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SUMMARY 

Both a novel shearing interferometer and the first demonstration of particle image velocimetry 

(PIV) to the stator-rotor gap of a spinning turbine cascade are presented. Each of these 

techniques are suitable for measuring gas turbine representative flows. 

The simple interferometric technique has been demonstrated on a compressor representative 

flow in a 2-D wind tunnel. The interferometer has obvious limitations, as it requires a clear line 

of sight for the integration of refractive index along an optical path. Despite this, it is a credible 

alternative to schlieren or shadowgraph in that it provides both qualitative visualisation and a 

quantitative measurement of refractive index and the variables to which it is dependent without 

the vibration isolation requirements of beam splitting interferometry. 

The 2-D PIV measurements have been made in the stator-rotor gap of the MTI high-pressure 

turbine stage within DERA's Isentropic Light Piston Facility (lLPF). The measurements were 

made at full engine representative conditions adjacent to a rotor spinning at 8200 rpm. This is a 

particularly challenging application due to the complex geometry and random and periodic 

effects generated as the stator wake interacts with the adjacent spinning rotor. The application is 

further complicated due to the transient nature of the facility. The measurements represent a 2-

D, instantaneous, quantitative description of the unsteady flow field and reveal evidence of 

shocks and wakes. The estimated accuracy after scaling, timing, particle centroid and particle 

lag errors have been considered is ± 5%. Non-smoothed, non-time averaged measurements are 

qualitatively compared with a numerical prediction generated using a 2-D unsteady flow solver 

(prediction supplied by DERA). A very close agreement has been achieved. 

A novel approach to characterising the third component of velocity from the diffraction rings of 

a defocusing particle viewed through a single camera has been explored. This 3-D PIV 

technique has been demonstrated on a nozzle flow but issues concerning the aberrations of the 

curved test section window of the turbine cascade could not be resolved in time for testing on 

the facility. Suggestions have been made towards solving this problem. 

Recommendations are also made towards the eventual goal of revealing a temporally and 

spatially resolved 3-D velocity distribution of the stator wake impinging on the passing rotor. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCING THE PROBLEM 

The adyent of sophisticated numerical methods to study and predict flows has enhanced, 

rather than diminished, the requirement for experimental measurements. An increased 

leyel of understanding of the physical flow requires more detailed measurements for 

Yerification, especially in separated and turbulent flows. 

The gas turbine is a technically mature product. As the compressor and turbine sections 

are already highly efficient, their performance converging to an asymptote, the 

engineering need has been targeted towards manufacturing improvements and cost 

reductions coupled with increased reliability by, for instance, reducing the number of 

turbine blades. In contrast the combustors are largely considered to be black boxes, the 

output response of a change in input is known but little is known about the internal 

behavior of the combustor, especially when running off condition. The range and scope 

of this thesis from velocity measurements in a gas turbine to a simple, quantitative 

interferometric technique for compressible flows reflects the perceived engineering 

need. 
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1.2 AIMS & OBJECTIVES 

The aim of this work is to provide improved diagnostic techniques to increase the 

fundamental understanding, and to verify numerical models, of the engines and their 

flows. The innovative objectives of the work are to push forward the practical 

performance of the measurements techniques and in the case of the PIV measurements 

of the turbine, demonstrate how the technique can be applied in a hostile environment 

\vith a complex geometry. The interferometric measurements show how quantitative 

density nleasurements can be made using a combination of a novel optical arrangement 

and analysis software that is no more complex and no more sensitive to vibration than a 

schlieren arrangement. 

1.3 DESCRIPTION OF THESIS 

The literature survey is not intended to provide details of current commercial systems, 

but rather the general properties, uses and limitations of a number of key measurement 

techniques. The survey is deliberately broad, covering measurements of temperature, 

velocity, pressure and molecular species. It is intended to allow gaps in instrumentation 

relevant to the two studies included in this thesis to be identified. The literature survey 

has also aided a separate, ongoing, project to reconstruct tomographically the location of 

heat release within a combustor operating at its stability limit. The shearing 

interferometer and some of the tomographic algorithms presented in part 3 

(multiplicative algebraic reconstruction and Abel transform) have also been used in this 

ongoing proj ect. 
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Part 2 describes velocity measurenlents in an axial flow turbine mounted in a transient 

test facility. The measurements have been made using a planar imaging technique called 

particle inlage velocimetry (PIV). 

The velocity measurements are of interest to the turbine engIneer as the flow is 

inherently unsteady. nlainly due to the relative motion between the stationary nozzle 

guide vanes (NGV) and the rotating rotor blades. The rotor blades periodically pass 

through the wake and shock structure of the preceding nozzle guide vane row, 

modulating the flow field over the blades. Fluctuations in pressure change the loading 

on the blades and can cause vibrations. Changes in heat flux can give rise to thermal 

fatiguing of the blades and variations in the angle of incidence of the rotor to the flow 

direction can cause the blades to operate off the design condition. 

This stator-rotor gap region is dominated by a complex three-dimensional flow owing to 

the periodic interaction between the stator wake and the passing rotor. This region 

represents a substantial loss within a turbomachine, but it is not well modeled by current 

analysis methods. Nor has the instantaneous structure of the flow been previously 

recorded, although extensive point measurements have been made using Laser Doppler 

Anemometry (LDA) and Laser 2 Focus (L2F). The instantaneous structures revealed by 

the PIV measurements are required in order to increase the fundamental understanding 

of this region and to provide a test case to validate further calculations. 

For the turbine measurements the emphasis is placed on gathering time-resolved, 

accurate, velocity measurements at engine representative conditions to validate 

fledgling time-varying calculations. Suggestions are also made towards realizing the 
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maxin1un1 permissible spatial resolution and improving the signal-to-noise ratio in the 

presence of glare fron1 mechanical surfaces in the field of illumination. 

Part 3 describes the development and application of a simple shearing interferometer to 

compressible flow fields. The shearing interferometer shears a single beam to produce a 

finite fringe interferogram. It is less susceptible to vibration, in comparison to a beam 

splitting interferometer, as the sheared beams are incident off common components. The 

constraint on mechanical isolation from such sources is relaxed to a level equivalent to 

that of a schlieren arrangement. It is envisaged that the shearing interferometer would be 

applied either where a schlieren or beam splitting interferometer would normally be 

used. The shearing interferometer would give a quantitative measurement of refractive 

index or its dependent variables. In each case only a few, relatively inexpensive, 

components are required to make the measurement. 

The shearing interferometer has been applied to a two-dimensional transonic wind 

tunnel and a shock-tube exhausting into ambient air. The measurements of the two­

dimensional wind tunnel were used both to evaluate the technique and to provide a first 

pass characterization of the wind tunnel that was to be used for the calibration of 

anemometry equipment. The purpose of the measurements on the shock-tube was to 

provide flow visualization to aid the acoustic evaluation of jet-exhaust noise-suppressor 

nozzles, or mixer-ejectors. The nozzles are designed to suppress noise by increasing the 

contact area, and hence the interaction, between the exhaust jet and its ambient 

surroundings. The visualisation of this interaction is intended to aid the mixer-ejector 

designer by revealing the features that give rise to the acoustic signal. Such features 
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may be accelerated mixing-layer growth, the scale of eddies within it, or the length of 

the exhaust core. 

Conclusions, part 4, discuss the outcome of both these studies and reviews the new 

knowledge generated. 

1.4 NOVEL CONTRIBUTION 

1.4.1 Velocity Measurements In the Stator-Rotor Gap of a Turbine 

Cascade 

The velocity measurements in the stator-rotor gap of a turbine cascade represent both a 

new application of the PIV technique and a synthesis of new knowledge generated since 

the previous velocity measurements, presented by Towers et al. [113) on the same facility 

prior to the fitting of a spinning rotor. The flow measurement is far more spatially 

resolved, in comparison with this previous study, with approximately five times as 

many velocity vectors per unit area. The measurements were originally intended to be 

phase locked to the rotor. Unfortunately, this could not be demonstrated owing to 

equipment failure. The development of the flow with respect to the phase of the rotor 

was therefore constructed by selecting the appropriate frames from a large data set 

(approximately 200 frames of data). 
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1.4.2 Determination of the Out-of-Plane Component of Velocity from 

Defocusing 

A noye1 defocusing method of detennining the out-of-plane component of velocity has 

been explored on a free air jet exhausting into air. The accuracy to which the out-of­

plane component can be measured was found to be comparable to that of the in-plane 

component if the particle's diffraction pattern can be resolved. These preconditions 

dictate that diffraction-limited optics and either a high-resolution camera, or small field­

of-vie\\'. are required. The fonner precondition could not be satisfied on application to 

the turbine cascade as the compound curvature and small-scale aberrations of the 

window could not be corrected. Recommendations have been made to overcome this 

problem. 

1.4.3 Development and Application of a Simple Shearing Interferometer to 

Phase Obj ects 

A simple, low cost, shearing interferometer has been developed and demonstrated with 

application to compressible flow fields and flames. The original idea was conceived to 

be a teaching aid to demonstrate the principle of phase by projecting a series of 

interference fringes. This thesis describes its development from an educational toy into 

a measurement tool capable of revealing quantitative infonnation of compressible flow 

fields. This has been achieved by identifying the variable that is being measured by the 

interferogram and creating strategies that can be used to extract it. Tomographic 

algorithms have been used to reconstruct the phase object where necessary. The 

shearing interferometer can be used to reveal quantitative infonnation about the density 

distribution of a flow field where either schlieren photography or shadow graphs would 

traditionally be used. 
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Chapter 2 

REVIEW OF OPTICAL METHODS FOR 
FLUID FLOW 

Description of Chapter 

This chapter presents and discusses some of the optical techniques 
that are used to measure fluid flow and combustion in gas turbines. 
The intent is to give some idea of the range of measurands and the 
techniques that can be used to measure them. This knowledge has 
been used to identify gaps in optical instrumentation required to 
increase the understanding of the fluid flow and to verify fledgling 
numerical models. 

The field of optical flow diagnostics is very wide so such a survey 
cannot possibly be exhaustive. It does, however, include a 
discussion of both well established techniques, some of which have 
been implemented into commercial systems, and some, highly 
specialized, laboratory curiosities that may come of age in the 
future. 
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2.1 INTRODUCTION TO THE REVIEW 

The optical diagnostics discussed in this chapter can be split into two categories, those 

that measure a flow parameter directly and those that measure the dynamics of a body 

carried by the fluid flow. This body can either be a flow tracing marker, such as a 

bubble, particle or condensation, or even a seed gas or dopant that can be provoked into 

giving a fluorescence signature indicative of its surroundings. All the techniques require 

optical access, either from one direction, or from two typically orthogonal directions, or 

by a line of sight clear through the region of interest. The interrogated area can either be 

a volume, hvo-dimensional plane, point or line integral. All have preconditions that 

need to be satisfied prior to their successful application. Gaps in the current 

instrumentation for combustion and fluid flow in gas turbines are identified at the end of 

the chapter. The discussion makes reference to the need to increase the understanding of 

the fluid flow and to verify numerical predictions. 
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2.2 VELOCITY & VISUALISATION 

2.2.1 Laser Doppler Anemometry (LDA) 

laser Doppler Anemometry is a non-intrusive optical technique for measuring the 

yelocity of a fluid at a point. Since its invention in 1964 by Yeh and Cummins [ll it has 

nlatured into a now well-established optical technique that is commonly used in 

industry. A concise explanation of LDA is given by Dantec [21 whilst a more rigorous 

explanation is given by Durst et al [1321. 

LDA allows up to three components of velocity to be measured at anyone time over a 

small volume, the size of which is determined by the intersection of two or more beams 

of coherent light [21. The interference of the intersecting beams generates fringes within 

the measurement volume through which flow tracing particles can pass, see figure 2.1. 

The intensity of the light scattered by the particle as it passes through the measurement 

volume is modulated according to the spacing of the fringes and the component of 

velocity of the particle normal to the plane of the fringes. The frequency of the pulses in 

the scattered intensity is equal to the velocity of the particle divided by the spacing of 

the fringes. 

Figure 2.2 shows a schematic of a typical laser Doppler anemometer in the backscatter 

configuration. The anemometer consists of two sections, the transmitting and receiving 

systems respectively. The former consists of a coherent laser source, the beam of which 

is split and launched into polarization-maintaining single-mode fibers that relay the 

beams to the launch head. Each of the emerging beams is collimated and focused within 

the measurement volume. Each beam converges onto a common point that defines the 

extent of the measurement volume. The two overlapping beams interfere to produce 
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fringes perpendicular to the plane of the converging beams, see figure 2.1. The fringe 

spacing can be calculated if the direction and wavelength of the two intersecting beams 

is known. The measurement of velocity is therefore absolute. 

As the measurement volume has dimensions of the order a 100 !-lm the spatial resolution 

is potentially very high, although in practical applications it can be limited by the 

prolonged time periods required to traverse and map large areas. The close proximity of 

surfaces, to within a millimetre of the center of the measurement volume, can mask the 

Doppler signal. In turbomachinery applications it is often the case that the beam is 

'chopped' in phase to the passing rotor to avoid saturation of the photo-multipliers (31• 

The measurement of each additional component of velocity requires a further pair of 

intersecting beams. In a two-component system the second pair of beams is usually 

launched from the same launch head as the first but from an orthogonal orientation. The 

interference fringes are therefore also orthogonal to the first set. A different illuminating 

wavelength is used to distinguish the multiple channels. For a three-component system 

the third channel is often launched from a separate head remote from the first, see figure 

2.3 (4, 5, 116 & 1311. The measurement volume is defined by the overlap of three pairs of 

beams, reducing the size of the volume and increasing the spatial resolution. LDA 

systems that measure three components from five beams launched from a single launch 

head are commercially available, but the accuracy in the out-of-plane component is 

reduced for long focal distances (61. However, they are mechanically stable and easy to 

align owing to the single launch head, and are partiCUlarly useful where optical access is 

. l' d Ie' l' t' (7,8 & 91 limited, such as for In-cy In er engIne app Ica Ions . 

10 



Each of the channels must intersect within the same measurement volume to resolve the 

three-din1ensional vector of a single particle. The alignment of the three beams can be 

yerified by projecting each of the three channels through a pinhole placed in the centre 

of the measurement volume. A power meter behind the pinhole can be used to walk (a 

process of translating the beam and recording the power behind the pinhole in an 

iteratiYe manner until a peak power is achieved) the beams into a common volume. 

Accuracies from + 1 % to +0.1 % have been claimed for prolonged acquisition periods 

in time-invariant flows [133
1• Velocities ranging from less than Ims-1 to hypersonic 

speeds have been measured with LDA [981• In order to maintain a sufficient data rate 

there needs to be an abundance of seeding material. Data rates inevitably suffer in 

boundary layers or areas of recirculation where there may be little seed. High refractive-

index gradients, such as those found in flame fronts and boundary layers, refract the 

. dO I ° dOth t I [8 & 91 intersecting beams, eIther ISP aCIng or estroytng e measuremen vo ume ° 
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Figure 2.1. Fringe model. The intensity of the scattered light produced as a particle passes through a series of 
interference fringes contained within a measurement volume defmed by the intersection of two coherent beams. 
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Figure 2.2. Laser Doppler Anemometer - backscatter configuration. 
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Figure 2.3. Three component LDA system with beams launched from separate 
heads. Measurement volume defmed by intersection of three beam pairs. 
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2.2.2 Doppler Global Velocimetry (DGV) 

Doppler Global Velocimetry, DGV, is an imaging anemometer that gives a spatially 

resolved, mean velocity measurement over a plane. Velocity is determined from the 

Doppler shift of light scattered by seed suspended in the flow. H. Komine [10], Northrop 

Research Center first invented the technique, but it was Meyers and Komine [11] at 

NASA Langley who turned it into a practical tool for Fluid Mechanics. DGV is also 

kno\vn as Planar Doppler Velocimetry, PDV, and Global Doppler Velocimetry, GDV, 

but DGV was the name given by Meyers and Komine and will be used throughout the 

remainder of this text. The following brief review of the method follows the approach 

given by Roehle [13]. 

