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Probing the arrangement of hyperplanes 

Yasukazu Aoki 

Abstract 

In this paper we investigate the combinatorial complexity of an algorithm to determine the 
geometry and the topology related to an arrangement of hyperplanes in multi-dimensional 
Euclidean space from the “probing” on the arrangement. The “probing” by a flat means the 
operation from which we can obtain the intersection of the flat and the arrangement. For 
a finite set H of hyperplanes in Ed, we obtain the worst-case number of fixed direction line 
probes and that of flat probes to determine a generic line of H and H itself. We also mention the 
bound for the computational complexity of these algorithms based on the efficient line probing 
algorithm which uses the dual transform to compute a generic line of H. 

We also consider the problem to approximate arrangements by extending the point probing 
model, which have connections with computational learning theory such as learning a network 
of threshold functions, and introduce the vertical probing model and the level probing model. It 
is shown that the former is closely related to the finger probing for a polyhedron and that the 
latter depends on the dual graph of the arrangement. 

The probing for an arrangement can be used to obtain the solution for a given system of 
algebraic equations by decomposing the u-resultant into linear factors. It also has interesting 
applications in robotics such as a motion planning using an ultrasonic device that can detect the 
distances to obstacles along a specified direction. 

1. Introduction 

An urrunyrment s&‘(H) of a finite set H of hyperplanes in d-dimensional Euclidean 

space Ed is a dissection of Ed into connected pieces of various dimensions defined by 
the hyperplanes, and each k-dimensional connected piece of the dissection is called 

a k-face of the arrangement. A O-face is called a uertex, a l-face is called an rdgr, 
a (d - 1)-face is called a facet, and a d-face is called a cell. 

For any point set X E Ed, let cl(X) denote the closure of X. A face,f is said to be 

a subface of another face g if the dimension of/ is one less than the dimension of g and 
f is contained in the boundary of g. 1f.f is a subface of g, then we also say that ,f and 
g are incident or that they define an incidence. For 0 d k 4 d, a k-flat in Ed is defined as 

the affine hull of k + 1 affinely independent points, that is, a k-flat is an affine subspace 
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with dimension k. Clearly, a hyperplane is a (d - 1)-flat. An arrangement d(H) is 

called simple if and only if any d - k hyperplanes of H intersect in a common k-flat for 

Odk<d. 
A line 1 is called parallel to the k-flatf iff contains a line parallel to 1. We say 1 misses 

f if 1 n ,f = 0. For a set of hyperplanes H in Ed, if a point p is contained in no 

hyperplane h E H, p is called generic with respect to H. If a point p is contained in only 

one hyperplane h E H,p is called proper with respect to H. A direction vector u is called 

generic with respect to H if u is not parallel to any hyperplane h E H. A line I is called 

generic with respect to H if the direction vector of 1 is generic with respect to H and the 

intersecting points I n h are proper for each h E H. 

In this paper we use standard Cartesian coordinates xi, x2, . . . ,xd , to represent 

points in Ed. A k-flat is called vertical if it is parallel to the &,-axis. For every 

non-vertical hyperplane h, we can choose the normal vector u of h such that the 

x,-coordinate value of u is positive, and there is a unique real number c1 such that 

h consists of all points x satisfying U*X = CI. We say that a point p E Ed is above, on, or 

below h if U*P is greater than, equal to, or less than X, respectively. Let hf denote the 

set of points above h, and h- denote the set of points below h. Both, hf and h- are 

open half-spaces. We define v(p, h) for a point p E Ed as 

u&h)= 0 

i 

+ 1 ifpEh+, 

if p E h, and 

-1 ifpeh-. 

Let H be a finite set of hyperplanes in Ed, and let hI , h2, . . . , h, be the hyperplanes in 

H. In case that H contains non-vertical hyperplanes, a redefinition of the coordinate 

system can be used to make all hyperplanes of H non-vertical. For a point p, we define 

the vector 

U(P) = (oh h,), u(P, hz), . . . ,u(P, hn)), 

and it is called the sign uector of the point p. Note that points p and q are in the same 

facef if and only if u(p) = u (q), and we consider the sign vector of the face f as 

u(f) = U(P)( = u(q)); 

see [7] for detailed definitions concerning arrangements. 

We consider the probing operation by a flat for an arrangement from which we can 

obtain the intersection of the flat and the arrangement, and investigate the problem to 

evaluate the complexity to determine the geometry and the topology related to the 

arrangement by using them. In this paper we consider the combinatorial complexity 

on the number of probing operations. We also consider the computational complexity 

on the number of fundamental operations such as arithmetic operations ( + , - , x , 

t ) where we assume the computational complexity of a probing operation as 

proportional to the size of the output from the probing, that is, the number of 

intersecting points on the probing line; see [2] as a reference. Note that these 



operations are assumed to be performed with infinite precision over the complex 

numbers. These assumption, similar to that of counting only comparisons in sort- 

ing-related problems, can be justified under various circumstances. 

One of the motivations to study the probing problem of arrangements lies in the 

area of computational algebra. For a finite set H of n hyperplanes 

hi = (X E R* ( ~Tx = hi) (i = 1 , . . . , n) in R*, a function,f,,: R* 4 R defined by 

fH(X) = ri (UT, - bi) 
i=l 

is called the defining polynomial of the arrangement of H [17]. It also plays an 

important role in the interior-point method for linear programming [11,20]. In 

modern elimination theory for algebraic equations such as Lazard’s method [13], 

some way of computing the u-resultant, which is the defining polynomial of n hyper- 

planes in Cd, of a given system of algebraic equations is presented, and solutions are 

obtained by decomposing the u-resultant into linear factors, that is, determining the 

hyperplanes. This factorization is done by probing the hyperplanes by lines [3] or 

computing the gradient on a generic line to the hyperplanes by partially using probes 

[ 12,18,15]. The problem of probing hyperplanes, however, does not seem to have 

been well studied as a combinatorial problem. 

Another motivation of the probing problem of arrangements is concerning the 

study of probing a convex polyhedron which is a well-studied problem [4,6]. They 

use the arrangement of hyperplanes containing each face of the polyhedron to 

compute probing lines as generic lines of the arrangement. However, the computa- 

tional complexity was not evaluated in their studies. Thus, it is also an important 

problem to evaluate the computational complexity to determine a generic line of the 

arrangement as well as the arrangement itself. 

The probing problem itself has also interesting practical applications. An example 

of a probe is a robot arm moving in a fixed direction and reporting the spatial position 

of a contact points on obstacles. Another example is an ultrasonic device that can 

detect the distances to other objects along a specified direction. 

In Section 2 we describe the results on line probing for arrangements in [l]. 

