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Abstract

We consider a mathematical model that describes a viral infection of HIV-1 with both virus-to-
cell and cell-to-cell transmission, CTL response immune and four distributed delays, describing
intracellular delays and immune response delay. One of the main features of the model is that it
includes a constant production rate of CTLs export from thymus, and an immune response delay.
We derive the basic reproduction number and show that if the basic reproduction number is less
than one, then the infection free equilibrium is globally asymptotically stable; whereas, if the basic
reproduction number is greater than one, then there exist a chronic infection equilibrium, which is
globally asymptotically stable in absence of immune response delay. Furthermore, for the special
case with only immune response delay, we determine some conditions for stability switches of
the chronic infection equilibrium. Numerical simulations indicate that the intracellular delays and
immune response delay can stabilize and/or destabilize the chronic infection equilibrium.
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1. Introduction

Research on HIV/AIDS infection is performed in various domains including mathematical mod-
elling. Mathematical modelling is about modelling the evolution of the disease using mathemat-
ical tools, mainly differential equations. Over the recent years, great efforts have been paid in
mathematical modeling of within-host virus dynamics. Mathematical models have been devel-
oped to describe the in vivo infection process of many viruses such as human immunodeficiency
virus type I (HIV-I), hepatitis C virus (HCV), hepatitis B virus (HBV), and human T-cell lym-
photropic virus I (HTLV-I) (Perelson et al. (1993); Perelson et al. (1996); Nowak et al. (2018);
Bonhoeffer et al. (1997); Wang et al. (2002); Katri and Ruan (2004); Herz et al. (1996)). These
within-host models are useful for exploring possible mechanisms and outcomes of the viral in-
fection process (Perelson et al. (1993); Perelson et al. (1996)), and for estimating key parameter
values such as virion clearance rate, life span of infected cells, and average viral generation time
in vivo (Bonhoeffer et al. (1997)).

Mathematical modelling is a useful tool to improve our understanding on the interactions be-
tween the population and its environment (Hugo and Simanjilo (2018); Mondal et al. (2018);
Sarkar et al. (2017); Temgoua et al. (2018)). Mathematical models and their analysis are help-
ful in understanding the dynamical behavior of many human viruses such as HIV, HTLV-I and
HBV (e.g., Elaiw et al. (2018); Lai and Zou (2014); Nkoa et al. (2013); Vargas-De-Leon (2014);
Wang et al. (2016); Yuan et al. (2013)). Recently, it has been reported that the uninfected cells can
also become infected because of direct contact with infected cells. The viral infection model with
cell-to-cell transmission and distributed time delay have been proposed in Elaiw et al. (2018), Lai
and Zou (2014), Wang et al. (2016), and Yang et al. (2015). They observed that the basic repro-
duction number of their model might be underevaluated if either cell-to-cell spread or virus-to-cell
infection is neglected.

Note that the immune response after viral infection is common and is necessary for eliminating or
controlling the disease. In most virus infections, cytotoxic T lymphocytes (CTLs) play a critical
role in antiviral defense by attacking virus-infected cell. Many existing mathematical models for
HIV infection with CTLs response are given by systems of ordinary differential equation (ODE)
(e.g., Elaiw et al. (2018); Nkoa et al. (2013); Vargas-De-Leon (2014); Wang et al. (2016); Yuan
et al. (2013)). However, time delays can not be ignored when modeling immune response, since
antigenic stimulation generating CTLs may need a period of time, that is, the activation rate of
CTL response at time t may depend on the population of antigen at a previous time (Yuan et al.
(2013)). Moreover, all the aforementioned works do not take into account the constant production
rate of CTLs exported from thymus. This consideration of export rate of new CTLs from thymus
is considered in Nkoa et al. (2013), Tarfulea (2011), Tarfulea et al. (2011), and Vargas-De-Leon
(2014) and is ignored by many authors.

Motivated by the works in Elaiw et al. (2018), Nkoa et al. (2013), Tarfulea (2011), and Yang et
al. (2015), in the present paper we are concerned by the effect of both virus-to-cell and cell-to-
cell transmissions with intracellular delays and immune response activation delay on the global
dynamics of HIV-1 infection model. We consider a within-host viral infection model with both
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virus-to-cell and cell-to-cell transmissions, immune response and four distributed delays, in which
the first, second and fourth delay respectively describes the intracellular latency for virus-to-cell
infection, the intracellular latency for the cell-to-cell infection and the time period that viruses
penetrated into cells and infected cells release new virions (Yang et al. (2015)), and the third delay
describes the activation delay of CTLs cells (Yuan et al. (2013)).

The rest of the paper is organized as follows. In Section 2, the mathematical model is constructed.
Preliminaries including the positivity and boundedness of solutions are introduced in Section 3. In
Section 4, the existence of infection-free equilibrium and its global stability are studied. Existence
of a chronic infection equilibrium and its global stability with intracellular delays only are pre-
sented in Section 5. Furthermore, in this section, we find sufficient conditions for the occurrence of
a Hopf bifurcation includes only the immune response delay. In Section 6, numerical simulations
for several cases of the main model are presented. We further explore the delays and their effects
on the stability of the chronic infection equilibrium. Section 7 concludes the paper.

2. The Model Formulation

The compartmental model includes the concentrations of healthy target cells T (t) which suscep-
tible to infection, infected cells Ti(t) that produces viruses, cytotoxic T lymphocytes (CTLs) cells
Tc(t) which are responsible of the destruction of infected cells and viruses V (t). Let β1 be the
virus-to-cell infection rate, β2 be the cell-to-cell infection rate, δ, µ1, α and c be death rates of
healthy target cells, activated infected cells, cytotoxic CTLs cells and viruses, respectively. Let b
be the production rate of healthy target cells, λ be the production rate of CTLs cells export from
thymus, a be the proliferation rate of CTLs cells. Infected cells are eliminated by CTLs cells at
a rate q, which represent the lytic activity of CTLs cells. e−µ1s1 is the survival rate of cells that
are infected by viruses at time t and become activated s1 time later with a probability distribution

f1(s1). Then,
∞∫
0

β1T (t− s1)V (t− s1)f1(s1)e−µ1s1ds1 describes the newly activated infected target

cells which are infected by free viruses s1 time ago (Yang et al. (2015)).