DGV is a particle-based velocity measurement system. Generally, in this technique a 

laser sheet is used to illuminate a flow region of interest. The illuminated region is 

imaged onto a video camera through a specially made absorption cell that has a sharp 

cutoff near the laser line frequency. As the scattered laser light is shifted in frequency, 

due to the Doppler effect, the transmission through the absorption cell will also change. 

This converts the frequency change into an intensity change that can be more readily 

detected. The component of velocity that is detected is dependent upon the angle formed 

between the laser light sheet and the detection system. Altering the light sheet or 

detector location can change the detected component of velocity. By replicating the 

system three simultaneous components of velocity can be acquired over a two­

dimensional field. Since its conception DGV has been steadily developed into a credible 

tool for fluid mechanics. Difficulties in laser stabilisation and detecting the Doppler 

signal have hampered the packaging of the technique. However, DGV is finally coming 
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of ab a d nlonstrated by the measurements in turbo-machinery presented by Roehle et 

al It:!) . 

The velocity is determined from the frequency shift of the scattered light from a moving 

particle due to th Doppler effect (13) , 

(2.1) 

\vhere 1'0 i the laser frequency v the scattered light frequency. The shift depends on the 

... 
particle \ elocity V the speed of light, c, the light sheet direction, 1 , and the direction 

-
of observation 0 thus 

(0 I) -
~v=vo ·V 

(2.2) 

c 

One component of velocity is measured from each observation point. The direction of 

the component of velocity is ; - i , the bisector of the angle formed by the direction of 

the light sheet and the direction of observation, see figure 2.4. 

Direction of 
measured 
component of - ... 
velocity, 0-1 

Laser beam direction, 1 

Observation 

irection, 0 

Figure 2.4. The direction of the measured component ofv~locit~ in relation 
to the direction of the light sheet and the observatlon pOInt. 
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Th fr qu ncy hift due to the Doppler effect is typically too small to be measured 

dire tl . Th hifted light is filtered from the illuminating light by capturing the 

cattered light through a spectro copic cell. The absorption line of the spectroscopic cell 

i identi al to the frequency f the illuminating light. If the absorption line has a slightly 

larg r bandwidth than the illuminating light the Doppler shift will cause a change in the 

transm i 1 n through the pectroscopic cell. Freq uency variations will manifest 

a changes in inten ity when viewed through the spectroscopic cell. 

Inten ity ariations will also be created by local variations in seeding number density. 

Two cameras are used to capture the scattered light, one looking through a 

spectro copic cell and the other looking directly at the scattered light, see figure 2.5. A 

pixel-wise division of the two camera intensities, together with additional post-

processing, will reveal a map of the velocity component. 

Laser Light sheet 

Mirror Beam spl itter 

Camera 
(normalisation) 

Iodine 
Cell 

Camera 
(freq. Shifted) 

Figure 2.5. The Doppler Global Velocimeter 
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As the absorption line filter can discriminate between increases and decreases in 

frequency there is no ambiguity in the sign of the velocity. A calibration procedure is 

required to establish the transmission profile of the spectroscopic cell. The laser 

frequency must also be stable to coincide with the absorption line of the spectroscopic 

cell. Iodine vapour is cOll1monly used in the spectroscopic cell, as it has well-known 

strong absorption lines in the visible spectrum. These absorption lines interfere with the 

51..+ and 532 lines of Argon Ion and frequency-doubled Nd:YAG lasers respectively, 

and so is used as a frequency-to-transmission converter for these lasers. 

The further components of velocity can be determined in either of two ways depending 

on \\'hether a snapshot or a time-averaged measurement is required. Firstly, three 

camera systems can be imaged onto a common area of a light sheet from different 

directions of observation. The three cameras are triggered simultaneously to reveal a 

near-instantaneous measurement of the three-dimensional flow field. Secondly, the 

orientation of the light sheet can be altered and the separate components of velocity 

measured in sequence. As the measurements are taken one after the other the time­

averaged velocity distribution is revealed. Since the exposure times can be longer, 

continuous wave lasers can be used as a light source. A lower seeding number density 

can also be used. 

DGV can be used to give pseudo-continuous velocity distributions of fluids. As a 

velocity vector can be encoded within a single pixel even low-resolution cameras can 

give approximately 250000 vectors per image. The results are given almost online as 

the processing consists of little more than a pixel-wise division of intensities. The image 

intensity is generated from an ensemble of seed rather than individually resolved 
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particles. The con1promise on the size of seed can therefore be relaxed in favour of its 

flo\v-following capabilities. Measurements can also be made at standoff distances of 

several metres, light levels permitting. As the particles do not need to be resolved, nor 

the scattered phase information preserved, the quality of the optical access does not 

need to be perfect. Test section windows can be curved and not of optical quality. 

E d (13) b d . 1" . n oscopes can e use In app Icahons where optIcal access is restricted. 

2.2.3 Hot Wire Anemometry (HW A) 

Although not an optical technique hot wire anemometry has been included in this 

revie\v due to its ability to measure time-resolved flow (141, and hence its extensive 

application to fluid studies. No other equivalent technique offers such a high frequency 

response (1341. The basis for hot wire anemometry is the heat balance equations, which 

can be applied to the anemometric signal to calculate the flow velocity (151• The 

anemometric probes consist of a thin wire held across the tips of two prongs that may 

also be operated as thermometric sensors or fine-wire resistance thermometers. The 

sensing element is a couple of mm long and typically 10 Jlm in diameter. Although this 

is fairly large, implying a relatively poor frequency response, the probe must be strong 

enough to survive particularly harsh environments such as combustion chambers. Hot 

film probes are generally more robust than hot wire probes and are therefore used in 

more hostile environments. The criteria for the dimensions of the probe are based on 

strength, spatial resolution and the frequency response of the prong and wire 

combination. 
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The heat exchange between the hot wire and the fluid affects the output voltage of the 

anemometric signal. For hot wire anemometry it is necessary to measure both the gas 

temperature and prong tip temperature in addition to the anemometric signal. This is so 

that during flow nleasurements the thermal capacity and thermal inertia of the hot wire 

and prongs are taken into account and may be balanced by a feedback system when 

processing anenl0nletric data. The feedback system keeps the mean temperature and 

resistance of the wire constant. Partially shielded probes may used to resolve any 

directional ambiguity in the signal. 

H\VA can detect perturbations as small as 0.01 % of the mean velocity assuming that 

velocity can be isolated from temperature. Further errors can arise due to contaminants 

on the wire, eddy shedding from wire (Re~50), and probe vibration. Neglecting 

sampling frequency, the frequency response is dictated by the dimensions of the hot 

\yire itself. Typical dimensions of the sensing elements are approximately 2 mm long, 

10 /-lm diameter giving a frequency response of 100 kHz [141. HW As are intrusive to the 

flow and delicate. They do, however, give a time-history signal rather than a 

measurement punctuated by the absence of a flow tracing seed. Their very high 

frequency response and sensitivity is unsurpassed by any other measurement technique. 

This, together with their relatively low cost, has attributed them to turbulence studies 

[161 

2.2.4 Laser Two Focus (L2F) 

An L2F anemometer creates a probe volume containing two parallel focussed beams. A 

particle travelling along the focal plane of the two beams will produce two successive 
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scattered light pulses as it passes through this 'light gate.' The elapsed time between 

these t\VO pulses yields the component of velocity perpendicular to the optical axis. The 

anemometer is sensitive to particles travelling in all directions. Spurious measurements 

result \vhen independent particles pass through only one of the beams )17 & 181. A correct 

nleasurement will result when the beams are orientated parallel to the flow direction and 

a partie Ie passes through both beams. Prolonged acquisition times are required to 

orientate the beams approximately to the mean flow direction and to statistically 

determine the correct measurement. The result is a two-dimensional probability density 

function containing information about the velocity components in the plane 

perpendicular to the optical aXIS, eg: mean flow vector, turbulence intensities and 

Reynolds shear stresses etc. 

Three-component systems can either consist of two two-dimensional systems typically 

separated by 30°. Alternatively, the 3rd component can be determined from the 

measurement frequency as a function of the off-axis component [18) when the focal point 

of the beams of a multi-colour system can be displaced (different colours focussed at 

different axial depths owing to achromatic aberration of focussing lens). 

L2F has a typical accuracy of approximately + 1 % or better for mean velocity depending 

on the amount of data collected and 5-10% for turbulent intensity depending on beam 

diameter/separation ratio [181. However, errors increase close to surfaces or in highly 

fluctuating flows or velocity gradients as the probability of successful dual beam transit 

decreases with high turbulent intensities. Sensitivity to turbulent intensities depends on 

the ratio of beam diameter to beam separation. Typical limit on turbulent intensity is 

30% for a single colour system, although systematic errors increase depending on 
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whether the particle contacts the periphery or centre of the beams - different path 

lengths. L2F has been demonstrated in turbomachinery applications up to Mach 2. 

The probe volume again determines the spatial resolution. Beam diameters are typically 

~ 10 J.lnl, axial length 0.5 J.lm. Vectors can be measured in the backscatter configuration 

to within 2 to 3 mm of surfaces, but the photo-multipliers can be saturated when a 

mechanical surface 'touches' the probe volume. The distance from the light gate to the 

surface can be reduced to half a millimetre if fluorescent markers are used. 

The primary limitation of the technique is the time-consuming measurement procedure. 

Schodl and Forster (17) describe 6 to 8 probe angle settings with about 2000 particles at 

each setting for accurate calculation of mean flow vector and turbulence intensities. 

This equated to approximately 5 minutes for each measurement point, although they 

subsequently reduced the sampling time by a factor of ten using modified mathematical 

models, automated measuring procedures and modest improvements in optics and 

electronics (171. 

High-quality optics are required to focus the two beams and gather the light scattered by 

the particles. Greater precision allows improved spatial filtering of the signal to give a 

. ISh dl (18) I d 'b greater tolerance to surfaces adjacent to the probe vo ume. c 0 a so escn es a 

three-dimensional, two-colour, L2F system that has been packaged into a small 

rotatable optical head connected to a laser and photo-multipliers via fibre optics, 

enabling 3 components to be measured from a narrow viewing angle. 
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2.2.5 Shadowgraphy 

Shadowgraphy is a non-intrusive technique that is based on the refraction of light 

passing through strong density gradients 1761• A collimated beam of light is projected 

through the flow field onto a screen to reveal an intensity distribution. Dark areas 

will appear representing regions where the light has been deflected away from its 

original unperturbed path. 

Opaque objects in the flow will appear blurred in the shadow image. This can be 

improved by decreasing the diameter of the light source. Shadowgraphy is sensitive 

to changes in the second derivative of the gas density. It is therefore well suited for 

visualising shock waves and turbulent compressible flow fields as well as the mixing 

of gasses of differing refractive indices. 

Light 
source 

Lens Test Section 

Recording 
Plane 

Figure 2.6. Shadowgraphyarrangement 

2.2.6 Schlieren 

Schlieren technique is also based on the deflection of light, but now the deflection 

119 & 761 hi· . 
angle of the ray at the end of the test volume is measured . T e reso utIon IS 

higher than that of shadowgraphy, but the set-up is more complicated and more 

difficult to use. 
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The collimated beam is sent through the flow field, after which it is made convergent 

by passing through a lens or reflecting off a concave mirror. An image of the light 

source is formed in the focal plane of this lens or mirror. When the collimated beam 

is deflected. the deflected light is imaged slightly displaced in the focal plane. By 

placing a so-called schlieren filter in the focal plane this deflection can be made 

yisible. E.g. knife-edge filters or coloured filters can be used to visualise the 

magnitude and/or direction of the gradient in the flow field by intensity or different 

colours. For this the light source should either be a point source or a slit source 

parallel to the knife edge direction. A lens is used to form an image of the section, 

\vhich eliminates shadow effects. 

Light 
source 

Lens Test Section Lens 

Knife edge 

Camera 
Lens 

Figure 2.7. The Schlieren arrangement 

Film 

In general, the intensity change is proportional to the component of the density 

gradient normal to the knife-edge. The schlieren system is thus, sensitive to changes 

in the first derivative of density. For high sensitivity it is advantageous for the 

second lens to have a larger focal length. 

Both schlieren and shadowgraphy work well for visualising 2-D flow characterised by 

the large refractive index gradients. They do not work well with low refractive indexes. 
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Quantitative results from shadowgraph and schlieren images suffer severely because 

they only measure the second and first derivatives respectively of the density field. 

Despite these drawbacks both Schlieren and Shadowgraphs are commonly used owing 

to their simplicity and readily digestible qualitative results. Their usefulness can be 

improved when coupled to high-speed cameras and light sources to study the transit of 

shocks \Yithin aerodynamic facilities (201. 

1.2.7 Interferometry 

Interferometry can be used for non-intrusive visualisation and to give quantitative 

results concerning the density distribution in a compressible flow (19,21,22 & 231• 

Neither probes nor seed need to be introduced into the flow. The interferogram 

typically consists of a series of interference fringes that portray a contour map of the 

hyo-dimension projection of the density (221, or relative density (21 1, distribution. 

Interferometry is sensitive to absolute changes in density. It is based on the 

retardation that a light ray experiences when crossing an inhomogenous refractive 

index (density) field with respect to an undisturbed ray. When a collimated beam 

crosses a field that is homogeneous in the x- and y- direction the wave front remains 

plane. When it traverses an inhomogeneous field the wave front is deformed owing 

to local retardations. 

By using interferometry the phase delay of the light beam passing through the flow 

field can be measured. This phase delay is proportional to a line integral of the 

density along the light path through the flow field. Once the phase delay is known 
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the average density of the flow can be determined. The density distribution can then 

be used, in some cases, to derive information on velocities [21 & 221. 

To exclude phase-disturbing effects of dust and non-ideal optical apparatus the 

interfering beams may be stored, and reconstructed, holographically. The 

holographic mediunl also allows the three-dimensional effects of the flow to be 

recorded [1 C)I. 

Large changes in pressure and temperature can greatly affect density. If the density 

change is non-orthogonal to the beam it will be deflected by refraction. This can 

present problems when measuring compressible flows where large density gradients 

such as shocks and boundary layers are present [21 & 221. 

In nominally two-dimensional wind tunnels the phase object can be assumed to be 

constant in the z direction, greatly simplifying the analysis and improving accuracy. 

Measurement of highly three-dimensional flows largely depends on the ability to 

deconvolve the 3-D information. Interferometry requires both mechanical and laser 

(SLM and TEMoo, single longitudinal mode and transverse electric and magnetic 

modes) stability for beam splitting interferometers [22 & 19
1, although this restraint is 

greatly relaxed for beam-shearing arrangements where the two beams are incident off 

. [211 
common components and share common optIcal paths . 

