820,593 research outputs found

    Extended percolation analysis of the cosmic web

    Full text link
    Aims. We develop an extended percolation method to allow the comparison of geometrical properties of the real cosmic web with the simulated dark matter web for an ensemble of over- and under-density systems. Methods. We scan density fields of dark matter (DM) model and SDSS observational samples, and find connected over- and underdensity regions in a large range of threshold densities. Lengths, filling factors and numbers of largest clusters and voids as functions of the threshold density are used as percolation functions. Results. We find that percolation functions of DM models of different box sizes are very similar to each other. This stability suggests that properties of the cosmic web, as found in the present paper, can be applied to the cosmic web as a whole. Percolation functions depend strongly on the smoothing length. At smoothing length 1 h−1h^{-1} Mpc the percolation threshold density for clusters is log⁥PC=0.718±0.014\log P_C = 0.718 \pm 0.014, and for voids is log⁥PV=−0.816±0.015\log P_V = -0.816 \pm 0.015, very different from percolation thresholds for random samples, log⁥P0=0.00±0.02\log P_0 = 0.00 \pm 0.02. Conclusions. The extended percolation analysis is a versatile method to study various geometrical properties of the cosmic web in a wide range of parameters. Percolation functions of the SDSS sample are very different from percolation functions of DM model samples. The SDSS sample has only one large percolating void which fills almost the whole volume. The SDSS sample contains numerous small isolated clusters at low threshold densities, instead of one single percolating DM cluster. These differences are due to the tenuous dark matter web, present in model samples, but absent in real observational samples.Comment: 15 pages, 10 figures, Astronomy & Astrophysics (accepted

    Electromagnetic structure of A=2 and 3 nuclei and the nuclear current operator

    Full text link
    Different models for conserved two- and three-body electromagnetic currents are constructed from two- and three-nucleon interactions, using either meson-exchange mechanisms or minimal substitution in the momentum dependence of these interactions. The connection between these two different schemes is elucidated. A number of low-energy electronuclear observables, including (i) npnp radiative capture at thermal neutron energies and deuteron photodisintegration at low energies, (ii) ndnd and pdpd radiative capture reactions, and (iii) isoscalar and isovector magnetic form factors of 3^3H and 3^3He, are calculated in order to make a comparative study of these models for the current operator. The realistic Argonne v18v_{18} two-nucleon and Urbana IX or Tucson-Melbourne three-nucleon interactions are taken as a case study. For AA=3 processes, the bound and continuum wave functions, both below and above deuteron breakup threshold, are obtained with the correlated hyperspherical-harmonics method. Three-body currents give small but significant contributions to some of the polarization observables in the 2^2H(p,Îłp,\gamma)3^3He process and the 2^2H(n,Îłn,\gamma)3^3H cross section at thermal neutron energies. It is shown that the use of a current which did not exactly satisfy current conservation with the two- and three-nucleon interactions in the Hamiltonian was responsible for some of the discrepancies reported in previous studies between the experimental and theoretical polarization observables in pdpd radiative capture.Comment: 48 pages, 25 figures, 4 tables, revtex4. Submitted to Phys. Rev.

    Local chiral interactions and magnetic structure of few-nucleon systems

    Full text link
    The magnetic form factors of 2^2H, 3^3H, and 3^3He, deuteron photodisintegration cross sections at low energies, and deuteron threshold electrodisintegration cross sections at backward angles in a wide range of momentum transfers, are calculated with the chiral two-nucleon (and three-nucleon) interactions including Δ\Delta intermediate states that have recently been constructed in configuration space. The A A\,= \,3 wave functions are obtained from hyperspherical-harmonics solutions of the Schr\"odinger equation. The electromagnetic current includes one- and two-body terms, the latter induced by one- and two-pion exchange (OPE and TPE, respectively) mechanisms and contact interactions. The contributions associated with Δ\Delta intermediate states are only retained at the OPE level, and are neglected in TPE loop (tree-level) corrections to two-body (three-body) current operators. Expressions for these currents are derived and regularized in configuration space for consistency with the interactions. The low-energy constants that enter the contact few-nucleon systems. The predicted form factors and deuteron electrodisintegration cross section are in excellent agreement with experiment for momentum transfers up to 2--3 fm−1^{-1}. However, the experimental values for the deuteron photodisintegration cross section are consistently underestimated by theory, unless use is made of the Siegert form of the electric dipole transition operator. A complete analysis of the results is provided, including the clarification of the origin of the aforementioned discrepancy.Comment: 24 pages, 13 figure