In Section 3, we extend these results to the fixed line probing. It is important to 

consider the restriction on the directions of the probing lines because the probing cost 

in the real applications can be dependent on its direction. In computational algebra, 

for example, we usually use the standard Cartesian coordinate system, in which case 

the number of arithmetic operations to compute the intersection of hyperplanes with 

the probing line can be reduced by choosing a parallel line to one of the axes as the 

pt-obing line. We prove that the combinatorial complexity is same even if we restrict 

the direction of the probing lines to the fixed one. This implies that the total cost to 

p~-~~hc arrangements can be reduced by fixing the direction of all probing lines to what 

Ininimi/cs the cost of the probing operation itself. We also show the bound for the 

c.c~ml~tltational complexity of these algorithms based on the efficient line probing 

.~~~,~r~thm which uses the dual transform to compute a generic line of H. 



In Section 4, we generalize these results to the flat probing. It is also important to 

generalize the probing lines to the probing flats because, for example, we have useful 

probing tools in the real world such as the scanner which can report the cross section 

of objects by a plane as well as by a line. We prove that the combinatorial complexity 

is essentially same even if we generalize the dimension of the probing flats. That is, for 

a finite set H of hyperplanes in Ed, we prove that the total dimension of flat probes 

which are necessary and sufficient to determine a generic line of H is d and that to 

determine H is d + 1, where we show the sufficiency for almost all the dimension 

sequence of flat probes. The result is significant since it implies that we can combine 

various dimensional flat probes without increasing the total combinatorial 

complexity. 

Finally, in Section 5, we study the problem to approximate arrangements by 

extending the point probing model in [l]. We introduce the vertical probing model 

and the level probing model. In the former model, we give the upper bound of the 

number of vertical probes required to determine the horizontal section. In the latter 

model, we prove that, for simple arrangements with the aid of the linear dual graph, it 

is possible to approximate the level of the points in the level hull with maximum error 

d. However, it is shown that it is, in general, impossible to approximate the level of the 

points within the constant independent of n. Also, we obtain the other result under the 

covering enhanced level probing model. These results are not only interesting from 

a theoretical point of view but also significant from a practical point of view since 

these models have essential connections with computational learning theory such as 

learning a network of threshold functions. 

2. Preliminaries on line probing 

In this section we describe the results on line probing for arrangements in [l] and 

preliminaries of the following sections. For a survey of results in geometric probing, 

see [19]. 

Let H be a set of hyperplanes in Ed for d 2 2. In this paper we consider the 

multiplicity m(h, H) which is an arbitrarily given positive integer value associated with 

each hyperplane h E H so that we can represent a multiset as the set H with m(h, H). 
For a point p E Ed, m(p, H) denotes the multiplicity of p in H, which is the sum of 

m(h, H) for all h E H, p E h. Note that m(~, H) = 0 if and only if there is no hyperplane 

h E H that contains p. 

The line probing model considered in this paper is as follows. At first, we have no 

information about H. From a line probe L, we obtain the cross points C(L, H) that 

denotes the set of intersecting points of L with the hyperplanes not containing L in 

H and m(p, H) for allp E C(L, H). From the line probe L, the cross points in C(L, H) 

are obtained just as a set, and it is not known which point lies on which hyperplane. 

We also write C(L), m(h) and m(p) for C(L, H), m(h, H), m(p, H), respectively, when 

H is understood from the context. It should be noted that our definition of the line 



probe is different from what Dobkin et al. [6] call a line probe. Their result which we 

use in Section 5.2 is based on the finger probe, not on their line probe. 

In our line probing model, when the probing line is contained in some hyperplanes 

in H, we can still obtain C(L, H) from the line probe L, but we cannot obtain the 

information whether the probing line is contained in some hyperplanes in H or not. It 

should be noted that we cannot improve the results in this section even if we can also 

obtain the multiplicity sum of the hyperplanes containing L in H from the line probe L. 

Related to the line probing model, we also consider the point probe p by which we 

can obtain the information whether the point p contained in some hyperplanes in H or 

not. Renegar [lS] gives a simple solution to determine a generic point from point 

probes using the moment curve (t, t2, t3, . . , td) (t E R) in Ed. He proved that, for an 

arrangement of n hyperplanes in Ed, at least one of dn + 1 distinct points on the 

moment curve is a generic point. Hence with dn + 1 point probes, a generic point q is 

obtained. 

Here we describe the result by the author in [l] on the combinatorial complexity of 

the line probing for arrangements. 

Theorem 2.1. Let H be a set of hyperplanes in Ed, then the worst-case number of line 

probes that are needed to determine a yeneric line and H is d and d + 1, respectively. 

Note that the same statement can be proved for a set of hyperplanes in Cd. 

To evaluate the computational complexity we introduce the concept of the “unit 

operation” whose cost is constant to the input size of the problem. The order of the 

time complexity of the computation is evaluated by counting the number of unit 

operations in it. We assume that the fundamental arithmetic operations ( + , - , x , 

+ ) are the unit operations. Let H be the set of n hyperplanes in Ed, and cr (H) denote 

the cost of a line probe. We consider that the probing line is specified by the 

containing point p and the direction vector q, and that each cross point on the probing 

line is returned by the real number t such that p + tq denotes the cross point. The cost 

to transfer the coordinate values of p, q, and each cross point p + tq is considered to 

be included in c1 (H) if we cannot ignore it. Note that all operations above including 

probing operations are assumed to be performed with infinite precision over the real 

numbers. It is natural to assume that the cost c, (H) is at least the number of the cross 

points on the line, that means at least one unit operation is required to obtain each 

cross point of the probing line. Since the number of the cross points on the line is at 

most n = 1 H 1, we assume c1 (H) > n. We call a line probe is sorted if these cross points 

on the probing line which we obtained are provided sorted along the direction of the 

probing line. We consider that line probes are not sorted unless they are specified to be 

sorted. Since the cost to sort the cross points of each line probe is O(n log n), we can 

easily estimate the time complexity of the algorithm in which the line probes are not 

sorted by replacing cl (H) in the order of the time complexity of the algorithm using 

sorted line probes with cr (H) + n log n. The results on the computational complexity 

of the line probing algorithms in [l] are as follows. 
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Theorem 2.2. A generic line can he determined by 2d - 1 sorted line probes with 

O(d ‘c, (H)) time. If a generic point or a generic direction is given, the number of the 

sorted line probes can be reduced to d. 

Theorem 2.3. We can determine H by 2d line probes with O(d .(cl (H) + dn log n)) time. 

If a generic point or a generic direction is given, the number of the line probes can be 

reduced to d + 1. 

Theorem 2.4. We can determine H by 3d - 1 sorted line probes with O(d cl (H)) time. 

If a generic point or a generic direction is given, the number of the sorted line probes can 

be reduced to 2d. 

These theorems are essentially based on the same efficient algorithm developed in 

[l] to compute a generic line of H in O(nd) time from the cross points on the 

d probing lines by using the dual transform. 

