4,858 research outputs found

    A stochastic SIRI epidemic model with LĂ©vy noise

    Get PDF
    Some diseases such as herpes, bovine and human tuberculosis exhibit relapse in which the recovered individuals do not acquit permanent immunity but return to infectious class. Such diseases are modeled by SIRI models. In this paper, we establish the existence of a unique global positive solution for a stochastic epidemic model with relapse and jumps. We also investigate the dynamic properties of the solution around both disease-free and endemic equilibria points of the deterministic model. Furthermore, we present some numerical results to support the theoretical work

    Spatial Epidemics: Critical Behavior in One Dimension

    Full text link
    In the simple mean-field SIS and SIR epidemic models, infection is transmitted from infectious to susceptible members of a finite population by independent p-coin tosses. Spatial variants of these models are proposed, in which finite populations of size N are situated at the sites of a lattice and infectious contacts are limited to individuals at neighboring sites. Scaling laws for these models are given when the infection parameter p is such that the epidemics are critical. It is shown that in all cases there is a critical threshold for the numbers initially infected: below the threshold, the epidemic evolves in essentially the same manner as its branching envelope, but at the threshold evolves like a branching process with a size-dependent drift. The corresponding scaling limits are super-Brownian motions and Dawson-Watanabe processes with killing, respectively

    Weak convergence of marked point processes generated by crossings of multivariate jump processes. Applications to neural network modeling

    Get PDF
    We consider the multivariate point process determined by the crossing times of the components of a multivariate jump process through a multivariate boundary, assuming to reset each component to an initial value after its boundary crossing. We prove that this point process converges weakly to the point process determined by the crossing times of the limit process. This holds for both diffusion and deterministic limit processes. The almost sure convergence of the first passage times under the almost sure convergence of the processes is also proved. The particular case of a multivariate Stein process converging to a multivariate Ornstein-Uhlenbeck process is discussed as a guideline for applying diffusion limits for jump processes. We apply our theoretical findings to neural network modeling. The proposed model gives a mathematical foundation to the generalization of the class of Leaky Integrate-and-Fire models for single neural dynamics to the case of a firing network of neurons. This will help future study of dependent spike trains.Comment: 20 pages, 1 figur

    Copepods encounter rates from a model of escape jump behaviour in turbulence

    Full text link
    A key ecological parameter for planktonic copepods studies is their interspecies encounter rate which is driven by their behaviour and is strongly influenced by turbulence of the surrounding environment. A distinctive feature of copepods motility is their ability to perform quick displacements, often dubbed jumps, by means of powerful swimming strokes. Such a reaction has been associated to an escape behaviour from flow disturbances due to predators or other external dangers. In the present study, the encounter rate of copepods in a developed turbulent flow with intensity comparable to the one found in copepods' habitat is numerically investigated. This is done by means of a Lagrangian copepod (LC) model that mimics the jump escape reaction behaviour from localised high-shear rate fluctuations in the turbulent flows. Our analysis shows that the encounter rate for copepods of typical perception radius of ~ {\eta}, where {\eta} is the dissipative scale of turbulence, can be increased by a factor up to ~ 100 compared to the one experienced by passively transported fluid tracers. Furthermore, we address the effect of introducing in the LC model a minimal waiting time between consecutive jumps. It is shown that any encounter-rate enhancement is lost if such time goes beyond the dissipative time-scale of turbulence, {\tau}_{\eta}. Because typically in the ocean {\eta} ~ 0.001m and {\tau}_{\eta} ~ 1s, this provides stringent constraints on the turbulent-driven enhancement of encounter-rate due to a purely mechanical induced escape reaction.Comment: 11 pages, 10 figure

    Bosonic reaction-diffusion processes on scale-free networks

    Get PDF
    Reaction-diffusion processes can be adopted to model a large number of dynamics on complex networks, such as transport processes or epidemic outbreaks. In most cases, however, they have been studied from a fermionic perspective, in which each vertex can be occupied by at most one particle. While still useful, this approach suffers from some drawbacks, the most important probably being the difficulty to implement reactions involving more than two particles simultaneously. Here we introduce a general framework for the study of bosonic reaction-diffusion processes on complex networks, in which there is no restriction on the number of interacting particles that a vertex can host. We describe these processes theoretically by means of continuous time heterogeneous mean-field theory and divide them into two main classes: steady state and monotonously decaying processes. We analyze specific examples of both behaviors within the class of one-species process, comparing the results (whenever possible) with the corresponding fermionic counterparts. We find that the time evolution and critical properties of the particle density are independent of the fermionic or bosonic nature of the process, while differences exist in the functional form of the density of occupied vertices in a given degree class k. We implement a continuous time Monte Carlo algorithm, well suited for general bosonic simulations, which allow us to confirm the analytical predictions formulated within mean-field theory. Our results, both at the theoretical and numerical level, can be easily generalized to tackle more complex, multi-species, reaction-diffusion processes, and open a promising path for a general study and classification of this kind of dynamical systems on complex networks.Comment: 15 pages, 7 figure

    Fluctuation effects in metapopulation models: percolation and pandemic threshold

    Get PDF
    Metapopulation models provide the theoretical framework for describing disease spread between different populations connected by a network. In particular, these models are at the basis of most simulations of pandemic spread. They are usually studied at the mean-field level by neglecting fluctuations. Here we include fluctuations in the models by adopting fully stochastic descriptions of the corresponding processes. This level of description allows to address analytically, in the SIS and SIR cases, problems such as the existence and the calculation of an effective threshold for the spread of a disease at a global level. We show that the possibility of the spread at the global level is described in terms of (bond) percolation on the network. This mapping enables us to give an estimate (lower bound) for the pandemic threshold in the SIR case for all values of the model parameters and for all possible networks.Comment: 14 pages, 13 figures, final versio
    • …
    corecore