236 research outputs found

    Advanced Optical Diagnostics in Particle Combustion for Biomass and Metal as Alternative Fuels

    Get PDF
    The energy sector is in urgent need for carbon-free strategies considering environmental pollutions and climate change impact. Two kinds of solid fuels, biomass and metal particles have been studied in this thesis aiming at CO2 emission reduction or zero carbon emission. Biomass is a renewable and carbon-neutral energy source that provides heat and power through gasification and combustion. Biomass fuels usually contain varying amounts of potassium, which will cause severe operational problems, such as slagging and corrosion by the potassium released during thermal conversion processes. The detailed potassium chemistry in biomass thermochemical conversion processes has been investigated in our previous study and presented in Weng’s doctoral dissertation. Based on these quantitative studies, the work presented in this thesis is mainly focused on the quantitative measurement of burning a single biomass pellet and the potassium released from burning pulverized biomass char particles. The motivation for the study of biomass char particles is that over 80% of the potassium can remain in the char particles from the raw biomass. Laser-induced photofragmentation fluorescence (LIPF) imaging was adopted here to measure the potassium release process for biomass char particles, which provides spatially resolved information of the dominant species of KCl and KOH that formed during the char oxidation period. A hot laminar gas flow was used for calibration with gas-phase KOH and KCl provided by a homemade multi-jet burner, in which a homogenous temperatures distribution ranging from 1000 to 2000 K are provided. Newly developed UV-absorption spectroscopy was adopted to monitor the concentrations of KOH and KCl. Based on the calibration, the KOH/KCl distribution surrounding the burning char particles was derived, revealing the potassium release process during the char oxidation period.Metal fuels have been used as sustainable energy carriers due to their zero-carbon emission and high energy density. The iron powder has been proposed as one of the most promising recyclable metal fuels for the future low-carbon society. A comprehensive understanding of the combustion behavior of iron particles is essential for investigating fundamental mechanisms and designing efficient iron powder combustors. A versatile metal powder seeding apparatus has been designed and optimized based on electrostatic dispersion. This dispersion system is well calibrated for powder concentration that can provide a stable flow of particles seeding for nearly one minute. The work presented in this thesis mainly focuses on investigating single iron particle combustion in a well-controlled laminar premixed flame with a modified Mckenna flat-flame burner through advanced optical diagnostic techniques. One of the challenges for the study of metal combustion came from the small size (~20 to 80 µm) of the metal particles and their movement in the hot combustion environment. This work, inspired by clustering algorithms, proposed a new clustering-based particle detection (CBPD) method for digital holography (DH) for particle detection. This data-driven method features automatic recognition of particles, particle edges and background, and accurate separation of overlapping particles. Based on CBPD method, high-speed digital in-line holography (DIH), a three-dimensional (3D) imaging technique, is employed to reconstruct the 3D particle field and simultaneously quantify the size, 3D location and velocity of burning iron particles in a well-controlled CH4/N2/O2 premixed Bunsen flame with a stable metal power seeded.The ignition delay time, combustion time of single micron-sized iron particles are studied by high-speed imaging in different flame conditions. Particle temperatures are measured by an ICCD camera equipped with a stereoscopy, and the results are derived through the two-color pyrometry method. An important phenomenon of nano-sized iron-oxides particles releasing during the iron particles combustion has been identified. Micro-explosion of burning iron particles was observed during the combustion process, which is complex and can affect combustion stability and the formation of product components. The morphology of raw iron particles and the combust products (iron oxides) collected by sampling meshes have been analyzed by scanning electron microscopy (SEM)

    Three-dimensional visualisation and quantitative characterisation of fossil fuel flames using tomography and digital imaging techniques

    Get PDF
    This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for the three-dimensional (3-D) visualisation and quantitative characterisation of fossil fuel flames. A review of methodologies and technologies for the 3-D visualisation and characterisation of combustion flames is given, together with a discussion of main difficulties and technical requirements in their applications. A strategy incorporating optical sensing, digital image processing and tomographic reconstruction techniques is proposed. The strategy was directed towards the reconstruction of 3-D models of a flame and the subsequent quantification of its 3-D geometric, luminous and fluid dynamic parameters. Based on this strategy, a flame imaging system employing three identical synchronised RG B cameras has been developed. The three cameras, placed equidistantly and equiangular on a semicircle around the flame, captured six simultaneous images of the flame from six different directions. Dedicated computing algorithms, based on image processing and tomographic reconstruction techniques have been developed to reconstruct the 3-D models of a flame. A set of geometric, luminous and fluid dynamic parameters, including surface area, volume, length, circularity, luminosity and temperature are determined from the 3-D models generated. Systematic design and experimental evaluation of the system on a gas-fired combustion rig are reported. The accuracy, resolution and validation of the system were also evaluated using purpose-designed templates including a high precision laboratory ruler, a colour flat panel and a tungsten lamp. The results obtained from the experimental evaluation are presented and the relationship between the measured parameters and the corresponding operational conditions are quantified. Preliminary investigations were conducted on a coal-fired industry-scale combustion test facility. The multi-camera system was reconfigured to use only one camera due to the restrictions at the site facility. Therefore the property of rotational symmetry of the flame had to be assumed. Under such limited conditions, the imaging system proved to provide a good reconstruction of the internal structures and luminosity variations inside the flame. Suggestions for future development of the technology are also reported