3. Fixed direction line probing 

In this section we consider the fixed direction line probing for a set of hyperplanes 

H in which the direction of all probing lines must be the same. Clearly, we cannot 

determine a generic line and H from the finite number of fixed direction line probes if 

there is a hyperplane in H which is parallel to the fixed direction. Thus, we assume 

a generic direction is given, which is equal to the direction of all probing lines. Note 

that this assumption is rather strong because we can determine a generic line at the 

same cost to determine a generic direction in usual case. The following theorems show 

that the worst-case number of line probes is the same as in Theorem 2.1 in spite of the 

additional conditions on line probes. 

First we prove the following theorem, whose proof indicates the algorithm to 

determine a generic line using the minimum number of fixed direction line probes. 

Note that we do not need multiplicity information of the line probes to determine 

a generic line. 

Theorem 3.1. Let H be a set qf hyperplanes in Ed with the given generic direction, then 

the worst-case number of fixed direction line probes that are needed to determine 

a generic line is d. 

Proof. For i = 1,2, . . . ,d, let Li denote the ith line probe whose direction vector is 

equal to the given generic direction. First, we prove that the lower bound of the 

worst-case number is d. To prove it, it is sufficient to show that for any given line 

probes Li, i = 1,2 ,..., d - 1, there exist the fixed sets of cross points C(Li), the 



multiplicity m(p) for each p E C(Li), and a set H of hyperplanes defined by an 

arbitrarily chosen line L,, whose direction vector is also equal to the given generic 

direction such that Lo is not a generic line of H. In such a case, we cannot determine 

the generic line using d - 1 line probes because for any line we choose it is possible 

that the line of our choice is not generic. 

In constructing the above example, we can assume that not all probing lines Li, 

i = 0, 1, . . . , d - 1, are contained in a hyperplane k. Otherwise, the set H containing 

two hyperplanes whose intersection with k are the same (d - 2)-flat is the example. Let 

ql.; and q2,i, 1 < i 6 d - 1 be different points on Li, and let q. be a point on Lo. Let 

Iti, i = 1,2, be the hyperplane containing q. and each qi,j forj = 1,. . ,d - 1. Note that 

k, is different from k, because not all probing lines Li, i = 0, 1, . . . , d - 1, 

are contained in a hyperplane. Now H = {k,, k z j is the example because q. E k 1 n k,. 

Next, we prove that the upper bound of the worst-case number is d. To prove it, it is 

sufficient to construct the algorithm to define the generic line L, of H by using d line 

probes Li, i = 1,2, . . . ,d. 

We define Ui, i = 0, 1, . . . , d - 1, as linearly independent vectors in Ed where a0 is the 

given direction vector, and let ad = o. For i = 1,2, . . . ,d, we consider that the line Lj 

contains the point whose position vector is ai. Using parameter C(i E R, i = 1,2, . . . , d, 
we can denote the line Li as SliUO + ai. 

ForanyhyperplanekEH,Li,i= 1,2 ,... , d, are not parallel to k and intersect k by 

one point in C(L,) because the given direction is a generic direction. Clearly, we can 

assume all C(L,) are not empty. 

We define H' as the set of hyperplanes k such that k n Li E C(L,) for i = 1,2, . . , d. 
For each Li, i = 1,2, . . . , d, we choose a position vector of a point in C( Li) and denote 

it by JJ(Li). Let x(Li) = y(Li) - y(Ld) for i = 1,2, ,d - 1. Then these d - 1 vectors 

x(Li), i= 1,2,..., d - 1, defined above are linearly independent because 

X(Li) = i.iUo + Ui, where 1.i E R, from the definition of Li. That is, there is one unique 

hyperplane which contains each point defined by y(Li), i = 1,2, . . . , d. 

Thus,foranypointsetQG uf=,C(L,)JQnC(Li)1= lforalli= 1,2,...,d,there 

only exists one unique hyperplane k such that k n Li = C(Li) n Q for each 

i= 1,2 , . . . ,d. Because C(L,) is finite for each i = 1,2, . . . ,d, H' is also finite from the 

above discussion. 

Note that H' 2 H, because for any k E H each Li, i = 1,2, . . . , d, intersects k by one 

point in C(Li). That is, H' means the set of “possible” hyperplanes as a hyperplane in 

H. Since H E H', the generic line of H' is also the generic line of H. It is only the 

problem of computations to determine the generic line for known H'. Thus, we can 

define the generic line LG of H as the generic line for H'. 0 

Next we prove the following theorem, whose proof indicates the algorithm to 

determine H using the minimum number of fixed direction line probes. Note that we 

do not need multiplicity information of the line probes except the last one line probe 

to determine H. 
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Theorem 3.2. Let H be a set of hyperplanes in Ed with the given generic direction, then 

the worst-case number of jxed direction line probes that are needed to determine H is 

d+ 1. 

Proof. For i = 1,2, . . . ,d + 1, let Li denote the ith line probe whose direction vector is 

equal to the given generic direction. First, we prove that the lower bound of the 

worst-case number is d + 1. To prove it, it is sufficient to show that for any given line 

probes Li, i = 1,2,... ,d, there exist sets HI and Hz of hyperplanes such that 

C(Li, HI) = C(Li, Hz) and m(Li, HI) = m(Li, H,) for i = 1,2, . . . ,d because this 

means we cannot determine H using d line probes. 

In constructing the above example, we can assume that not all probing lines Li, 

i = 1,2,... , d, are contained in a hyperplane h as in the proof of Theorem 3.1. 

Otherwise, let h, and h2 be the two different hyperplanes whose intersection with h are 

the same (d - 2)-flat, and let H, = { hl $ and H2 = jh2 f. Then this example satisfies 

the requirements. 

NOW we choose two different points 41.i and q2,i on Li for i = 1,2, . . . ,d. Let h,,i, 

i = 1,2 be the hyperplane which contains each qi. j for 1 < j < d. Let h,,i, i = 1,2, be 

the hyperplane which contains q3_i, 1 and each 4i.j for j = 2,3, . . . ,d. Then the 

example HI = {hl,ili = 1,2) and H, = {h2,ili = 1,2) satisfies the requirement. 

Next, we prove that the upper bound of the worst-case number is d + 1. To prove it, 

it is sufficient to construct the algorithm to define H by using d + 1 fixed direction line 

probes Li, i = 1,2, . . . , d + 1. We define d line probes Li, i = 1,2, . . ,d, and the set H’ 

of “possible” hyperplanes as in the upper bound proof of Theorem 3.1 and let Ld + 1 be 

the generic line of H’ defined by d line probes Li, i = 1,2, . . . ,d, as in the proof of 

Theorem 3.1. 

