rate h, infected at

a rate βT I. Infected cells are cleared by CTL at a rate pIE. CTL proliferate in response to

antigenic simulation with a rate cEI, and the rate of CTL expansion saturates as the number of

CTL grows to relatively high numbers. Variable η represents the saturation level. Uninfected

CD4+ T cells, infected CD4+ T cells and CTL are lost at rates dT T , dI I and dEE respectively.

In this model, we assume that uninfected and infected CD4+ T cells move randomly, with

the same diffusion coefficient DT . In contrast, the diffusion of CTL consists of two parts, the

random diffusion and the chemotactic movement. The random diffusion coefficient is assumed

to be DE, that is, the diffusion flux of CTL is proportional to their density gradient JD =

−DE∇E. As mentioned above, the HIV-1 viral protein gp120, binding with the coreceptor
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CXCR4, acts as a chemoattractant or chemorepellant for CTL. Thus, the chemotaxis flux JC of

CTL depends on the their own density, the density of HIV-1 viral protein gp120, and the density

gradient of this protein. Here we assume that the density of viral protein gp120 binding to

CXCR4 is proportional to the density of infected CD4+ T cells, and the chemotaxis flux of CTL

is JC = −EΨ(E, I)∇I. The derivation of this chemotactic term can be referred from the works

of Painter and Hillen [6, 10]. The function Ψ(E, I) represents the chemotactic response, which

denotes chemoattraction (chemorepulsion) if it is negative (positive). Note that movement of

CD4+ T cells may be very slow comparing with CTL, that is, DT � DE, or they even do not

diffuse at all in the lymphoid tissue. Here we assume that DT > 0 but very small compared

with DE for the sake of mathematical consideration.

The rest of the chapter is organized as follows. In section 2 we discuss the well-posedness

of the model. Linear stability of the steady states are shown in section 3. The conditions

for Turing instability and pattern formation are derived in section 4. Numerical simulation

about the stability of positive steady state, steady state bifurcation, Hopf bifurcation and pattern

formation are shown in section 5. Finally, we present conclusions and discussions.

6.2 Global existence of solutions

We consider the model (6.1) with the following initial conditions

T (0, x) = T0(x) > 0, I(0, x) = I0(x) ≥ 0, E(0, x) = E0(x) ≥ 0, ∀x ∈ Ω, (6.2)

and the no-flux boundary conditions,

∂T
∂ν
=
∂I
∂ν
=
∂E
∂ν
= 0, ∀x ∈ ∂Ω, t > 0,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω.

We assume that Ψ(E, I) ∈ C2(R2,R), and there exists a sufficiently large number EM > 0,

such that Ψ(E, I) = 0, for E ≥ EM; Ψ(E, I) > 0 (chemorepulsion) or Ψ(E, I) < 0 (chemoattrac-

tion) for 0 < E < EM.

Let w = (T, I, E)T, and assume G is a nonempty open subset of R3, such that

X1 = {w ∈ R3 | T ≥ 0, I ≥ 0, E ≥ 0} ⊂ G.

Let ρ > n, so that the space W1,ρ(Ω,R3) is continuously embedded in the continuous function

space C(Ω,R3) [1]. We consider solutions of (6.1) in the following solution space

X :=
{

w ∈W1,ρ(Ω,R3) | w(Ω̄) ∈ G,
∂w
∂ν
= 0 on ∂Ω

}
.
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We see that system (6.1) can be rewritten as following abstract quasilinear parabolic equa-

tion

wt +A(w)w = F (x,w), (6.3)

Bw = 0,

where

A(z)w = −
n∑

j,k=1

∂ j(a jk(z)∂kw), Bw =
∂w
∂ν
,

a jk = a(z)δ jk, 1 ≤ j, k ≤ n, a(z) =


DT 0 0

0 DT 0

0 zΨ(z) DE

 ,
for z ∈ G, (δ jk is the Kronecker delta function), and

F (x,w) =
(
h − dT T − βT I, βT I − dI I − pIE,

cEI
1 + ηE

− dEE
)T

.

We see that a(z) ∈ C2(G,L(R3)), where we identified L(R3) with the space of real 3 × 3

matrices. The eigenvalues of a(z) are positive for each z ∈ G. Moreover, the boundary value

problem (A,B) is normally elliptic [3].

The global existence, boundedness, nonnegativity of solutions of (6.1) are shown in the

following two theorems.

Theorem 6.2.1 (i) There exists a constant τ0 depending on the initial data (T0, I0, E0) such

that the system (6.1), with no-flux boundary condition and initial condition (6.2), has a unique

maximal classical solution (T, I, E) defined on [0, τ0) ×Ω such that

(T, I, E) ∈ C([0, τ0),X) ∩ C2,1((0, τ0) × Ω̄,R3).

(ii) T (t, x) ≥ 0, I(t, x) ≥ 0, E(t, x) ≥ 0, for all (t, x) ∈ [0, τ0) ×Ω.

(iii) If (T, I, E)([0,τ0)∩[0,τ]) is bounded in C(Ω̄,R3) and bounded away from the boundary of G,

for every τ > 0, then τ0 → +∞, namely, the solution is a global classical solution of the system

(6.1).

Proof We see that the system (6.3) is normal elliptic and triangular. According to Theorem 1

[2], or Theorem 14.4 and Theorem 14.6 [3], we obtain (i), the existence of maximal classical

solution. From Theorem 15.1 [3], we obtain (ii), the nonnegativity of the solution. We apply

Theorem 5.2 [2] to prove (iii), the condition for global existence of a solution.
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Theorem 6.2.2 Suppose that (T, I, E) is the solution obtained in Theorem 1, then it is a global

solution of the system (6.1).

Proof In order to prove the global existence of the solution, from the result (iii) of Theorem 1,

it remains to prove that the solution (T, I, E) is bounded and bounded away from the boundary

of G. By the definition of G, it suffices to show that (T, I, E) is bounded below by 0 and also

bounded above by some finite data.

