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Reaction-diffusion processes can be adopted to model a large number of dynamics on complex
networks, such as transport processes or epidemic outbreaks. In most cases, however, they have
been studied from a fermionic perspective, in which each vertex can be occupied by at most one
particle. While still useful, this approach suffers from some drawbacks, the most important probably
being the difficulty to implement reactions involving more than two particles simultaneously. Here
we introduce a general framework for the study of bosonic reaction-diffusion processes on complex
networks, in which there is no restriction on the number of interacting particles that a vertex
can host. We describe these processes theoretically by means of continuous time heterogeneous
mean-field theory and divide them into two main classes: steady state and monotonously decaying
processes. We analyze specific examples of both behaviors within the class of one-species process,
comparing the results (whenever possible) with the corresponding fermionic counterparts. We find
that the time evolution and critical properties of the particle density are independent of the fermionic
or bosonic nature of the process, while differences exist in the functional form of the density of
occupied vertices in a given degree class k. We implement a continuous time Monte Carlo algorithm,
well suited for general bosonic simulations, which allow us to confirm the analytical predictions
formulated within mean-field theory. Our results, both at the theoretical and numerical level, can
be easily generalized to tackle more complex, multi-species, reaction-diffusion processes, and open a
promising path for a general study and classification of this kind of dynamical systems on complex
networks.

PACS numbers: 89.75.-k, 87.23.Ge, 05.70.Ln

I. INTRODUCTION

Many natural, social, and artificial systems exhibit
heterogeneous patterns of connections and interactions
that can be naturally described in terms of networks or
graphs [1]. Thus, complex network theory turns out to be
the natural framework in which the functional and struc-
tural properties of complex systems belonging to com-
pletely different domains can be rationalized and inves-
tigated [2, 3, 4, 5]. This approach has recently proved to
be very powerful, and systematic statistical analysis have
allowed to recognize the existence of many characteristic
features shared by a large class of different systems, the
most peculiar being the small-world property [6] and a
large connectivity heterogeneity yielding a scale-free de-
gree distribution [7]. A graph is said to be small-world
when the average topological distance between any pair
of vertices is “small”, scaling logarithmically or slower
with the system size N . On the other hand, defining the
degree k of a vertex as the number of connections linking
it to other vertices, scale-free (SF) networks are charac-
terized by a degree distribution P (k) that decreases as a
power-law,

P (k) ∼ k−γ , (1)

where γ is a characteristic degree exponent, usually in
the range 2 < γ < 3.
The distinctive structural properties of networked sys-

tems, beyond being intrinsically interesting, have also a
strong impact on the dynamical processes taking place
on such systems [8], which can have practical implica-
tions in, e.g., understanding traffic behavior in techno-

logical systems such as the Internet [9]. In particular,
the heterogeneous connectivity pattern of SF networks
with diverging second moment 〈k2〉 (i.e., with γ ≤ 3) can
lead to very surprising dynamical properties, such as an
extreme weakness in front of targeted attacks, aimed at
destroying the most connected vertices [10, 11], as well
as to the propagation of infective agents [12, 13]. After
those initial discoveries, a large series of new results has
been put forward and we refer the reader to Refs. [8, 14]
for recent reviews on the subject.
A powerful framework to describe many dynamical

processes in a most general way is given by the the-
ory of reaction-diffusion (RD) processes [15]. RD pro-
cesses are defined in terms of different kinds of parti-
cles or “species”, which diffuse stochastically (usually by
performing a random walk) and interact among them ac-
cording to a given set of reaction rules. Apart from their
natural application to describe chemical reactions, RD
processes are useful to represent any system in which dif-
ferent kinds of “agents” diffuse in space and dissappear,
are created, or change their state, according to the state
of other agents in a given neighborhood. An example of
this kind of processes is the spread of diseases in pop-
ulation systems. An epidemic process leading to an en-
demic state can be described by the Susceptible-Infected-
Susceptible (SIS) model [16], which corresponds to an
RD process with two species (individuals), representing
susceptible (S) and infected (I) individuals, which dif-
fuse (with possible different diffusion rates) and interact
through the reactions

S + I → 2I,
I → S,

(2)
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representing susceptible individuals becoming infected
upon encountering an infected individual, and infected
individuals spontaneously recovering.

RD processes on regular topologies (Euclidean lattices)
have been extensively studied, and an elegant formalism
has been developed to allow for a general description in
terms of field theories [17]. On the other hand, the ef-
fects of more complex, heterogeneous, topologies have
been taken into account only recently for simple pro-
cesses [18, 19, 20, 21, 22, 23], and a systematic descrip-
tion of this interesting problem is still lacking. More-
over, so far most of the attention has been devoted to
the restricted case of fermionic (or microscopic, in the
chemistry jargon) RD processes, in which a vertex of
the network cannot be occupied by more than one par-
ticle. In this context, numerical and analytical results
have been put forward for the most simple RD pro-
cesses, namely the diffusion-annihilation [18, 19] and the
diffusion-coagulation [18, 21] processes. Although these
results are undoubtedly interesting and offer an initial
insight into the behavior of RD processes in heteroge-
neous networks, the adopted fermionic approach suffers
from two considerable conceptual drawbacks: (i) there is
no systematic framework for the description of this kind
of processes, and both numerical models and theoretical
approximations (through heterogeneous mean-field the-
ory) must be considered on a case by cases basis; and
(ii) it is relatively easy to deal with RD processes with
at most order-two reactions (involving at most two par-
ticles), but it becomes more problematic to implement
reactions among three or more particles. Thus, for ex-
ample, a fermionic study of the three particles reaction
A+B+C → ∅ [23] requires the introduction of an artifi-
cial “intermediate” particle, created from the reaction of
two particles, and that reacts itself with a third, leading
to the actual annihilation event. In this sense, it seems
more natural and realistic to consider instead bosonic (or
mesoscopic) processes, in which there are no restrictions
on the vertex occupancy, and for which, levering in what
is already known for Euclidean lattices, it is possible to
develop systematic analytical and numerical formalisms.
Moreover, while some processes may naturally fit into a
fermionic framework, other are intrinsically bosonic. For
example, during the spreading of a disease (say HIV)
on a social interaction network, each individual can only
change its state (become infected) by contagion through
one acquaintance in the network. However, the diffusion
of a disease at the level of airport networks (for example,
SARS) is better modeled by taking into account the num-
ber of infected individuals in each city [24]. The bosonic
version of RD processes on complex networks has been
so far neglected, with the exception of Ref. [25], where it
has been applied to the particular case of the SIS process,
Eq. (2) (see also Ref. [26] for an extension of the model
to weighted networks).