Similarly,
∞∫
0

β2T (t − s2)Ti(t − s2)f2(s2)e
−µ1s2ds2 represents the newly activated infected target

cells which are infected by infected cells s2 time ago (Yang et al. (2015)). e−µ2s3 is the survival
rate of CTLs cells that are activated at time t, and become cytotoxic s3 time later with a probability

distribution f3(s3). Then,
∞∫
0

aTi(t− s3)Tc(t− s3)f3(s3)e−µ2s3ds3 represents the newly CTLs cells

proliferated at time t (Yuan et al. (2013)). Let s4 be the random variable that is the time between
viral RNA transcript and viral release and maturation with a probability distribution f4(s4). Then,
∞∫
0

kTi(t − s4)f4(s4)e−µ3s4ds4 describes the mature viral particles produced at time t (Yang et al.

(2015)). k is the average number of viruses that bud out from an infected cell and e−µ3s4 is the
survival rates of cells that start budding from activated infected cells at time t and become free
mature viruses s4 time later. Note that s1,s2, s3 and s4 are all integration variables, without loss of
generality; they all will be represented by s.

3
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From the modeling perspective, the model (1) extends the basic model developed in Nkoa et al.
(2013) by: (i) incorporating the cell-to-cell transmission, (ii) intracellular delays, and (iii) immune
activation delay. Together with this latter improvement (iii), the incorporation of a constant pro-
duction rate of CTLs export from thymus in our model also extend the works in Elaiw et al. (2018),
Wang et al. (2016), and Yuan et al. (2013). It is also noticeable that our model extends the models
developed in Lai and Zou (2014), and Yang et al. (2015) by including CTL response immune delay.

The model is given as follows:

dT (t)
dt

= b− δT − β1TV − β2TTi,
dTi(t)
dt

=
∞∫
0

β1T (t− s)V (t− s)f1(s)e−µ1sds

+
∞∫
0

β2T (t− s)Ti(t− s)f2(s)e−µ1sds− µ1Ti − qTiTc,

dTc(t)
dt

= λ+ a
∞∫
0

Ti(t− s)Tc(t− s)f3(s)e−µ2sds− αTc,

dV (t)
dt

= k
∞∫
0

Ti(t− s)f4(s)e−µ3sds− cV,

(1)

fi(ν) : [0,∞) −→ [0,∞) are probability distributions with compact support, fi(ν) > 0, and∫∞
0
fi(ν)dν = 1, i = 1, . . . , 4.

3. Preliminaries

Define the Banach space of fading memory type (see Lai and Zou (2014), and Yang et al. (2015))
C =

{
φ ∈ C((−∞, 0]|φ(θ) eµθ is continuous for θ ∈ (−∞, 0] and ‖φ‖ <∞

}
where µ is positive constant and the norm ‖φ‖ = supθ60 |φ(θ)| eµθ. The nonnegative cone of C is
defined by C+ = C((−∞, 0],R+). For φ ∈ C, let φt(θ) = φ(t + θ), θ ∈ (−∞, 0]. We consider
solutions (T, Ti, Tc, V ) of system (1) with initial conditions

(T (0), Ti(0), Tc(0), V (0)) ∈ X := C+ × C+ × C+ × C+. (2)

By the standard theory of functional differential equations, we can obtain the existence of solutions
for t > 0. Let

ηi =

∫ ∞
0

e−µ1sfi(s)ds, i = 1, 2, η3 =

∫ ∞
0

f3(s)e
−µ3sds, η4 =

∫ ∞
0

f4(s)e
−µ4sds.

Theorem 3.1.

Solutions of system (1) with initial conditions (2) are positive and ultimately uniformly bounded
for t > 0.

Proof:

Let m(t) = δ + β1V (t) + β2Ti(t) and d(t) = µ1 + qTc(t). Let r(t) be the sum of the two integral
terms in the second equation of system (1) and n(t) be the integral term in the fourth equation of

4
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system (1). From the first equation in (1), we have

T (t) = T (0)e−
∫ t
0
m(ξ)dξ +

∫ t

0

e−
∫ t
ξ
m(θ)dθbdξ > 0, for t ≥ 0.

From the third equation in (1), it follows that lim
t→∞

inf Tc(t) ≥ λ
α
> 0. From the second and fourth

equation in (1), we then have

Ti(t) = Ti(0)e−
∫ t
0
d(ξ)dξ +

∫ t

0

r(ξ)e−
∫ t
ξ
d(θ)dθdξ and V (t) =

[
V (0) +

∫ t

0

n(ξ)ecξdξ

]
e−ct,

which yield that Ti(t) > 0, V (t) > 0 for small t > 0. Now, we prove that Ti(t) > 0 and V (t) > 0
for all t > 0. Otherwise, there exists t1 > 0 such that min{Ti(t1), V (t1)} = 0. If Ti(t1) = 0,
Ti(t) > 0 for 0 ≤ t < t1, and V (t) > 0 for 0 ≤ t < t1, then we have dTi(t1)

dt
> 0. This contradicts

Ti(t1) = 0 and Ti(t) > 0 for 0 ≤ t < t1. If V (t1) = 0, V (t) > 0 for 0 ≤ t < t1, and Ti(t) > 0
for 0 ≤ t < t1, then, we obtain dV (t1)

dt
> 0, which is also a contradiction. Hence, Ti(t) > 0 and

V (t) > 0 for all t > 0.

To prove boundedness, first by the positivity of solutions we have dT (t)
dt

< b− δT (t). It follows that
lim
t→∞

supT (t) ≤ b
δ
, implying Ts(t) is bounded. Let

G1(t) =

∫ ∞
0

f1(s)e
−µ1sT (t− s)ds+

∫ ∞
0

f2(s)e
−µ1sT (t− s)ds+ Ti(t).