From T and I equations of (6.1), we see that

∂

∂t
(T + I) = DT∆(T + I) + h − dT T − dI I − pIE

≤ DT∆(T + I) + h − dm(T + I),

where dm = min{dT , dI}. By Lemma 1 in [7], h̄
dm

is globally attractive in C(Ω̄,R) for the scalar

parabolic equation

∂w(t, x)
∂t

= DT∆w(t, x) + h − dmw(t, x), x ∈ Ω, t > 0,

∂w
∂ν

= 0, x ∈ ∂Ω, t > 0.

The parabolic comparison theorem ([11], Theorem 7.3.4) implies that T + I is bounded on

[0, τ). Furthermore, both T (t, x) and I(t, x) are bounded. We assume 0 ≤ T (t, x) ≤ TM, 0 ≤

I(t, x) ≤ IM.

Let EM =
c
ηdE

IM. We define the operator P as

PE = Et − DE∆E − ∇ · (EΨ(E, I)∇I) +
(
dEE −

cEI
1 + ηE

)
.

For any solution of the system (6.1), we have PE = 0. However, for E = EM,

PEM = dEEM −
cEMI

1 + ηEM
≥ dEEM −

c
η

IM = 0.

On the boundary ∂Ω, ∂EM
∂ν
= 0. Therefore, E = EM is an upper solution of the E equation in

system (6.1). By the comparison principle, we obtain that E(t, x) ≤ EM. Therefore, the solution

(T, I, E) is bounded and bounded away from the boundary of G. From (iii) of Theorem 1 we

see that (T, I, E) is a global solution.
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6.3 Linear stability analysis

The system (6.1) has three spatially homogeneous steady states.

(i) The infection-free steady state S 0 = (h/dT , 0, 0) always exists.

(ii) If R0 := hβ
dIdT

> 1, there exists a virus-established steady state S 1 = (T1, I1, 0), where

T1 =
dI

β
, I1 =

h
dI
−

dT

β
.

(iii) If cI1 > dE, there exists a positive steady state S ∗ = (T ∗, I∗, E∗), where

T ∗ =
1

2β

−
(
dT cp
βdEη

+
p
η
− dI

)
+

√(
dT cp
βdEη

+
p
η
− dI

)2

+ 4h
cp
dEη

 ,
I∗ =

h
βT ∗
−

dT

β
, E∗ =

1
p

(βT ∗ − dI).

Note that cI1 > dE if and only if R0 > 1 + βdE
cdT

. If there is no saturation of CTL, that is η = 0,

then the positive steady state turns out to be S ∗0 = (T ∗0 , I
∗
0, E

∗
0) where

T ∗0 =
hc

dT c + βdE
, I∗0 =

dE

c
, E∗0 =

1
p

(βT ∗ − dI).

We can see that if cI1 > dE, then

I∗0 < I∗ < I1.

The formula of T ∗ is very complicated. But we can show that T ∗ is an increasing function

of p, c, dI , and a decreasing function of β, η, dT , dE. Furthermore, I∗ is an increasing function

of β, η, dE, and a decreasing function of p, c, dT , dI . E∗ is an increasing function of c, and a

decreasing function of η, dE. Here, we take the parameter c as an example to show that as c

increases, T ∗ and E∗ increase while I∗ decreases.

For c > 0, let f (c) := dT cp
βdEη

+
p
η − dI , g(c) := 4h cp

dEη
, and F (c) := − f (c) +

√
f (c)2 + g(c),

then T ∗(c) = 1
2βF (c), and

F ′(c) = − f ′(c) +
2 f (c) f ′(c) + g′(c)

2
√

f (c)2 + g(c)
=

f ′(c)√
f (c)2 + g(c)

[
g′(c)

2 f ′(c)
− F (c)

]
.

Furthermore,

f ′(c) =
dT p
βdEη

, g′(c) = 4h
p

dEη
, F ′(c) =

2β f ′(c)√
f (c)2 + g(c)

[
h
dT
− T ∗

]
> 0.

Therefore,

T ∗′(c) =
1

2β
F ′(c) > 0, I∗′(c) = −

hT ∗′(c)
βT ∗(c)2 < 0, E∗′(c) =

β

p
T ∗′(c) > 0.
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In a similar way, we can show the dependence of T ∗, I∗ and E∗ on other parameters.

In what follows, we discuss the linear stability of steady states. In the absence of a spatial

effect, we know that S 0 is locally asymptotically stable if R0 < 1; S 1 is locally asymptotically

stable if R0 > 1 and cI1 < dE; S ∗ is locally asymptotically stable if cI1 > dE. In fact, we can

see them from the following discussion about the steady states of the system with spatial effect.

We consider one-dimensional space.

Let Ŝ = (T̂ , Î, Ê) be a steady state of the system (6.1), then the linearized system of (6.1) at

Ŝ is given by
∂u
∂t
= (D∆ + A)u, (6.4)

where

D(Ŝ ) =


DT 0 0

0 DT 0

0 Ψ̂ DE

 , A(Ŝ ) =


−dT − βÎ −βT̂ 0

βÎ βT̂ − dI − pÊ −pÎ

0 cÊ
1+ηÊ

cÎ
(1+ηÊ)2 − dE

 , u =


u1

u2

u3

 ,
and Ψ̂(Ŝ ) := Ê[ΨI(Ê, Î) + Ψ(Ê, Î)]. Notice that Ψ̂(S 0) = 0, Ψ̂(S 1) = 0 and Ψ∗ := Ψ̂(S ∗) =

E∗[ΨI(E∗, I∗) + Ψ(E∗, I∗)].

The corresponding characteristic polynomial of the linearized system (6.4) is

| λI + Dk2 − A |= 0, (6.5)

where k ≥ 0, called the wavenumbers or the wave modes, are the eigenvalues of Laplace

operator on a finite domain with no-flux boundary conditions. For instance, in one-dimensional

domain [0, L], k2 = n2L2/π2, or in two-dimensional domain [0, Lx] × [0, Ly], k2 = (n2/L2
x +

m2/L2
y)π2, where n and m are integers. λ is the eigenvalue which determines temporal growth.