In this paper, we investigate the properties of gen-
eral bosonic RD processes in complex heterogeneous net-
works, adopting a twofold continuous time approach

based on heterogeneous mean-field (MF) theory and nu-
merical simulations. We develop a general MF formalism,
based on the standard law of mass action, that is able to
describe any RD processes on general complex networks,
taking a particularly simple form in one-species RD sys-
tems. For this case, general predictions, independent of
the particular form of the reaction rules, can be made in
the small particle density (diffusion-limited) regime. The
formalism is applied and fully solved in two particular
cases, the branching-annihilating random walk and the
diffusion-annihilation problem, examples of RD systems
with stationary states and monotonously decaying parti-
cle densities, respectively. In order to check the possible
differences between the bosonic and fermionic implemen-
tations of the same problem, we consider at the same time
both examples from the fermionic MF theory perspective.
We find that both formalisms provide analogous results
for the time evolution and critical properties of the dy-
namics. However, the two approaches are not completely
equivalent: the functional form of the particle density
restricted to vertices of given degree k varies widely be-
tween the two approaches. Finally we check our results,
and in particular the equivalence between fermionic and
bosonic formalisms, by means of extensive computer sim-
ulations. Contrarily to previous approaches [25], in which
a parallel updating scheme was defined for the particular
model under scrutiny, we adopt a sequential continuous
time algorithm that can be easily generalized for any RD
process.

The paper is organized as follows. In Sec. II we de-
fine general bosonic RD processes in complex networks.
Sec. III is devoted to the introduction of a generic ana-
lytical framework based on bosonic heterogeneous MF
formalism, from which general predictions can be ob-
tained for any kind of RD process. In Sec. IV we con-
sider and solve some particular examples of RD processes,
exhibiting steady states and a monotonously decaying
density, namely the branching annihilating random walk
and diffusion-annihilation processes, respectively. The
predictions of heterogeneous MF theory are validated in
Sec. V by means of numerical simulations. Finally, in
Sec. VI we summarize and discuss our results.

II. BOSONIC RD PROCESSES IN COMPLEX

NETWORKS

We consider RD processes on complex networks, which
are fully defined by the adjacency matrix aij , which takes
the values aij = 1 if vertices i and j are connected by
an edge, and zero otherwise. From a statistical point of
view, the network can also be described by its degree
distribution P (k) and its degree correlations, given by
the conditional probability P (k′|k) that a vertex of de-
gree k is connected to a vertex of degree k′ [27]. Both
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descriptions are related through the formulas

P (k) =
1

N

∑

i

δ(k,
∑

j

aij), (3)

where δ(x, y) is the Kronecker δ symbol, and [19]

P (k′|k) = 1

NkP (k)

∑

i∈k

∑

j∈k′

aij , (4)

N being the size of the network.
RD processes are defined as dynamical systems involv-

ing particles of S different species Aα, α = 1, . . . , S,
that diffuse stochastically on the vertices of the network
and interact among them upon contact on the same ver-
tex, following a predefined set of R reaction rules. In a
bosonic scheme, there is no limitation in the number of
particles that a vertex can hold, therefore the occupa-
tion numbers nα

i (t), denoting the number of particles of
species Aα in vertex i at time t, can take any value be-
tween 0 and ∞. We will assume that diffusion in the net-
work is homogeneous and takes place by means of random
jumps between nearest neighbors vertices. Therefore, an
Aα particle with a diffusion coefficient Dα at vertex i will
jump with a probability per unit time Dα/ki to a vertex
j adjacent to i, where ki is the degree of the first vertex.
The reaction rules that particles experience upon con-

tact, on the other hand, can be defined in the most gen-
eral way by the corresponding stoichiometric equations
[28]

S
∑

α=1

qrαAα
λr−→

S
∑

α=1

(qrα + prα)Aα, r = 1, . . . , R, (5)

where qrα > 0 (we do not consider reactions involving the
spontaneous creation of particles) and prα ≥ −qrα. The
coefficients qrα and prα define the r-th reaction process,
while λr is the probability per unit time that the reaction
takes place. Given that the reactions take place inside
the vertices, the only variation between a RD process
in a complex network and a regular lattices lies in the
diffusion step. As we will see, however, this variation
alone can induce important differences between processes
in these two reaction substrates.

III. HETEROGENEOUS CONTINUOUS-TIME

BOSONIC MEAN-FIELD FORMALISM

A first analytical description of dynamical processes
of complex networks can be obtained by means of het-
erogeneous MF theory [8]. MF theory applied to net-
works is based in the assumption that all vertices with
the same degree share essentially the same dynamic prop-
erties, and can therefore be consistently grouped into the
same degree class. In the case of RD processes, and in
order to allow for the possibility of network heterogene-
ity and large degree fluctuations, it becomes necessary

to work with the density spectra ρα,k(t) [12, 29], repre-
senting the partial density of Aα particles in vertices of
degree k, and that is defined as

ρα,k(t) =
n̄α,k(t)

Nk
, (6)

where n̄α,k(t) is the average occupation number of par-
ticles Aα in the class of vertices of degree k and Nk =
NP (k) is the number of vertices of degree k in a network
of size N . From the density spectra, the total density of
Aα particles is given by

ρα(t) =
∑

k

P (k)ρα,k(t). (7)

Heterogeneous MF theory is given in terms of rate
equations for the variation of the partial densities ρα,k(t),
which in this case are composed by two terms: one deal-
ing with the (linear) diffusion and another with the re-
actions, so we can write

∂ρα,k(t)

∂t
= Dα +Rα. (8)

The diffusion term is easy to obtain by considering the
diffusion dynamics at the vertex level. The total change
ofAα particles at vertex i is due to the outflow of particles
jumping out at rate Dα, plus the inflow corresponding to
jumps of particles from nearest neighbors. Therefore, the
diffusive component at the single vertex level satisfies the
rate equation [19]

∂nα,i(t)

∂t
= −Dαnα,i(t) +Dα

∑

j

aij
kj

nα,j(t). (9)

Considering the density spectrum as the average

ρα,k(t) =

∑

i∈k nα,i

Nk
(10)

and assuming that nα,i(t) ≃ n̄α,k(t), ∀i ∈ k, we obtain

Dα = −Dαρα,k(t) +Dαk
∑

k′

P (k′|k)
k′

ρα,k′(t), (11)

where we have used Eq. (4).
The reaction term can be directly derived from the law

of mass action, according to which the rate of any (chemi-
cal) reaction is proportional to the product of the concen-
trations (or densities) of the reactants [30]. Considering
the set of all allowed processes Eq. (5), we obtain:

Rα =
∑

r

prαλr

∏

β

[ρβ,k(t)]
qrβ . (12)

Collecting all terms, the rate equations for the density
spectra can be written in the most general case as

∂ρα,k(t)

∂t
= −Dαρα,k(t) +Dαk

∑

k′

P (k′|k)
k′

ρα,k′(t)

+
∑

r

prαλr

∏

β

[ρβ,k(t)]
qrβ , (13)
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while the total densities satisfy the equations

∂ρα(t)

∂t
=
∑

r

prαλr

∑

k

P (k)
∏

β

[ρβ,k(t)]
qrβ , (14)

where we have used the degree detailed balance condition
[31]

kP (k)P (k′|k) = k′P (k′)P (k|k′). (15)

It is noteworthy that Eq. (14) is explicitly independent
of the particular form of the network’s degree correla-
tions, which only appear implicitly through the form of
the density spectra ρα,k.
In the following, we will focus in the analysis of one-

species RD processes, in which a single class of particles
diffuse and react in the system, i.e. S = 1. In this case,
reactions of the same order can be grouped, and Eqs. (13)
and (14) take the simpler forms, omitting the α index,

∂ρk(t)

∂t
= k

∑

k′

P (k′|k)
k′

ρk′(t) +
∑

q>0

Γq[ρk(t)]
q , (16)

∂ρ(t)

∂t
= ρ(t) +

∑

q>0

Γq

∑

k

P (k)[ρk(t)]
q, (17)

where

Γq = −δ(q, 1) +
∑

r

prλrδ(q
r , q), (18)

and we have absorbed the diffusion rate D into a redefi-
nition of the time scale and the reaction rates λr.
RD processes with non diverging solutions for Eqs. (16)

and (17) can be generally grouped in two classes: those
yielding a particle density monotonously decaying in time
and those exhibiting one or more steady states, with
possibly associated phase transitions between different
steady states. We will examine more closely these two
cases in the following subsections. While a full theoreti-
cal analysis requires detailed information about the par-
ticular form of the reactions involved and the network’s
degree correlations, it is possible, however, to make very
general statements, and to obtain the asymptotic form of
the solutions when the particle density ρ is very small.