Interferometry has undergone a renaissance owing to the advent of Electronic Speckle 

Pattern Interferometry (ESP!) that exploits the speckle effect of light scattered from 

diffuse surfaces, an attribute which was historically the bane of the art [1351. 
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2.3 TEMPERATURE 

2.3.1 Coherent Anti-Stokes Raman Spectroscopy (CARS) 

CARS is a non-linear Raman technique used to measure temperature and speCIes 

concentration in hostile particle-laden, turbulent and highly luminescent environments. 

T\yo laser beams are utilized to stimulate Raman scattering of the molecules (24). The 

signal is produced in a coherent "laser-like" beam that can be readily separated both 

physically and spectrally from interference. The amount of scattered light is dependent 

upon the number of molecules present, thereby allowing the molecular number density 

to be measured [25 & 26). In addition, the frequency of the signal is dependent upon the 

Boltzman distribution, which is governed by the temperature. An analysis of the 

frequency content gives a measurement of temperature. CARS data can be obtained in a 

"broadband" mode that allows the spectra to be obtained instantaneously (10 nsec). A 

100-500 mJ, spectrally narrow, pulse pumped laser is required as is a broadband Stokes 

laser (Dye) for broadband CARS. A multi-channel detector is required to receive the 

CARS signal. The typical accuracy for molecular number density is 10%, whilst that of 

temperature 5% for single shot for N2, 1 % for continuous wave excitation. Other species 

that have been investigated include H2, H20,and C02 (25) . 

CARS is complex to set up and the signal is difficult to analyse. The signal intensity is 

non-linearly dependent on temperature, species concentration, Raman line width and 

pressure. Computer models of species spectra are required before a measurement can be 

extracted. The apparatus itself, pump and Stokes lasers and detector, are also expensive. 

CARS remains a highly specialized technique that is neither widespread in industry or 

research institutions. 
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2.3.2 Degenerate Four-Wave Mixing (DFWM) 

DFWM uses a resonant interaction of a frequency of light with a molecular transition 

frequency to measure temperature, species or velocity. The experimental arrangement is 

similar to CARS, but is potentially more sensitive owing to the use of a resonant 

interaction (27). 

Typically, three laser beams cross (to define a localized sample volume) and interact to 

generate a fourth laser beam that becomes the detected optical signal. An alternative 

physical picture of this process is to imagine that two of the input beams interfere to 

create an interference pattern and associated index of refraction grating. The third input 

beam is diffracted from this index grating to become the fourth or signal beam. Versions 

using one wayelength or multiple wavelengths are possible, as well as versions that use 

the non-resonant susceptibility or a particular absorption resonance of a given molecule. 

Non-intrusively measured flow quantities that have, so far, been demonstrated include 

total density, individual species density, temperature, velocity, and the speed of sound 

[271. Variations of this technique are also called, for example, Laser-Induced Gratings 

Spectroscopy (LIGS) and Transient Grating Spectroscopy (TGS) [28
1• DFWM has shown 

to be accurate to 5% for temperature over a range from 300 to 2300 K for N2 [271. As 

quenching problems are less compared to Laser-Induced Fluorescence (LIF), both major 

and minor species are accessible. Its application requires dual-ended optical access, but 

the highly directional signal requires only a small detector. Larger windows are required 

if interrogation spot is to be traversed. DFWM, like CARS, is a complex and immature 

technique that remains in the realm of a few specialised laboratories. 
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~.3.3 Optical Pyrometers 

The thennal radiation of a material or gas depends on the radiating properties of the 

. tt 1291 Th d' . en11 er e ra lance emItted from a black body, at any wavelength, is solely a 

function of absolute temperature and is described by Planck's law or, integrated over all 

wayelengths. by the Stefan-Boltzmann law. 

The spectral radiance of a non-black-body emitter depends on emissivity that varies 

\\·ith temperature. wavelength and microstructure. For solids the emissivity is also a 

function of the surface macrostructure, e.g. E~O.95 for black carbon E~O.02 for polished 

aluminium. The reliance on the radiance intensity at a given wavelength to measure 

temperature can be misleading as the emissivity can change with surface finish or if the 

surface oxidises. Various comparative radiometric methods can be used to reduce the 

dependence on emissivity. These methods are described in detail by Lawton and 

Klingenberg (29) but can be summaried thus, 

Total or integrated method: Radiance integrated over spectrum - radiance temperature 

Spectral Emission: Spectral radiance - brightness temperature 

Colour Temperature: Based on two or more brightness temperatures 

Differential Colour Temperature: Comparison of emission contour to that of a black 

body over a limited range. 
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RLTcrsal Method: Comparison of the emission of an unknown source to that of a source 

at a known temperature. 

If the dependence of emissivity on wavelength is removed the optically measured 

temperature is identical to the true temperature, but these techniques can become 

inaccurate where the emissivity is much less than 1. They are therefore more suitable for 

soot-laden combustion environments. The basis of this pyrometry method in 

combustion applications is that some of the soot particles escape oxidisation. The 

incandescent particles are at temperatures similar to the surrounding gas, emitting 

electromagnetic radiation in the fonn of visible light and infrared energy. 

The reversal method allows both the brightness temperature, emission and absorption 

coefficients to equated and located using a tomographic approach. The reversal method 

consists of nulling the emission and absorption of an unknown source against that of a 

reference (29,30 & 31). Either a small measurement volume or an integrated line of sight 

can be measured depending on the set-up. Transient measurements can be made either 

by strobing the known source or by recording the unknown source emission local to the 

reversal signal. For the fonner a laser (Argon Ion or Nd:YAG) can be used as the known 

source, if calibrated against a black-body emitter. The reversal principle can also be 

exploited to detennine the emission and absorption of individual spectral lines of a 

flame to spatially speciate a flame. 

Most commercial pyrometers use colour temperatures to reduce the dependence on 

emissivity. Typical accuracy is ~1 % with temperatures varying from -50 to 3000°C. 

The spatial temperature distribution can be revealed by ratioing the grey-level 
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intensities of two images recorded at different wavelengths (32). The signal can 

attenuated by windows and emission/absorption in optical path but, gives non-intrusive 

spatial temperature distribution if pre-conditions are satisfied. 

2.3.4 Thermographic Phosphors 

This non-intrusive optical technique utilises the temperature-sensitive emISSIon 

properties of certain lunlinescent inorganic chemicals known as thermographic 

h h (33) Wh 't d . hi' I . P osp ors . en eXCI e WIt u tra-vio et lIght these phosphors produce 

fluorescence whose properties are temperature dependent in terms of its emission 

lifetime and in terms of the relative intensity of emission at various discrete 

wavelengths. Utilising these characteristics a thin layer of the phosphor can be applied 

to a surface to measure the instantaneous surface temperature distribution [33] or 

incorporated in a static or dynamic sensor [34 & 35). 

The primary advantage of phosphors is that they can be painted onto entire surfaces or 

integrated into a point sensor such as the phosphor-tipped fibre optics with UV 

excitation and recipient photodiode described by McGee (36). The phosphors exhibit 

high sensitivity C~0.05°C), robustness and stability, and have been demonstrated at 

temperatures from -100 to almost 2000°C. Systems can be adapted to make remote 

measurements of pressure, heat flux, shear stress and strain. They can exhibit frequency 

responses up to a kilohertz depending on whether a radiative or lifetime mode is used. 

They are non-contact and emissivity independent unlike pyrometers and thermocouples. 

However, the coating thickness can affect aerodynamic qualities of the substrate, for 

example coating of turbine blades can alter their geometry and hence their efficiency 

(37) 
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2.3.5 Temperature Sensitive Paint (TSP) 

Temperature is a cause for uncertainty with pressure-sensitive paints (PSP). However, 

the sensitivity to pressure can be decoupled from that of temperature by covering the 

PSP with a non-permeable coating preventing the diffusion of oxygen into the paint [381• 

The physics of the temperature-sensitive paints is similar to that of PSP in that an active 

nl0lecule is excited by a specific wavelength of light except that quenching occurs as a 

result of molecular collisions giving rise to a non-radiative de-excitation rather than the 

presence of oxygen [39
1. Such paints have been demonstrated over ranges of 

approximately 10 to 70°C with a resolution of 1°C at pressures ranging from zero to 

ambient. The magnitude of luminescence is related to luminophore concentration, 

source irradiance, and paint temperature. Therefore an image ratio method is employed 

to isolate the influence of temperature. An accuracy of ~+0.3°C have been demonstrated 

by Cattafesta et al [401 on swept cylinder and swept-wing models in a supersonic flow. 

Relative motion between model and illumination source or model deformation and 

deflection between wind-on and wind-off states are usually the cause of the dominant 

error term. 

Although images can be realigned the effect of the deformation on the illumination is 

difficult to correct. However, this error can be corrected using a two-colour paint that 

contains both reference and temperature luminophores. The paint can be applied using 

conventional spraying equipment. The surface can be sanded or sprayed over with a 

suitable lacquer to achieve an acceptable surface roughness. The TSP must have 

surface properties that do not alter the aerodynamic characteristics of the substrate and 

must remain attached. Surface contaminants can also degrade measurements e.g. oil 

deposits may also fluoresce. 
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TSPs allow the remote measurement of surface temperature distribution up to a range of 

approximately 200°C with high spatial resolution, and accuracy comparable to 

conventional temperature sensors. As their temperature range is limited they are only 

suitable for cold applications. 

2.3.6 Thermal Paints (Irreversible) 

Thermal paints applied to a substrate change colour upon reaching a predetermined 

threshold temperature. As the colour change is irreversible they can only be used once. 

Single or multi-change paints are available over ranges of 135 to 635°C and 160 to 

1270°C respectively with accuracies of+5% [41). Single-change paints indicate whether 

a single temperature threshold has been reached. Multi-change paints go through a 

range of colours according to a defined temperature range. Both are colour fast in direct 

sunlight, resistant to oil, steam and water, and provide a clear line colour change. No 

primer is required for most surfaces. 
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2.4 SPECIATION 

Optical Spectroscopy (UV Nisible/IR) IS employed as a non-intrusive flowfield 

diagnostic for combustion research [251• Techniques include absorption/emission in the 

UV and IR, laser induced fluorescence (LIF) of both naturally occurring and seeded 

species, and a number of scattering techniques including Rayleigh, spontaneous Raman, 

and several coherent Raman spectroscopies. Temperatures can be derived from 

spectroscopic measurements applying emission/absorption methods according to 

Planck's or \Vien' s and Kirchhoffs laws, provided there is local thermal equilibrium in 

the system [291• The emissivity and absorption of radiating gases vary strongly with 

\vavelength. Therefore spectroscopic temperature measurements are based on the 

radiative quantities at specific wavelengths. The temperature of soot can be found 

because it is almost a blackbody source (the emissivity ~ 1). The temperature can be 

found using Planck's law that relates spectral radiance of a blackbody radiator to the 

temperature. For flame temperature measurements the temperature of the soot is often 

assumed to be equivalent to the flame temperature [29
1
• 

The evolving spectroscopic techniques are speCIes specific and often measure the 

internal state distribution of the probed molecules. These measurements reqUIre a 

detailed knowledge of the collision physics and reaction dynamics as an integral part of 

their interpretation, and, therefore, represent a revolution of sorts in that they are leading 

to an understanding of aerodynamic phenomena from the molecular level rather than 

from the traditional bulk-properties approach. 
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2.4.1 Fourier Transform Infrared Spectroscopy (FTIR) 

Many atmospheric species have IR activity that can be measured with high sensitivity 

using FTIR Spectroscopy. FTIR allows many gases to be monitored simultaneously and 

non-intrusively, a desirable quality where there is no prior knowledge of the molecular 

species that may be present. Typical molecular species measured are CO2, CO, NO and 

H20. FTIR has been successfully applied to gas turbine exhaust plumes 142,43 & 441, gas­

fired, power-plant plumes and in-cylinder IC engine measurements 1451• Fourier 

Transform Spectroscopy (FTS) can be catagorised into either active or passive systems 

depending on \vhether the absorption of a reference source or the emission of the subject 

gas itself is measured. Gas samples can be probed actively by passing a beam of 

modulated IR radiation through the gas and measuring the spectral absorption. Using a 

multi -pass system, where the reference IR radiation is reflected through the gas more 

than once, can increase the sensitivity of such systems. Alternatively FTIR can be used 

to measure the spectral emissions of hot gases using single-ended access where access 

to the far side of the target gas is difficult. The target gas needs to be hotter than its 

surroundings for it to be a net emitter rather than a net absorber. 

The basis of the instrument is a Michelson interferometer. A heated ceramic that 

approximates a black body is used as a reference source of IR radiation. The collimated 

radiation is split into two optical paths by a beam splitter. One of the beams is incident 

on a fixed comer cube reflector whilst the other is incident on a second comer cube that 

can be translated along the optical axis. Comer cubes are used as they allow for 

misalignment of the mirrors, always returning the light along its incident path. The 

movable mirror modulates the signal on the detector by changing the optical path length 

between the two beams. The amplitude modulation is proportional to the wave number 
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of each spectral component. Path differences of integral wavelengths give maximum 

intensities, vice-versa for half wavelengths. 

The energy throughput of an FTIR spectrometer is higher than that of a comparable 

scanning monochromator allowing faster acquisition and better signal-to-noise ratio. 

Calibration entails simply counting the interference fringes produced by projecting the 

beanl of a He Ne laser through the interferometer. 

2.4.2 Non-Disperse Infra Red (NDIR) Analyser 

Non-Disperse Infrared Spectroscopy can be used to measure carbon monoxide, carbon 

dioxide and nitric oxide although the accuracy for low levels of nitric oxide is not high 

[~61. The infrared spectra of many gases are characterised by narrow, non-overlapping 

absorption bands. Thus, the measurement of absorption within a defined wavelength 

band can uniquely identify the presence and concentration of a particular gas. In NDIR 

gas sensors, an infrared optical 'sample' filter with a narrow band of transmission is 

selected to overlap with the absorption band of interest, the position of the filter 

detennines the gas to be measured and the amount of absorption determines the gas 

concentration present. The infrared filter is chosen to ensure that the sensor is totally gas 

specific and will not exhibit cross sensitivity with other gases. A reference filter at a 

different pass band can be used as a datum. Concentations of CO, CO2 and CH4. from 0-

2000 ppm to 0-100% can be measured with a typical accuracy of +2% of full scale. 
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2.4.3 Laser Induced Fluorescence (LIF) 

LIF has the capability to detect species in smaller concentrations than those required for 

Ranlan-based approaches. Raman approaches cannot be use at concentrations less than 

0.10/0. Flame radicals in combustion, such as OH, CH etc., are often only present in 

concentrations less than 0.010/0. They are therefore inaccessible to the inherently weak 

Raman-based techniques 1251. 

Specific molecules can become electronically excited by absorbing laser light at specific 

\yayelengths causing them to fluoresce 1
54

]. Lasers are the preferred source of excitation 

as they are spectrally and spatially specific. The chemical species that can be excited is 

detennined by the presence of an electronic absorption band within the spectral range 

coyered by tunable laser (200 1500 nm approx.). The fluorescence wavelength is 

usually, but not always, red shifted (Stokes shifted) from the excitation wavelength 

unless resonance fluorescence occurs (same excitation fluorescence wavelength). This 

allows the fluorescence signal to be sifted from spurious interference from Mie scatter, 

glare etc [25]. There are several preconditions that need to be satisfied to perform 

fluorescence measurements on a molecule. Firstly, the molecule must have an 

absorption wavelength that is accessible by laser. The molecule must also have a known 

emission spectrum and rate of radiative decay. The fluorescence power is proportional 

to the rate of decay. Corrections need to be made for collision quenching in the presence 

of other species and temperature if accurate species number density measurements can 

be made. 