The steady state Ŝ is linearly stable if Reλ < 0, for all eigenvalues λ of (6.5) with all modes k

[9].

Theorem 6.3.1 The infection-free steady state S 0 = (h/dT , 0, 0) is linearly stable if R0 < 1,

and unstable if R0 > 1

Proof For the infection-free steady state S 0 = (h/dT , 0, 0), we have

D(S 0) =


DT 0 0

0 DT 0

0 0 DE

 , A(S 0) =


−dT −βh/dT 0

0 βh/dT − dI 0

0 0 −dE

 ,
and the characteristic equation of the linearized system at S 0 is∣∣∣∣∣∣∣∣∣∣

λ + DT k2 + dT βh/dT 0

0 λ + DT k2 − βh/dT + dI 0

0 0 λ + DEk2 + dE

∣∣∣∣∣∣∣∣∣∣ = 0.
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It has eigenvalues λ1 = −DT k2 − dT , λ2 = −DT k2 + βh/dT − dI , λ3 = −DEk2 − dE. Note that

λ1 < 0, λ3 < 0, and λ2 = −DT k2 + dI(R0 − 1). If R0 < 1, then λ2 < 0 for all k. Therefore, if

R0 < 1, the steady state S 0 is linearly stable. If R0 > 1, then λ2 > 0 for some small modes k,

including k = 0, which means S 0 is unstable.

Theorem 6.3.2 The virus-established steady state S 1 = (T1, I1, 0) is linearly stable if R0 > 1

and cI1 < dE. It is unstable if R0 < 1 or cI1 > dE.

Proof For the steady state S 1 = (T1, I1, 0), we have

D(S 1) =


DT 0 0

0 DT 0

0 0 DE

 , A(S 1) =


−dT − βI1 −βT1 0

βI1 βT1 − dI −pI1

0 0 cI1 − dE

 .
Noticing that βT1 = dI and dT +βI1 =

hβ
dI

, the characteristic polynomial of the linearized system

at S 1 is given by ∣∣∣∣∣∣∣∣∣∣
λ + DT k2 + hβ/dI dI 0

−hβ/dI + dT λ + DT k2 pI1

0 0 λ + DEk2 − cI1 + dE

∣∣∣∣∣∣∣∣∣∣ = 0.

One eigenvalue is λ1 = −DEk2 + cI1 − dE. We see that if cI1 < dE, then λ1 < 0 for all k. Other

eigenvalues are determined by

λ2 + a1(k2)λ + a2(k2) = 0, (6.6)

where

a1(k2) = 2DT k2 +
hβ
dI
,

a2(k2) = D2
T k4 +

DT hβ
dI

k2 +
1

dIdT
(R0 − 1).

We know that a1(k2) > 0 and a2(k2) > 0 if R0 > 1, thus the roots of (6.6) have negative real

parts for all k. Therefore, if R0 > 1 and cI1 < dE, the steady state S 1 is linearly stable. In

contrast, S 1 is unstable if R0 < 1 or cI1 > dE, since if cI1 > dE, λ1 > 0 for some small k

including k = 0; if R0 < 1, a2 < 0 for some small k, which implies (6.6) has at least one

eigenvalue with positive real part.

Theorem 6.3.3 The positive steady state S ∗ = (T ∗, I∗, E∗) is linearly stable if b3(k2) > 0 and

b1(k2)b2(k2) − b3(k2) > 0 for all k, where b1, b2 and b3 are shown by (6.8), (6.9) and (6.10)

respectively.
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Proof For the positive steady state S ∗, the characteristic polynomial is given by∣∣∣∣∣∣∣∣∣∣
λ + DT k2 + dT + βI∗ βT ∗ 0

−βI∗ λ + DT k2 pI∗

0 Ψ∗k2 − cE∗
1+ηE∗ λ + DEk2 + dE −

cI∗
(1+ηE∗)2

∣∣∣∣∣∣∣∣∣∣ = 0,

that is,

λ3 + b1(k2)λ2 + b2(k2)λ + b3(k2) = 0. (6.7)

Here

b1(k2) = (2DT + DE)k2 + dT + βI∗ + dE

(
1 −

1
1 + ηE∗

)
> 0, (6.8)

b2(k2) = c1k4 + c2k2 + c3, (6.9)

where

c1 = D2
T + 2DT DE > 0,

c2 = (DT + DE)(dT + βI∗) + 2DT dE

(
1 −

1
1 + ηE∗

)
− pI∗Ψ∗,

c3 = (dT + βI∗)dE

(
1 −

1
1 + ηE∗

)
+ pdEE∗ + β2I∗T ∗ > 0;

b3(k2) = d1k6 + d2k4 + d3k2 + d4, (6.10)

where

d1 = D2
T DE > 0,

d2 = DT

[
DE(dT + βI∗) + DT dE

(
1 −

1
1 + ηE∗

)]
− DT pI∗Ψ∗,

d3 = DT (dT + βI∗)dE

(
1 −

1
1 + ηE∗

)
+ DT pdEE∗ + DEβ

2T ∗I∗ − (dT + βI∗)pI∗Ψ∗,

d4 = pdEE∗(dT + βI∗) + β2T ∗I∗dE

(
1 −

1
1 + ηE∗

)
> 0;

b1(k2)b2(k2) − b3(k2) = e1k6 + e2k4 + e3k2 + e4, (6.11)
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where

e1 = 2DT (DT + DE)2 > 0,

e2 = (DT + DE)
[
(dT + βI∗)(3DT + DE) + 4DT dE

(
1 −

1
1 + ηE∗

)]
− (DT + DE)pI∗Ψ∗,

e3 = 2DTβ
2I∗T ∗ + (DT + DE)

[
pdEE∗ + (dT + βI∗)2

]
+2

[
(2DT + DE)(dT + βI∗) + DT dE

(
1 −

1
1 + ηE∗

)]
dE

(
1 −

1
1 + ηE∗

)
−dE

(
1 −

1
1 + ηE∗

)
pI∗Ψ∗,

e4 =

[
(dT + βI∗)2 + (dT + βI∗)dE

(
1 −

1
1 + ηE∗

)
+ pdEE∗

]
dE

(
1 −

1
1 + ηE∗

)
+(dT + βI∗)β2I∗T ∗ > 0.