A. Steady-state Bosonic RD processes

RD processes with steady states possess nonzero solu-
tions for the long time limit of Eq. (16). In particular,
imposing ∂tρk = 0, the steady states correspond to the
solutions of the algebraic equation

ρk = − k

Γ1

∑

k′

P (k′|k)
k′

ρk′(t)−
∑

q>1

Γq

Γ1
[ρk]

q, (19)

where we assume Γ1 6= 0. Since we do not consider the
spontaneous creation of particles from void (Γ0 = 0),

ρk = 0 is a solution of Eq. (19). This equation is ex-
tremely difficult to solve for a general correlation pattern
P (k′|k), in order to find nonzero solutions. The condi-
tion for this nonzero solution to exist, however, can be
obtained for any correlation pattern by performing a lin-
ear stability analysis [31] in Eq. (16). Neglecting higher
order terms, Eq. (16) becomes

∂ρk(t)

∂t
≃
∑

k′

Lkk′ρk′(t), (20)

where we have defined the Jacobian matrix

Lkk′ = Γ1δ(k
′, k) +

kP (k′|k)
k′

. (21)

It is easy to see that this matrix has a unique eigenvector
vk = k and a unique eigenvalue Λ = Γ1 + 1. Therefore,
defining Γ̃1 = Γ1+1 ≡∑r p

rλrδ(q
r , 1), a nonzero steady

state is only possible when Γ̃1 > 0, which translates in
the presence of reaction processes with particle creation
starting from a single particle. A phase transition from
a zero density absorbing state [32] can thus take place

when Γ̃1 changes sign. It is worth noting that the tran-
sition threshold takes the same form as in homogeneous
MF theory, and it is thus independent of the network
topology, contrary to what is found in the bosonic SIS
model [25], and similar to the case of the fermionic con-
tact process (CP) [33]. This is due to the fact that SIS
model is represented in terms of a two-species RD pro-
cess, see Eq. (2), in which, moreover, a conservation rule
(total number of particles) is imposed. This conserva-
tion rule, coupled to the diffusive nature of both species,
is at the core of the zero threshold observed in the SIS on
SF networks in the thermodynamic limit [25]. The con-
tact process, on the other hand, belongs (in Euclidean
lattices) to the same universality class as the one-species
Schlögl RD process [34], hence the topology-independent
threshold in the fermionic CP in networks can be under-
stood in view of the general result just derived in the
bosonic framework.
To make further progress we restrict our attention to

the case of uncorrelated networks, in which [35]

P (k′|k) = k′P (k′)

〈k〉 . (22)

In this case, Eq. (19) can be rewritten as

ρk = − kρ

〈k〉Γ1
−
∑

q>1

Γq

Γ1
[ρk]

q, (23)

Solving Eq. (23), we find an expression ρk(ρ), depending
implicitly on the particle density. Inserting this solution
into Eq. (7), we obtain a self-consistent equation for ρ,

ρ =
∑

k

P (k)ρk(ρ), (24)

to be solved in order to obtain ρ as a function of the RD
parameters.
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An approximate solution of Eq. (23) can be obtained
in the limit of a very small particle density, that is, very
close to the threshold. In this case, we can neglect the
higher order terms in Eq. (23) and obtain

ρk ≃ − k

〈k〉Γ1
ρ, (25)

which makes only sense for Γ1 < 0 (i.e. 0 < Γ̃1 < 1, close
to the phase transition). Inserting this expression into
the self-consistent equation (24) yields no information.
We must use, instead, the self-consistent relation coming
from the steady-state condition of Eq. (17), namely

ρ = − 1

Γ̃1

∑

q>1

Γq

∑

k

P (k)[ρk]
q. (26)

Inserting (25) into Eq. (26), and keeping only the term
corresponding to the reactions of lowest order qm > 1,
we obtain

ρ ≃
(

(〈k〉|Γ1|)qm
〈kqm〉|Γqm |

)1/(qm−1)

Γ̃
1/(qm−1)
1 , (27)

where we have assumed Γqm < 0. This solution indicates
that, in a finite size network and for sufficiently small
densities, all bosonic RD systems with an absorbing state
show a critical point Γ̃c

1 = 0, with an associated density
critical exponent β = 1/(qm − 1), coinciding again with
the homogeneous MF solution. For SF networks with
degree exponent γ ≤ qm +1, the particle density is addi-
tionally suppressed by a diverging factor 〈kqm〉−1/(qm−1),
signaling the presence of very strong size effects. For
γ > qm + 1, the particle density is size independent, and
we recover the standard MF solution for homogeneous
systems.

B. Monotonously decaying Bosonic RD processes

As we have seen in Sec. III A, a necessary condition
for a RD system to have a decaying density is to have
Γ̃1 < 0. In this case, since no steady states are present,
the full Eq. (16) must be solved. One can proceed by
using a quasi-stationary approximation [19], assuming
∂tρk(t) ≪ ρk(t), which will be correct at low densities
if ρk(t) decays as a power law. Thus, neglecting the left-
hand-side of Eq. (16), we obtain again Eq. (23). Solving
it and inserting the corresponding expression of ρk back
into Eq. (17), we have an approximate equation for ρ(t)
that can give information about the long time behavior
of the RD process.
This procedure can be simplified when considering the

limit of very large time and very small particle density,
where the concentration of particles is so low that the RD
process is driven essentially by diffusion. In this diffusion-
limited regime, it is possible to estimate the behavior of
the particle density, which turns out to be independent of
the correlation pattern of the network. Let us consider

the limit case Γ̃1 = 0, that is, in the absence of one
particle reactions. Then, in the limit ρk → 0, linear
terms dominate in Eq. (16) and we can write

∂ρk(t)

∂t
≃ −ρk(t) + k

∑

k′

P (k′|k)
k′

ρk′ , (28)

that is, the density behaves as in a pure diffusion prob-
lem. The situation is thus the following: the time scale
for the diffusion of the particles is much smaller than the
time scale for two consecutive reaction events, therefore
at any time the partial density is well approximated by
a pure diffusion of particles [36, 37, 38],

ρk(t) ≃
kρ(t)

〈k〉 , (29)

proportional to the degree k and the total concentra-
tion of particles, and independent of degree correlations.
Inserting this quasi-stationary approximation back into
Eq. (17), we obtain

∂ρ(t)

∂t
≃
∑

q>1

Γq〈kq〉
〈k〉q ρq(t). (30)

For small ρ, this equation is dominated by the reactions
of smallest order qm. Therefore, assuming Γqm < 0, we
obtain the same decay in time as in the homogeneous MF
theory,

ρ(t) ∼
(

(qm − 1)|Γqm |〈kqm〉
〈k〉qm

)−1/(qm−1)

t−1/(qm−1),

(31)
again depressed by a size factor 〈kqm〉−1/(qm−1) for γ <
qm + 1, and completely independent of the correlation
pattern.
If we were interested in the time behavior at interme-

diate densities, finally, the full Eq. (17) with the quasi-
stationary approximation must be solved. This in general
can only be done for uncorrelated networks.