For each point p E C(L,+ i), there is one unique hyperplane h E H’ which intersects 

Ld+ 1 at the point p. Clearly, each hyperplane h E H G H’ intersects Ld+ 1 at a point in 

C(Lp+ i) because of the definition of the generic line. Therefore, 

and the multiplicity m(h) = m(p) where p = h n Ld+ 1 ,p E c(&+ 1). Thus, we can 

determine H with each multiplicity using d + 1 line probes. 0 

Here we only mention the results on the bounds for the computational complexity 

of the algorithms in the upper bound proofs of Theorems 3.1 and 3.2 based on the 

efficient line probing computation algorithm developed in [l] to determine a generic 

line of H in O(nd) time from the cross points on the d probing lines by using the dual 

transform in Ed. We can prove the following theorem from a slight modification of the 

proofs of Theorems 2.2, 2.3 and 2.4 in [l] according to the algorithms in the upper 

bound proofs of Theorems 3.1 and 3.2. 

Theorem 3.3. If a generic direction is given, with using thejxed direction line probes, we 

can determine a generic line qf H by d sorted probes with O(d. cl (H)) time, we can 



determine H by d + 1 probes with O(d.(c,(H) + dn logn)) time, and we can also 

determine H by 2d sorted probes with @(d. c, (H)) time. 

4. The flat probing model 

In this section we consider the flat probing model for a set of hyperplanes H, which 

is the generalization of the line probing model explained in Section 2. Let F be a k-flat 

in Ed, that is, F be an affine hull with dimension k. Let the multiplicity m(F, H) of F in 

H denote the sum of m(h, H) for all h E H, F G h. The cross flats C(F, H) of F with 

H denotes the set of the intersecting (k - 1)-flats of F with the hyperplanes not 

containing F in H. We also write C(F) and m(F) for C(F, H) and m(F, H), respectively, 

when H is understood from the context. 

Now we extend the line probing model to the k-flat probing model. For a k-flat 

F E Ed, a k-jat probe F for H reports the set C(F, H) with m(i H) for all (k - 1)-flats 

f E C(F, H). A l-flat probe corresponds to a line probe, and a O-flat probe corresponds 

to a point probe. 

In this section, we consider the non-uniform flat probing that specifies a series of flat 

probes with various dimensions greater than 0. We define the rank of the non-uniform 

flat probing as the total number of the dimensions of all flats in it. In case of the line 

probing, its rank is equal to the number of line probes because the dimension of a line 

is always 1. The rank of the dimension sequence of flats in a non-uniform flat probing 

is similarly defined as the total number. A positive integer sequence is called generic 

line feasible if there is an algorithm to determine the generic line of H by using 

non-uniform flat probes in which the dimension sequence of flats is equal to it. 

We can use a k-flat probe instead of any k line probes in case that there is a k-flat 

containing these k lines. Since there are k lines which are not contained in any k-flat, it 

is not clear that we can always replace k line probes with a k-flat probe. Note that, in 

the following theorem, we do not need multiplicity information of the flat probes to 

determine the generic line. 

Theorem 4.1. Let H be a set of hyperplanes in Ed, then the minimum rank of non- 

uniform pat probes that are needed to determine a generic line is d, and any positive 

integer sequence with rank d is generic line feasible. 

Proof. First, we prove that the lower bound of the minimum rank is d. For a flat 

FE Ed, let dim(F) denote the dimension of F. To prove it, it is sufficient to show that 

for any given non-uniform flat probes Fi, i = 1,2, . . . , r, such that 

C,*=, dim(Fi) = d - 1, there exist the fixed sets of cross flats C(Fi), the multiplicity 

m(f) for each f E C(Fi), and a set H of hyperplanes defined by an arbitrarily chosen 

line Lo such that L, is not a generic line of H. In such a case, we cannot determine the 

generic line using non-uniform flat probes with rank d - 1 because for any line we 

choose it is possible that the line of our choice is not generic. 



In constructing the above example, we can assume that the generating vectors of all 

probing flats Fi, i = 1,2,... ,r, and Lo are linearly independent. Otherwise, the set 

H containing the hyperplane which misses all probing flats Fi, i = 1,2, , r, and Lo is 
the example. 

Because the generating vectors of all probing flats Fi, i = 1,2, . . . , Y, and L, are 

linearly independent (that is, there is no hyperplane containing all flats Fi and L,), we 
can choose 2 dim(F,) points qi, 1, qi, 2 ,...34i,dim(F,), 41,1,41,2,...,41,dirn(F,) On Fi7 for 
i = 1,2, . . . , r, and a point q. on Lo such that the affine hull of q. and d - 1 points qi, j, 

i= l,... ,r,j = 1,2 , . . . , dim(Fi), is a hyperplane which we denote by hi and that the 

affinehullofq,andd- lpoints&fori= l,...,r,j= 1,2,...,dim(Fi)isadifferent 

hyperplane which we denote by h2. Now H = (h,, h2} is the example because 

q. E h, n h2, which is a point on Lo. 
Next, we prove that the upper bound of the minimum rank is also d and that any 

positive integer sequence with rank d is generic line feasible. To prove it, it is sufficient 

to construct the algorithm to define a generic line of H by using non-uniform flat 

probes Fi, i = 1,2, . . . , r, whose dimension sequence is equal to the given one with 

rank d. 
Wedefineai,i= 1,2,... , d, as linearly independent vectors in Rd. Here we consider 

the corresponding d line probes Li for i = 1,2, . . . , d to the flat probes Fj for 

j = 1,2, . . . ,r. Let L1 be the line whose direction vector is a,. For j = 1,2, . . . ,r, let 

mj = 1 + xi= 1 dim(F,). For j = 1,2, . . . , r, we also define Fj such that the generating 

vectors of Fj are ai for i = m, m + 1, . . , m + dim(Fj) - 1 and that Fj contains the line 

L,,anddefineeach Lifori = m + l,... , m + dim(Fj) such that the direction vector of 

Li is a, and that Li contains the point pi_ 1 E Li_ 1 - C(Fj) n Li_ 1 for i < d. Thus, for 

j = 1,2 , ... 3 r, we can generate the outputs C(Li) of the corresponding line probes for 

i=m,m+ l,... ,m + dim(Fj) - 1 by defining C(L,) = Li n Fj. 

Let U={LJi= 1,2,..., d f. Using parameter Xi E R, i = 1,2, . , d, and constants 

pi E R, i = 1,2, . . , d - 1, we can denote the line Li as aiai + E(iri jjjaj, where pi = 0 

means the point pin, for i 3 2. Note that for any point in C(Li), i = 1,2, . . ..d - 1, 

pi # pi holds from the definition of Li. 
If a hyperplane h E H contains pi E Li, h also contains Li because pi $ C(Li). Clearly, 

it follows that h containspi- 1. By using it recursively, we can conclude that h contains 

LjfOrj= 1,2,... , i. Therefore, for i = 1,2 , . . . , d - 1, all hyperplanes h E H containing 

piareparallel to Lj,j= 1,2 ,..., i. 
For any hyperplane h E H, there is at least one line probe Li E U that is not parallel 

to h because all direction vectors of the line probes in U are linearly independent. That 

is, at least one line Li E U intersects h by one point in C(L,). Let 

U’ = (Li E U 1 C(Li) # 8). If U’ is empty then H must be empty and clearly we can 

determine the generic line. Thus, we can assume U’ is not empty. 