If b1(k2) > 0, b3(k2) > 0 and b1(k2)b2(k2)−b3(k2) for all k, then Reλ < 0. We see that b1(k2) > 0

for k. Therefore, if b3(k2) > 0 and b1(k2)b2(k2) − b3(k2) > 0 for all k, then S ∗ is linearly stable.

Note that, in the absence of diffusion, that is, in the spatial homogeneous case (k = 0), b3(0) =

d4 > 0 and b1(0)b2(0) − b3(0) = e4 > 0, which implies the positive steady state S ∗ is linearly

stable if it exists, that is if cI1 > dE. In contrast, under the same condition, the homogeneous

steady state S ∗ can be unstable to small spatial perturbations when diffusion is present, for

instance if b3(k2) < 0 or b1(k2)b2(k2) − b3(k2) < 0 for some modes k. This diffusion-driven

instability is called Turing instability [9].

6.4 Turing instability and pattern formation

We expect spatial pattern formation when the homogeneous positive steady state S ∗ is unstable,

that is when b3(k2) < 0 or b1(k2)b2(k2) − b3(k2) < 0. In general, if b3(k2) < 0, a steady state

bifurcation occurs from S ∗, while there is a Hopf bifurcation from S ∗ if b1(k2)b2(k2)−b3(k2) < 0

for some wave mode k. To clarify these Turing instability conditions, we denote φd(s) := b3(s)

and φe(s) := b1(s)b2(s) − b3(s), that is

φd(s) = d1s3 + d2s2 + d3s + d4, φe(s) = e1s3 + e2s2 + e3s + e4,

where s is assumed to be s ∈ R. We see that φd(s) has a negative root, since d1 > 0, φd(−∞) =

−∞ and φd(0) = d4 > 0. If d2 ≥ 0 and d3 ≥ 0, then φd(s) > 0 for s ≥ 0, and there is no

bifurcation. However, if d2 < 0 or d3 < 0, φd(s) has two or no positive roots, by the Descartes’
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rule of signs. A steady state bifurcation occurs if φd(s) has two distinct positive roots. The

conditions for the existence of two distinct positive roots of φd(s) can be determined by the

sign of φd(sd
+), where sd

+ is one of the roots of φ′d(s) = 3d1s2 + 2d2s + d3, say

sd
± =

1
3d1

(
−d2 ±

√
d2

2 − 3d1d3

)
.

According to the signs of d2 and d3, we have the following three cases.

(i) If d3 < 0, then
√

d2
2 − 3d1d3 > |d2|, sd

+ > 0 and sd
− < 0. In this case, φd(s) has two distinct

positive roots, if and only if φd(sd
+) < 0.

(ii) If d3 > 0 and d2 < 0, then for different cases of d2
2 − 3d1d3, we have

d2
2 − 3d1d3 > 0 :

√
d2

2 − 3d1d3 < |d2|, sd
+ > sd

− > 0;

d2
2 − 3d1d3 = 0 : sd

± = −
d2
3d1

> 0, φ′d(s) ≥ 0, for s ∈ R;

d2
2 − 3d1d3 < 0 : φ′d(s) > 0, for s ∈ R.

When d2
2 − 3d1d3 > 0, φd(s) has two distinct positive roots, if and only if φd(sd

+) < 0. When

d2
2 − 3d1d3 ≤ 0, φd(s) does not have any positive root, and φd(s) > 0 for s ≥ 0.

(iii) If d3 = 0 and d2 < 0, then sd
+ > 0, sd

− = 0, and φd(s) has two distinct positive roots if

and only if φd(sd
+) < 0.

In summary, φd(s) has two distinct positive roots if one of the following conditions is satis-

fied.

(C1) d3 < 0, φd(sd
+) < 0;

(C2) d3 ≥ 0, d2 < 0, d2
2 − 3d1d3 > 0, φd(sd

+) < 0.

In a similar way, we can determine the conditions for Hopf bifurcation. Defining se
+ as sd

+,

just changing d j to e j (j=1,2,3), we have that φe(s) has two distinct positive roots if one of the

following conditions is satisfied.

(C3) e3 < 0, φe(se
+) < 0;

(C4) e3 ≥ 0, e2 < 0, e2
2 − 3e1e3 > 0, φe(se

+) < 0.

Turing instability occurs and pattern formation is expected if one of the conditions (C1)-

(C4) is satisfied. Here, note that the formula of φd(sd
+) can be simplified to the following form

φd(sd
+) =

2
9d1

(
3d1d3 − d2

2

)
sd
+ +

(
d4 −

d2d3

9d1

)
,

applying the fact that φ′d(sd
+) = 3d1sd

+

2
+ 2d2sd

+ + d3 = 0.

We assume Ψ(E, I) = χ(I)q(E), where the chemotactic sensitivity function χ(I) is chosen

to be a constant χ, and q(E) = 1− E
EM

, the volume-filling effect is considered for CTL to prevent
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the blow-up of solutions of the model. Here, EM is the upper bound of the CTL population E

in the model. Then we have

Ψ(E, I) = χ
(
1 −

E
EM

)
, (6.12)

for chemorepulsion system, and

Ψ(E, I) = −χ
(
1 −

E
EM

)
(6.13)

for chemoattraction system. Furthermore, we have

Ψ∗ = χE∗
(
1 −

E∗

EM

)
> 0, (6.14)

for chemorepulsion system and

Ψ∗ = −χE∗
(
1 −

E∗

EM

)
< 0, (6.15)

for chemoattraction system. For chemoattraction system, since Ψ∗ < 0, we see from the proof

of Theorem 6.3.3 that S ∗ is linearly stable. However, for chemorepulsion system, Turing insta-

bility may occur.