IV. APPLICATIONS

In this Section we will apply the bosonic MF formal-
ism developed above to the study of two examples of one-
species RD processes, the branching-annihilating random
walk and the diffusion-annihilation processes, represen-
tative of the classes of steady-state and monotonously
decaying processes, respectively. For the sake of compar-
ison, we will review also the predictions of corresponding
fermionic MF theory, developed for an interacting parti-
cle system defined to simulate the process under scrutiny.

A. Steady-state processes: Branching-annihilating

random walks

On of the simplest RD processes leading to a nontriv-
ial steady state is the generalized branching-annihilating
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random walk (BARW), defined by the reactions [39]

qA
λ−→ ∅

A
µ−→ (p+ 1)A

, (32)

that is, particles annihilate in q-tuples with a rate λ, and
produce a number p of offspring with rate µ. Homoge-
neous MF theory predicts a continuous phase transition
at µc = 0, with a particle density in the active phase

ρ ∼ µ1/(q−1). (33)

For the particular case q = 2, the transition belongs to
different universality classes, according to the parity of
the number of offsprings p [39]. If p is an odd number,
it belongs to the universality class of directed percola-
tion [32], the same as the CP. On the other hand, an
even p, for which the parity of the number of particles
in conserved, leads to a new, and different, universality
class.

1. Fermionic MF theory

When analyzing the process given by Eq. (32), the lim-
itations of a fermionic approach become evident. Indeed,
reactions involving more than two particles are difficult
to describe in a fermionic framework, even from a concep-
tual point of view. In fermionic models [18, 21, 33], usu-
ally diffusion and reactions are intimately linked, since
particles jump between nearest neighbors and interact
upon landing on an occupied vertex. Thus, when more
than two particles are involved in a single reaction, com-
plex schemes have to be devised to represent the process,
schemes which, on the other hand, cannot be easily han-
dled with standard sequential algorithms. Possible solu-
tions could be the use of auxiliary “intermediate” parti-
cles [23], or the design new algorithms that include the
circumstance of different particles diffusing at the same
time, but it is easy to figure out situations that would be
potentially critical for such schemes (e.g. what happens
in a pure diffusive process when one particle tries to move
to an occupied vertex, while its starting point has been
occupied by other particle?). On the other hand, it would
be possible to construct such reaction schemes by involv-
ing a particle and two or more of its nearest neighbors, in
a reaction step independent of diffusion. Such formalism,
although possible in principle, would be nevertheless not
general, since the number of reacting particles would be
limited by the connectivity of the considered vertex, and
it would also be more cumbersome to analyze from a MF
perspective.
To allow for a consistent fermionic description, we will

restrict our attention to the particular case q = 2, in
which only binary annihilation events are allowed, and
that can be defined as a fermionic interacting particle
system given by the rules:

• Each vertex can be occupied by at most one particle

• With probability f , a particle jumps to a randomly
chosen nearest neighbor.

– If the neighbor is empty, the particle fills it,
leaving the first vertex empty.

– If the neighbor is occupied, the two particles
annihilate, leaving both vertices empty.

• With probability 1 − f , the particle generates p
offsprings. To do so:

– p different neighbors are randomly chosen

– A new offspring is created on every selected
vertex, provided this is empty (if it is already
occupied, nothing happens).

In order to avoid problems with the offspring generation
step, the minimum degree of the network is taken to be
m ≥ p. We note that this algorithm is not parity conserv-
ing, but we do not expect this to be relevant in networks
at MF level.
With this implementation of the fermionic BARW in

complex networks, we can see that the corresponding MF
theory for the density spectrum takes the form

∂ρk
∂t

= −fρk − fkρk
∑

k′

1

k′
P (k′|k)ρk′

+ fk(1− ρk)
∑

k′

1

k′
P (k′|k)ρk′

+ (1 − f)k(1− ρk)
∑

k′

p

k′
P (k′|k)ρk′ , (34)

where p/k′ is the probability that one offspring of a par-
ticle in a vertex of degree k′ arrives at a given nearest
neighbor. For the particular case of uncorrelated net-
works, this equation simplifies to

∂ρk
∂t

= −ρk −
kρ

〈k〉ρk + (1− ρk)(1 + ν)
kρ

〈k〉 , (35)

where we have rescaled the time and defined ν = (1 −
f)p/f . The steady-state condition ∂tρk = 0 yields the
expression

ρk =
k(1 + ν)ρ/〈k〉

1 + k(2 + ν)ρ/〈k〉 . (36)

Application of the self-consistent condition ρ =
∑

k P (k)ρk yields

ρ =
∑

k

P (k)k(1 + ν)ρ/〈k〉
1 + k(2 + ν)ρ/〈k〉 ≡ Ψ(ρ). (37)

The condition for the existence of a nonzero solution,
Ψ′(0) ≤ 1, yields the threshold for the existence of a
steady state

ν > νc = 0 ⇒ f < fc = 1. (38)
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In order to obtain the asymptotic behavior of ρ as a func-
tion of ν in infinite SF networks, we proceed to integrate
Eq. (37) in the continuous degree approximation, replac-
ing sums by integrals and using the normalized degree
distribution P (k) = mγ−1(γ − 1)k−γ , where m is the
minimum degree in the network, to obtain

ρ =
1 + ν

2 + ν
F [1, γ − 1, γ,− 〈k〉

m(2 + ν)ρ
], (39)

where F [a, b, c, z] is the Gauss hypergeometric func-
tion [40]. Expanding the hypergeometric function in the
limit of small ρ, close to the absorbing phase, we recover
at lowest order for γ > 3 the homogeneous MF result
ρ ∼ ν. For 2 < γ < 3, on the other hand, we obtain

ρ ∼ ν1/(γ−2), (40)

corresponding to an absorbing state transition, given by
the control parameter ν, with zero threshold and a criti-
cal exponent β = 1/(γ − 2).
In any finite network this behavior is modified by

finite size effects. To analyze it, we define Θ =
∑

k kP (k)ρk/〈k〉. The equation for the total density be-
comes then

∂ρ

∂t
= ρ[ν − (2 + ν)Θ]. (41)

By imposing stationarity (∂tρ = 0) and non-zero solution
(ρ 6= 0) one obtains

Θ =
ν

(2 + ν)
. (42)

The expression of ρk, Eq. (36), can be simplified in the
small density regime (ρ ≪ 〈k〉/[k(2 + ν)], ∀k) as