Since T (t) is bounded and
∫∞
0
f(u)du is convergent, the integral in G(t) is well defined and

differentiable with respect to t. Moreover, when taking the time derivative of G(t), the order of the
differentiation and integration can be switched. Thus, we have

Ġ1(t) = b(η1 + η2)− δ
∫ ∞
0

f1(s)e
−µ1sT (t− s)ds− δ

∫ ∞
0

f2(s)e
−µ1sT (t− s)ds

−µ1Ti − qTiTc

≤ b(η1 + η2)− δ
∫ ∞
0

f1(s)e
−µ1sT (t− s)ds− δ

∫ ∞
0

f2(s)e
−µ1sT (t− s)ds

−
(
µ1 +

qλ

α

)
Ti(t) ≤ b(η1 + η2)− d1G1(t),

where d1 = min
{
δ, µ1 + qλ

α

}
. Therefore, lim

t→∞
supG1(t) ≤ b(η1+η2)

d1
:= M1, implying that

lim
t→∞

supTi(t) ≤M1. Then, from the fourth equation of system (1), we have

V̇ (t) = k

∫ ∞
0

e−µ4sf4(s)Ti(t− s)ds− cV ≤ kM1η4 − cV.

Thus, lim
t→∞

supV (t) ≤ kM1η4
c

:= M2. Now determine the upper bound of Tc(t). Let

G2(t) =

∫ ∞
0

f3(s)e
−µ3sTi(t− s)ds+

q

a
Tc(t).

5
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Thus, we have

Ġ2(t) =

∫ ∞
0

f3(s)e
−µ3sr(t− s)ds− µ1

∫ ∞
0

f3(s)e
−µ3sTi(t− s)ds+

qλ

a
− αq

a
Tc(t)

≤ bη3
δ

(β1η1M2 + β2η2M1) +
qλ

a
− µ1

∫ ∞
0

f3(s)e
−µ3sTi(t− s)ds− α

q

a
Tc(t)

≤ d2 − d3G2(t),

where

d2 =
bη3
δ

(β1η1M2 + β2η2M1) +
qλ

a
and d3 = {α, µ1} .

Hence, lim
t→∞

supG2(t) ≤ d2
d3

:= M3, implying that lim
t→∞

supTc(t) ≤ a
q
M3. Thus, T (t), Ti(t), Tc(t)

and V (t) are uniformly bounded. �

Theorem 3.1 implies that omega limit sets of system (1) are contained in the following bounded
feasible region:

Ω =

{
(T, Ti, Tc, V ) ∈ C4+ : ‖Ts‖ ≤

b

δ
, ‖Ti‖ ≤M1,

λ

α
≤ Tc ≤

a

q
M3, ‖V ‖ ≤M2

}
.

It can be verified that the region Ω is positively invariant with respect (1) and the system is well
posed.

4. The infection-free equilibrium and its stability

System (1) has an infection-free equilibrium E0 =
(
b
δ
, 0, λ

α
, 0
)
. We defined the basic reproduction

number as follows:

R0 = R01 +R02 =
k β1 b η1 η4

cδ
(
µ1 + qλ

α

) +
β2bη2

δ
(
µ1 + qλ

α

) ,
which represents the average number of secondary infections. In fact, k β1 b η1 η4

cδ(µ1+
qλ

α )
is the average num-

ber of secondary viruses caused by a virus, that is the basic reproduction number corresponding
to virus-to-cell infection mode, while β2bη2

δ(µ1+
qλ

α )
is the average number of secondary infected cells

that caused by an infected cell, that is the basic reproduction number corresponding to cell-to-cell
infection mode. The factors have the biological interpretations as follows:

• bβ1η1
δ

is the number of new infections caused by a virus in target susceptible cells,

• qλ
α

is the rate at which infected cells are eliminated by the CTLs response,

• 1
µ1+

qλ

α

is the average time that an infectious cell survives,

6
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• kη4 is the rate at which infected cells bud into viruses,

• 1
c

is gives the average life-span of a virus,

• bβ2η2
µ1+

qλ

α

represents the number of new infections caused by an infected cell in target susceptible
cells.

The result below that follows is straightforward.

Theorem 4.1.

The infection-free equilibrium E0 of system (1) is locally asymptotically stable in the feasible
region Ω wheneverR0 < 1 and unstable otherwise.

Proof:

The characteristic equation of system (1) at the equilibrium E0 is

(ν + δ)(ν + α)

[
(ν + c)

(
ν + µ1 +

qλ

α
− bβ2η2

δ

)
− kbβ1

δ
η1η4

]
= 0, (3)

where ηi =
∫∞
0
e−(µ1+ν)sfi(s)ds, i = 1, 2, η3 =

∫∞
0
e−(µ2+ν)sf3(s)ds and η4 =∫∞

0
e−(µ3+ν)sf4(s)ds. We see that (3) has eigenvalues ν1 = −δ, ν2 = −α and other eigenvalues are

determined by

(ν + c)

(
ν + µ1 +

qλ

α
− bβ2η2

δ

)
− kbβ1

δ
η1η4 = 0,

which are equivalent to

Ψ(ν) :=

(
ν

µ1 + qλ
α

+ 1

)
(ν + c)−R0

(
η2R02

η2R0

ν + c
η2R02

η2R0

+ c
η1η4R01

η1η4R0

)
= 0. (4)

Thus, Ψ(0) = c(1−R0) < 0 whenR0 > 1. Note that

η1 ≤
∫ ∞
0

f1(s)ds = 1, i = 1, 2, 3, 4.

Then, we have

Ψ(ν) ≥

(
ν

µ1 + qλ
α

+ 1

)
(ν + c)−R0

(
R02

η2R0

ν + c
R02

η2R0

+ c
R01

η1η4R0

)
→ +∞,

as ν → +∞. This yields that Equation (4) has at least one positive root. Therefore, the infection-
free equilibrium E0 is unstable ifR0 > 1. �

Biologically speaking, Theorem 4.1 implies that infection can be eliminated if the initial sizes
of cells are in the basin of attraction of the infection-free equilibrium. Thus, the infection can be
effectively controlled ifR0 < 1. One can remark thatR0 depends on λ and is a decreasing function
of this rate. Hence, the constant rate λ could be an important control parameter in order to reduce

7
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R0 to a value less than unity. To ensure that the effective control of the infection is independent
of the initial size of the cells, a global stability result must be established for the infection-free
equilibrium.

Theorem 4.2.

IfR0 ≤ 1, then the infection-free equilibrium E0 of system (1) is globally asymptotically stable in
Ω.