We choose the strength of the chemotactic sensitivity χ as the bifurcation parameter fixing

all other parameters. Notice that d1, d4, e1 and e4 are independent of χ, while d2(χ), d3(χ), e2(χ)

and e3(χ) are linear strictly decreasing functions of χ, with d j(0) > 0, e j(0) > 0, d j(+∞) = −∞,

and e j(+∞) = −∞, ( j = 1, 2). Thus, d2
2(χ) − 3d1d3(χ) and e2

2(χ) − 3e1e3(χ) are quadratic

functions, which tend to positive infinity as χ → +∞. Furthermore, [φd(sd
+)](χ) → −∞,

[φe(se
+)](χ) → −∞, as χ → +∞. Therefore, as χ increases, at least one of the conditions (C1)-

(C4) holds. Generally, there exists a critical value χc such that there is no pattern formation

if χ < χc, while pattern formation can be expected if χ > χc. We can determine this Turing

instability threshold value according to the conditions (C1)-(C4).

Let χd
2 and χd

3 be the roots of d2(χ) = 0 and d3(χ) = 0 respectively, that is, d2(χd
2) = 0 and

d3(χd
3) = 0. If χd

3 ≤ χ
d
2, then at χ = χd

3, we have d3 = 0, d2 ≥ 0, sd
+ = 0 and φd(sd

+) = d4 > 0.

Let χS
1 be the smallest value that satisfies χS

1 > χd
3, [φd(sd

+)](χ
S
1 ) = 0, and [φd(sd

+)](χ) < 0 for

χS
1 < χ < χ

S
1 + δ1, where δ1 > 0. Then the condition (C1) holds for χS

1 < χ < χ
S
1 + δ1.

In contrast, if χd
2 < χd

3, then at χ = χd
2, we have d2 = 0, d3 > 0, d2

2 − 3d1d3 = −3d1d3 < 0.

Let χd
4 be the root of d2

2(χ) − 3d1d3(χ) = 0 satisfying χ4 > χ2 , then χd
4 < χd

3. At χd
4, we have

d2
2 − 3d1d3 = 0, d3 > 0, d2 < 0, and [φd(sd

+)](χ
d
4) = d4 −

d2d3
9d1

> 0. The condition (C2) does

not hold for χ ≤ χd
4. Let χS

2 be the smallest value that satisfies χS
2 > χd

4, [φd(sd
+)](χ

S
2 ) = 0, and

[φd(sd
+)](χ) < 0 for χS

2 < χ < χ
S
2 + δ2, where δ2 > 0. In this case, if χS

2 ≤ χ
d
3, then the condition

(C2) holds for χS
2 < χ < χS

2 + δ2, while the condition (C1) holds for χS
2 < χ < χS

2 + δ2 if

χS
2 > χ

d
3.
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The value χS
1 or χS

2 gives the threshold for steady state bifurcation. Similarly, we can derive

the threshold value χH
1 or χH

2 for Hopf bifurcation according to the conditions (C3) and (C4).

From the foregoing analysis, we know that the bifurcation threshold values are determined

by the roots of [φd(sd
+)](χ) = 0 or [φe(se

+)](χ) = 0. We assume that [φd(sd
+)](χ

S
c ) = 0 and χS

c

is the steady state bifurcation threshold value (χS
1 or χS

2 ), while [φe(se
+)(χ

H
c ) = 0 and χH

c is the

Hopf bifurcation threshold value (χH
1 or χH

2 ). If χS
c < χH

c and χS
c < χ, then φd(s) has two

distinct positive solutions sd
1 and sd

2, the range of unstable modes is sd
1 < k2 < sd

2. If χH
c < χS

c

and χH
c < χ, then φe(s) has two distinct positive solutions se

1 and se
2, the range of unstable

modes is se
1 < k2 < se

2. Note that, when we derive the bifurcation thresholds, we assumed s (i.e

k2) to be continuous. However, with finite spatial domains, there is a discrete set of possible

modes k as mentioned above. Therefore, the threshold values χS
c and χH

c obtained here may be

not the exact bifurcation values. χS
c and χH

c give the lower bound of the bifurcation values. The

exact bifurcation values may be somewhat greater than χS
c and χH

c , depending on the size of the

domain and the shapes of φd(s) and φe(s).

In a special case, if the uninfected and infected cells cannot diffuse (DT = 0), we have

d1 = 0, d2 = 0 and e1 = 0. Thus φd(s) = d3s + d4 and φe(s) = e2s2 + e3s + e4. It is easy to see

that the Turing instability conditions change to (H1) d3 < 0, or (H2) e2 < 0, or (H3) e2 ≥ 0,

e3 < 0, e2
3 − 4e2e4 > 0. If (H1) holds, a steady state bifurcation occurs, while there is a Hopf

bifurcation if any of (H2) and (H3) is satisfied. The threshold value for steady bifurcation is

χS
c = χ

d
3, the root of d3(χ) = 0. From the formulas of e2 and e3, we know that the root χe

2 of

e2(χ) = 0 is always smaller than the root χe
3 of e3(χ) = 0. Thus, the threshold value for Hopf

bifurcation is χH
c = χ

e
2, according to the conditions (H2) and (H3).

6.5 Numerical simulation

We choose χ as the bifurcation parameter and other baseline parameters as H = 10, dT = 0.1,

dI = 0.2, dE = 0.1, β = 0.1, p = 0.5, c = 0.2, η = 0.01 and EM = 2000, then R0 = 50 > 1,

I1 −
dE
c = 48.5 > 0, and S ∗ = (64.0197, 0.5620, 12.4039). The space is assumed to be one-

dimensional and Ω = [0, lπ], then k2 = n2/l2, where n is an integer and l = 3. In what follows,

we suppose that k assumes continuous values (i.e. s is continuous), in order to derive the

threshold values of χ for bifurcation.