ρk ≃ k(1 + ν)ρ

〈k〉 . (43)

By substituting this expression in the definition of Θ and
inserting it into Eq. (42) one obtains

ρ =
〈k〉2
〈k2〉

ν

(1 + ν)(2 + ν)
. (44)

SF networks of finite size have a cutoff or maximum de-
gree kc(N) which is a function of N[35]. Therefore, for
uncorrelated SF networks with degree cutoff scaling with
the network size as kc(N) ∼ N1/2, finite size effects in
the fermionic BARW lead to a size dependent density
scaling as

ρ ∼ N
−(3−γ)

2 ν. (45)

2. Bosonic MF theory

A bosonic formalism imposes no practical restriction
to the maximum order that the reaction steps may

have. Thus, the general BARW defined by the reactions
Eq. (32) yields, within the bosonic MF formalism, to a

rate equation Eq. (16) with Γ̃1 = pµ and Γq = −qλ, and
Γq′ = 0, for q′ 6= {1, q}, corresponding to an absorbing
state phase transition at a critical particle creation rate
µc = 0. The full analysis of this equation for any q can be
cumbersome, but we can immediately predict the behav-
ior at large times in finite networks, which will be given
by Eq. (27), namely

ρ ≃
(

[〈k〉p(1 − pµ)]q

〈kq〉qλ

)1/(q−1)

µ1/(q−1)

∼ N−
q+1−γ

2(q−1) µ1/(q−1), (46)

for uncorrelated networks.
To proceed further, we consider the simplest case q =

2, in which the density spectrum fulfills the equation

|Γ2|ρ2k − Γ1ρk − kρ

〈k〉 = 0, (47)

yielding the solution

ρk =
|Γ1|
2|Γ2|

(

−1 +

√

1 +
4|Γ2|ρk
〈k〉|Γ1|2

)

, (48)

where, in order to ensure the existence of the absorbing
state, we must impose the condition Γ1 < 0. In the large
kρ regime, we observe here a distinctively square root
dependence,

ρk ≃
√

kρ

|Γ2|〈k〉
, (49)

different from the limiting constant behavior observed
in the corresponding fermionic formulation, Eq. (36), as
well as in other fermionic models [12, 19, 33]. In the
low density regime, on the other hand, we can Taylor
expand Eq. (48) and recover, for the particular case of the
BARW, the general relation Eq. (25). Thus, for particle
densities smaller than the crossover density ρ×, with

4|Γ2|ρ×kc
〈k〉|Γ1|2

= 1, (50)

we recover, for uncorrelated SF networks, the asymptotic
finite size solution for qm = 2, given by Eq. (46).
For networks in the infinite size limit, introducing the

density spectrum of Eq. (48) into the self-consistent equa-
tion Eq. (24), we obtain

ρ =
∑

k

P (k)
|Γ1|
2|Γ2|

(

−1 +

√

1 +
4|Γ2|ρk
〈k〉(Γ1)2

)

. (51)

In the continuous degree approximation, we have

ρ =
|Γ1|
2|Γ2|

(

−1 +
2(γ − 1)

2γ − 3

√

4|Γ2|mρ

〈k〉|Γ1|2
×

× F [−1

2
, γ − 3

2
, γ − 1

2
,−〈k〉|Γ1|2

4|Γ2|mρ
]

)

. (52)
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Expanding F [a, b, c, z] in the limit of small ρ, we find

ρ ≃ ρ

|Γ1|
+

|Γ1|
4|Γ2|

√
π
Γ(2− γ)Γ(γ − 3/2)×

×
(

4m|Γ2|ρ
〈k〉(Γ1)2

)γ−1

+O(ρ2). (53)

At lowest order, and for γ > 3, we recover the homoge-
neous MF solution ρ ∼ Γ̃1 ∼ pµ. On the other hand, for
2 < γ < 3, the nonzero solution of this equation is

ρ ∼ Γ̃
1/(γ−2)
1

|Γ2|
∼ (pµ)1/(γ−2)

λ
, (54)

corresponding to an absorbing state transition, given by
the control parameter µ, with zero threshold and a crit-
ical exponent β = 1/(γ − 2), in full agreement with
the results for the corresponding fermionic version of
the model. We can use this last result to estimate the
crossover density to the finite size solution Eq. (46). In-
serting Eq. (54) into Eq. (50), and considering Γ2 as a
constant, we obtain that the finite size solution should
be observed for a control parameter

µ < µ× =
k2−γ
c

p
. (55)

Therefore, for uncorrelated SF networks, finite size ef-
fects in the bosonic BARW should appear for a particle
creation rate smaller that µ× ∼ N−(γ−2)/2.

B. Decay processes: Diffusion-annihilation process

The simplest case in the class of monotonously decay-
ing RD processes corresponds to the general diffusion-
annihilation process

qA
λ−→ ∅, (56)

which is the particular case of the BARW analyzed in
Sec. IVA with µ = 0 (at the critical point). The ho-
mogeneous MF solution predicts a decay of the particle
density

ρ(t) ∼ t−1/(q−1). (57)

In Euclidean lattices of dimension d, dynamical renor-
malization group arguments [41] show that the behavior
in Eq. (57) is correct for d above the critical dimension
dc = 2/(q − 1). Below it, we have instead ρ(t) ∼ t−d/2,
with logarithmic corrections appearing at d = dc.

1. Fermionic MF Theory

As discussed in Sec. IVA1, in order to allow for a
consistent fermionic description, we will restrict our at-
tention to the binary diffusion-annihilation process with
q = 2, which can be implemented as a fermionic inter-
acting system obeying the following rules [18, 19]:

• Each vertex can be occupied by at most one particle

• Each particle jumps with probability f to a ran-
domly chosen nearest neighbor.

• If the neighbor is empty, the particle fills it, leaving
the first vertex empty.

• If the neighbor is occupied, the two particles anni-
hilate, leaving both vertices empty.

This model was analyzed in detail in Ref. [19]. There
it was observed that the rate equation for the density
spectrum reads, in uncorrelated complex networks,

∂ρk
∂t

= −ρk +
k

〈k〉 (1− 2ρk)ρ, (58)

where the probability f has been absorbed into a rescal-
ing of time. With a quasi-stationary approximation, the
density spectrum at large times takes the form

ρk(t) =
kρ(t)/〈k〉

1 + 2kρ(t)/〈k〉 , (59)

which yields as a final equation for the density of particles

∂ρ

∂t
= −2

ρ2(t)

〈k〉2
∑

k

P (k)
k2

1 + 2kρ(t)/〈k〉 . (60)

In finite networks, for times larger that t > t×, with
kcρ(t×) ≃ 1, the denominator in Eq. (60) can be sim-
plified to 1, to obtain the limit behavior in finite size
networks

ρ(t) ≃ 〈k〉2
2〈k2〉 t−1. (61)

In a network of infinite size, the full Eq. (60) must be
integrated. Within the continuous degree approximation,
this equation takes the form

∂ρ

∂t
= −ρ(t)F [1, γ − 2, γ − 1,−〈k〉/2mρ(t)]. (62)

Expanding the Gauss hypergeometric function for small
ρ, we obtain, for γ > 3, the asymptotic long time behav-
ior ρ(t) ∼ t−1 while for 2 < γ < 3, one has

ρ(t) ∼ t−1/(γ−2). (63)

2. Bosonic MF Theory

The general diffusion-annihilation process defined by
reaction Eq. (56) leads to the general rate equation

Eq. (16), with parameters Γ̃1 = 0, Γq = −qλ, and
Γq′ = 0, for q′ 6= {1, q}. In finite networks and for large
times, the behavior of the particle density will be given
by Eq. (31), i.e.