Fuel flow and dispersion measurements can be made by adding a tracer to the fuel or 

intake of a combustion engine that is not affected the combustion process. The 
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molecules of the tracer fluoresce when exposed to laser light at certain wavelengths, 

reyealing the fuel distribution [47 & 55]. Dopants are selected according to their 

fluorescent properties for visualisation purposes these are good absorption of the laser 

\vayelength, quantum yield, low quenching by oxygen, sufficient red shift (Stokes­

shift), similar boiling point and solubility in fuel [48]. The large Stokes shift is required 

to separate the fluorescent signal from the elastically scattered stray light. Dopant with a 

similar boiling point to fuel is used to ensure that the dopant vaporises with the fuel and 

is a good tracer in both liquid and gas phases. 

Velocity can be determined either by measuring the Doppler shift on the fluorescence 

signal or by adopting a similar approach to PIV by strobing the excitation light source. 

Temperature can be measured using a variety of approaches [25]. Firstly, excitation or 

fluorescence scans can be used to reveal vibration/rotation energy level of the ground 

electronic state. Secondly, the relative populations of two states can be measured and 

. [49 50 51 & 52] I . I the temperature calculated from the Boltzmann expreSSIons " . Last y, a SIng e-

excitation, thermally assisted approach can be used in instances where collisions rapidly 

distribute the population throughout the upper state manifold. The fluorescence reflects 

the popUlation distribution from which the temperature can be calculated. Temperatures 

are typically inferred from rotational population ratios. The typical accuracy in number 

density measurements is 5 to 10%, and 10% for temperature (based on simultaneous 

imaging of NO (seeded) and OR at combustion temperatures ranging from 1000 to 2200 

K) [51). The use of fluorescent flow tracing markers in a PIV application would not 

necessarily improve the accuracy, but would allows the measurements in the presence 

of glare from surfaces, windows etc. 
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LIF can be implemented in a variety of configurations. Reeves and Musculus excited 

and imaged a snlall measurement volume from common optical access [561• Alternatively 

planar arrangement can be used to measure 2-D spatial information. Ninety-degree, dual 

optical access would be required together with a high-energy laser system and ICCD. 

Tunable (dye) lasers are desirable to allow the excitation of specific bands or the choice 

of a laser line with a lower absorption when absorption is a problem. However, high-

po\ver XeCI excimer lasers (typically higher energy than dye lasers) can be used to 

produce lo\v-noise images in larger flow fields. Saturation can be achieved, removing 

the laser energy and quenching dependence of the signal, at the cost of a non-linear 

relation ben\·een fluorescence and population fraction [531• 

2.4.4 Laser Induced Incandescence (LII) & Planar Laser Induced 

Incandescence (PLII) 

Planar LIT can be used to provide a planar measurement of soot volume fractions and 

soot particle size [57,58,59 & 611. LIT involves heating soot particles with a laser beam so 

that they achieve a much higher temperature than the gas within which they are 

suspended. The laser heating produces a considerable increase in the black-body 

radiation, or incandescence of the soot. Soot vapourisationlfragmentation occurs at laser 

fluences above 0.45+0.05 J/cm2 at 1064 nm [601. Laser intensities need to be greater than 

10 MW cm-2
, otherwise signal will not be independent of intensity. Above this threshold 

the particle temperature will not increase significantly but at high laser fluences the 

particle will loose mass rapidly. The net result is a signal that is largely proportional to 

the soot volume fraction and slightly dependent on particle diameter, yet nearly 

. . d' . [31 Th . independent of laser fluence assumIng certaIn precon Ihons are met . e pnmary 
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linlitation is that it can be difficult to distinguish the signal from high luminescent 

backgrounds. Broadband incandescents can be far more intense than Raman signatures 

of other species. 

Particle size is detennined either from ratio of the LII signals produced by a single 

pulse. but recorded at separate wavelengths, or from the signal ratios at different time 

t (571 Th f . l' l' . ga es . e measurement 0 partlC e SIze re Ies on an energy conservatIon model to 

describe the heating of the soot particle from the laser pulse and its subsequent cooling 

due to radiation, conduction and vapourisation. 

Typical accuracy is 10% for volume fraction for moderate ranges of particle sizes and 

flame temperatures. Errors can be reduced by careful selection of wavelength, detector 

gating (duration and delay to coincide when vaporisation is dominant) and laser 

intensity (571• For particle sizing the accuracy is +2 nm over a 10 to 40 nm range over a 

temperature difference of 1000 K using the two-colour method. The time gate method is 

sensitive to temperature and is only applicable where the temperature distribution is 

known to +50 K. The spatial resolution is detennined by resolution of the camera, as 

individual particles do not need to be resolved. 
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2.5 PARTICLE & DROP SIZING 

2.5.1 Phase Doppler Anemometry (PDA) 

A seed's ability to follow a fluid flow is a function of its size. Combining the 

measuren1ent of size with that of velocity reduces the uncertainty in the data. A large 

particle will scatter more light than a small particle. The result is either a skewed 

spectnlm from an LDA measurement or a bright particle in a PIV image that misguides 

correlation algorithms [127[. PDA allows both the size and velocity of a spherical particle 

to be detennined simultaneously. The process has also been extended to irregularly 

shaped particles [621. Both PDA and LDA share a common principle for determining 

velocity in that it is calculated from the Doppler shift in the frequency of the light 

scattered by a particle as it passes through a small measurement volume. PDA extends 

this princip Ie by also considering the phase difference between the scattered light at 

different detectors to detennine the particle diameter. 

PDA can be used to measure particle diameters from 0.5 Jlm to several millimeters 

where there is sufficient optical access, usually from two directions [661. The refractive 

index of the particle and of the medium within which it is suspended are also required 

. I' fu . f fr t' [63,64 & 651 Th' I I t' r e as the optimum scatter ang e IS a nctIon 0 re ac Ion . IS ca cu a Ion re 1 s 

on the assumption that the particle medium is homogeneous, although slight 

inhomogeneities can be tolerated where the diameter of the inhomogeneous seed is 

approximately equal or less than the wavelength of the illuminating light. The number 

concentration of the particles is also limited, as only one particle must be present in the 

measurement volume at anyone time. 
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Despite these preconditions PDA has seen successful application to spray and liquid 

atomisation processes, powder production and bubble dynamics such as cavitation, 

aeration and multi phase mass transfer (66). The technique is commonly used to 

characterise fuel sprays where both the drop size and velocity of the fuel is required. 

The drop size is a function of the shear within the liquid, which can be determined from 

the velocity. As larger droplets have greater momentum they can be propelled further. 

Smaller droplets evaporate quicker. Knowledge of the drop size and velocity allows the 

fuel distribution in the combustion environment to be studied. 

Figure 2.8 shows the layout of a typical PDA system (66) that is essentially the same as 

that for an LDA system, except that two detectors are used so that the phase difference 

between the two can be calculated. The detectors are often positioned off the axis of the 

transmitting components so that diffracted light is largely responsible for the scattered 

signal. If only one scattering mode dominates, a linear phase difference/curvature 

relationship exists and no calibration is required. If additional scattering modes of 

comparable intensity are simultaneously recorded this linear relationship will be lost. 

As the phase difference between two detectors is encapsulated within a modulo 2n there 

remains a phase ambiguity between particle sizes that generate a phase difference 

exceeding 2n. This ambiguity is often overcome by employing a third detector to 

identify the integer multipliers of 2n. Increasing the separation between the detectors 

can also extend the measurement range. The intersection of two or more focussed beams 

and the projection of a slit-shaped spatial filter mounted in front of the receiving fibres 

define the measurement point. A single particle passes through the measurement 

volume and scatters light from each of the individual beams with a Doppler frequency 



hift. The mUltiple sources of scattered light interfere to produce a beat frequency. The 

beat ignal at each of the detectors is converted into a Doppler burst with a frequency 

that is linearly dependent on the particle's velocity. The phase delay between the 

Doppler ignal of the detectors is a direct measure of the particle diameter. 
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Figure 2.8. Orientation of launch head and detectors ofa PDA system. 

There are several sources of uncertainty that can degrade the quality of the data. 

Erroneous phase infonnation can result from oscillations in the spatial coherence of the 

illuminating light, irregular particle shapes, inhomogeneous particles and multiple 

scattering effects. The signal to noise ratio can vary owing to variations in intensity and 

extinction. The former can be generated by a particle trajectory across the Gaussian 

profile of the illuminating light, which can vary the ratio of reflected and refracted light 

incident on the detector [66]. This effect becomes noticeab Ie for transparent particles 

with a diameter exceeding half the measurement volume diameter. Further anomalies 
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arise where the slit aperture ahead of receiving fibers can filter out the required mode of 

scattering, leaving a different scattering mode dominant. Both the Gaussian and slit­

effect problems can be addressed using a dual PDA system. A dual PDA system uses 

the phase infonnation given by an additional pair of intersecting beams and detectors in 

the y-z plane for verification. Non-spherical particles can also be detected and rejected. 

PDA offers an absolute measurement of velocity and size at a point detennined by the 

location of the measurement volume. Although only a single point measurement is 

made, the spatial resolution is very high, as the actual size of the volume interrogated is 

only a fraction of that occupied by the intersection of the beams. As with all seeding 

techniques the temporal resolution ultimately depends on the presence of a particle 

within the measurement volume, as well as the sampling rate of the system. Only one 

particle must be present in the interrogation volume at anyone time. PDA therefore fails 

to giye reliable results where the number density of particles is high. As with all point­

measurement techniques its spatial resolution can be compromised by the need to map 

an area over a realistic acquisition period. 

2.5.2 Laser Sheet Drop Sizing (LSD) 

Laser sheet drop sizing, or planar drop sizing as it is also known, is a relatively new 

technique and there are few references for it. This review follows the description given 

by Le Gal et al [671. Laser sheet drop sizing uses the ratio of the laser induced 

fluorescence and Mie signals to calculate the Sauter Mean Diameter, SMD, infonnation 

from sprays. 
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The SMD represents the ratio of volume to surfaces area. It is of consequence to the 

study of sprays as it is a measure of the ease with which it will vaporise. Large SMD 

inlplies that the spray will vaporise poorly, a small SMD implies it will vaporise readily. 

LSD is a planar technique that gives a two-dimensional SMD map of a spray and has 

been successfully applied to a pressure swirl atomiser [671• It is a complementary 

technique to PDA in that it can be used to measure dense sprays where PDA fails to 

give reliable results. As it is a planar technique it gives a two-dimensional 

representation of the spray rather than the point-wise measurement. LSD relies on two 

assumptions that act as a precondition to the technique. Firstly, it is assumed that the 

~1ie scattering signal obeys a D2 relationship and secondly, that the fluorescence signal 

obeys a D3 relationship, where D is the diameter of the droplet. 

The first assumption can be encapsulated in equation 2.3 where C is a constant 

representing the scattering angle, solid angle of collection optics, droplet refractive 

index, polarisation etc. and Smie is the scattered intensity. This relationship has been 

shown to be accurate for spherical absorbing droplets greater than 1 ).lm in diameter 

although the D2 dependence deteriorates above 80 ).lm 1681. 

(2.3) 

Fluorescence occurs when the liquid spray contains a fluorophore that absorbs part of 

the illuminating laser light, which is commonly emitted with a strong red shift that can 

be spectrally filtered from the Mie signal. The fluorophore can either be naturally 

occurring or added to the liquid in low concentrations. For transparent droplets the 



fluorescence signal, Sfluo, is largely proportional to the concentration of the fluorescing 

lnolecules and thus can be described by the D3 relation, equation 2.4. 

S Fluo = C Fluo
D3 (2.4) 

Howeyer, the index of the dependence can vary when strongly absorbing dyes are used 

and thus a careful characterisation of both the elastic and inelastic scattering of the 

droplets as a function of their diameter is required. 

Le Gal et al. (67) characterised the Mie and fluorescence signal by illumination of the fog 

of mineral spirit (kerosene) doped with p-Terphenyl (PTP) from a droplet generator 

using the second and fourth harmonics of an Nd:Y AG laser respectively (532 and 266 

nn1). The droplet diameters were measured using a two-component PDA system. A 

good correlation with the D2 dependence of the Mie scattering signal was found, 

although the dye concentration was found to have a profound influence on the 

absorption and hence also the fluorescence signal. Only 'highly dilute' dye 

concentrations were found to follow the D3 dependence. 

If the preconditions are correctly adhered to, and more than one droplet is sampled per 

pixel, the intensity ratio of the fluorescence and Mie signals at a pixel gives the Sauter 

Mean Diameter, 

C "'1 "" N.D~ "" D~ S r, uo L..J I I L..J I 

Fluo = ; a; = SMD 
S M;e C Mie L N;D;2 L Di

2 
(2.5) 

i ; 



where N; is the number of droplets per pixel with diameter Di. LSD gIves a two­

dimensional map of the relative Sauter Mean Diameter of sprays. The measurements 

can be made absolute using a single point measurement of droplet diameter that can be 

provided using a PDA system. LSD can be applied to dense sprays and gives a high 

spatial resolution deternlined the number of picture elements and magnification of the 

imaging systenl. 

A calibration procedure is required to determine the correct dye-liquid combination and 

dye concentration in order to establish a D3 dependent fluorescence signal. This is most 

easily achieyed in water-based sprays where many dyes are available that can be excited 

using visible light. Even in the absence of a calibration the technique can be used to 

give qualitative patternation data as a precursor to mapping the SMD. The technique has 

the potential to be extended into high-temperature combustion environments where a 

dye of similar boiling point and evaporation rate to the liquid fuel would be required. 

2.5.3 Light Obscuration 

It is possible to measure particle cross-section from the shadow cast by an individual 

particle. A simple system would consist of a photo-detector and a laser diode. Particles 

passing through the beam obscure some of the light incident on the photo-detector. High 

number densities can present a problem, as only one particle must be in the beam at any 

one time [69]. Alternatively particle sizes can be established using a process called Back­

Lit Imaging where, as the name suggests, the particle diameters are established by 

interrogating an image of the particles (70]. The images can reveal irregular particle 

shapes, inclusions in droplets etc. A sequence of frames can reveal velocity and 
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qualitative information uch as jet break-up and ligament growth. Back-Lit imaging can 

b limit d in its application owing to the confusion generated by out-of-focus particles 

ut id th image plane Thi problem becomes worse in sprays of high number 

den itie . 

2.5.4 Diffraction Methods 

The angular di tribution of the light diffracted by an ensemble of particles can be used 

to determine their mean diameter. The majority of the diffracted light is concentrated 

toward the forward direction of the incident laser beam and is collected using a Fourier 

transform lens, see figure 2.9. Smaller particles diffract a larger portion of their incident 

light away from the forward direction than larger particles. 

He e 
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Nozzle 

Fourier 
Transform lens 

Figure 2.9. Particle sizing by diffraction 

Multi -el ement 
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Scattered light 
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The angular distribution can be interrogated by traversing a photo-multiplier in the back 

focal plane of the transform lens. 
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This principle fomls the basis of the commercially available Malvern particle sizer that 

can be used to nleasure particle diameters ranging from 0.02-3500 ~m in wet or dry 

. 171 & 72) Th . I I· . d fi suspenSIon . e spatla reso utlon IS e Ined by the thickness of beam and 

\yorking distance of the Fourier Transform lens (1.5 times focal length of Fourier 

Transform lens to give a suitable capture angle). The measurement is an integration of 

the mean diameter along the optical path of the beam. The results therefore need to be 

de-conyolved to giye spatial size distributions. As particles diffract at a given angle 

regardless of Yelocity, the technique can be applied to high-speed flows. The particle, in 

effect. giyes a signal all the time it is in the measurement volume. 