Let X be a non-empty subset of U’, and let k = max,_,tX i. We define H(X) as the set 

of hyperplanes h such that h n Li E C(L,) for all Li E X and that h is parallel to Li for 

all Li E U - X. For each Li E X, we choose a position vector of a point in C(Li) and 

denote it by y(Li). Let X(Li) = y(L;) - y(L,) for Li E X - (L, i. For each Li E U - X, 



we choose a direction vector fi of Li and let x(&) = Ii. These d - 1 vectors x(L,), 

Li E U - CL+}, defined above can be written as 

X(Li) = 
i 

(C(i-fii)Ui-$i+lfijUj for LiEX- {Lkj, 

sjui for LiEU-X, 

where ri # 0 and Cxi - Bi # 0 for i # k. From the easy computation of the rank of the 

matrix defined by these d - 1 vectors, we can show that these A - 1 vectors are 

linearly independent. This means that there is one unique hyperplane parallel to all 

L E U - X which contains each point y(L), L E X. 

Thus, for any point set Q G UIdEu.. C(L),lQ n C(L)1 = 1 for all LE U’, there only 

exists one unique hyperplane h such that h n L = C(L) n Q for all L E X and that h is 

parallel to L for all L E U - X. Because C(L) is finite for all L E U’, H(X) is also finite 

from the above discussion. 

Now we define the finite set H’ of hyperplanes as 

H’= u H(X). 
x c L”,X #0 

Note that H’ 2 H, because for any h E H there exist a line L E U which intersects 

h and each L E U is either parallel to h or intersects h. That is, H’ means the set of 

“possible” hyperplanes as a hyperplane in H. Since H c H’, the generic line of H’ is 

also the generic line of H. It is only the problem of computations to determine the 

generic line for known H’. Thus, we can define the generic line L, of H as the generic 

line for H’. That means, we can determine a generic line of H by using non-uniform 

flat probes whose dimension sequence is equal to the given one with rank d. 0 

Although a k-flat with k 3 2 covers infinite number of lines, Theorem 4.1 means we 

cannot essentially improve the complexity of the algorithm to determine a generic line 

by using k-flat probes with k 3 2 instead of line probes. That is, the line probing is 

essential to determine a generic line with regard to the combinatorial complexity of 

the algorithm. 

A positive integer sequence is called proper if the last element of it is equal to 1. 

A positive integer sequence is also called arrangement ,feasih/e if there is an algorithm 

to determine H by using non-uniform flat probes in which the dimension sequence of 

flats is equal to it. 

Note that, in the following theorem, we do not need multiplicity information of the 

flat probes except the last one line probe to determine H. 

Theorem 4.2. Let H he u set qf hyperplanes in Ed, then the minimum rank of’ non- 

uniform flat probes that are needed to determine H is d + 1, and any proper positive 

integer sequence with rank d + 1 is arrangement ,feasible. 

Proof. First, we prove that the lower bound of the minimum rank is d + 1. To prove 

it, it is sufficient to show that for any given non-uniform flat probes Fi, i = 1,2,. . , r, 



such that Cl=, dim (Fi) = d, there exist the set HI and the set of H, of hyperplanes 

such that C(Fi, H,) = C(Fi, H,) and m(Fi, HI) = m(Fi, H,) for i = 1,2, . . ..r because 

this means we cannot determine H by using non-uniform flat probes with rank d. 

In constructing the above example, we can assume that the generating vectors of all 

probing flats Fi, i = 1,2, . . . , r, are linearly independent as in the proof of Theorem 4.1. 

Otherwise, let HI = 8 and H2 = {h) where the hyperplane h misses all Fi, 

i = 1,2, . . . , r. Then this example satisfies the requirements. 

For i = 1,2, . . . , r, we can choose dim(F,) points qi. 1, qi, 2, . . , qi,dim(F,) on Fi such 

that all d points qi,j, i = 1,2, . . . , r, j = 1,2, . . . ,dim(Fi), are affinely independent 

because the generating vectors of all probing flats Fi, i = 1,2, . . . , r, are linearly 

independent. Let hi, 1 < i d r, be the hyperplane containing qi, 1, qi, 2, . . . , qi,dim(F,) 

which is parallel to all flat probes Fj for 1 < j < r, j # i. Let ho be the hyperplane 

which contains all d points qi,j, i = 1,2,. . . , r, j = 1,2, . , dim(F,). Then the example 

HI = {hiJi = 1,2,... ,r) and Hz = {h,} satisfies the requirement. 

Next, we prove that the upper bound of the minimum rank is also d + 1 and that 

any proper positive integer sequence with rank d is arrangement feasible. To prove it, 

it is sufficient to construct the algorithm to define H by using non-uniform flat probes 

Fi, i = 1,2, . . . ,r, whose dimension sequence is equal to the given proper one with 

rank d + 1. We can determine the corresponding d line probes Li with its outputs 

C(L,) and m(p), p E C(Li), for i = 1,2, . . . , d by using non-uniform flat probes whose 

dimension sequence is equal to dim(F,), dim(F,), . . . ,dim(F,_ ,) with rank d as in the 

upper bound proof of Theorem 4.1. Let H' be the set of “possible” hyperplanes and let 

L d+l be the generic line of H' defined by d line probes L,, i = 1,2, . . . , d, as in the upper 

bound proof of Theorem 4.1. We define the last flat probe F, as Ld+ 1, and let 

C(Ld+r) = C(F,). For each point p E C(Lp+, ), there is one unique hyperplane h E H' 

which intersects Ld+ , at the point p, and for each hyperplane h E H E H', h intersects 

L dfl at a point in C(Ld+l) because of the definition of the generic line. Therefore, 

and the multiplicity m(h) = m(p) where p = h n Ld+ 1, p E C(Ld+ 1). Thus, we can 

determine H by using non-uniform flat probes whose dimension sequence is equal to 

the given proper one with rank d + 1. 0 

Theorem 4.2 means that the line probing is still essential to determine H with regard 

to the combinatorial complexity of the algorithm. 