    Probing the arrangement of hyperplanes

    Get PDF
    AbstractIn this paper we investigate the combinatorial complexity of an algorithm to determine the geometry and the topology related to an arrangement of hyperplanes in multi-dimensional Euclidean space from the “probing” on the arrangement. The “probing” by a flat means the operation from which we can obtain the intersection of the flat and the arrangement. For a finite set H of hyperplanes in Ed, we obtain the worst-case number of fixed direction line probes and that of flat probes to determine a generic line of H and H itself. We also mention the bound for the computational complexity of these algorithms based on the efficient line probing algorithm which uses the dual transform to compute a generic line of H.We also consider the problem to approximate arrangements by extending the point probing model, which have connections with computational learning theory such as learning a network of threshold functions, and introduce the vertical probing model and the level probing model. It is shown that the former is closely related to the finger probing for a polyhedron and that the latter depends on the dual graph of the arrangement.The probing for an arrangement can be used to obtain the solution for a given system of algebraic equations by decomposing the ÎŒ-resultant into linear factors. It also has interesting applications in robotics such as a motion planning using an ultrasonic device that can detect the distances to obstacles along a specified direction

    Two-Loop QCD Corrections to the Heavy Quark Form Factors: Anomaly Contributions

    Full text link
    We present closed analytic expressions for the order αs2\alpha_s^2 triangle diagram contributions to the matrix elements of the singlet and non-singlet axial vector currents between the vacuum and a quark-antiquark state. We have calculated these vertex functions for arbitrary momentum transfer and for four different sets of internal and external quark masses. We show that both the singlet and non-singlet vertex functions satisfy the correct chiral Ward identities. Using the exact expressions for the finite axial vector form factors, we check the quality and the convergence of expansions at production threshold and for asymptotic energies.Comment: 24 pages, 6 figure

    Continuum Coupling and Single-Nucleon Overlap Integrals

    Full text link
    The presence of a particle continuum, both of a resonant and non-resonant character, can significantly impact spectroscopic properties of weakly bound nuclei and excited nuclear states close to, and above, the particle emission threshold. In the framework of the continuum shell model in the complex momentum-plane, the so-called Gamow Shell Model, we discuss salient effects of the continuum coupling on the one-neutron overlap integrals and the associated spectroscopic factors in neutron-rich helium and oxygen nuclei. In particular, we demonstrate a characteristic near-threshold energy dependence of the spectroscopic factors for different l-waves. We show also that the realistic radial overlap functions, which are needed for the description of transfer reactions, can be generated by single-particle wave functions of the appropriately chosen complex potential.Comment: 9 figures; 23 pages; corrected version; accepted in Nuclear Physics

    Electroproduction of pseudoscalar mesons on the deuteron

    Full text link
    A general analysis of polarization phenomena for coherent meson electroproduction on deuterons, e+d→e+d+P0e+ d\to e+ d +P^0, where P0P^0 is a pseudoscalar π0\pi ^0 or η\eta-meson, is presented. The spin structure of the electromagnetic current for P0P^0-production at threshold is parametrized in terms of specific (inelastic) threshold electromagnetic form factors which depend on the momentum transfer squared and the effective mass of the produced hadronic system. We give expressions for the structure functions of the reaction e+d⃗→e+d+P0e+\vec{d}\to e +d+ P^0 (where the deuteron target is polarized) in terms of these threshold form factors. The spin and isospin structures of the γ∗+d→d+P0\gamma ^{*}+d\to d+P^0 amplitudes (where γ∗\gamma ^* is a virtual photon) is established in the framework of the impulse approximation and relationships between meson electroproduction on deuterons and on nucleons are given. The reaction of π0\pi^0 electroproduction on deuterons is investigated in detail both at threshold and in the region of Δ\Delta -isobar excitation, using the effective Lagrangian approach for the calculation of the amplitudes of the elementary process γ∗+N→N+π\gamma^*+N\to N+\pi. Special attention is devoted to the analysis of all standard contributions to the exclusive cross section for d(e,eπ0)dd(e,e\pi^0)d, which are functions of the momentum transfer square, k2k^2, of the excitation energy of the produced hadrons and of the pion production angle, in a region of relatively large momentum transfer. The sensitivity of these contributions to different parametrizations of the Îłâˆ—Ï€Ï‰\gamma^*\pi\omega form factor as well as to the choice of NN−NN-potential is discussed.Comment: 44 pages 19 figure

    The Pion Cloud of the Nucleon: Facts and popular Fantasies

    Get PDF
    I discuss the concept of the pion cloud surrounding the nucleon and other hadrons - and its limitations.Comment: 9 pp, 3 figs, invited talk, to appear in the proceedings of the workshop ``Shape of Hadrons'' (Athens, Greece, 2006

    Analytic continuation of nucleon electromagnetic form factors in the time-like region

    Full text link
    The possibility to compute nucleon electromagnetic form factors in the time-like region by analytic continuation of their space-like expressions has been explored in the framework of the Skyrme model. We have developed a procedure to solve analytically Fourier transforms of the nucleon electromagnetic current and hence to obtain form factors defined in all kinematical regions and fulfilling the first-principles requirements. The results are discussed and compared to data, both in space-like and time-like region.Comment: 34 pages, 15 figure
    • 

    corecore