In dense sprays the result can also be skewed owing to smaller particles falling within 

the shadow of larger particles. Low concentrations right up to 950/0 beam obscuration 

can be measured, but multiple scattering may become apparent. Refraction effects from 

density gradients, flame fronts etc, limit the optical path length although commercial 

systems typically measure remote sample. 

2.5.5 Time of Flight Particle Sizing 

Time-of-flight particle sizing consists of accelerating a particle or aerosol through the 

path of two laser beams [69 & 73). The transit time of the particle across the two beams is 

correlated against the particle's aerodynamic diameter. Larger, heavier particles are 

slower to respond to the accelerating flow field, vice-versa for smaller, lighter particles. 

A second size distribution can be established from the side scatter of the two 

illuminating beams. Concentration can be determined from the signal counts. This kind 
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r parti 1 lZer typically used for particle diameters 10 excess of 0.5 ~m 10 

n ntrati n up to 10 000 particle per cm3• 

2.5.6 Intensity Methods 

Particle lZe can be calculated from the amplitude of the light scattered by a particle as 

it pas e thr ugh an illuminating beam [74 & 751. The absolute intensity is compared 

against either Mie or Ra leigh theory to ascertain the particle diameter. Typical particle 

size range from a fraction to tens of microns. Light scattering intensity is dependent on 

particle hape compJe index of refraction, lens geometry, and photo-detector spectral 

characteristics as well as particle size. A calibration is required, usually with ideal, non-

absorbing spherical aerosols, although they may not be representative of non-ideal, 

light absorbing irregular particles, eg: soot. Errors occur where intensity variations are 

present at either the source or in the optical path and owing to the particle trajectory 

through a Gaussian beam profile. Either defining the measurement volume as the 

intersection of two separate colour beams or by sampling intrusively at a known 

location can solve these problems. The Knollenberg probe [751 is an example of a 

commercial system that uses this principle, see figure 2.10. 
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Figure 2.10. Intensity method of particle sizing 
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2.6 SUMMARY OF OPTICAL INSTRUMENTATION FOR FLUID 

FLOW IN GAS TURBINES 

2.6.1 Compressors & Turbines 

As conlpressor and turbine performances converge to an asymptote an ever-improving 

knowledge of the detailed flow-field is required to improve them. Detailed numerical 

predictions rely on accurate diagnostic instrumentation to validate them. 

If the compressor or turbine blades are considered to be two-dimensional a simple 

transmitted-light technique such as interferolnetry can be used to provide quantitative 

flow data such as density and the location of shocks. Such data are obviously 

insufficiently accurate where three-dimensional profiles, and predictions, are 

considered. 

LDA and L2F have been successfully applied to both compressors and turbines to 

ascertain velocity and its fluctuations (116 & 136). Both are intrinsically point-wise 

techniques where a volume or plane is traversed over a period of time. The vectors can 

be established from an ensemble or a single particle passing through the measurement 

volume. Sampling periods can be extended in sparsely seeded areas to record vectors 

that would be missed by discrete sampling techniques. The measurement points can 

therefore coincide with the nodes of a CFD mesh. LDA and L2F can be phase locked to 

a passing rotor or a coherent aspect of the flow. Neither gives a time history of the flow, 

unless the stream of seed through the measurement volume is continuous, necessitating 

a very high seeding number density that, if achievable, could leave deposits on the 

blades. In each case the spatially irregular, incoherent aspect of the flow would be lost. 
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The compressors and turbines are made up of stages of stationary and rotating blades. 

The rotors are mounted on typically two or three shafts that rotate at different angular 

yelocities. The flow between the stators and rotors is inherently unsteady due to the 

relatiye motion between them. The rotors either side of a stator may not be rotating at 

the same angular velocity nor have the same number of blades. In the strictest sense 

successiye measurements would need to coincide with the correct phase of both of the 

rotors, not just the phase of a single rotor to spatially map a plane or volume. If spatial 

and time accurate predictions of this unsteady flow are to be verified, a plane or volume 

needs to be nleasured in an instant. The acquisition of simultaneous vectors is obviously 

desirable where a facility is transient, the cost of running high, or where it is difficult to 

maintain a constant run condition over a period of time. 

Both DGV and PIV allow the acquisition of simultaneous vectors in high-speed flows. 

DGV is obviously the more elegant of the two but is also at a less advanced stage than 

PIV. It is doubtful whether a sufficient seeding number density could be achieved in 

turbomachinery to realize the potential spatial resolution of DGV, one vector per pixel, 

if it were to be used in single shot mode, unless the seeding was injected locally. In 

addition to this, two cameras are required for each component of velocity to be 

measured. In the application of PIV to the turbine cascade, described in part 2, the 

optical access and the space available to accommodate the camera arrangement is 

minimal. This, combined with complexity and expense of hardware required, stabilized 

and spectrally narrow lasers, temperature controlled iodine cells etc, bode against the 

use of DGV, especially in the presence of a more mature, simpler alternative such as 

PIV. 
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2.6.2 Combustion 

Non-lanlinar flows are typically modeled uSIng the time-averaged Navier-Stokes 

equation or by direct numerical simulation. The former makes the assumption that the 

instantaneous yelocity is made up of a mean and a fluctuating term that generates the 

Reynolds or turbulent stresses 1137
1• This premise generates six more unknowns than 

there are equations. so an approximation model is used to solve the closure problem. 

The predictions can be highly accurate where a suitable turbulence model is used, but 

can also bear no relation to the flow where the model is unsuitable. Experimental 

verification is required to assess both the quantitative accuracy and the qualitative 

resemb lance to the measured flow. 

A direct numerical simulation represents the flow at a resolution that includes all the 

scales of instantaneous velocity. Such an approach is obviously very computationally 

intensiYe owing to the temporal and spatial resolution required. The problem is 

exacerbated where a reacting flow is considered as the reactions occur at a molecular 

scale over very short reaction times. The problem is further compounded due to the 

transport of different phases and particles within the fluid. Combustion modeling is 

therefore at a far less advanced state than that of non-reacting flows. Direct numerical 

simulation will not be feasible for most flows of engineering interest for the foreseeable 

future. 

The combustion chamber is largely considered to be a black box where the general 

relationship between the inputs and outputs of the combustion chamber are known, but 

little is understood about its internal behaviour. Still less is known when the combustor 

is taken to the limits of, and beyond, its stability loop. Combustion can become unstable 
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if the .\FR is increased. Further problems can ensue if the combustion instability 

couples with the acoustic mode of the combustion chamber or other mechanical 

components. Such a phenomenon would be difficult to model owing to interaction 

(energy transfer) between the fluid and a mechanical surface. Likewise the interaction, 

and acoustic signal, of the exhaust jet mixing with its ambient surroundings is also 

problematic. 

Part 3 describes the development and application of a shearing interferometer. It has 

initially been applied to a compressor representative transonic flow in a 2-D wind 

tunnel. The shearing interferometer has also been used to visualise a compressible 

exhaust jet mixing with its ambient surroundings, a flow that would be difficult to 

model due to the interaction between the mixing fluids. This visualization was 

secondary to acoustic measurements of the exhaust jet so was to be inexpensive and not 

interfere \vith these primary measurements. 

The application of the shearing interferometer also includes a tomographic 

reconstruction of a natural gas flame. This reconstruction is to be used in a separate 

proj ect, not described in this thesis, as a comparison against emission! absorption 

measurements of the flame made using the reversal principal described in section 2.3.3. 

The reversal principle will be used to spatially map the emission and absorption 

coefficients of a single spectral line, (308 nm, bright OR in a C~ flame) within a 

natural gas flame. 

Many optical methods for combustion already exist but their application is severely 

hampered by the harsh, multi-phase, particle-laden, often optically dense, and highly 
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lunlinous enyironment. These methods will undoubtedly become more accurate as 

spectral sources and detectors become more precise and as spectral models of 

conlbustion improve, but until then a void remains in the understanding of combustion 

\\'ithin the gas turbine. 
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Chapter 3 

ApPLICATION OF PIV TO A SPINNING 

TURBINE CASCADE 

-
INTRODUCTION & BACKGROUND 

Description of Chapter 

The rationale for applying particle image velocimetry, rather than 
other velocimetry techniques, to the stator-rotor gap in a short 
duration turbine cascade is described. The novel requirements of the 
P IV measurements undertaken here are highlighted. 

A previous P IV measurement made in this cascade, prior to the fitting 
of the rotor, is discussed, since it defines the fundamental parameters 
to this experiment, such as the choice of seed and general approach. 
Improvements regarding the recording of the data, data reduction and 
vector yield per image are identified. 

Finally, the turbine cascade and turbine stage are described. 
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3.1 INTRODUCTION 

3.1. 1 Background 

Turbonlachines are typically technically mature products and are used in a variety of 

engineering applications from power generation to marine and aero-propulsion. 

Impro\;ing their efficiency, and reducing their operation and acquisition costs, relies on 

either calculating or measuring the flow regimes within them. 

Detailed investigations in turbomachinery have been performed using LDV for over two 

decades. Moore et al [141] (1981) and Edmunds et al [116] (1998) give an account of the 

development of LDV with regard to high-speed turbomachinery applications over this 

period. LDV is a point measurement technique that can be used to reveal stationary 

spatial flow structures by time and ensemble averaged over all the blades passages. As 

numerical predictions are typically time-averaged the results are well suited for 

comparison. Further to this, the LDV measurement points can coincide with the CFD 

mesh nodes for a direct, non-reconstructed, comparison. 

CFD is a science in its infancy. As fluid models improve and more processing power 

becomes commercially available it will become a credible design tool independent of 

experimental validation. As the numerical solutions improve so must the experimental 

results used to validate them. 

PIV gives a series of instantaneous spatial velocity measurements. It can reveal the 

unsteady, incoherent aspects of a flow as well as the time-mean flow by combining 

frames [77]. As each frame can yield many velocity vectors the data acquisition times are 

much shorter than with traditional LDV techniques. Where the cost of producing a 
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turbonlachinery representative flow is high, or if the flow is transient, the use of point 

measurement techniques can become undesirable. This problem can be exacerbated 

where the working conditions of facility, temperature variations, seeding concentrations 

etc., have to be kept constant over the acquisition period. 

The stator-rotor gap regIon of a turbine stage is a challenging application both to 

measure and to model owing to the complex interaction of a series of stationary and 

rotating blades. The region contains both coherent and unsteady components generated 

as the stator wake impinges on the passing rotor. The measurements are further 

complicated due to the transient nature of the facility. 

Many of the issues encountered during the application of LDV to turbomachinery apply 

to PI\T. As with a backscatter LDV system, only one window is required for PIV. A 

clear line of sight similar to that used for transmitted light methods is not necessary. 

The light sheet must also be introduced without significantly perturbing the flow. 

Gaining optical access is not trivial where the viscous or thermal flow is not to be 

perturbed by a window. An ideal window would not compromise the casing annulus 

shape nor aberrate the field-of-view through it. Its heat transfer properties would also be 

identical to the rest of the casing in order to maintain a correct gas and wall 

temperatures ratio. It must also withstand the mechanical and thermal loadings imposed 

upon it. 

Typically, sub-micron seeding particles are needed to follow the high frequency 

. I· C'. d· h· h d fl (87 & 117] A th perturbations and abrupt changes In ve OCIty loun In Ig -spee ows . s e 
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anlount of backscatter from such particles is small, either high-powered pulsed light 

sources (~ 100 mJ/pulse) or image-intensified cameras are required to see them. 

3.1.2 Novel Requirements of the Measuren1ents 

The novel contribution of the work undertaken here is the instantaneous measurement 

of the 2-D velocity distribution of the flow through the stator-rotor region of a short 

duration turbine cascade operating at engine representative conditions. The feasibility of 

a novel method for recording 3-D vectors has also to be explored and demonstrated on a 

free air jet but not applied to the turbine. The 2-D PIV data have been recorded digitally 

and the necessary algorithms implemented to facilitate the data reduction required for 

the automatic extraction of the velocity vectors. This work represents a logical 

progression from the previous measurements made on this facility described by 

Bryanston-Cross and Towers et al (139 & 113], in that a rotor has since been fitted to the 

facility. It is the interaction of the stator wake with the passing rotor that has been 

measured rather than flow between the nozzle guide vanes in the absence of a rotor. The 

flow through the nozzle guide vanes has also been measured here, except with the 

presence of the rotor. The vector yield per image of the data presented here is an order 

of magnitude higher than the previous work despite the lower resolution of digital 

cameras in comparison to photographic film. The requirement for manual pairing of the 

particle exposures during the analysis stage and need for wet processing of 

photographic films has also been obviated. The measurements are to be used to validate 

time accurate numerical predictions and to demonstrate a velocity measurement 

capability on this facility. 
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The choice of instrumentation, and the early direction of the project, had largely been 

defined by the previous work by Bryanston-Cross & Towers et al [139 & 1131. They 

describe the velocity measurement in the nozzle guide vane passage made using PIV. 

The results \vere recorded photographically, scanned and processed by manual 

identification of the particle pairs. Each photograph yielded approximately 100 vectors 

and took three hours to process. The accuracy of the measurements was estimated to be 

60/0 after cosine errors, aberrations and analysis tolerances etc. had been considered. 

Ho\vever, as Bryanston-Cross and Towers had already defined the correct seeding and 

general approach, the benefits of their work for the current project should not be 

underestimated. 
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3.2 THE ISENTROPIC LIGHT PISTON FACILITY (ILPF) & MTI 

TURBINE STAGE 

The ILPF is a short duration wind tunnel for testing full size, high pressure turbine 

stages (140. l·n. 143 & 144) I . bl f . 
. t IS capa e 0 matchIng all the non-dimensional parameters 

relevant to turbine fluid mechanics and heat transfer. This is achieved by exhausting a 

nearly isentropically compressed, and hence heated, volume of air through a spinning 

rotor. The rotor speed is kept constant throughout the valid run-time by an aerodynamic 

turbobrake operating on a common shaft to the rotor. The ILPF can simulate full engine 

representative conditions for run times ranging from a few hundred milliseconds to a 

couple of seconds, depending on the conditions required. 

The ILPF consists of three sections. In the centre of the facility is the working section 

containing the MTI un shrouded, high-pressure turbine stage. The stage consists of 32 

nozzle guide vanes and 60 rotor blades. The rotor operates on a common hollow shaft to 

an aerodynamic turbo brake downstream of the rotor. The hollow shaft houses signal 

conditioning circuitry for instrumented blades and is supported on two sets of oil-

lubricated bearings. 

Upstream of the working section is a pump tube containing a lightweight piston. The 

pump tube is separated from the working section by a fast acting plug valve. 

Downstream of the working section is an exhaust tank separated from the movement of 

the rest of the facility by a sliding joint. 

Prior to the run the lightweight piston is positioned at the upstream end of the pump 

tube and the volume ahead of the piston is filled to a predetermined pressure. The 

61 



exhaust tanks and working section are evacuated and the rotor assembly is spun up to 

speed. 