First, we consider DT = 0. Assuming DE = 1, we obtain χS
c = χ

d
3 = 0.6650 and χH

c = χ
e
2 =

0.0451. Since χH
c < χS

c , Hopf bifurcation may occur at χ = χH
c = 0.0451, and pattern forms

for χ > χH
c . Figure 6.1 shows the pattern formation of the model when χ = 0.5 and χ = 0.6.

We can determine the unstable wave modes from Figure 6.2(c). For χ = 0.05, the zero point

of φe(s) = 0 is s1 = 38.1088, and φe(s) < 0 for s > s1. The minimal unstable mode k1 = n1/l
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is the smallest k = n/l that greater than
√

s1 = 6.1732. Here, we obtain n1 = 19, and pattern

forms for modes k = n/l, where n ≥ 19. Similarly, for χ = 0.06, we obtain that the zero point

of φe(s) = 0 is s2 = 12.6025, and the unstable wave modes are k = n/l, where n ≥ 11.

Figure 6.1: Temporal and spatial evolution of T (x, t), I(x, t) and E(x, t). First row: χ = 0.05.

Second row: χ = 0.06.

(a) (b) (c)

Figure 6.2: (a) Graph of φe(s, χ) = e2(χ)s2 + e3(χ)s + e4 = 0. (b) Graph of φd(s, χ) = d3(χ)s +

d4 = 0. The horizontal lines are s = n2/l2, where l = 3, and n is a positive integer, 1 ≤ n ≤ 51.

(c) Graphs of φe(s) when χ = 0.05 and χ = 0.06.

When DT > 0, we choose another two sets of different diffusion rates of the populations:

(I) DT = 0.005, DE = 0.1, and (II) DT = 0.1, DE = 0.1, to show two different bifurcations, say

steady state bifurcation and Hopf bifurcation. For the case (I), we see from Figure 6.3(a) that

steady state bifurcation may occur for some modes k and some range of χ, and Hopf bifurcation
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can also occur for some other modes k and χ. In contrast, for the case (I), Figure 6.3(b) shows

that steady state bifurcation may occur for some wave modes k, and Hopf bifurcation cannot

occur, since χ satisfying b3 = 0 is always smaller than χ satisfying b1b2 − b3 = 0, for all modes

k.

(a) (b)

Figure 6.3: Graphs of φd(s, χ) = d1s3 + d2(χ)s2 + d3(χ)s + d4 = 0 (black) and φe(s, χ) =

e1s3 + e2(χ)s2 + e3(χ)s + e4 = 0 (red). (a) DT = 0.005, DE = 0.1. (b) DT = 0.1, DE = 0.1.

The horizontal lines are s = n2/l2, where l = 3, and n is a positive integer, (a) 1 ≤ n ≤ 35, (b)

1 ≤ n ≤ 13.

We consider the case when DT = 0.005 and DE = 0.1. The curves of d2
2(χ)−3d1d3(χ), φd(χ),

e2
2(χ) − 3e1e3(χ) and φe(χ) are shown in Figure 6.4(a), Figure 6.4(b), Figure 6.4(c) and Figure

6.4(d) respectively. The roots of these functions in the corresponding regions are χd
0 = 0.0288,

χd
c = 0.0321, χe

0 = 0.0186 and χe
c = 0.0209 respectively. The functions d2(χ), d3(χ), e2(χ)

and e3(χ) are linear strictly decreasing functions of χ, and roots of these functions are given by

χd
2 = 0.0045, χd

3 = 0.0722, χe
2 = 0.0052 and χe

3 = 1.8747 respectively.

(a) (b) (c) (d)

Figure 6.4: (a) d2
2(χ) − 3d1d3(χ). One zero point: χ = 0.0288. (b) φd(χ). One zero point:

χ = 0.0321. (c) e2
2(χ) − 3e1e3(χ). One zero point: χ = 0.0186. (d) φe(χ). One zero point:

χ = 0.0209.
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Applying the bifurcation conditions (C1)-(C4), we obtain the bifurcation threshold values

χS
c = χd

c = 0.0321 and χH
c = χe

c = 0.0209. Since χH
c < χS

c , Hopf bifurcation may occur at

χ = χH
c and temporal periodic and spatial inhomogeneous pattern forms for χH

H < χ < χS
c . For

χ > χS
c , the positive steady state is unstable and spatial heterogeneous pattern forms, which

may be not temporal periodic.

Figure 6.5: Temporal and spatial evolution of T (x, t), I(x, t) and E(x, t). The homogenous

positive steady state is stable when χ = 0.02 (< χH
c ).

Figure 6.6: Temporal and spatial evolution of T (x, t), I(x, t) and E(x, t). when χ = 0.029

(χH
c < χ = 0.029 < χS

c ). The homogeneous positive steady state is unstable, and spatial

patterns are formed.

We see from Figure 6.5 that the positive steady state S ∗ is stable when χ = 0.02 < χH
c .

As χ increases so that χ > χH
c but χ < χS

c , the positive steady state becomes unstable, and

Hopf bifurcation occurs. Figure 6.6 shows the temporal and spatial evolution of T (x, t), I(x, t)
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and E(x, t). From the end part of these time evolution figures (the figures in the second row

of Figure 6.6), we see the form of spatial patterns and temporal periodicity of the solutions.

Figure 6.7 shows the periodic solutions at space locations x = 1.5π and x = 3π. The amplitudes

of the periodic solutions vary in different space locations as shown in Figure 6.7. We see that

the amplitudes at x = 1.5π are greater than those at x = 3π for T (x, t), I(x, t) and E(x, t)

respectively. When χ = 0.033 which exceeds the threshold vale χS
c , the positive steady state

also loses its stability and spatial heterogeneous pattern forms, which may be not periodic, as

shown in Figure 6.8.