Proof:

We define a Lyapunov function as follows:

L(t) = Ti +
bβ1η1
cδ

V +

∫ ∞
0

f1(s)e
−µ1s

∫ t

t−s
β1T (τ)V (τ)dτds+

∫ ∞
0

f2(s)e
−µ1s∫ t

t−s
β2T (τ)Ti(τ)dτds+

bβ1η1
cδ

∫ ∞
0

f4(s)e
−µ3s

∫ t

t−s
kTi(τ)dτds.

Then, the time derivative of L(t) along solutions of system (1) satisfies
dL(t)

dt
= β1η1TV + β2η2TTi +

kbβ1η1η4
cδ

Ti − µ1Ti − qTiTc −
bβ1η1
δ

V.

Since T ≤ b
δ

and Tc ≥ λ
α

, we have
dL(t)

dt
≤
[
bβ2η2
δ

+
kbβ1η1η4

cδ
−
(
µ1 +

qλ

α

)]
Ti =

(
µ1 +

qλ

α

)
(R0 − 1)Ti.

dL(t)
dt
≤ 0 whenever R0 ≤ 1. Moreover, dL(t)

dt
= 0 ⇔ Ti = V = 0 or T = b

δ
, Tc = λ

α
and R0 = 1.

Thus, the largest invariant set H such as H ⊂
{

(T, Ti, Tc, V ) ∈ R4
+/

dL(t)
dt

= 0
}

is the singleton
{E0}. By LaSalle’s Principle, E0 is globally asymptotically stable in Ω, completing the proof. �

5. The chronic infection equilibrium and its stability

5.1. Existence and uniqueness

The existence of a chronic infection equilibrium of the model (1) is addressed when R0 > 1.
The infection is endemic if the infected cells persist above a certain positive level. We have the
following result.

Theorem 5.1.

System (1) always has a infection-free equilibrium E0, and

(i) ifR0 < 1, system (1) has no positive chronic infection equilibrium,

(ii) ifR0 > 1, system (1) has a unique positive chronic infection equilibrium E∗.

8
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Proof:

Denote by E∗ = (T ∗, T ∗i , T
∗
c , V

∗) the chronic infection equilibrium of system (1). At this point,
the system (1) satisfies the following relations:

b = δT ∗ + β1T
∗V ∗ + β2T

∗T ∗i ,

β1η1T
∗V ∗ + β2η2T

∗T ∗i = µ1T
∗
i + qT ∗i T

∗
c ,

λ+ aη3T
∗
i T
∗
c = αT ∗c ,

kη4T
∗
i = cV ∗.

(5)

Solving (5) yields 

T ∗ = b

δ+(β1+
β2c

kη4
)V ∗

,

T ∗c =
kbβ1η1η4+bβ2η2c−cµ1δ−cµ1(β1+

β2c

kη4
)V ∗

qc(δ+β1V ∗+
β2c

kη4
V ∗)

,

T ∗i = cV ∗

kη4
,

where V ∗ is a positive root of

λ+ aη3T
∗
i T
∗
c − αT ∗c = 0. (6)

After expansion and substitution of T ∗, T ∗i , T ∗c by their expressions, Equation (6) is equivalent to
polynomial

P (V ) = a2V
2 + a1V + a0 = 0, (7)

with the coefficients a2, a1 and a0 given by

a2 = aη3c2µ1

kη4

(
β1 + β2c

kη4

)
,

a1 = aη3c2µ1δ
kη4

− aη3bc
(
β1η1 + β2η2c

kη4

)
−
(
β1 + β2c

kη4

)
(µ1cα + qλc),

a0 = cδα
(
µ1 + qλ

α

)
(R0 − 1).

(8)

Using Tc ≥ 0 one shows that V ≤ Vmax, where

Vmax =
kbβ1η1η4 + bβ2η2c− cµ1δ

cµ1

(
β1 + β2c

kη4

) =
cµ1δ(R0 − 1) +R0

cδqλ
α

cµ1

(
β1 + β2c

kη4

) > 0.

Furthermore, some calculations give

P (0) = a0, P (Vmax) = −a0bλq(kβ1η1η4 + β2η2c)

µ1

< 0, and lim
V→+∞

P (V ) = +∞.

• If R0 ≤ 1, then, P (0) = a0 ≤ 0 and the equation P (V ) = 0 has a unique positive root on
]Vmax; +∞[. Since for all V ≥ Vmax, T ∗c ≤ 0, it follows that system (1) has no positive chronic
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infection equilibrium in this case.

• IfR0 > 1, then, P (0) = a0 > 0 and the equation P (V ) = 0 has two positive roots: one solution
on interval ]0;Vmax[ and another solution on ]Vmax; +∞[.

Since T ∗c is positive for 0 < V < Vmax and negative for V > Vmax, it follows that system (1) has a
unique positive chronic infection equilibrium whenR0 > 1. �

5.2. Stability analysis of chronic infection equilibrium

On the stability analysis of the chronic infection equilibrium, we only discuss the following special
cases: (i) τi ≥ 0, i = 1, 2, 4, τ3 = 0 and (ii) τi = 0, i = 1, 2, 4, τ3 > 0. However, aiming at the case
τi > 0, i = 1, 2, 3, 4, the theoretical analysis is very complicated. We will give numerical analysis
for this case in the next section.

5.2.1. Global stability of chronic infection equilibrium when τi ≥ 0, i = 1, 2, 4 and τ3 = 0.

Here, we will prove the global stability of the chronic infection equilibrium of system (1) with
τ3 = 0 by the Lyapunov direct method.

Theorem 5.2.

Consider system (1) with f1(s) = f2(s), τi ≥ 0, i = 1, 2, 4 and τ3 = 0. IfR0 > 1, then, the chronic
infection equilibrium E∗ is globally asymptotically stable.