Since we can assume that the computational complexity of a k-flat probing is at 

least that of k line probes in considering the computational complexity to determine 

a generic line of H and H itself by using non-uniform flat probes, we cannot improve 

the bounds for the computational complexity in Theorems 2.2, 2.3 and 2.4 to 

determine a generic line of H and H itself by using flat probes. If the computational 

complexity of a k-flat probing is equal to that of k line probes, the computational 

complexity to determine a generic line of H and H itself by using non-uniform flat 
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probes whose dimension sequence is equal to the given one is the same as in Theorem 

2.2, 2.3 and 2.4, provided that we can compute the cross point of a k-flat with a line 

contained in a (k + I)-flat with the constant time. 

5. Extended point probing models 

In this section we introduce the extended point probing models, which are the 

vertical probing and the level probing, in order to approximate the arrangement of 

hyperplanes, and consider their relation to the neural network models in connection 

with computational learning theory to learn a network of threshold functions. We 

also consider the combinatorial complexity of the vertical probing and the approxi- 

mation error of the level probing. All arrangements should be considered as the 

arrangements of non-vertical hyperplanes in this section. 

5.1. Approximation qf hyperplane arrangements 

For a set of hyperplanes H in Ed, the point probing which is introduced in Section 2 

only tells us whether the specified point is contained in some hyperplane in H or not. 

Clearly, it is possible that we cannot obtain any combinatorial information on the 

arrangement of H by using finite number of the point probes. In this section we extend 

this point probing model to provide additional information on H concerning the 

specified point, that is, to provide not only whether the point is in H or not but also 

the minimum height of intersecting points of hyperplanes in H with the vertical line 

containing the specified point or the number of hyperplanes below the point. We call 

the former vertical probing and the latter level probing. 

We define these two probing models in detail. For an input vector x E Ed, let t,,o(x) 

be the threshold function defined as follows: 

tw. 0 (x) = 
1 if W~_X - 0 20, 

0 otherwise, 

where w E Ed is the weight vector and 9 E R is the threshold value. In many cases, the 

input vector to the threshold function is restricted to a O-1 vector, but here we do not 

impose such restriction. The value of above linear threshold function is determined by 

the value of rvTx - 8, which is called the linear value of the function. Let the real 

vectors wi E Ed and the real numbers Bi E R for i = 1,2, . . . , n. Let H be the set of 

II hyperplanes: 

hi={(X,y)EEd+‘ly=WTX-_i) 

for i = 1,2, . . . , n in Ed+ ‘, and let H’ be the set of n hyperplanes: 

h:={xEEdIWTX=ei} 
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Fig. I. (a) Function 9 and (b) function < 

for i = 1,2, . . . ,n in Ed. We define a function ye: Ed -+ R as 

q(X) = min {WTX- eis. 
i= I,....n 

The vertical probing for H by the point (x, y) E Edi’ where x E Ed and y E R reports 

4 (I). We also define a function < : Ed + R as 

The level probing for H' by the point x E Ed reports c(x). 

The problem to approximate the O-l output function such as the above-mentioned 

threshold function t,,,0(x) with only the information of its 0-l outputs for a set of 

example input vectors is studied in the PAC learning model of the learning theory. 

However, if the learner receives some additional information about the example 

besides the O-l output, that is, real values which reflects the linear value of the 

function, the number of necessary examples may be reduced. Although a single 

threshold function can be trivially learned with the information of its linear value, 

a network of linear threshold-like functions such as a neural network with d input and 

one output, is by no means trivial. Here we consider two types of simply structured 

networks as target functions which correspond to vertical probing and level probing. 

Fig. l(a) depicts the network representation of the function n as a three-layered 

network with d = 2 and n = 3. Note that the units in the hidden layer are not real 
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Fig. 2. A lower-unbounded polyhedron, and its horizontal section in the plane. 

threshold functions but they output the linear values. Also, note that in this network 

weights from the hidden layer to the output unit can be regularized to one by 

transferring them to the weights for the input of the hidden units. Fig. l(b) shows the 

function 4 as a network. In this case, the output threshold function is restricted to 

a simple one, i.e., non-weighted summation of outputs of the hidden units. 

5.2. The vertical probing model 

The function q can be regarded as describing the d-dimensional convex polyhedron 

9 = {X E Ed 1 WTX - Oi < 0} since x E 9 iff u](x) < 0. For the n threshold functions in 

the hidden layer of ye, we consider the intersection P0 of half-spaces in the (d + l)- 

dimensional space naturally determined by them: 

PO= fj {(x,Y)EE~+‘IxEE~,Y~wTx-_~). 
i=l 

The d-dimensional polyhedron 9 is the intersection of this polyhedron P0 with 

hyperplane y = 0 in Ed+‘. The convex polyhedron in Ed that is the lowermost cell in 

the arrangement such as P0 is called lower-unbounded, and the intersection of the 

lower-unbounded polyhedron with the hyperplane y = 0 such as 9 is called the 

horizontal section of the polyhedron; see Fig. 2 which illustrates them. In the figure, the 
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shaded area shows a lower-unbounded polyhedron, and the thick line segment is its 

horizontal section. 

We can consider the vertical probing as the conditioned version of the finger 

probing for the convex polytopes studied by Dobkin et al. [6]. That is, the finger 

probe reports the contact point for a specified line with arbitrary direction while the 

vertical probing reports the contact point for only a vertical (fixed direction) line. 

However, it should be noted that the finite number of vertical probes by (Xj, yj) E Ed+’ 

forj= 1,2,..., k cannot tell us the information of 

90 n {(x,y)eEdfl IxEconv({xjIj= 1,2 ,..., k)),yERf, 

that is, the outside of the probed area for ~7~. Thus, we cannot determine Y0 E Ed+’ 

by the finite number of vertical probes. A bounded area in the hyperplane y = 0 

with which the image of each facet of the lower-unbounded polyhedron by 

the orthogonal projection onto the hyperplane y = 0 intersects is called the 

dejning area of the lower-unbounded polyhedron. From the viewpoint of the learning 

theory, we can assume that the defining area of the lower-unbounded polyhedron 

is given and consider the goal of the vertical probing for P0 is not to determine 

all hyperplanes y = WTX - Qi for i = 1,2, . . . . n but to determine the horizontal 

section 9 of Pb. In this sense, from a slight modification of the proof of the bound 

for the worst-case number of the finger probes to determine PO by Dobkin 

et al. [6], we can prove the bound for the worst-case number of the vertical 

probes for 9’. The following theorem shows this bound. Note that Y0 has at most 

n facets. 

Theorem 5.1 (Dobkin et al. [6]). Let YO be a lower-unbounded polyhedron in Ed 

and let the dejining area of’ PO be given. Then, to determine the horizontal section 

of PO, deg,(P‘,) + deg,_ 1 (PO) vertical probes are necessary and deg,(P,) + 

(d + 2)(deg,_ 1 (go) - 1) uertical probes are sujficient. 