    High-speed imaging in fluids

    Get PDF
    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining criteria for high-speed imaging experiments in fluids and to give rule-of-thumbs for a series of cases. It also considers stroboscopic imaging, triggering and illumination, and scaling issues. It provides guidelines for testing and calibration. Ultra high-speed imaging at frame rates exceeding 1 million frames per second is reviewed, and the combination of conventional experiments in fluids techniques with high-speed imaging techniques are discussed. The review is concluded with a high-speed imaging chart, which summarizes criteria for temporal scale and spatial scale and which facilitates the selection of a high-speed imaging system for the applicatio

    Optical instrumentation for fluid flow in gas turbines

    Get PDF
    Both a novel shearing interferometer and the first demonstration of particle image velocimetry (PIV) to the stator-rotor gap of a spinning turbine cascade are presented. Each of these techniques are suitable for measuring gas turbine representative flows. The simple interferometric technique has been demonstrated on a compressor representative flow in a 2-D wind tunnel. The interferometer has obvious limitations, as it requires a clear line of sight for the integration of refractive index along an optical path. Despite this, it is a credible alternative to schlieren or shadowgraph in that it provides both qualitative visualisation and a quantitative measurement of refractive index and the variables to which it is dependent without the vibration isolation requirements of beam splitting interferometry. The 2-D PIV measurements have been made in the stator-rotor gap of the MTI high-pressure turbine stage within DERA's Isentropic Light Piston Facility (lLPF). The measurements were made at full engine representative conditions adjacent to a rotor spinning at 8200 rpm. This is a particularly challenging application due to the complex geometry and random and periodic effects generated as the stator wake interacts with the adjacent spinning rotor. The application is further complicated due to the transient nature of the facility. The measurements represent a 2- D, instantaneous, quantitative description of the unsteady flow field and reveal evidence of shocks and wakes. The estimated accuracy after scaling, timing, particle centroid and particle lag errors have been considered is ± 5%. Non-smoothed, non-time averaged measurements are qualitatively compared with a numerical prediction generated using a 2-D unsteady flow solver (prediction supplied by DERA). A very close agreement has been achieved. A novel approach to characterising the third component of velocity from the diffraction rings of a defocusing particle viewed through a single camera has been explored. This 3-D PIV technique has been demonstrated on a nozzle flow but issues concerning the aberrations of the curved test section window of the turbine cascade could not be resolved in time for testing on the facility. Suggestions have been made towards solving this problem. Recommendations are also made towards the eventual goal of revealing a temporally and spatially resolved 3-D velocity distribution of the stator wake impinging on the passing rotor

    Flame and acoustic waves interactions and flame control

    Get PDF
    In this PhD project, the investigation of the stability of a laminar diffusion flame and the interaction of the flame with acoustic waves inside an acoustically excited cylindrical tube is presented. Interesting phenomena have been observed by studying both the infrasound and sound effect on the flame structure and dynamics.When a cylindrical tube burner is acoustically excited at one end, a standing wave will be produced along the tube burner. By applying a programming controlled signal from a signal generator, the loudspeaker generates acoustic waves with different frequencies and intensities to excite the flame, which can make the flame relatively stable or unstable, even blow out. Different methods in both frequency domain and time domain have been applied to analyze the flame stability affected by acoustic waves. Both infrasound and sound are tested in this research. Infrasound is the acoustic wave with a frequency too low to be heard by human ear covering sounds beneath the lowest limits of human hearing (20Hz) down to 0.001Hz. It is found that infrasound is able to take over buoyancy-driven flame flickering and make the flame flicker at the same frequency as the forcing infrasound. For some infrasound, half excited frequency has been detected clearly in the power spectrum of CH* chemiluminescence signals acquired by a photomultiplier. On the other hand, some higher frequency acoustic wave can have observable effect on flame flickering but the buoyancy-driven flickering is still the dominant oscillating mode; some other higher frequency acoustic wave can make the flame very stable, such as the acoustic wave at 140Hz. Image processing technique has shown that the influence of acoustic waves on the laminar diffusion flame varies spatially. It is also observed that a diffusion flame may oscillate at different frequency spatially. Taking the flame without acoustic excitation as an example, the inner most area of the flame oscillates at the typical flickering frequency, but the most outer areas of the flame oscillate at the second-harmonic of the typical flickering frequency. Finally, some control strategies are developed for the laboratory tube burner based on the gained physical insights in this research.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    Get PDF
    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application

    Combustion Visualisation Monitoring Using High Speed Imaging

    Get PDF
    Optical visualisation of flames plays an important role in the in-depth understanding of complex combustion phenomena. In particular, a high-speed camera can provide nonintrusive and continuous monitoring of flames. Through the recorded images, further analysis on colour, temperature, flame dynamics, and a variety of other information can be achieved, which is essential for physical study and numerical modelling. The main objectives of the present work are to apply visualisation monitoring to different combustion conditions, quantitatively analyse the combustion performance, and integrate these analyses with their inherent nature to achieve physical insights into these combustion phenomena. Overall, this work improves the understanding of combustion, and contributes towards the development of tools for flame performance analysis and evaluation. These benefits could be crucial for future fuels and engines

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals

    Molecular-Based Optical Diagnostics for Hypersonic Nonequilibrium Flows

    Get PDF
    This manuscript describes Molecular-Based Optical Diagnostics for Hypersonic Nonequilibrium Flows. This is a book chapter and has no formal abstract

    Holography: A survey

    Get PDF
    The development of holography and the state of the art in recording and displaying information, microscopy, motion, pictures, and television applications are discussed. In addition to optical holography, information is presented on microwave, acoustic, ultrasonic, and seismic holography. Other subjects include data processing, data storage, pattern recognition, and computer-generated holography. Diagrams of holographic installations are provided. Photographs of typical holographic applications are used to support the theoretical aspects
    corecore