Proof:

Consider system (1) with τi 6 0 , i = 1, 2, 4 and τ3 = 0. Suppose R0 > 1 and f1(s) = f2(s). For
convenience of notation, we denote g(x) = x− 1− lnx. It is easy to see that g(x) > 0 for x > 0
and g′(x) = 1− 1

x
. Furthermore, g has a global minimum at 1 and satisfies g(1) = 0. We define a

Lyapunov functions as follows:
U(t) = U1(t) + U2(t) + U3(t),

where

U1 = T (t)− T ∗ ln
T (t)

T ∗
+

1

η1

(
Ti(t)− T ∗i ln

Ti(t)

T ∗i

)
+

q

aη1

(
Tc(t)− T ∗c ln

Tc(t)

T ∗c

)
+
β1T

∗

c

(
V (t)− V ∗ ln

V (t)

V ∗

)
,

U2(t) =
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e
−µ1s

∫ 0

−s
g

(
T (t+ τ)V (t+ τ)

T ∗V ∗

)
dτds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e
−µ1s

∫ 0

−s
g

(
T (t+ τ)Ti(t+ τ)

T ∗T ∗i

)
dτds,

10
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and

U3(t) =
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e
−µ3s

∫ 0

−s
g

(
T (t+ τ)Ti(t+ τ)

T ∗i

)
dτds.

Calculating the time derivative of U1, U2 and U3 along the solutions of system (1), we have

dU1

dt
=

(
1− T ∗

T

)
[b− δT − β1TV − β2TTi]

+
1

η1

(
1− T ∗i

Ti

)(∫ ∞
0

f1(s)e
−µ1sβ1T (t− s)V (t− s)ds

+

∫ ∞
0

f1(s)e
−µ1sβ2T (t− s)Ti(t− s)ds− µ1Ti − qTiTc

)
+

q

aη1

(
1− T ∗c

Tc

)
[λ+ aTiTc − αTc]

+
β1T

∗

c

(
1− V ∗

V

)(∫ ∞
0

kTi(t− s)f4(s)e−µ3sds− cV
)
,

= b− δT − β1TV − β2TTi − b
T ∗

T
+ δT ∗ + β1V T

∗ + β2TiT
∗

+
1

η1

∫ ∞
0

β1T (t− s)V (t− s)f1(s)e−µ1sds+
1

η1

∫ ∞
0

β2T (t− s)Ti(t− s)f1(s)e−µ1sds

− µ1

η1
Ti −

q

η1
TiTc −

1

η1

T ∗i
Ti

∫ ∞
0

f1(s)e
−µ1sβ1T (t− s)V (t− s)ds

− 1

η1

T ∗i
Ti

∫ ∞
0

f1(s)e
−µ1sβ2T (t− s)Ti(t− s)ds+

µ1

η1
T ∗i +

qT ∗i Tc
η1

+
q

aη1

(
λ+ aTiTc − αTc − λ

T ∗c
Tc
− aTiT ∗c + αT ∗c

)
+
kβ1T

∗

c

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds− β1T ∗V + β1T
∗V ∗

− kβ1T
∗

c

V ∗

V

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds,

and
dU2

dt
=β1TV + β2TTi −

1

η1

∫ ∞
0

β1T (t− s)V (t− s)f1(s)e−µ1sds

− 1

η1

∫ ∞
0

β2T (t− s)Ti(t− s)f1(s)e−µ1sds

+
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e
−µ1s ln

T (t− s)V (t− s)
TV

ds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e
−µ1s ln

T (t− s)Ti(t− s)
TTi

ds,
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and
dU3

dt
= β1T

∗V ∗
Ti
T ∗i
− β1T

∗V ∗

η4T ∗i

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds

+
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e
−µ3s ln

Ti(t− s)
Ti

ds.

Taking the derivative of U(t) and making use of the equations (5) defining the positive equilibrium
E∗ , we obtain after simplifications:

dU

dt
= δT ∗

(
2− T

T ∗
− T ∗

T

)
+
qλ

aη1

(
2− Tc

T ∗c
− T ∗c
Tc

)
+ 2β1T

∗V ∗ + β2T
∗T ∗i +

µ1

η1
T ∗i

+
q

η1
T ∗i T

∗
c − β1T ∗V ∗

T ∗

T
− β2T ∗T ∗i

T ∗

T
− 1

η1

T ∗i
Ti

∫ ∞
0

f1(s)e
−µ1sβ1T (t− s)V (t− s)ds

− 1

η1

T ∗i
Ti

∫ ∞
0

β2T (t− s)Ti(t− s)f1(s)e−µ1sds− β1T
∗V ∗

η4T ∗i

V ∗

V

∫ ∞
0

Ti(t− s)f4(s)e−µ3sds

+
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e
−µ1s ln

T (t− s)V (t− s)
TV

ds+
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e
−µ3s ln

Ti(t− s)
Ti

ds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e
−µ1s ln

T (t− s)Ti(t− s)
TTi

ds,

=δT ∗
(

2− T

T ∗
− T ∗

T

)
+
qλ

aη1

(
2− Tc

T ∗c
− T ∗c
Tc

)
+ β1T

∗V ∗ + β2T
∗T ∗i

− β1T ∗V ∗
T ∗

T
− β2T ∗T ∗i

T ∗

T
+ β1T

∗V ∗ ln
T ∗V ∗Ti
TV T ∗i

+
β1T

∗V ∗

η1

∫ ∞
0

f1(s)e
−µ1s

[
1− T (t− s)V (t− s)T ∗i

T ∗V ∗Ti
+ ln

T (t− s)V (t− s)T ∗i
T ∗V ∗Ti

]
ds

+
β2T

∗T ∗i
η1

∫ ∞
0

f1(s)e
−µ1s

[
1− T (t− s)Ti(t− s)

T ∗Ti
+ ln

T (t− s)Ti(t− s)
T ∗Ti

]
ds

+
β1T

∗V ∗

η4

∫ ∞
0

f4(s)e
−µ3s

[
1− Ti(t− s)V ∗

T ∗i V
+ ln

Ti(t− s)V ∗

T ∗i V

]
ds

+ β1T
∗V ∗ ln

T ∗i V

TiV ∗
+ β2T

∗T ∗i ln
T ∗

T
,

=δT ∗
(

2− T

T ∗
− T ∗

T

)
+
qλ

aη1

(
2− Tc

T ∗c
− T ∗c
Tc

)
− [β1T

∗V ∗ + β2T
∗T ∗i ] g

(
T ∗

T

)
− β1T

∗V ∗

η1

∫ ∞
0

f1(s)e
−µ1sg

(
T (t− s)V (t− s)T ∗i

T ∗V ∗Ti

)
ds

− β2T
∗T ∗i
η1

∫ ∞
0

f1(s)e
−µ1sg

(
T (t− s)Ti(t− s)

T ∗Ti

)
ds

− β1T
∗V ∗

η4

∫ ∞
0

f4(s)e
−µ3sg

(
Ti(t− s)V ∗

T ∗i V

)
ds.
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According to the property of g, we obtain that dU(t)
dt
6 0. It can be verified that dU(t)

dt
= 0 if and

only if
T

T ∗
=
Tc
T ∗c

=
T (t− s)V (t− s)T ∗i

T ∗V ∗Ti
=
T (t− s)ti(t− s)

T ∗Ti
=
Ti(t− s)V ∗

T ∗i V
= 1.