ρ(t) ≃
(

(q − 1)qλ〈kq〉
〈k〉q

)−1/(q−1)

t−1/(q−1),

∼ N−
q+1−γ

2(q−1) t−1/(q−1), (64)
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the last expression holding for uncorrelated SF networks.
Let us focus again in the simplest case q = 2. The rate

equation for the total density in uncorrelated networks
takes the form

∂ρ(t)

∂t
= −|Γ2|

∑

k

P (k)ρ2k(t). (65)

Applying the quasi-stationary approximation for the den-
sity spectrum, we are led to the second order equation

|Γ2|ρ2k + ρk −
k

〈k〉ρ = 0, (66)

whose only positive solution is

ρk =
1

2|Γ2|

(

−1 +

√

1 +
4|Γ2|k
〈k〉 ρ

)

. (67)

For a finite network with degree cut-off kc, when the
density is smaller that

ρ× =
〈k〉
4|Γ2|

k−1
c , (68)

we can Taylor expand Eq. (67) to obtain the expres-
sion ρk ≃ kρ/〈k〉 and the asymptotic behavior given by
Eq. (64). On the other hand, for large k and ρ, we obtain

ρk ≃
√

kρ

4|Γ2|〈k〉
, (69)

and we find again the peculiar square root behavior of
the density spectrum on k, distinctive from the fermionic
prediction.
The general solution in the infinite network limit

can be obtained in this case by substituting the quasi-
stationary approximation (67) into Eq. (65), to obtain

∂ρ

∂t
= − 1

|Γ2|
(1 + 2|Γ2|ρ) + |Γ2|

∑

k

P (k)

√

1 +
4|Γ2|k
〈k〉 ρ.

(70)
In the continuous degree approximation, and for SF net-
works, we obtain in the infinite network size limit

∂ρ

∂t
= −ρ− 1

2|Γ2|
+

γ − 1

|Γ2|(2γ − 3)

√

4|Γ2|mρ

〈k〉 ×

× F [−1

2
, γ − 3

2
, γ − 1

2
,− 〈k〉

4|Γ2|mρ
]. (71)

Considering the limit of large times and small densities,
we can expand the hypergeometric function [40], to ob-
tain

∂ρ

∂t
≃ Γ(2− γ)Γ(γ − 3/2)

4|Γ2|
√
π

(

4m|Γ2|ρ
〈k〉

)γ−1

+O(ρ2) (72)

for 2 < γ < 3, whose solution is

ρ(t) ∼ |Γ2|γ−2t−1/(γ−2) ∼ λγ−2t−1/(γ−2) (73)

that is, a power law decay with an exponent 1/(γ − 2),
again in agreement with the fermionic implementation
of the process. From this expression we can estimate the
time at which the crossover density in Eq. (68) is reached
in SF network, namely

t× ∼ kγ−2
c ∼ N (γ−2)/2, (74)

taking the same functional form as the crossover control
parameter for BARW in Eq. (55).

V. NUMERICAL SIMULATIONS

As we have seen in the previous Sections, het-
erogeneous MF theory applied to steady state and
monotonously decaying bosonic RD processes can make
general predictions for the asymptotic behavior at finite
networks, as well as give specific solutions for the in-
finite network size limit. In particular, we have seen
that bosonic formalisms provide exactly the same results
as their fermionic counterpart (whenever the fermionic
mapping is possible) regarding the evolution of the par-
ticle density, the only difference being the form of the
density spectra as a function of the degree k. In order to
check these conclusions, we have performed extensive nu-
merical simulations of bosonic and fermionic versions of
the processes considered. To generate the network sub-
strate for the RD processes, we have adopted the uncorre-
lated configuration model (UCM) [42] that has the double
benefit of producing SF networks without degree correla-
tions [43, 44] and with a tunable degree exponent. When
correlations were desired, the configuration model (CM)
[45, 46, 47, 48] was used, with the additional constraint
of lack of multiple connections and self-loops [43, 49, 50].
Numerical simulations of fermionic RD processes must

be tailored on a case by case basis, depending on the
specific interacting particle system chosen to represent
it [18, 19, 21]. As a general rule, simulations are per-
formed following a sequential Monte-Carlo scheme [32].
At the beginning, Nρ0 particles are randomly distributed
on the network, respecting the fermionic constrain that
at most one particle can be present on a single vertex,
i.e. ρ0 ≤ 1. Then, at time t, a particle is randomly
selected, and it undergoes the corresponding stochastic
dynamics. The system is then updated according to the
actions performed by the selected particle, and finally
time is increased as t → t + 1/n(t), where n(t) is the
number of particles at the beginning of the simulation
step. For bosonic processes, we have used a continuous
time formalism, details of which are given in the following
subsection.

A. Continuous time bosonic simulations

Previous approaches to the numerical simulation of
bosonic RD processes on complex networks [25] relied
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on a parallel updating rule in which reaction and diffu-
sion steps alternate: after all vertices have been updated
for reaction, particles diffuse. This approach, while fea-
sible, must again be tailored in a case by case basis, and
strongly depends on the specific reactions of the process
under consideration. Moreover, it introduces a subtle
but relevant problem as far as the density spectrum is
concerned. Indeed, while preserving the average density,
pure diffusion immediately sets up the characteristic lin-
ear behavior ρk(t) ∼ k. Thus, the density spectrum may
assume (very) different aspects if we look at it after the
reaction step or after the diffusion one. In order to over-
come these difficulties we have opted instead for a se-
quential algorithm, which not only is absolutely general,
but is in addition closer to the spirit of the continuous
time rate equations we have developed to describe het-
erogeneous MF theory. The algorithm implemented is
based in the one proposed in Refs. [51, 52] for the case
of regular lattices. For one-species RD processes, the al-
gorithm is described as follows: In networks of size N ,
initial conditions for simulations are usually a number
ρ0N of particles randomly distributed on the network
vertices, with no limitation on the occupation number of
single vertices. To perform the dynamics, we consider
the microscopic configuration {C} of the bosonic system,
which is specified by the occupation number ni at each
vertex i. A standard master equation approach [15] im-
plies that, for RD processes described by Eq. (8), the
average number of events in an infinitesimal time dt is

E(dt, {C}) = dt
∑

i,r

(

qr!λr +
δ(qr, 1)

∑

r′ δ(q
r′ , 1)

)

ω(ni, q
r)

(75)
where

ω(ni, q
r) =

(

ni

qr

)

(76)

is the number of non-ordered qrtuples of particles at ver-
tex i. Since the algorithm considers all reacting q−tuples
as equivalent, it is convenient focusing on reaction or-
ders q rather than on specific reactions r. In general,
a particular RD process defines a finite set Q of al-
lowed reaction orders q, that can be formally indicated
as Q = ({q}| ∃r : qr = q). At each time step one has to:
(i) select a vertex i (ii) select the order q of the candi-
date reaction (iii) determine which reaction r occurs. In
details:

