A key ecological parameter for planktonic copepods studies is their
interspecies encounter rate which is driven by their behaviour and is strongly
influenced by turbulence of the surrounding environment. A distinctive feature
of copepods motility is their ability to perform quick displacements, often
dubbed jumps, by means of powerful swimming strokes. Such a reaction has been
associated to an escape behaviour from flow disturbances due to predators or
other external dangers. In the present study, the encounter rate of copepods in
a developed turbulent flow with intensity comparable to the one found in
copepods' habitat is numerically investigated. This is done by means of a
Lagrangian copepod (LC) model that mimics the jump escape reaction behaviour
from localised high-shear rate fluctuations in the turbulent flows. Our
analysis shows that the encounter rate for copepods of typical perception
radius of ~ {\eta}, where {\eta} is the dissipative scale of turbulence, can be
increased by a factor up to ~ 100 compared to the one experienced by passively
transported fluid tracers. Furthermore, we address the effect of introducing in
the LC model a minimal waiting time between consecutive jumps. It is shown that
any encounter-rate enhancement is lost if such time goes beyond the dissipative
time-scale of turbulence, {\tau}_{\eta}. Because typically in the ocean {\eta}
~ 0.001m and {\tau}_{\eta} ~ 1s, this provides stringent constraints on the
turbulent-driven enhancement of encounter-rate due to a purely mechanical
induced escape reaction.Comment: 11 pages, 10 figure