The run is initiated by introducing high-pressure air behind the lightweight piston to 

nearly isentropically compress the volume ahead of it. When the desired pressure and 

temperature have been reached the plug valve is opened, releasing a steady flow of air 

through the working section. A second throat at the stage's exit determines the pressure 

ratio across it. It is an annular variable device that maintains axisymmetry in the exhaust 

flow. The throat acts as a choke and isolates the stage from disturbances originating 

downstream. The flow through the turbobrake can be reduced by fitting blockage rings 

oyer its diameter. Its performance can be further fine tuned by regulating the amount of 

exhaust flow that bypasses it. 
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Chapter 4 

PARTICLE IMAGE VELOCIMETRY (PIV) 

REVIEW OF THEORY FOR ApPLICATION 

Description of Chapter 

This chapter reviews some of the issues regarding the successful 
application of P IV. It covers the requirements of the seeding 
material with regards to flow tracing ability and detectibility. 
Alternative recording media together with data reduction 
techniques are presented with a discussion of achievable 
accuracies, spatial resolutions and the practical implications of 
each. 3-D PIV methods are also reviewed. 
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4.1 INTRODUCTION 

The most salient characteristic of PIV is the measurement of two components of 

yelocity within a plane (77,79 & 841. The fundamental principle ofPIV is the determination 

of the displacement of a flow-tracing particle with respect to time. The measurement is 

made by projecting a two-dimensional light sheet into the region of interest. Naturally 

occurring particulates or artificially introduced 'seed' are illuminated as they pass 

through the light sheet. 

If a continuous light source is used, streaks of length proportional to the integration time 

of the camera and the velocity of the particle will be evident at a camera orthogonal to 

the plane of the light sheet. If the light source is strobed at a known frequency the 

velocity of the particle can be calculated from the displacement between the subsequent 

exposures of the same particle. The latter is the principle that is predominantly used in 

quantitative PIV and is the crux of most commercial PIV systems. 

PIV images can be captured on video, photographic or holographic media, each having 

its merits and drawbacks. The spatial resolution available is fundamental to PIV. For 

instance, the accuracy of the analysis can be improved if the distance between particle 

pairs is described by as many 'pixels' as possible. The estimation of particle image 

centres can also improved if the image contains a sufficient number of pixels to allow 

the fitting of a theoretical intensity profile (1181. To increase the number of pixels 

between particle pairs either the magnification or the pulse separation can be increased. 

The fonner presents difficulties in the optics as simple geometric aberrations of the 

lenses are amplified, thus diffracting (enlarging) the particle images. The signal-to-noise 

ratio also deteriorates. The combination of increased pulse separation and turbulence 
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increases the probability of single particle images making it difficult to establish particle 

paIrs. 

To\yers et al (86) describe how photography was used to make PIV images at a standoff 

distance greater than two metres in a large-scale transonic wind tunnel. The film used 

was 35 mm Kodak TMAX 3200 with a resolution of 100 lines/mm, ASAJISO rating of 

3000 that represented the best speed/resolution compromise at the time, as described in 

by Bryanston-Cross (87
). Processing the data involved digiti sing the photographs with a 

flat bed scanner and manually pairing the sparse particle exposures. 

Photography is still the best cost/resolution option compared with digital methods of 

imaging. Digital PN becomes desirable where the inaccuracies and time lost owing to 

\\·et' processing and digiti sing the data is unacceptable (88). A digital camera has 

advantages in that the image is immediately digitally stored allowing instant viewing 

and manipulation. The number of images stored is dependent on the communications 

speed and memory of the system. 

Bryanston-Cross et al (88) measured an area O.lm by O.lm, agaIn In a large scale 

transonic wind tunnel, using a CCD camera of resolution 512 by 512 by 'tiling' the area 

of interest, the final measurement being a mosaic of inevitably time-averaged tiles. 

Bryanston-Cross et al (89) describe the combination of holography and PN to facilitate 

the measurement of three-dimensional vectors. Previously holography has been used for 

whole field measurements (90,91 & 119) over two-dimensional compressor and turbine 

profiles, though the complexity of deconvolving and tomographically reconstructing 
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refractiYe index fields, and the need for a clear line of sight, has hampered its 

application to three-dimensional profiles. Rather than measuring refractive index the 

holographic plate is used to store the three-dimensional positions of the particles within 

a 50 mm high. 2 mnl wide light sheet, with the illumination supplied by a Ruby laser. 

This \vas achieved with a conventional pulsed laser PIV set up, although an additional 

reference beam was created using a beam splitter to separate less than 1 % of the light. 

Upon re-illuminating the hologram a CCD camera could be focused to the required 

depth in the yirtual image to make two-dimensional images at will. Holographic plates 

haye a resolution approximately two orders of magnitude greater than a 512 by 512 

CCD, so the hologram was studied 'tile by tile' as described previously. Furthermore, by 

rotating the camera about an axis through the virtual image the data could be observed 

at an angle to the nonnal of the plate allowing orthogonal measurements. 

Apart from allowing the orthogonal measurement, USIng holography as a three­

dimensional, particle image storage media has further advantages. Firstly the optical 

resolution of holographic plates is considerably higher than that of photographic films. 

Secondly, optical phase as well as intensity is stored. The phase front is due to the Mie 

scattering characteristics of the particle [92] and not those of the imaging lens. 

Gogineni et aI., 1998 [120], describes the evaluation of a high-resolution (3060 x 2036 

pixel) colour CCD camera for turbomachinery applications. An Nd:Y AG and Dye laser 

are used to provide pulses of different colours to allow the first and second particle 

exposures to be identified. This arrangement was applied to a 20 inch diameter axial fan 

and allowed the instantaneous measurements to be made at spanwise positions. 
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\Venlet \121) describes the application of a novel 'frames-straddling' camera to 

centrifugal and axial compressor fans. The camera allows two frames to be recorded 

\yith an interframe gap of the order of a microsecond. Although the camera only 

contains 1000 x 1000 pixels the vector yield per image pair is high as each frame 

contains only one exposure. The frames are cross-correlated to remove a directional 

ambiguity and realise a high spatial resolution owing to the small interrogation region 

required during the analysis compared to autocorrelation. 

4.2 OPERATING PRINCIPLE 

The displacement of the particle between exposures must be sufficiently small so that 

8xiOt is a good approximation of the velocity U. This is satisfied if 8x can be assumed to 

be a straight line in a stationary frame of reference. The accuracy of the measurement of 

the displacement of the particle is partly determined by the finite uncertainty in locating 

the centre of a particle image or correlation peak. Scaling errors, optical aberrations and 

fluctuations in the pulse separation are also sources of uncertainty. The error of the 

centroid estimation relative to the distance between paired exposures determines the 

accuracy to which the particle displacement can be measured. This directly limits the 

temporal and spatial resolution of the system as without this constraint 8t could be 

reduced to realize a higher particle response. 

Adrain (78) suggests two quantities to define the capabilities of a PIV system and its 

image-recording medium. The quantities are the Dynamic Velocity Ratio (D VR) and 

Dynamic Spatial ratio (DSR). The DVR is defined as the ratio of the maximum velocity 

to the minimum resolvable velocity that is given by 
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DVR = Umax = M&max 

au crdt 

(4.1) 

where M is the magnifi t' A,~ . th . d' . lca lon, L.l.-\,mnx IS e maXImum lsplacement, c, IS a constant that 

describes the ability to locate a particle's centroid (typically 1 to 10%), d, is the mean 

diameter of the particle image. The Dynamic Spatial Ratio (DSR) is the ratio of the 

largest and snlallest observable length scales and is given by 

L,/ 
M 

DSR=--
&max 

(4.2) 

\vhere and Lx is one of the dimensions defining the format of the recording media. The 

product of these ratios, see equation 4.3, gives a benchmark with which to compare 

various forms of recording media. Typical values of these benchmarks are given in table 

4.1 for different forms or recording media and processing techniques. 

(4.3) 

Obviously high values of DSR and D VR are preferable for flows with high turbulent 

intensities. The maximum resolvable displacement is usually considered to be Y4 the 

interrogation spot area for correlation analysis to avoiding aliasing in the correlation 

plane [771. The particle displacements are therefore typically between 10 and 20 pixels 

with interrogation spots covering areas of typically 32 x 32 or 64 x 64 pixels. The 

maximum displacement for particle tracking is determined by the ability of the analysis 

algorithms to pair exposures across which largely depends on the seeding concentration. 
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Autocorrelation Cross correlation 
Recording Media 

DVR DSR DVRxDSR DVR DSR DVRxDSR 

768x576 7.27 48 349 80 48 3840 

1000x1000 7.27 62.5 454 80 62.5 5000 

35nun film, 100 lines/nun 7.27 218.75 1590 80 218.75 17500 

Table -+.1 Dynamic velocity and spatial ratios for different fonns of recording media. 
Calculations under autocorrelation assume that resolvable paired exposures can not 
overlap. Correlation spot size of 64 x 64 pixels, giving a maximum resolvable 
displacement of 16 pixels. Particle diameter of 2 pixels, centroid can be located to 
1/10th of the diameter. 
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4.3 FLOW TRACING SEED & SCATTERED INTENSITY 

--+.3.1 Requirements of the Seed 

The important properties of a scattering seed are its light scattering ability and 

aerodynamic size. These two properties determine the signal generated by the particle 

and its ability to follow a flow. If the seed is too small it will not be measurable. If it is 

too large it may not accurately follow the flow (78 & 941. 

An ideal seed \vould have an identical density to the fluid within which it was 

suspended and a large effective area to increase its scattering power. All seed in a 

. batch' would be identical and easily dispensed in a controlled concentration. It would 

also be inexpensive. Not all these criteria can be met but adequate compromises have 

been achieved using liquid droplets (vegetable and mineral oils, water etc.) and powders 

(titanium dioxide, aluminium oxide etc) ranging from a fraction of micron to a couple of 

microns in low to moderate speed flows. Gaseous bubbles or solid particles are used in 

liquid flows, whilst solid particles or liquid droplets are typically used in gases. Styrene 

spheres are available in sizes ranging from 0.6 to several ~m, albeit at high cost (£500 

per litre) (1131. The styrene seed is usually suspended in water after manufacture. 

Bespoke atomizers are required to evaporate the residue water and to avoid 

agglomeration of the seed when it is launched into the flow. The required monodisperse 

seed (single particle size with no agglomerates) can be separated by exploiting the 

principle of the time-of-flight particle sizer discussed in section 2.5.5. 
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~.3.2 Dynamics of Spherical Seed in a Moving Fluid 

For the flow tracer to follow the flow accurately the viscous forces carrying it must be 

greater than its inertial forces resisting a change in direction [95 & 96). This problem is 

heightened in unsteady or rotational flows where changes in direction are frequent. The 

motion of a particle within a fluid of variable velocity is given by equation 4.4 (96) 

--p p --C V -V A+--P +-- -trd
3 

dU 1 Y 1rd
3 

dVJ l1rd! (dVJ dVp ) 

6 P p dt - 2 DP f (i p 6 P f dt 2 6 P f dt dt 

dV f dVp 

3 ~ ( 
, I J dt dt 

+-d;'\j1rp f'tl f ~ 
2 (0 

(4.4) 

Where, dp is the diameter of the particle, 

Pp is the density of the particle, 

Vp is the particle velocity, 

PI is the density of the fluid, 

VI is the velocity of the fluid, 

A is the cross sectional area of the particle, 

'tll is the fluid viscosity, 

CD is the drag coefficient, 

t is time, 

Fe is any external potential force. 
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Each tenn represents a force that can be described as follows: 

rvlass x acceleration of particle = drag force 

+ Mass x acceleration of fluid displaced by particle, ie: 

pressure gradient on particle due to fluid's acceleration 

+ force to accelerate added mass of particle compared to 

mass of fluid displaced 

+ drag force due to turbulent deviations (time history of 

acceleration) . 

+ body force, i.e.: gravity, centripetal, electrostatic 

The first tenn on the right hand side is expressed in a general manner to accommodate 

different expressions of the drag coefficient. Towers (113] presents a numerical 

comparison of Stoke's, Melling's, Neilson and Gilchrist's and Meyer's drag coefficients 

against a normal shock wave and a forced vortex. 

Equation 4.4 is valid if, 

• The particle size is smaller than the scales of turbulence present in the fluid. 

• The particle does not overshoot the motion of the fluid. 

• The particles are in dilute suspension ie: no interaction between particles. 

• The turbulence is homogeneous and statistically stationary. 

Initially equation 4.4 appears rather daunting but fortunately it can be approximated to a 

much simpler form. Even for the least dense seeding the ratio of fluid density to particle 
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density is less than 0.001 therefore the terms proportional to the fluid density can be 

I t d (95) U . 
neg ec e . slng the Reynolds number for the particle, 

(4.5) 

and neglecting external forces, equation 4.4 becomes 

(4.6) 

"'here Vf is the kinematic viscosity of the fluid and UjUp is the particle slip. The 

acceleration of the particle can therefore be maximised by using a smaller, less dense 

particle. 

A. particle' s response to a change in velocity of the fluid is often described in terms of a 

flow velocity and a frequency of oscillation. The particle slip is a function of the applied 

acceleration and a benchmark is required to determine when an unacceptably large error 

occurs. Feller and Meyers [97) describe a first-order model of a particle's response to a 

step change in acceleration applicable to 1 to 2 micron diameter seed within gases 

(particle density »gas density). The time constant is defined as 

(4.7) 

The 3 dB frequency at which the particle would follow a sinusoidal variation in the 

velocity with an amplitude of 0.707 of the original amplitude is jjdB=iI21ttj. This 
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frequency should be larger the Lagrangian frequency (the motion of the particle is 

approxinlately Lagrangian) fluctuation to be measured. In slow flows the primary 

limitation may be the seeding settling velocity. For air the settling velocity is 9.8 t] 

( ms- l ) 1981• 

Styrene micro spheres are typically used as a seeding material in transonic or supersonic 

flo\ys. Polystyrene has a relatively low density, is non-toxic and the microspheres can 

be manufactured in a range of discrete sizes from 0.6 to 2.7 microns. The micro spheres 

also haye a high refectivity thus aiding the imaging process. 

4.3.3 Light Scattering from Spherical Seed 

The diameter of the image of an illuminated seed is dependent on the diameter of the 

particle and the magnification and point spread function of the system. If the system is 

diffraction limited the point response will be an Airy function of diameter 

(4.8) 

. . . h h ., f th d [991 The image is a convolution of the AIry dISk WIt t e geometnc Image 0 e see . 

These functions can be approximated using a Gaussian profile to give an estimation of 

the image diameter [100
1, 

(4.9) 
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F or seed dian1eters less than 10 Jlm de will be largely independent of the particle 

diameter. Conversely, for particle diameters greater than 50 microns de will be 

approximately equal to the product of the magnification and particle diameter. 

The scattering efficiency as a function of seed diameter varies erratically about a mean 

that generally increases with the seed diameter. The mean energy increases with a 

(d/A)4 in the Rayleigh region, dp«A, and (d/A,)2 where dp»'A. The ratio of the 

refractive indices of the seed and fluid greatly affect the scattering efficiency. The 

refractiye index of water is 1.33 times that of air. Equivalent seed are typically 10 times 

more effective at scattering in air than in water. Fortunately, water flows are usually 

slow and large seeding can be used to compensate. 