(i) A vertex i is selected with probability Wi/M , where
Wi =

∑

q∈Q ω(ni, q) and M =
∑

i Wi;

(ii) A particular q = q∗ (with q∗ ∈ Q) is selected with
probability ω(ni, q

∗)/Wi;

(iii) A particular reaction r of order qr = q∗ occurs with
probability qr!λr ∆t, where ∆t is a configuration-
independent time constant. In case q∗ = 1, in ad-
dition to reaction processes, the particle has the
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FIG. 1: Average density of the bosonic BARW with q = p =
2 at the steady state on uncorrelated UCM networks with
γ = 2.5. The annihilation rate is kept fixed at λ = 0.1.
Top: Density at the stationary state as a function of µ, for
different network sizes N . At any value of µ, larger network
sizes corresponds to smaller densities. Bottom: Check of the
collapse predicted by Eq. (46). The dashed line has slope 1.

diffusion option, which is chosen with probability
∆t (since we set the diffusion coefficient D = 1).

Time is updated as t → t + ∆t/M . It is clear [51] that
to have valid transition probabilities ∆t must be chosen
so that the condition

(

δ(q, 1) + q!
∑

r:qr=q

λr

)

∆t ≤ 1 (77)

holds for all values of q. With this prescription an average
of E(∆t, {C}) events occur in a time interval ∆t.

B. Branching-annihilating random walks

In our numerical study of the BARW, we first focus
in the behavior of the average particle density in the
steady state as a function of the branching rate. As al-
ready observed in other dynamical systems in SF net-
works [19, 53], we find it difficult to observe the infinite
size limit behavior [Eq. (40) or (54)] in either bosonic
of fermionic simulations, for the network sizes available
within our computer resources. Therefore, we report the
results for the finite size behavior, expected in finite net-
works, Eqs. (45) and (46). In Fig. 1 we plot the average
density in the active phase of the bosonic BARW with
q = p = 2 as a function of the branching rate µ. In
the parameter range shown in this Figure (top panel),
we observe that the density follows a linear behavior as
a function of the branching parameter µ. This linear de-
pendence on µ corresponds to the asymptotic finite size
solution predicted by Eq. (46), which is expected to hold
in networks of finite size and for very small steady state
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FIG. 2: Average density of the fermionic BARW with q =
p = 2 at the steady state on uncorrelated UCM networks with
γ = 2.5. Top: Density at the stationary state as a function
of the parameter ν, for different network sizes N . Bottom:
Check of the collapse predicted by Eq. (45). The dashed line
has slope 1.

densities. We can further check the accuracy of the pre-
diction by noticing that, in SF uncorrelated networks,
the prefactor in ρ should scale with the system size as
ρ ∼ µN−(3−γ)/2. Therefore, we should expect that a plot
of N (3−γ)/2ρ as a function of µ would collapse for differ-
ent network sizes. This is actually what we observe in
Fig. 1 (bottom panel), where different curves are clearly
laid one on top of the other for small values of µ. As
the density becomes larger, on the other hand, the col-
lapse becomes less and less precise, in agreement with the
fact that Eq. (46) is only valid in the very small density
regime. Moreover, deviations from the collapse line set in
earlier for large system sizes in agreement with Eq. (55),
according to which finite size effects show up for values
of µ smaller than µ× ∼ N−(γ−2)/2.

In Fig. 2 we present analogous results for the fermionic
version of the BARW. Here (top panel) we can observe
a first difference with respect to the bosonic BARW: For
small values of N , it is not possible to span a range of
small values of ν, due to the fact the the system falls
quickly into the absorbing state. Small ν can only be
explored using largeN . The trend of all plots is, however,
correct: Linear in ν and decreasing when increasing the
network size. The data again collapses with the same
functional form, now ρ ∼ νN−(3−γ)/2, for large systems
sizes. The deviations at small N and large ν, however,
seem now larger than in the bosonic case.

Having checked that the average density takes the same
form in both bosonic and fermionic approaches, we focus
now in the density spectra, in which differences between
the two formalisms are predicted at the MF level. In the
case of the bosonic BARWwith q = 2, the density spectra
in the steady state, as given by Eq. (48), is characterized
by a peculiar square root behavior. To check this form,
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FIG. 3: Density spectra in the bosonic BARW process with
q = p = 2 at the steady state on uncorrelated UCM networks
with γ = 2.5. Network size N = 106. Top: Density spec-
tra as a function of the degree k for different steady state
densities. Different stationary densities have been obtained
fixing the annihilation parameter λ = 0.05, and varying the
branching parameter µ. Center: Data collapse of the den-
sity spectra with different average stationary densities as pre-
dicted by Eq. (78). Bottom: Check of the Taylor expansion
of the density spectra, as given by Eq. (79).

we observe that, if we define the function

Gµ(ρk) ≡
[

(

4λρk
1− 2µ

+ 1

)2

− 1

]

(1− 2µ)2〈k〉
8λρ

, (78)

we expect Gµ(ρk) = k for any values of the reaction pa-
rameters. In Fig. 3(center panel) we can see that this
collapse works well for a wide range of ρ values. Alterna-
tively, we can consider the small density behavior, given
by the general Eq. (25), which translates in the function

Tµ(ρk) ≡ (1 − 2µ)〈k〉ρk
ρ

(79)

being Tµ(ρk) = k. In Fig. 3(bottom panel) we observe
a poor collapse of the curves, which is approximately at-
tained only at very low densities, confirming the presence
of strong nonlinearities at large ρ.
In Fig. 4 we investigate the density spectrum of a

fermionic BARW for different values of the total density.
As we can observe (top panel), the spectra saturates to
a constant value for large values of ρ and k, as expected
from the theoretical expression Eq. (36). On the other
hand, this equation implies that the function

Gν(ρk) ≡
〈k〉ρk

ρ(t)[(1 + ν)− (2 + ν)ρk]
(80)

should satisfyGν(ρk) = k for all f and p. Considering the
small density limit, on the other hand, a linear behavior
of ρk with k is expected, translated again in the new
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FIG. 4: Density spectra for the fermionic BARW process with
q = p = 2 at the steady state on uncorrelated UCM networks
with γ = 2.5. Network size N = 106. Top: Density spectra as
a function of the degree k for different steady state densities.
Different stationary densities have been obtained varying the
parameter ν. Center: Data collapse of the density spectra
for different steady state densities, as predicted by Eq. (80).
Bottom: Check of the Taylor expansion of the density spectra,
as given by Eq. (81).

function

Tν(ρk) ≡
〈k〉ρk

ρ(t)(1 + ν)
(81)

being Tν(ρk) = k. While the collapse with the full shape
of Eq. (36) (center panels in Fig. 4) is almost perfect,
it is much worse if only the Tailor expansion in consid-
ered (bottom panel), being only approximately correct
for very small densities.