The famous upper bound theorem proved by McMullen [14] on the simplicial 

polytope (i.e. a polytope of which each facet is a simplex) says that the cyclic polytope 

with n vertices in Ed attains the maximum number of k-faces among simplicial 

polytopes with n vertices in Ed. The dual polytope of the simplicial polytope is called 

a simple polytope. Obviously, a cell of the simple arrangement is a simple polytope. 

We define the function C& (d, n) for 0 < k < d - 2 as 

LdPJ i 

@,Mn) = C k 
i=O ( )( 

n-d:i-l)+L’“iFJ(d;i)(n-d+i-l). 

From the result of the upper bound theorem in the dual space, we can obtain the 

following theorem. 



Theorem 5.2 (McMullen [14]). For any simple d-polytope P with n facets we have 

degk(P) d Gk (4 4, 

for 0 6 k < d - 2. 

From the computation of the value of Go(d, n), we can easily obtain the following 

corollary. 

Corollary 5.3 (McMullen [14]). For any simple d-polytope P with n,facets we have 

deg, (P) d Go (d, n) = 
n - L(d + 1)PJ n - Ld/2 J - 1 

LGJ LV - 1)/I J ’ 

Note that Gio(d,n) = 0(nm’“[d-‘.Ld’2~~). U . smg a straightforward perturbation ar- 

gument, it can be shown that the same bound holds for arbitrary convex polytopes 

with n facets. 

Since PO has at most n facets, we can bound the worst-case number of the above 

vertical probes from Corollary 5.3 as stated in the following. 

Corollary 5.4. Let .Y,, be a lower-unbounded polyhedron dejined by the n hyperplanes in 

Ed and let the dejining area of Y0 be given. Then, to determine the horizontal section of 

A?,,, @,(d,n) - 1 + (d + 2)n = O(nLd”l ) vertical probes are sujjicient, where 

@o (4 n) = 
n - L(d + 1WJ I( n - Ld/2 J - 1 

LW J L@ - 1)PJ ’ 

5.3. The level probing model 

The n threshold functions of d inputs in the hidden layer of < naturally induces the 

arrangement &(H’) of the set H’ of n hyperplanes in the d-dimensional Euclidean 

space. Any point x in a cell of the arrangement &(H’) has the same value of t(x), and 

this reported value of c(x) is called the level of the point X. For the arrangement 

& E Ed, a set S of points is called the covering of & if each cell of & has exactly one 

point in the set S. In this case, we also say that the arrangement d is covered by S. The 

level probes by the covering set of points for the arrangement is called the covering 

level probes. Then, another arrangement d’ of n hyperplanes is said to be consistent 

with respect to S if JXI’ induces the same level as induced by d for all points in S. 

We can draw the dual graph G of the arrangement sr/ which is covered by the point 

set S such that each vertex v in V(G) which corresponds to a cell c in LZZ is drawn as the 

unique point in S which is contained in the cell c and that each edge xy in E(G) is 
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Fig. 3. A linear dual graph of an arrangement. 

drawn as the straight line segment connecting its two endvertices .Y and y in S. We call 

this drawing of G the linear dual graph of &’ with respect to S; see Fig. 3 for 

a two-dimensional example. In the figure, the dots show a set of points S. and an 

arrangement of lines drawn by the thin lines is covered by S. The thick line segments 

show edges of the linear dual graph of the arrangement with respect to S. Since each 

cell of & forms a convex polyhedron, each edge of the linear dual graph intersects with 

hyperplanes of d by exactly one point which lies on the facet between two cells 

corresponding to two endvertices of the edge. 

There is a question about the linear dual graph G, of an arrangement d with 

respect to a point set S whether the linear dual graph of any consistent arrangement of 

LZZ is the same as GI with respect to S or not. This question is negatively proved by the 

counterexample in which two consistent arrnngemcnts have different linear dual 

graph with respect to a given point set S. In the two-dimensional case, we illustrate 

such a counterexample in Fig. 4(a) and (b). In the lipurc. the dots show the point set 

S with their levels, and two consistent arrangcmcnts of lines drawn as the solid lines in 

(a) and (b) form the counterexample. The point set S is invariable by the horizontal flip 

(symmetric) around the dashed vertical line, and two consistent arrangements in (a) 

and (b) can be mapped one another by the same horizontal flip. But the linear dual 

graphs are clearly different because they arc not invariable by the same horizontal flip 

(asymmetric). 

Thus, we introduce the concept of duul-equivalent for two arrangements of 

hyperplanes with respect to a covering point set. Specifically, two arrangements of 
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Fig. 4. A counterexample of consistent arrangements whose linear dual graphs are different in the plane. 

(b) 



hyperplanes are called dual-equivalent with respect to a covering point set S if and only 

if their linear dual graphs with respect to S are the same one. Obviously, dual- 

equivalent arrangements are always consistent arrangements, but not vice versa from 

the above counterexample. In the following section, we consider the approximation of 

the arrangement by the covering level probes combined with the information on its 

linear dual graph. 

Since the level probing for an arrangement does not report the information on the 

exact point in a hyperplane of the arrangement, it is clear that we cannot determine 

the arrangement of hyperplanes by the finite number of level probes. However, there is 

a problem whether we can approximate the outputs of the function r(x) which 

correspond to the results of the level probes from the covering level probes for the 

arrangement provided that we have the information on its linear dual graph. Let <‘(x) 

be the approximated function of t(x), and let n be the number of hyperplanes in the 

arrangement. Specifically, the problem is interpreted to imply whether we can bound 

the approximation error It’(x) - t(x)1 by the constant to n or not if underlying 

arrangements are dual-equivalent. Unfortunately, we also have the counterexample 

for this problem. Fig. 5 shows a two-dimensional example. In the figure, the dots show 

a set of points S with their levels. One arrangement is illustrated by the set of the thin 

solid lines and the thick solid lines, and another arrangement is illustrated by the set of 

the dashed lines and thick solid lines. These two arrangements are dual-equivalent 

with respect to S. The approximation error in the shaded area can become greater 

than any number by adding the parallel thin solid lines below the lowermost one and 

extending the points of S to cover the newly generated cells. Thus, this example shows 

that the approximation error It’(x) - <(x)1 is not bounded by the constant to the 

number of hyperplanes in the arrangement. It should be noted that we can also 

construct another counterexample of the non-simple arrangement that does not 

contain parallel lines in E2 as in Fig. 6. 