The optical density recorded on a photographic film or the electrical output of a photo-

detector is proportional to the optical exposure defined as energy per unit area. The 

. I' . d fi d [100) mean exposure over a partic e Image IS e Ine as 

(4.10) 

where W is the energy of the pulse, Da is the lens aperture, n the scattering power law 

exponent, do and di the object and image distances respectively and ~Yo&'o is the cross 

sectional area of the light sheet assumed to be of uniform intensity. 
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For seed in the range of 1 to 10 /-lm 11 is of the order three and diffraction blurring, rather 

than the geometric image of the seed, dominates the seed image. The denominator 

therefore reduces to give 

(4.11 ) 

This relation implies that if the system is increased in size, ie do, di and ~Yo are scaled 

up by a factor m the intensity of the image decreases by a factor of m-5
. There are also 

/..,-3 and d; dependence. Shorter wavelengths and larger seed are therefore preferable. 

As the seed increase in size beyond 5 to 10 /-lm n is of the order 2 and the geometric 

image, rather than the diffraction image becomes dominant and equation 4.10 reduces to 

(4.12) 

This relation implies that the image intensity becomes independent of seed diameter 

(above approximately 100 /-lm) as both the scattered light intensity and the image area 

increase by d ~ . 
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4.4 ANALYSIS TECHNIQUES 

4.4.1 Correlation Techniques 

The method of analysis depends on the seeding number density. If the seeding density is 

high a fringe analysis method can be adopted. This technique was developed to 

oyercome the requirement for large amounts of computer processing power to evaluate 

the tlow data. By interrogating a small spot with a coherent light source each particle 

image acts like an individual light source, allowing interference to occur between the 

pairings (77). If the spot is small the displacement of the particle images will be equal so 

that the probability of the mean displacement is high and the probability of the random 

displacement is low. Therefore interference from the random displacements is small in 

comparison to interference from the mean displacements. In other words the random 

image pairings produce interference that averages to zero whilst the pairings associated 

with the displacement produce interference fringes with spacing inversely proportional 

and perpendicular to the displacement of the pairs. In effect this procedure is a spatial 

correlation at the speed of light. 

The same result can be achieved computationally using the Fourier Domain approach 

(1001. The mean frequency of the particle images corresponds to the mean displacement 

within a spot and will show as a peak in the Fourier domain significantly larger than the 

random frequencies. If the seeding density is low the Fourier process can be applied to a 

larger area to acquire sufficient data although such a process simply averages over a 

larger area. By considering a larger area small scale features such as shocks and wakes 

can be averaged out. 
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4.4.2 Particle Pairing 

The use of the fringe analysis method, described earlier, requires the use of either 

photographic or holographic recording to allow the interrogation of the negative by laser 

to produce interference fringes. In practice producing a high enough seeding density for 

fringe analysis to be successful can be difficult in high-speed turbulent flows. It is 

usually the case that in high-speed applications the seeding number density is low, 

allowing the brute-force approach of considering each individual particle image to be 

applied, a process which is computationally intensive. 

To get the images in a digital fonnat either a CCD camera can be used or a photograph 

can be scanned. The major difference between these two types of media is the number 

of picture elements available. CCD cameras generally have around 1000 x 1000 picture 

elements. A scanned photograph, recorded with 35 mm film, can have over an order of 

magnitude more picture elements. Once in the digital fonn the images can be analysed 

using either statistical methods to establish the probability distribution of the 

displacements, or a spatial correlation between the first and second images can be 

applied. Once the image pairs have been established the image processing software 

calculates the distance between successive particle images, a time consuming process 

that has only become practical as powerful computers have become available. If the 

seeding density is low, image pairs will be separated by large voids making the pairing 

process trivial. 

Warwick's analysis software, APWin (109
1, is designed for sparsely seeded flows in that 

it considers each particle and its neighbours individually to establish particle pairs. A 

statistical mean over a predetennined area is used in further iterations to delete 

79 



erroneous pairings. A yield of 300 particle pairs over an image of 768 by 576 pixels was 

found to be the upper limit of the software. 

4.4.3 Directional Ambiguity 

There remains a directional ambiguity in velocity if the order of the first and second 

exposures of a particle on a single image is not known. This may not be a problem in 

flows with high mean velocity, as intuition can suggest the correct sign convention, but 

it is for recirculating or turbulent flows. The exposures can be distinguished either by 

using different pulse colours or intensities, to code the pulse sequence (120 & 122), or by 

using fluorescent seed that leaves a decay streak after excitation. Each can prove 

problematic during analysis as the commonly used autocorrelation analysis is conjugate 

symmetric regardless of pulse configuration, giving two peaks at equal displacements 

from the dc term. Further analysis is required to identify the correct correlation peak, 

unless the first and second exposures are separated and cross-correlated to give a single 

correlation peak. 

Image shifting allows the addition of a positive bias to the velocity in a similar manner 

to the Bragg cell of an LDA system. The image can be shifted by placing a rotating 

mirror between the plane of the light sheet and camera, polarization optics between the 

imaging lens and image plane or by shifting the pixels on a CCD array between 

exposures. In each case the second pulse is shifted by a known displacement relative to 

the first. The bias is subtracted after the analysis to reveal the underlying velocity field. 

An alternative to image shifting is to record the 15t and 2
nd 

exposures on separate frames 

to reveal their order. Cross-correlating between the two frames will give an 
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unatnbiguous velocity direction. Unlike the autocorrelation the cross correlation is not 

conjugate symmetric and there will be only one valid peak displaced from the dc term. 

Recording the 1 st and 2
nd 

exposures has further benefits, in that a higher seeding density 

can be used to improve the spatial resolution. As successive exposures can be closer 

\\'ithout obscuration and no image shifting is required, the dynamic velocity range of the 

recording medium is extended in comparison to a double exposure image. The particles 

can be paired more efficiently as 1 st exposures of two different particles cannot be 

paired. 

The adoption of interrogation spot shifting during cross-correlation analysis allows a 

higher spatial resolution to be achieved in comparison to an autocorrelation without 

compromising the accuracy of the measurement [1231. If the full-scale particle 

displacement in a 1024 x 1024 image is 16 pixels the correlation interrogation spot size 

needs to be 64 x 64 pixels according to Adrian's 1f4 rule [771. If each of the interrogation 

spots has a 50% overlap the vector yield will be a grid 32 x 32 vectors. If the 

interrogation spot is shifted by the mean displacement it will contain more pairs and the 

visibility of the correlation peak will improve. The correlation peak will now be nearer 

the centre of the correlation plane so the interrogation spot size is reduced to avoid 

aliasing. The shifting of the interrogation spot reduces the amount of spatial averaging 

and increase the number of vectors in the example described to 64 x 64 without 

compromising accuracy. 

The major drawback of recording the exposures on separate frames is that long pulse 

separations are required to allow for the inter-frame periods of conventional CCD 

cameras. For example RS-170 cameras have an inter-frame time of 33 ms that is 
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impractical for most flow regimes. Inter-frame periods of fractions of a millisecond or , 

indeed microseconds in turbomachinery applications, are usually needed. 

Various commercial systems use a bespoke fast image transfer cameras that allow the 

image to be discharged from the CCD array in a few microseconds. By adopting a 

frame-straddling strategy whereby the 1 st exposure occurs at the end of the 1 st frame, the 

::!nd exposure at the beginning of the 2nd frame, the dynamic velocity range can be 

extended into the transonic region 180). 

4.4.4 Centroid Estimation 

Particle images made of large pixel clusters can be beneficial in particle tracking 

applications where a large dynamic velocity range is not required. Large clusters of 

pixels allow the centoids to be estimated with sub-pixel accuracy from the grey scale of 

the pixels. Smaller clusters are required for correlation analysis as the self correlation 

peak will be twice as broad, further reducing the dynamic velocity range. 

Having established particle pairs or correlation peaks the accuracy of the displacement 

measurement depends on the certainty to which their centres can be located. The 

accuracy to which this can be achieved depends on the resolution of the system and the 

range that is being considered. For example, if the particle image or correlation peak 

centroids can be located to half a pixel over a displacement of 16 pixels the probable 

accuracy to which the displacement can be measured is +3%. If the particle centres can 

be located with greater accuracy for a given resolution the error will be reduced. 
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The centre of the particle can be estimated in one of four ways, see figure 4.1. Firstly, 

the pixel of highest intensity can be considered to be the particle centre. Assuming a 

noise and distortion free image the centre can only be located to within a pixel in each 

of the x and y directions. The error can therefore be up to 1.41 pixels. Secondly, the 

image can be enclosed by a bounding box, where the diagonals of the box are assumed 

to intersect at the centroid (1091. Edge detection techniques are required to find the image 

periphery, a process that requires a careful choice of threshold for noisy images. A 

symmetrical image is also assumed. The particle centre can be located to an estimated 

half a pixel in each of the x and y directions giving a total possible error of 0.705 pixels. 

Thirdly the center-of-mass of the intensity distribution can be calculated using equation 

4.13. 

where 

E(x,y) is the intensity distribution of the image. 

(xo,Yo) is the centroid. 

(4.13) 

As with the bounding box a careful choice of threshold is required to distinguish the 

particle from the noise, typically locating the particle centre to within approximately a 

fifth of a pixel. Fourthly, if the theoretical intensity profile of a particle is known and 

the number of sampling points, i.e. pixels, is sufficient, the best fit theoretical profile 

can be assigned to the particle image, to give its true centre of mass. Owing to the 

limited resolution of the optical system the image of the particle appears as an Airy Disk 

Pattern. For micron sized particles this intensity profile can be closely approximated 
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using a Gaussian profile 199 & 1181. For a two-dimensional particle image the intensity is 

approxinlated using 

\\'here 

A is the anlplitude of the Gaussian profile, 

cr is the variance of the Gaussian profile, 

(ro,yo) is the centre of the Gaussian profile, 

n(x:,y) is the additive noise. 

(4.14) 

LTdrea et aI., 1996 (1181 claims that the Gaussian fit approach can be used to locate 

particle centroids to 1I10th of a pixel when applied to particle tracking. In order to 

achie\'e this the pixel clusters would need to be at least 4 to 5 pixels in diameter. 

Particles need only be sampled by 2 picture elements to satisfy the Nyquist's criterion 

and to distinguish them from pixel noise. Over sampling wastes the capacity of the 

recording medium and reduces the available Dynamic Velocity Range. It is expected 

that 1I10th of a pixel could only be achieved in the absence of optical aberrations and 

\\'here the particle images are clearly visible. However, incomplete particle images, such 

as those produced from interlacing faults or saturation, can be corrected and it is 

expected that peak locking (bias towards integer pixel values) would be less significant 

in comparison to the techniques described earlier. 

Variations in the diameter of particle images and velocity within an interrogation spot 

broaden the correlation peaks. Particle images of 1 to 2 pixels in diameter produce 
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correlation peaks of 2 to 3 pixels in diameter. As the correlation peak is broader than the 

pixel image, an estimator that approximates the correlation peak shape can more readily 

be applied without over sanlpling, as described by Westerweel [123), 
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Figure 4.1 Particle centroid estimation 
a. Using the pixels of greatest intensity 
b. Diagonals of a bounding box that are 

assumed to intesect at the particle's 
centroid. Grey level threshold needed 
to determine perimeter of particle 
unage. 

c. Centre of mass approximation where 
the centroid is determined from the 
sum of the products of the pixel 
intensities and their distance from a 
datum. Again a grey level threshold is 
required. 

d. Gaussian fit to the image's pixel 
intensity profile. 
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4.5 3-D PIV 

The developlnent of three-dimensional PIV systems would appear to be a logical 

progression from planar PIV. Three-dimensional measurements also allow the in-plane 

yelocities to be corrected where they are contaminated by an out-of-plane component. 

A large aperture is required if one seeks to image small seed with a high spatial 

resolution. This prerequisite defines a narrow depth of field. Ideally the thickness of the 

light sheet would be kept approximately equal to the depth of field to avoid this 

contamination but cannot always be achieved (eg: /=8, ",,=0.6993 gives a depth of focus 

of only 0.7 mm). Measuring all three components of velocity allows this error to be 

corrected. The thicker light sheets required for volumetric recording necessitate a 

greater depth of field and subsequently produce larger image diameters (100). 

4.5.1 Holographic PIV 

Holographic PIV allows substantially more information to be gathered per image than 

. d . I . d . [81] 
digital PlY, primarily due to the data beIng store In a vo umetnc omaIn 

Holographic PlY is complex, requiring both an imaging and reconstruction stage. It is 

also a one-shot process as wet processing is required. 

Barnhart et at, 1998 (81) employed reflection holography to make three-dimensional 

velocity measurements within an Ie engine with extensive optical access. A phase 

conjugate reconstruction was used to eliminate the gross image distortions created by 

transparent cylinder block. The hologram was interrogated using an optical correlation 

to determine the velocity vectors. 
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Owing to these complexities holographic PIV remains a highly specialized 

measurement technique whose application is difficult to generalize in the presence of 

generic digital 3-D PIV systems that would potentially allow the acquisition of many 

frames of data, and automated analysis, that would allow a statistic analysis of the 

cycle-by-cycle variability in an Ie engine. 

-+.5.~ Stereoscopic PIV 

The fundamental principle of stereoscopic PIV is that two cameras are used to image the 

illuminated plane at different angles. The two projections of the particle displacement 

allow it to be characterized in three dimensions. Stereoscopic PIV initially appears to be 

straightfonvard, but successful applications can require optimum camera configuration, 

eyaluation and correction of the perspective distortion and a camera calibration 

procedure depending on the camera orientation used. The 3-D vectors are calculated 

from the triangulation of the two projections. There are two basic stereoscopic 

techniques, the translation and angular displacement methods, that differ in the 

alignment of their optical set-up. A concise description of both of these arrangements is 

given by Van Oord, 1997 [821. 
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Translation Method 

The tran lation method uses two cameras with parallel axes orthogonal to the plane of 

the light sheet 182 & 831, see figure 4.2. As the camera array is parallel to the object plane 

the magnification is constant across the field-of-view. 

The overlap between the two angular fields, called the joint field, is largely determined 

by the offi et between the cameras. Increasing the offset reduces the joint field but 

improves the accuracy the out-of-plane measurement. These two parameters are in 

direct conflict, but the relation can be relaxed by introducing an add ition lateral offset to 

the camera array relative to the lens to improve the sensitivity to z. The offset is made as 

big as possible within the resolution and distortion limits of the lens. 

Image Plane 

I Offset I 

:: .... -----.. : 
I I 

------------~~ 

Lens Plane 

Object Plane Joint Field 

Camera 

CCD Chip 

Lens 

Figure 4.2 Stereoscopic PIV arrangement - Translation 
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ngular Di placement Method 

An alternative to the translation method is the angular displacement method. It is more 

nlpli ated to align than the translation method and an extensive calibration error is 

required to remove a perspective error. However, it does not suffer from the 

compr mi e between the size of the joint field and the sensitivity to the out-of-plane 

component of displacement 182 & 851. 

The angular displacement arrangement consists of two cameras with optical axis that 

con erge onto a single point in the object plane, see figure 4.3. As the cameras are no 

longer parallel to the object plane the magnification will not be uniform across the 

image but much larger viewing angles can be realized. This allows the sensitivity to the 

out-of-plane component to be increased without greatly compromising the size of the 

joint field. 

Lens Plane 

Object Plane Joint Field Light Sheet 

Figure 4.3. Stereoscopic PIV Arrangement - Angular Displacement 
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Only a sn1all area of the field-of-view will be in focus as the camera array is no longer 

parallel to the object plane. The size of the area in focus can be improved by increasing 

the depth of field. The focal depth is described by the parameter 8z where 

(4.15) 

and AI is the n1agnification, A is the wavelength of the illuminating light, and 1# is focal 

distance of the lens divided by the diameter of the aperture [1001. Outside this range the 

seed image by an amount exceeding 20% of the in focus diameter. From this relation 

the focal depth can be increased, within limits, by reducing the size of the camera 

aperture, but this inevitably reduces the amount of light incident on the camera array. 