Figure 6.7: Temporal evolution of T (x, t), I(x, t) and E(x, t). First row: x = 1.5π; Second row:

x = 3π. When χ = 0.029 (χH
c < χ = 0.029 < χS

c ), Hopf bifurcation occurs for the system, and

there are periodic solutions.

Figure 6.8: Temporal and spatial evolution of T (x, t), I(x, t) and E(x, t). The homogenous

positive steady state is unstable and spatial patterns form when χ = 0.033 (> χS
c ).
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For the case when DT = 0.1 and DE = 0.1, Figure 6.9(a) and Figure 6.9(b) show the curves

of d2
2(χ)−3d1d3(χ) and φd(χ) respectively, as Figure 6.9(c) and Figure 6.9(d) show the curves of

e2
2(χ) − 3e1e3(χ) and φe(χ) respectively. Roots of these functions in the corresponding regions

are χd
0 = 0.0474, χd

c = 0.0561, χe
0 = 0.1187 and χe

c = 0.01373 respectively. The functions

d2(χ), d3(χ), e2(χ) and e3(χ) are linear strictly decreasing functions of χ, and roots of these

functions are given by χd
2 = 0.0048, χd

3 = 0.1814, χe
2 = 0.0193 and χd

3 = 5.2828 respectively.

(a) (b) (c) (d)

Figure 6.9: (a) d2(χ)2 − 3d1d3(χ). One zero point: χ = 0.0474. (b) φd(χ). One zero point:

χ = 0.0561. (c) e2(χ)2 − 3e1e3(χ). One zero point: χ = 0.1187. (d) φe(χ). One zero point:

χ = 0.01373.

Applying the bifurcation conditions (C1)-(C4), we obtain the bifurcation values χS
c = χ

d
c =

0.0561 and χH
c = χ

e
c = 0.1373. Since χS

c < χ
H
c , we know that steady state bifurcation may occur

at χ = χS
c and spatial pattern forms for χ > χS

c . The positive steady state S ∗ is stable when χ is

less than the steady state bifurcation value χS
c . However, when χ exceeds the bifurcation value

χS
c , the positive steady state loses its stability and spatial inhomogeneous pattern forms, as

shown in Figure 6.10, where χ = 0.06. In this case, Hopf bifurcation cannot occur, which can

be seen from Figure 6.3(b), showing that b3(χ) always reaches zero before b1(χ)b2(χ) − b3(χ)

reaching zero for all mode k.

Figure 6.10: Temporal and spatial evolution of T (x, t), I(x, t) and E(x, t). The homogenous

positive steady state is unstable and spatial patterns form when χ = 0.06 (> χS
c ).
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6.6 Conclusion and discussion

In this chapter, we studied the effect of chemotactic movement, including chemoattaction and

chemorepulsion, of CTL on the HIV-1 infection dynamics by a reaction-diffusion-chemotaxis

model. In the absence of spatial effect, that is, without random diffusion and chemotactic move-

ment, the homogeneous positive steady state is locally stable. Choosing the typical chemotactic

sensitivity function (6.13), we found that chemoattraction movement of CTL also cannot desta-

bilize the homogeneous positive steady state, and there is no heterogeneous pattern formation.

In contrast, chemorepulsion movement of CTL can lead to instability of the homogeneous

positive steady state and spatially heterogeneous pattern forms. Using the typical chemotactic

sensitivity function (6.12) and choosing the strength of chemotactic sensitivity χ as the bi-

furcation parameter, we found that Turing instability occurs when χ exceeds some threshold.

The bifurcation may be steady state bifurcation or Hopf bifurcation depending on χ and other

parameters, such as the diffusion coefficients DT and DE. We found Turing instability condi-

tions (C1)-(C4) and bifurcation thresholds for the positive steady state. With a finite domain

in one-dimensional space, we demonstrated the stability of positive steady state, steady state

bifurcation and Hopf bifurcation for different diffusion coefficients DT and DE and chemotactic

sensitivities χ.

In order for CTL to successfully control HIV-1 infection, they must home efficiently to

infected tissue sites and migrate within the infected tissue to the virus-infected cells. In this

chapter, we choose the chemotactic sensitivity functions (6.12) and (6.13) for chemorepul-

sion and chemoattraction models respectively. For the chemoattraction model with (6.13), the

negativity of Ψ∗ keeps the positive steady state to be stable. If other chemotactic sensitivity

functions are chosen so that Ψ∗ is not always negative, then Turing bifurcations may also occur

for chemoattraction model. For example, for the Macroscopic form of Lapidus and Schiller

(with receptor response law)[8],

χ(I) = −
ρ

(K + I)2 ,

we have

Ψ∗ = −E∗
(
1 −

E∗

EM

)
ρ

(K + I∗)2

(
1 −

2
K + I∗

)
,

which is positive for some K. For small K, there may be Turing bifurcation and pattern forma-

tion.

In our chemorepulsion model, the chemotactic sensitivity is assumed to be constant and

positive. However, some experiments [4] demonstrate that gp120 elicits bidirectional T-cell

movement in a receptor-mediated, concentration-dependent manner, attracting CD8+ lympho-

cytes and HIV-specific CTL maximally at law concentration of gp120 and repelling the same
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cells at a higher concentration of gp120. Therefore, the chemotactic sensitivity function should

be negative (chemoattraction) for law concentration of gp120 and positive (chemorepulsion)

for high concentration of gp120. Applied to our simplified model, the chemotactic sensitivity

function should be negative (chemoattraction) for low level of I(x, t) and positive for high level

of I(x, t). Considering this in our model, the analysis would be more difficult mathematically.