It means that the largest invariant set M0 ⊆ M =

{
(T, Ti, Tc, V ) : dU

dt
= 0

}
is the singleton{

E∗
}
. Again by the Lyapunov-LaSalle invariance principle, the chronic infection equilibrium E∗

of system (1) is globally asymptotically stable. �

5.2.2. Local stability and Hopf bifurcation when τi = 0, i = 1, 2, 4, τ3 ≥ 0.

In this subsection, we consider model (1) with particular distribution functions fi(s), i = 1, 2, 3, 4
as : f1(s) = f2(s) = δ(s − τ1), f3(s) = δ(s − τ3) and f4(s) = δ(s − τ4), where δ(·) is the dirac
delta function. We consider the special case where τ1 = τ2 = τ4 = 0 and τ3 ≥ 0. Then, we obtain
that η1 = η2 = η4 = 1 and η3 = e−µ2τ3 . In this case, the characteristic equation at the equilibrium
E∗ is
ν4 + A3ν

3 + A2ν
2 + A1ν + A0 +

[
B3(τ3)ν

3 +B2(τ3)ν
2 +B1(τ3)ν +B0(τ3)

]
e−τ3ν = 0, (9)

where

A3 =
b

T ∗
+ c+ α +

kβ1T
∗

c
,

A2 =
b

T ∗

(
c+ α +

kβ1T
∗

c

)
+ β2T

∗(β1V
∗ + β2T

∗
i ) + cα +

αkβ1T
∗

c
,

A1 =
αb

T ∗

(
c+

kβ1T
∗

c

)
+ [kβ1 + β2(c+ α)]T ∗(β1V

∗ + β2T
∗
i ),

A0 = αT ∗(β1V
∗ + β2T

∗
i )(kβ1 + cβ2),

B3(τ3) = −aT ∗i e−µ2τ3 ,

B2(τ3) = −aT ∗i e−µ2τ3

(
b

T ∗
+
kβ1T

∗

c
+ c

)
+ aqT ∗i T

∗
c e
−µ2τ3 ,

B1(τ3) = aT ∗i e
−µ2τ3

[
qT ∗c

(
c+

b

T ∗

)
− b

T ∗

(
c+

kβ1T
∗

c

)
− β2T ∗(β1V ∗ + β2T

∗
i )

]
,

B0(τ3) = aT ∗i e
−µ2τ3

[
cqT ∗c

b

T ∗
− T ∗(kβ1 + cβ2)(β1V

∗ + β2T
∗
i )

]
.

When τ3 = 0, the stability is given by the following theorem.

Theorem 5.3.

Consider system (1) with τi = 0, i = 1, 2, 3, 4. If R0 > 1, then, the chronic infection equilibrium
E∗ is locally asymptotically stable provided that (11) holds.
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Proof:

For τ3 = 0, equation (9) becomes
ν4 + (A3 +B3(0))ν3 + (A2 +B2(0))ν2 + (A1 +B1(0))ν + A0 +B0(0). (10)

Using the Routh-Hurwitz criterion on (10), we investigate the local stability of E∗. The relevant
Routh-Hurwitz determinants are:

∆1 = A3 +B3(0) > 0,
∆2 = (A3 +B3(0))(A2 +B2(0))− (A1 +B1(0)) > 0,
∆3 = (A1 +B1(0))∆2 − (A3 +B3(0))2(A0 +B0(0)) > 0,
∆4 = (A0 +B0(0))∆3 > 0.

Since all the parameters of model (1) are positive, it follows that

∆1 =
b

T ∗
+ c+

kβ1T
∗

c
+ α− aT ∗i =

b

T ∗
+ c+

kβ1T
∗

c
+

λ

T ∗c
> 0.

Furthermore, by straightforward computations, we show that

∆2 =

(
b

T ∗
+ c+

kβ1T
∗

c
+

λ

T ∗c

)
[aqT ∗i T

∗
c + β2T

∗(β1V
∗ + β2T

∗
i )

+
b

T ∗

(
c+

kβ1T
∗

c

)
+

λ

T ∗c

(
b

T ∗
+ c+

kβ1T
∗

c

)]
− aqT ∗i T ∗c

(
c+

b

T ∗

)
− b

T ∗
λ

T ∗c

(
c+

kβ1T
∗

c

)
− T ∗(β1V ∗ + β2T

∗
i )

(
kβ1 + β2c+ β2

λ

T ∗c

)
,

= aqT ∗i T
∗
c

(
kβ1T

∗

c
+

λ

T ∗c

)
+

b

T ∗

(
c+

kβ1T
∗

c

)(
b

T ∗
+ c+

kβ1T
∗

c

)
+
λ

T ∗c

(
b

T ∗
+ c+

kβ1T
∗

c

)(
b

T ∗
+ c+

kβ1T
∗

c
+

λ

T ∗c

)
+T ∗(β1V

∗ + β2T
∗
i )

[
β2

(
b

T ∗
+
kβ1T

∗

c

)
− kβ1

]
> 0.

Thus, all solutions of (10) have negative real parts if and only if
∆3 = (A1 +B1(0))∆2 − (A3 +B3(0))2(A0 +B0(0)) > 0. (11)

�

The root of (9) depends on τ3 continuously. A root of (9) may pass through the imaginary axis and
enter the right side when τ3 increases. Let us consider ν = µ(τ3) + iω(τ3) a root of equation (9).
We are interested in the change of stability of chronic infection equilibrium E∗, which will occur
at the values of τ3 for which µ(τ3) = 0 and ω(τ3) > 0. ν = iω is the critical case since a root may
enter the right side or the left side under small perturbation when it locates on the imaginary axis.
After substituting ν = iω into (9) and separating the real and the imaginary parts, we obtain that

M(ω) cosωτ3 +N(ω) sinωτ3 = E(ω),
N(ω) cosωτ3 −M(ω) sinωτ3 = F (ω),

(12)
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where
M(ω) = B2(τ3)ω

2 −B0(τ3), N(ω) = B3(τ3)ω
3 −B1(τ3)ω,

E(ω) = ω4 + A0 − A2ω
2, F (ω) = −A3ω

3 + A1ω.