C. Diffusion-annihilation process

To validate our theoretical approach for decaying RD
systems, we have concentrated on the bosonic description
of the processes, since the fermionic version described in
Sec. IVB 1 was already checked numerically in Ref. [19].
We consider thus the general bosonic process qA → ∅, at
rate λ, for which a detailed analytical solution was given
in Sec. IVB 2. For the case q = 2, again a peculiar square
root behavior for the density spectrum was predicted in
Eq. (67), which is corroborated in Fig. 5 by means of
three different graphs. Again, from Eq. (67), defining
the function

G0(ρk) ≡
(

(4λρk + 1)2 − 1
) 〈k〉
8λρ

, (82)

where λ is the annihilation parameter, we will expect
that G0(ρk) = k for all times. In Fig. 5 (center panel)
it is clear that the different curves, corresponding to dif-
ferent values of the average density ρ(t), collapse well in
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FIG. 5: Density spectra of the bosonic RD process 2A → ∅

on uncorrelated UCM networks with γ = 2.5. Network size
N = 106. Top: Density spectra as a function of the degree k
at different times (densities) from measures performed with
fixed parameter λ = 0.1. The curves show a bending in the
large k region for short times (large densities). Center: Data
collapse of the density spectra at different times as predicted
by Eq. (82). Bottom: Check of the Taylor expansion of the
density spectra, as given by Eq. (83). The poor collapse at
large k confirms the presence of strong nonlinear terms at
short times.

agreement with the theoretical prediction. In the bot-
tom panel, we check the general asymptotic expression
for large times, Eq. (25). In this case, for small values of
8λkρ/〈k〉, we should expect the function

T0(ρk) ≡
kρ(t)

〈k〉 (83)

to be T0(ρk) = k, which holds when the times are large
enough, but shows a clear bending at large degrees and
large densities, signature again of the fact that it is fun-
damental to take into account the non-linearity of the
spectrum.
As in the case of the fermionic diffusion-annihilation

process [19], it turns out that the asymptotic expression
for infinite networks of the total particle density, Eq. (73),
is very difficult to observe numerically, due to the very
small range of the extension of the power-law behavior.
We have therefore focused again on the general prediction
for finite networks, Eq. (64), according to which the RD
process qA → ∅ shows a decay of the average density at
large times of the form ρ(t) ∼ t−1/(q−1), independently
of the presence or absence of degree correlations. We
present in Fig. 6 simulation results for three values of q,
namely q = 2, 3, 4, on uncorrelated networks SF gener-
ated with the UCM algorithm (main plot), and correlated
SF networks generated with the CM prescription (inset).
It is clear that the theoretical predictions are in perfect
agreement with numerical data. This result is particu-
larly relevant since, for q > 2, it concerns purely bosonic
processes, which do not have a fermionic counterpart.
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FIG. 6: Density decay of the bosonic qA → ∅ diffusion-
annihilation processes in finite correlated and uncorrelated
networks, for different values q = 2 (full lines), q = 3 (dashed
lines) and q = 4 (dot-dashed lines). For all values of q,

the graphs show a tail of the form t−1/(q−1), as predicted
in Eq. (64), both for uncorrelated (UCM) networks (main fig-
ure) and correlated (CM) networks (inset). Data obtained
from networks of size N = 105 with degree exponent γ = 2.5.
For all plots, the annihilation parameter was fixed at λ = 0.04.

The time independent prefactor of Eq. (64), moreover,
states that the average density should be suppressed by
the size term (〈kq〉/〈k〉)−1/(q−1). More precisely, we can
rewrite Eq. (57) as ρ(t) ∼ A(N, γ)−1/(q−1)t−1/(q−1), with

A(N, γ) ∼ N (1+q−γ)/2 (84)

in UCM networks, with cutoff kc(N) ∼ N1/2. We have
estimated the A(N, γ) values by linear fits of the ρ(t)−1 vs
t−1/(q−1) curves for the 3A → ∅ process taking place on
networks of different sizes (data not shown), and for two
values of the degree exponent γ. We report the results in
Fig. 7, where the scaling relation predicted by Eq. (84)
is found to be in very good agreement with simulation
data.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied bosonic RD processes
in SF networks introducing a general continuous-time
framework which is well suited for both MF analytic cal-
culations and computer simulations. At the MF level,
we have developed the rate equations that character-
ize any generic RD process. We have considered in
particular one-species RD processes, for which MF the-
ory provides a natural way to classify all possible RD
schemes. We have analyzed in detail both steady state
and monotonously decaying processes from a general
perspective, focusing also on specific examples, namely
the BARW and diffusion-annihilation processes. For
processes characterized by reactions not involving more
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FIG. 7: System size dependence of the density prefactor
in the diffusion-annihilation process 3A → ∅. According
to Eq. (84), we plot the prefactor A(N,γ) as a function of

N (1+q−γ)/2. The good linear behavior confirms the predic-
tions of bosonic heterogeneous MF theory in the diffusion-
limited regime. Data obtained from networks with degree
exponent γ = 2.5. For all plots, the annihilation parameter
was fixed at λ = 0.04.

than two particles, we have compared the results with a
fermionic version of the same problems, implemented in
terms of discrete interacting particle systems.

Beyond the obvious difference concerning the fact that
the average density is bounded in fermionic processes
while it is not in their bosonic version, both bosonic and
fermionic MF formalisms render equivalent results for the
density of particles in single-species RD processes, the
main difference between both formalism lying in func-
tional form of the density spectrum of particles. For high
densities, the spectrum in bosonic systems goes in general
as the power k1/qM , where qM is the highest order of the
reactions defining the RD system, while for fermionic sys-
tems the behavior of the spectrum is in general algebraic.
Thus, in the bosonic scheme, hubs become relatively less
and less populated as more many-particle reactions are
present, provided the average density is sufficiently high.
In the very low density regime, on the other hand, the
bosonic approach predicts spectra linear with k, a fact
that allows to make general predictions for the behavior
of any RD process in finite networks, which turns out to
coincide with the homogeneous MF result, with a net-
work size correction. This results confirms the relevance
of finite size effects in dynamics on SF networks, already
reported for fermionic systems [19, 53], since the border
between “high” and “low” densities is in general deter-
mined by the ρkc(N) product.

Another interesting result concerns one-species bosonic
RD processes with an absorbing state phase transition,
where the critical point does not depend on the possible
heterogeneity of the network, but is in general located
at Γ̃1 > 0. This condition translates in the presence of
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reaction processes with particle creation starting from a
single particle and corresponds to the threshold indepen-
dent of the network topology found in other fermionic
systems [33]. In order to observe effects of the connec-
tivity heterogeneity in the threshold, more complex RD
schemes, such as those involving two or more species,
must be considered [25]. On the other hand, the bosonic
point of view allows to shed a different light on the value
γ = 3 usually associated to a frontier between regular
(γ > 3) and complex (γ < 3) behavior for dynamical
systems on SF networks. We can readily see that the
value γ = 3 emerges simply from considering dynamical
processes involving at most two particle interactions. For
general interactions involving q particles, one will expect
instead to obtain unusual results for γ < q + 1 (see e.g.
Eq. (46)).
The continuous time theoretical and numerical for-

malisms presented for bosonic processes have been de-

veloped in depth for the particular case of one-species
processes, but they can be easily generalized to many
species systems, opening thus the path to the study a
large variety of processes of large relevance in the under-
standing of the topological effects of complex networks
on dynamic and transport phenomena.
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