We will study it for future work.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In Chapter 2, we proposed and analyzed a mathematical model with distributed delays that de-

scribe the competition of budding and lytic virus within a host. Budding virus is featured by a

longer release period of new virions, while lytic virus is characterized by a long accumulation

period but a shorter release period of new virions. We use the infection age and age structured

model to formulate the infected cell population dynamics. We have analyzed the local dynam-

ical behavior of the model. We have considered two concrete forms of functions for the viral

production kernel, as a function of the infection age. To study the evolutionary competition of

budding and lysis strategies, we assume that the total amount of virions replicated during the

lifespan of infected cell is the same for both strains, without considering the release procedure

and cell death. Under such a circumstance, the burst size of budding virus is greater than that

of lytic virus provided that they have a same death rate. If the budding virus and lytic virus

have a same infection rate, budding virus would outcompete the lytic virus, given the same rate

of viral production, the infected cell lifespan and neutralizing capacity of the antibodies for

budding and lytic viruses. In this case, budding strategy would have evolutionary advantage.

If neutralizing capacities of antibodies against budding virus and lytic virus are different, then

the lytic virus can survive as long as the reproduction number for lytic virus is very high.

Direct cell-to-cell transfer of HIV-1 is found to be a more potent and efficient means of virus

propagation than cell-free virus infection [4]. In Chapter 3, we proposed a mathematical model

to consider these two modes of viral infection and spread, in which infection age is also incor-

porated. By a rigorous analysis of the model, we showed that the model demonstrates a global

threshold dynamics, fully described by the basic reproduction number R0, in the sense that the

158
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infection-free equilibrium E0 is globally asymptotically stable if R0 < 1, and when R0 > 1,

E0 yields to a globally asymptotically stable positive equilibrium Ē implying the infection will

persist. The formula for the basic reproduction number of our model R0 = R01 + R02 reveals

that the basic reproduction number of the model that neglects either the cell-to-cell spread or

cell-free virus infection is under-evaluated. The formulas for R01 and R02 also reflect the im-

pact of the infection age through the distribution function f (x). In the model of this chapter, we

have assumed that target cells T (t) are produced at a constant rate and has a constant death rate.

It would be more reasonable to consider density dependent production rate. One possibility is

to assume a logistic growth for the healthy cells in the absence of infection. We considered this

in Chapter 4 ignoring the delay effect. When cell-free virus spread of HIV-1 is only considered

and the basic reproduction number is greater than one, the infection can persist, and for some

large infection rate of cell-free mode β1, the Hopf bifurcation occurs at the positive equilibrium.

This property is similar to the case when cell-to-cell transfer is considered simultaneously. In

contrast, when only cell-to-cell transfer is considered, the positive equilibrium Ē is stable and

there is no Hopf bifurcation and periodic solutions if the basic reproduction number is greater

than one. The basic reproduction number is also underestimated when either cell-to-cell mode

or cell-free mode is only considered.

In Chapter 5, we used a general virus infection dynamic model to discuss the rapid virus

spread mechanism discovered recently [2], that is the repulsion of superinfecting virions by

infected cells. With our general model, numerical estimation of the spreading speed showed

that the repulsion of superinfecting virions accelerates the spread of free virus particles, which

confirms the result of Doceul et al. [2] by mathematical modeling. In our model, the linear de-

terminacy does not hold and the spreading rate is much larger than linearly determined minimal

wave speed in the presence of repulsion effect. This may be due to the complexity of the virus

dynamic system, which is neither a cooperative nor a competitive system. The minimal wave

speed, given by the linearized analysis at infection-free steady state, is only true for the case

when there is no repulsion effect. If repulsion of superinfecting virions happens, the minimal

wave speed would be much higher than the linearly determined wave speed.

In Chapter 6, we studied the effect of chemotactic movement, including chemoattaction

and chemorepulsion, of CTL on the HIV-1 infection dynamics by a reaction diffusion model

with chemotaxis. In the absence of spatial effect, that is, without random diffusion and chemo-

tactic movement, the homogeneous positive steady state is locally stable. Choosing the typical

chemotactic sensitivity function, we found that chemoattraction movement of CTL also can-

not destabilize the homogeneous positive steady state, and there is no heterogeneous pattern
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formation. In contrast, chemorepulsion movement of CTL can lead to instability of the ho-

mogeneous positive steady state and spatially heterogeneous pattern forms. Using the typical

chemotactic sensitivity function and choosing the strength of chemotactic sensitivity χ as the

bifurcation parameter, we found that Turing instability occurs when χ exceeds some threshold.

The bifurcation may be steady state bifurcation or Hopf bifurcation depending on χ and other

parameters, such as the diffusion coefficients.

7.2 Future work

In Chapter 2, we do not consider the diffusion effect of antibodies, instead, we use an ordinary

differential equation model with distributed delays accounting for the release strategies. Ko-

marova [3] observed that if the production rate of the virions and the efficacy of the antibodies

were the same for a budding and a lytic virus, the lytic virus would always be significantly less

efficient in spreading, and thus the lytic strategy would be evolutionary disadvantageous. Lytic

virus can be competitive against budding virus if the antibodies are less effective against lytic

virions than they are against budding virions. This is because the effect of antibody flooding

increases the rate of spread of lytic virions. To study this antibody flooding effects, we have to

consider the diffusion of viruses and antibody, which is an interesting future work.

In our chemorepulsion model in Chapter 6, the chemotactic sensitivity is assumed to be con-

stant and positive. However, some experiments [1] demonstrate that gp120 elicits bidirectional

T-cell movement in a receptor-mediated, concentration-dependent manner, attracting CD8+

lymphocytes and HIV-specific CTL maximally at low concentration of gp120 and repelling the

same cells at a higher concentration of gp120. Therefore, the chemotactic sensitivity function

should be negative (chemoattraction) for low concentration of gp120 and positive (chemore-

pulsion) for high concentration of gp120. Applied to our simplified model, the chemotactic

sensitivity function should be negative (chemoattraction) for low level of I(x, t) and positive

for high level of I(x, t). Considering this in our model, the analysis would be more difficult

mathematically. We will study it for future work.
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