From (12), we can get

cosωτ3 =
M(ω)E(ω) +N(ω)F (ω)

M(ω)2 +N(ω)2
and sinωτ3 =

N(ω)E(ω)−M(ω)F (ω)

M(ω)2 +N(ω)2
. (13)

Squaring and adding (13), we obtain
F (ω, τ3) := ω8 + C6(τ3)ω

6 + C4(τ3)ω
4 + C2(τ3)ω

2 + C0(τ3) = 0, (14)
where

C6(τ3) = A2
3 − 2A2 −B3(τ3)

2,

C4(τ3) = A2
2 − 2A3A1 + 2A0 −B2(τ3)

2 + 2B3(τ3)B1(τ3),

C2(τ3) = A2
1 − 2A2A0 −B1(τ3)

2 + 2B2(τ3)B0(τ3),

C0(τ3) = A2
0 −B0(τ3)

2.

Denote

I =
{
ω(τ3) > 0 : F (ω, τ3) = 0

}
,

which is a finite set. If I 6= ∅, then E∗ is stable for τ3 ≥ 0. Note that
F (0, τ3) = A2

0 −B0(τ3)
2, lim

ω→+∞
F (ω, τ3) = +∞.

In addition, we have

A0 +B0(τ3) = T ∗(β1V
∗ + β2T

∗
i )(kβ1 + cβ2)(α− aT ∗i e−µ2τ3) + aT ∗i cqT

∗
c

b

T ∗
e−µ2τ3

=
λ

T ∗c
T ∗(β1V

∗ + β2T
∗
i )(kβ1 + cβ2) + aT ∗i cqT

∗
c

b

T ∗
e−µ2τ3 > 0.

Therefore, if

(H1) A0 < B0(τ3),

holds, then, I 6= ∅ and F (ω, τ3) = 0 has at least one positive solution.

Assume I = {ω1, ω2, . . . , ωj0}. For j ∈ {1, 2, . . . , j0}, choose the unique angle θj(τ3j) ∈ [0, 2π)
such that

cos θj(τ3j) =
M(ωj)E(ωj) +N(ωj)F (ωj)

M(ωj)2 +N(ωj)2
,

sin θj(τ3j) =
N(ωj)E(ωj)−M(ωj)F (ωj)

M(ωj)2 +N(ωj)2
.

(15)

Now, define the function as follows

Sn(τ3j) = τ3j −
θj(τ3j) + 2nπ

ωj(τ3j)
, n ∈ {0, 1, 2, · · · }.

Then, the characteristic equation (9) has a purely imaginary root ν = iωj(τ
∗
3j) at delay τ3 = τ ∗3j

with ωj(τ
∗
3j) > 0 if and only if τ ∗3j is a root of function Sn(τ3j) = 0 for some n ∈ N and

15

Mann Manyombe et al.: Viral Dynamics of Delayed CTL-inclusive HIV-1 Infection Model

Published by Digital Commons @PVAMU,



AAM: Intern. J., Vol. 15, Issue 1 (June 2020) 109

j ∈ {1, 2, . . . , j0}. Thus, the following remark comes from Theorem 2.2 in Beretta and Kuang
(2002).

Remark 5.4.

The characteristic equation (9) admits a pair of simple and conjugate roots ν(τ ∗3j) = ±iωj(τ ∗3j),
ωj(τ

∗
3j) > 0 at τ ∗3j if Sn(τ ∗3j) = 0 for some n ∈ N and j ∈ {1, 2, . . . , j0}. This pair of simple

conjugate pure imaginary roots crosses the imaginary axis from left to right δ(τ ∗3j) > 0 and crosses
the imaginary axis from right to left if δ(τ ∗3j) < 0, where

δ(τ ∗3j) = sign

{
dReν

dτ3

∣∣∣
ν=iω(τ∗

3j)

}
= sign

{
dSn(τ3)

dτ3

∣∣∣
τ3=τ∗

3j

}
= sign{F ′ω(ωj, τ

∗
3j)}.

Based on the above analysis, we obtain the following remark by Theorem 5.4 and the Hopf bifur-
cation theorem in Beretta and Kuang (2002).

Remark 5.5.

Consider system (1) with τi = 0, i = 1, 2, 4 and the special form f3(s) = δ(s − τ3). Assume that
R0 > 1 and (H1) holds. Then, there exists a τ ∗3 such that the chronic infection equilibrium E∗ is
locally asymptotically stable when 0 ≤ τ3 < τ ∗3 , and becomes unstable when τ3 staying in some
right neighborhood of τ ∗3 . Furthermore, a Hopf bifurcation occurs at τ3 = τ ∗3 .

6. Numerical simulations

In this section, we perform numerical simulations for the model (1) with particular distribution
functions fi(s), i = 1, 2, 3, 4 as : f1(s) = f2(s) = δ(s − τ1), f3(s) = δ(s − τ3) and f4(s) =
δ(s − τ4), where δ(·) is the dirac delta function, si, i = 1, 2, 3, 4 are positive constants. Then,
we can see that η1 = η2 = e−µ1τ1 , η3 = e−µ2τ3 and η4 = e−µ3τ4 . We examine the behavior of the
infected steady stateE∗ using data sets that are commonly used in the literature (Nkoa et al. (2013);
Wang et al. (2016); Yang et al. (2015)). Values of parameters are defined as: b = 10, δ = 0.01,
β1 = 2.5e − 4, β2 = 6.5e − 4, µ1 = 0.1, a = 3e − 2, q = 4e − 2, k = 100, α = 0.15, c = 3,
λ = 1, µ2 = 0.3 and µ3 = 0.1. By simple computing when R0 > 1, the global stability of the
chronic infection equilibrium E∗ as demonstrated in Theorem 5.2 is numerically shown on Figure
1 for fixed delays τ1 = τ2 = 8, τ3 = 0 and τ4 = 2.5.