However, we can bound the approximation error for simple arrangements. Now we 

introduce additional terminologies. Let S be a point set covering the simple arrange- 

ment .YZ of n hyperplanes in Ed, and let G1 be the linear dual graph of & with respect to 

S. For each vertex I) of d, there are 2d cells and d. 2dm ’ facets whose closures are 

containing L’. These cells and facets around u correspond to a set of vertices V(o) and 

a set of edges E(r) in G,, and we call the subgraph G(v) = (V(u), E(u)) the cell subgraph 

of G[ around u. Note that all cell subgraphs of G, are isomorphic to the d-dimensional 

hypercube. By using this property of the cell subgraphs, we can easily determine all 

cell subgraphs of G1 without the information on the underlying arrangement ~2. Since 

the maximum difference among the levels of V(u) is d which is the diameter of the cell 

subgraph G(u), we can assume the set of levels of V(u) as (k, k + 1, . . , k + d}. We 

define the cell c(u) of the graph G, around I: as cl(conv( V(u))); see Fig. 7 which shows 

a cell subgraph and its cell in the two-dimensional case. We also define the leuel of the 

cell c(o) as the minimum level of the points in P’(u). The (not necessarily disjoint) union 

of all cells of GI is equal to the convex hull conv(S) and it is called the level hull for the 

level probes. Then, we can prove the following theorem. 



Proof. For each cell c(v) of a vertex z’ in the arrangement sil’ in Rd, there exist exactly 

d hyperplanes that intersect with c(r), and each hyperplane which intersects with C(V) 

contains exactly 2d-’ facets whose closures intersect with c(u). On the other hand, 

each cell subgraph G(u) of the linear dual graph GI of d has exactly d .2d- ’ edges, and 

each edge in G(u), which is contained in C(U), intersects with exactly one facet in d. 

Thus, we can conclude every facet in .n/ whose closure has non-empty intersection 

with c(u) also intersects with an edge of G(u). 
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Fig. 6. Another example arrangement with unbounded approximation error. 

Let n be the number of hyperplanes of the arrangement &, that is, the maximum 

level of the points in the probed point set S. Let k-belt for k = 0, 1, . . . , n be the 

collection of the points whose levels are equal to k, and let k-envelope for 

k=O,l,..., n - 1 be the upper boundary of the k-belt. Note that each envelope that 

intersects with the cell c(u) also intersects with some edge of the corresponding cell 

subgraph G(v) E GI because each envelope can be represented as the union of some 

facets in J&‘. Since the k-envelope intersects only the edges which are connecting the 
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k+3 

k+2 
k+2 

k+l k+l 

Fig. 7. (a) A cell subgraph and (b) its cell in the three-dimensional case. 

points with level k and the points with level k + 1, each cell whose level is k can 

contains from k-envelope to (k + d - 1)-envelope, that is, from k-belt to (k + d)-belt. 

Therefore, for any point x in the cell with level k, the possible levels of x are 

{k,k + 1 , . . . , k + d). Since every point in the level hull is contained in some cell, the 

approximated level function 5’ of any dual-equivalent arrangement, the approxima- 

tion error It’(x) - t(x)1 1s bounded by d. 0 

Here we consider the enhanced level probing for the arrangement of hyperplanes 

H in Ed as the extended version of the level probing that reports the identical “names” 

of hyperplanes in H which are below the specified point instead of the number of them. 

Recall that the sign vector of each face of the arrangement of n hyperplanes is 

a member of { + l,O,l)” which represents the relative positions of the face to the 

hyperplanes, that is, the face is above, on, or below the hyperplanes. Clearly, the sign 

vector of a cell in the arrangement is a member of { + 1, - l}“, and two cells of the 

arrangement are adjacent if and only if the sign vectors of these two cells are different 

in exactly one element. It is easy to show that the sign vector of each cell of the 

arrangement is uniquely determined using the enhanced level probes by the covering 

set of points for all cells in the arrangement, which is also called the covering enhanced 

level probes. Thus, we can determine the linear dual graph of the arrangement 

uniquely from the covering enhanced level probes for the arrangement. Since the 

information from the covering enhanced level probes includes the information from 

the covering level probes, we can show the following corollary of Theorem 5.5. 

Corollary 5.6. From the covering enhanced level probes for a simple arrangement in Ed 

we can approximate the level of’ all points in the level hull with the maximum error d. 

By using the results by Cordovil and Fukuda [S] we can show that the structure of 

the simple arrangement of hyperplanes can be determined uniquely in the sense of 
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combinatorial equivalence from the covering enhanced level probes for the arrange- 

ment. For studies related to [S], see [S-lo]. 

For i = 0,l , . . . , d, let Fi be the set of i-faces of the arrangement &4(H) of the 

n hyperplanes H in Ed, where we denote each face by its sign vector in { + l,O, - l}“. 

We can determine the set of cells F, with their sign vectors by the covering enhanced 

level probes. For two sign vectors x and y, we call x and y are adjacent if and only if 

these two vectors are different in exactly one element where the different element is 

non-zero both in x and in y, and the sign vector which is defined by replacing one 

different element of x (and y) with 0 is called the common subvector of x and y. For 

i=d- l,d-2,..., 0, we can also determine Fi and the incidences between Fi+ 1 and 

Fi from Fi+ 1 as follows: 

l For each two faces x and y in Fi+ 1 whose sign vectors are adjacent, append a face 

f whose sign vector is the common subvector of x and y to Fi unless it is contained 

in Fi, and make incidences between x and f and between y andf: 

Thus, we can determine the structure of the arrangement. 

Theorem 5.7. From the covering enhanced level probes for a simple arrangement in the 
multidimensional Euclidean space we can uniquely determine the structure (in the sense 
of the combinatorial equivalence) of the arrangement. 

6. Concluding remarks 

In this paper, the combinatorial complexity to determine the geometry and the 

topology related to arrangements by the probing is investigated. For a finite set H of 

hyperplanes in Ed, we have obtained the number of flat probes which are necessary 

and sufficient to determine a generic line of H and to determine H. We have shown 

that the line probing was the most essential probing among arbitrary dimensional 

flat probing to determine a generic line of H and H itself in the sense of combinatorial 

complexity, and have evaluated the time complexity of them based on the efficient 

line probing algorithm using the dual transform to compute H. We have also 

extended the point probing in order to approximate H. We have discussed these 

extensions in relation to the neural network models, and have shown their connec- 

tions with computational learning theory such as learning a network of threshold 

functions. 

The probing problem concerning arrangements is not well studied yet, and there 

remains many interesting questions. Here we itemize some of them. 

1. Concerning the proper condition of Theorem 4.2, it is an open problem whether all 

positive integer sequences are arrangement feasible or not. 

2. The main probing algorithm in this paper is very sensitive to the probing error. It is 

an open problem to develop the robust probing algorithm with efficiency. 

3. The problem whether we can bound the error in the approximation of the level of 

each point in the level hull by the covering level probes for the single arrangement 
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in Ed is still open. Here we conjecture that there is an example in E2 whose 

maximum error can become greater than any number. 

4. The target of the probing in this paper is the arrangement of hyperplanes, and the 

polytope is also studied well as the target. The study of the probing for other 

extended targets such as the non-convex objects is still open. 
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