6.1. Effect of CTLs constant production rate

In order to investigate the effect of CTLs production rate, we carry out some numerical simulations
to show the contribution of CTLs constant production rate during the whole infection. We set the
production rate λ as 0.5, 1, 1.5, 2. We choose τ1 = τ2 = 3, τ3 = 0 and τ4 = 2.5. From the four
figures of Figure 1, we can observe that uninfected and CTLs cells reach a higher peak level as λ
increases while the peak level of infected cells and viruses decreases as λ increases. If we interpret
the constant rate λ > 0 as an inflow of antiviral drugs, one can observe from Figure 1 that the entry
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of antiviral drugs into the host is important as a control parameter in order to reduce the viral load.
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Figure 1. Simulation results showing the effect of λ on the dynamics of the model with τ1 = τ2 = 3, τ3 = 0 and
τ4 = 2.5

6.2. Effect of immune response delay

In order to illustrate our theoretical findings obtained in Theorem 5.5, we simulate model (1) with
τ1 = τ2 = τ4 = 0 and the special form f3(s) = δ(s − τ3) with τ3 ≥ 0. First, we set τ3 = 0
and keep others parameters. We get E∗ = (207.7479, 4.2451, 44.1567, 141.5038), R0 = 24.5000
and ∆3 = 6.0670 > 0, i.e., condition (11) holds. Then, the local stability of the chronic infection
equilibrium E∗ as established in Theorem 5.3 is numerically shown on Figure 2.

Now, we vary the value of τ3 more than zero to see the effect of immune response delay. Through
numerical calculations, we get two critical values of delay τ3, denoted by τ ∗3 = 0.2683 and τ ∗∗3 =
5.5527. Figure 3 illustrates the local asymptotic stability of E∗ for τ3 = 0.2 < τ ∗3 as established in
Remark 5.5.

When we increase the value of immune response delay to τ3 = 0.3 ∈ (τ ∗3 , τ
∗∗
3 ), Figure 4 shows

that E∗ becomes unstable and system undergoes Hopf bifurcation at τ3 = τ ∗3 . This latter case is
also illustrated on Figure 5 for τ3 = 5.4 ∈ (τ ∗3 , τ

∗∗
3 ).

Now, we increase again the value of immune response delay to τ3 = 5.7 > τ ∗∗3 . We see from Figure
6 that the chronic infection equilibrium E∗ regain its stability for τ3 > τ ∗∗3 and Hopf bifurcation
occurs at τ3 = τ ∗∗3 .
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Figure 2. The time series of model (1) for τi = 0, i = 1, 2, 3, 4. The chronic infection equilibriumE∗ is asymptotically
stable
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Figure 3. The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 0.2. The chronic infection equilibrium E∗ is
asymptotically stable when τ3 < τ∗3 = 0.2683

6.3. Effect of intracellular delays and immune response delay on the dynamics of
model (1)

It is challenging to analyze model (1) for the joint effect of four delays theoretically. So, we use
numerical simulations to further investigate the effect of intracellular delays and immune response
delay on the dynamics of model when τi > 0, i = 1, 2, 3, 4. To this end, we choose τ4 = 2.5 and
τ1 = τ2. Figure 7 plots the chronic infection equilibrium E∗ when τ1 varies and τ3 = 5 is fixed.
From this figure, we see that for fixed immune response delay, when we increase the intracellular
delay for both virus-to-cell and cell-to-cell infections, the trajectories of model (1) evolve from
unstable to stable state. A similar result is observed in Figure 8 when we fix intracellular delay
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Figure 4. The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 0.3. The chronic infection equilibrium E∗

becomes unstable and a Hopf bifurcation occurs when τ3 ∈ (τ∗3 , τ
∗∗
3 ). Here, τ∗∗3 = 5.5527
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Figure 5. The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 5.4. The chronic infection equilibrium E∗

becomes unstable and a Hopf bifurcation occurs at τ3 = τ∗3

(τ1 = 3) and vary immune response delay τ3. These figures demonstrate that the chronic infection
equilibrium E∗ destabilizes as τ1 and τ3 decreases. Therefore, an increase in the intracellular delay
or the immune response delay can stabilize the infected steady state E∗.

7. Conclusion

In this paper, we have investigated the dynamical properties of a delayed HIV-1 infection model
with both virus-to-cell and cell-to-cell transmissions, and CTL immune response delay. This model
extends some previous models and also take into account of a rate of CTLs cells exported from
thymus. We have derived the basic reproductive number, R0 and we have established that when
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Figure 6. The time series of model (1) for τi = 0, i = 1, 2, 4, and τ3 = 5.7. The chronic infection equilibrium E∗

becomes stable when τ3 > τ∗∗3 = 5.5527

the basic reproductive number R0 is less than unity, there is a disease free equilibrium E0 which
is globally asymptotically stable; while when the basic reproductive number R0 is greater than
unity, there exists an unique chronic infection equilibrium E∗ which is globally asymptotically
stable in absence of immune response delay. Furthermore, we have explored the local stability of
the chronic infection equilibrium for the special case with only immune response delay.

We have determined some conditions leading to the occurrence of Hopf bifurcation and found that
when immune response delay increase, there are stability switches of the chronic infection equi-
librium. Numerical simulations were used to further investigate the infected steady state and the
existence of the Hopf bifurcation with positive delays. We have observed that for fixed immune
response delay, when intracellular delay increase, there is also stability switches of the chronic
infection equilibrium. These analysis reveal that the sustained oscillations occur when the intracel-
lular delays and immune delay are incorporated simultaneously in the model.

It is challenging to study stability and Hopf bifurcation of the chronic infection equilibrium for the
joint effect of four delays theoretically. As far as future investigations are concerned, we are plan-
ning to study local stability and Hopf bifurcation of the chronic infection equilibrium in a general
case with all delays being positive. This possible extension on which we are already working will
be studied on a separate paper.
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Appendix
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Figure 7. Simulation results showing the effect of intracellular delay τ1 when immune response delay is fixed (τ3 = 5)
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Figure 8. Simulation results showing the effect of immune response delay τ3 when intracellular delay τ1 is fixed (τ1 =
3)
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