This is far from desirable in limited light applications. Van Oord [82] found that rotating 

the image plane with respect to the lens plane, satisfying the Scheimpflug condition, 

allowed him to achieve an equivalent sharp image at 1#4 to that of a parallel image and 

lens plane combination, see figure 4.4. 
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Image Plane _ 
--~-
5:1.--

Lens Plane 

Object Plane Joint Field Light Sheet 

Figure 4.4. Stereoscopic PIV arrangement - angular displacement method 
that satisfies the Scheimpflug condition. 

Rotating the image plane relative to the lens improves the focus of the image but 

introduces a non-uniform magnification across the image. The nominal magnification is 

defined as 

M=~ 
n d 

o 

(4.16) 

where di and do are the image and object distances respectively. In order to achieve a 

complete focus the Scheimpflug conditions needs to be satisfied, i.e. 

M = tan a 
n tan () 

(4.17) 
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\ h re a i th rotation of the image plane with respect to the lens plane and B is the 

iewing ngl, th angle ubtended by the nominal ray and the normal to the object 

plan • figur 4.5. 
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\l/ ---------- - ~~~:~ 
Object Plane 

Figure 4.5. Scheirnpflug Configuration 

The stereoscopic procedure as outlined by Van Oord consisted of analysing the two 2-D 

elocity fields in the same way as conventional 2-D PlY. The 2-D vectors were back 

projected onto the object plane either by using a mathematical warping procedure or by 

a geometrical optics reconstruction to compensate for the non-uniform magnification. 

The corrected 2-D vectors were interpolated to common grid points and combined to 

give the 3-D vectors. 

The 3-D vector is calculated from the triangulation of two 2-D vectors. Each of those 2-

D vectors will have a percentage error associated with it due to the uncertainty in 

locating the particle centres. The error will be smaller than in conventional 2-D PlY as 

the two vectors take into account the particle's component of displacement normal to 

the plane of the light sheet. However, the measurement of the out-of-plane component is 

a function of, in effect, two in-plane measurements so the error will inevitably be 

compounded. 
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If the out-of-plane component of velocity is small in comparison to the in-plane, it may 

not be significantly larger than this error. If there is a strong out-of-plane component of 

yelocity the particle may not be present in the light sheet for both exposures. This can 

largely be remedied by either misaligning the light sheet with the mean flow direction 

or by increasing the thickness of the light sheet at the expense of the power density of 

the light sheet. 

-+.5.3 Defocusing Mask PlV 

Gharib et al (1998) 111~) presents a novel method of locating a seed in three dimensions 

using defocusing masks. A defocusing mask containing three apertures at an equal pitch 

circle diameter is placed before the camera lens to obtain three images for each 

scattering centre. The out-of-plane component is determined by the image separation 

caused by the off axis apertures, the separation increasing as the scattering centre moves 

. h . . b' . b [124) away from the object plane. T e Image separatIon, ,IS gIven y 

(4.18) 

where f is the focal length of the lens and the other dimensions are given in figure 4.6. 

Gharib's system uses separate CCDs behind each aperture to overcome the 

overcrowding that would occur over a single CCD. The system was applied to a 5 x 5 x 

5 cm3 measurement volume in a two-phase bubbly flow. 

94 



b· t Aperture Image plane J Aperture 
plan mask (CCO sensor) mask . C'HttPfPf 

• 

• 
Image 
separation, b 

-• - • • •• do d, • 

Figure 4.6 The use of a defocusing mask to determine the out-of-plane position of a 
catterer. Three defocused images produced using 5mm apertures at a 10 mm PCD. 

12 mm displacement in the out-of-plane direction between exposures 

The sensitivity of defocusing mask PIV to out-of-plane displacements is low compared 

to typical light sheet thickness of the order of Imm. As a consequence a wide light sheet 

is required at the cost of the power density through its cross section. The technique 

would appear to be more applicable to water flows where large (bright) seeding can be 

used or where low speed wind tunnels are seeded with neutrally buoyant bubbles. 
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-+.6 SUMMARY OF CHAPTER 

PIV data can be recorded by holographic, photographic or digital means. Photographic 

filn1s still offer the best resolution per unit cost, although CCD cameras of near 

photographic resolution have been demonstrated in turbomachinery applications. Cross­

correlation CCD cameras allow two images to be recorded with an inter-frame gap of 

only 1 JlS. The images can be cross-correlated to remove the directional ambiguity in the 

data and achieye a higher vector yield per image pair. 

StyTene micro spheres, of less than 1 f.lm in diameter, have been identified as a suitable 

seed for transonic flows (flow temperature below 100°C approx.). The scattering 

efficiency of such seed has a (d/A)3 dependence so shorter wavelengths of illuminating 

light are favoured. The image of the seed will be due to diffraction blurring rather than a 

geometric image. The approximate diameter of the diffraction-limited particle is 

expected to be 18 f.lm for a magnification of 0.25 and an f-number of 11. If the optical 

arrangement, do, d; and ~y are scaled up by a factor m, the mean exposure of the particle 

decreases by a factor of m -5. Short standoff distances are therefore required to improve 

the brightness of the particle images. 

The PIV data can be processed either by correlation or particle tracking. The former 

correlates over an interrogation spot to give the strongest local velocity. The minimum 

spot size is typically 4 times the largest displacement between exposures although larger 

areas need to be considered where the seeding is sparse. Correlation analysis is therefore 

suitable for high seeding concentrations. Particle tracking can be used in sparsely 

seeded flows to establish up to approximately 300 vectors over a 576 x 768 pixel image. 
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The centroids of particle images can be located with sub-pixel accuracy if the image 

contains a large cluster of pixels (4 to 5 pixels in diameter). The centroid can be 

estimated either from the grey scale of the cluster or by fitting a Gaussian profile to the 

intensity profile of the cluster. Large clusters are suitable for pairing but not for 

correlation as the correlation peak will be twice as broad. Clusters of 1 to 2 pixels are 

used for correlation analysis to give a 3 to 4 pixel diameter correlation peak to which the 

centroid, again, can be located with sub-pixel accuracy. 

The in-plane displacement can be contaminated by an out-of-plane component where 

large depths of field and thick light sheets are used. The out-of-plane component can be 

measured by using either holographic recording, triangulation of stereo cameras, or by 

measuring defocusing effects viewed through an aperture mask. Holographic recording 

is a one-shot technique whilst stereo cameras require wide optical access. The 

defocusing approach only requires a single camera but is less sensitive to the out-of­

plane than in plane, so is used in a volumetric rather than planar configuration. 
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Chapter 5 

THE ApPLICATION OF PIV TO A SPINNING 

TURBINE CASCADE 

SYSTEM DEFINITION & TESTING 

Description of Chapter 

This chapter describes the evaluation of the available hardware and 
analysis algorithms as a precursor to the test on the ILPF. A novel 3-D 
PIV technique that determines the out-of-plane displacement from 
defocusing effects through a single camera has also been investigated. 

Two camera systems were tried. The first used an interlaced 768 x 576 
camera that acted as a timing master for the whole P IV system. The 
second used a 1000 x 1000, triggerable 'frame straddling' camera, 
identical to that used by Wernet 11211. Unfortunately the latter failed and 
could not be replaced in time for tests on the ILPF. The results shown 
here were therefore gathered with the first camera system. 

A 30 ms-J nozzle flow (circular exit of area 120 mm2
) has been used as a 

subject for both the 2-D and 3-D tests. A good agreement has been 
achieved with equivalent velocity measurements of the nozzle, supplied 
by a third party, made using a 2-D LDA system. 

3-D measurements have been made of the nozzle flow after an initial 
calibration exercise. The out-of-plane resolution was shown to be +20 
f.lm at a standoff distance of 140 mm. The measurements were successful, 
but issues regarding the correction of the gross distortions of the test 
section window of the ILPF could not be resolved in time for the test. 
Recommendations are made regarding its successful application. 
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5.1 INTRODUCTION 

5.2 THE PIV SYSTEMS 

The same Q-switched frequency doubled Nd: Y AG laser and laser firing system 

previously used on the ILPF by Bryanston-Cross fonned the basis of the PIV system 

used here (139). The laser firing system controls the programming of the laser firing, 

sequence, one-shot etc. and the appropriate voltage conversion required to interface the 

laser. The laser itself can provide two 50 mJ, 532 run, pulses at 25 Hz but only for 

limited periods otherwise the laser over heats. The laser can be operated on open-lase 

mode to aHo\\' the beam to be aligned in a relatively low power condition. 

5.2.1 Interlaced Camera System 

The interlaced camera system consisted of two 768 by 576 pixel, 8 bit monochrome 

cameras that could be used in a stereo configuration if the clock signals of the two 

cameras were connected together. The laser needed to be pulsed whilst both the odd and 

even fields of the cameras were integrating to avoid an interlaced image (operating in 

frame mode). The cameras could be triggered but there remained varying period of 

several milliseconds before the next full frame could be recorded. The cameras were 

therefore used as a timing master for the PIV system with the vertical sync. signal used 

as a trigger for the laser firing system. A triggered sequence consists of waiting until the 

next full frame is available after the trigger signal, a period of up to 30 milliseconds. 

The inter-frame time was approximately 30 milliseconds, so only very slow flows can 

be cross-correlated. 
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5.2.2 Cross correlation Camera System 

The second camera system consisted of a commercially available 1000 by 1000 Kodak 

es: 1 canlera modified to operating in the 'frame straddle' configuration \851• This 

configuration allows two frames to be captured in quick succession separated only by a 

f~w microseconds to allow the charge on the CCD chip to be discharged, a period called 

the transfer time. The first and second frames take 255 microseconds and 33 

milliseconds respectively. This cycle is triggerable and can be repeated at up to 15 Hz. 

The transfer tinle is a function of the amount of charge on the CCD chip. If the image is 

brightly illuminated and saturated the transfer time can be in excess of 10 microseconds. 

HO\\'e\"~r, it \"as found that if the mean background grey level is low and the image is 

sparsely seeded the transfer time can be reduced to approximately a microseconds. 

To synchronise the camera and laser accurately, the camera feedback was used as a 

trigger for the laser firing system. This feedback signal was used in preference to the 

camera trigger as the 'camera ready' period flutters slightly owing to thennal effects 

making it difficult to fire both just before and just after the transfer time. The firing 

sequence was initiated by sending a trigger to the camera. 
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5.3 2-D MEASUREMENTS OF A FREE AIR JET 

5.3.1 Experimental Method 

A commercially available, variable velocity, low turbulence free air jet from a nozzle 

unit designed for the calibration of anemometry systems was used to evaluate the PlY 

systenl. The pressure within the nozzle was measured using a water manometer 

connected to a pressure tapping on the nozzle body. Half micron styrene particles 

suspended in water were injected into the flow using a six jet atomiser. The seeding was 

inj ected into the nozzle body prior to a flow straightening honeycomb so that higher 

seeding pressures could be used to increase the seeding density without altering the 

characteristics of the flow. The nozzle was mounted to the optical table, see figure 5.1, 

yia a series of translation stages that allowed the nozzle to be rotated and translated 

relative to the camera and light sheet. 

L 

optical 
bread 
board 

optical 
optical table 

rail 

CCO 
camera 

K2lens 

x-z traverse and 
.--_---, x-rotation stage 

Nd-Yag 
Laser 

, , 

-----------(}------ -----_ .. ' D0 
nozzle 

cylindrical lenses 

·1 
30cm 

Figure 5.1. The optical arrangement. 
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~ 8,.,. .,' 8mm ·1 

12.4mm 

20mm 

22.5mm 

Figure 5.2. Field-of-view, 1400 mm 
from the nozzle. 
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The laser head was mounted on the optical table and the beam aligned with the nozzle 

using a series of dielectric mirrors. The beam was expanded into a sheet using a 

negative cylindrical lens and subsequently focused in the centre of the nozzle using a 

positive cylindrical lens. The light sheet was no more than an estimated 500 /-lm thick 

throughout the region of interest. The laser was synchronised to the video frame signal 

to avoid interlaced images. The images were recorded using a single Pulnix CCD 

camera \vith a resolution of 768 x 576, looking through a K2 diffraction-limited lens 

(lOll. The viewed area was calibrated by placing a graticule of indexed 1 mm by 1 mm 

squares in the region of interest. 

T\vo sequences of data were recorded at a standoff distance of 1400 mm over a 16 x 20 

mm field-of-view. The pulse separation was 10 /-ls. The first sequence of data yielded 

approximately 100 vectors per image using particle pairing. The seeding concentration 

was increased until the upper limit of the pairing algorithm was reached, approximately 

400 vectors per image. As the light sheet did not intersect any mechanical surfaces there 

is very little noise in the images and the light intensity was adjusted so that the particle 

images intensities extended over the entire greyscale range of the camera (8 bit, 256 

grey levels). 
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5 .. 2 Results 
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Figure 5.3. PlV and LDA measurements 
of the nozzle flow. Centreline of the 
nozzle is at 7 .. 5 mm on the x axis. 
a. PIV vectors processed using an auto­

correlation (32 x 32, 50% overlap) 
b. PlV vectors solved using particle 

palImg 
c. LDA vectors (144 points) 
d. PlV vectors (3000 vectors from 

combined frames) 
e. Top: Scatter of the PlV '.' And the 

LDA ' 0' data 
Bottom: Mean velocity profile (PlV 
dotted, LDA continuous) 
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5.3.3 Discussion of Results 

The PIV data have been analysed in two ways. Firstly, a correlation technique has been 

used to provide a local spatially averaged but near instantaneous measurement of a 

single video frame, see figure 5.3a. Secondly, the same frame has also been analysed 

using a particle tracking method to remove the spatial averaging, see figure 5.3b. The 

intensity distribution of the particle images has been used to estimate the image centres 

according to the centre-of-mass approximation. The time-averaged result, produced by 

combining a sequence of 16 frames analysed using particle tracking, is also presented 

for comparison with the LDA data. 

The result of the auto-correlation of a single frame is shown in figure 5.3a. The auto­

correlation has been carried out over an interrogation spot size of 32 x 32 pixels with a 

50% overlap. Although the seeding concentration was increased to the upper limit that 

can be solved using particle tracking there are still an insufficient number of particle 

pairs to successfully apply the correlation. The outcome is holes in the vector map and 

identical neighbouring vectors due to peak locking. Unfortunately higher seeding 

concentration was not explored. 

LDA allows point measurements to be made over a predetermined grid, see figure 5.3c. 

In the measurements described here a regular 16 by 9 grid of 1 by 2 mm
2 

elements was 

used, although a bespoke grid could be used for more elaborate measurements. For 

example, a grid that coincides with the nodes of a CFD mesh or regions containing a 

velocity gradient may be more suitable. In contrast PN measurements are made over an 

inherently random, irregular grid determined by the location of the seed at the instance 

of illumination. 
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The sample time in the order of seconds was used at each measurement point. In 

addition to the sample time, allowances need also to be made for the translation of the 

measurement volume between grid points. The LDA measurements are therefore 

temporally averaged to a greater extent than PIV, PIV's sampling period simply being 

the pulse separation for a single image. For the PlY measurement described here 16 

images giving approximately 3000 points over an irregular grid were combined, Figure 

5.3d. The total capture time for all the images was a fraction of a second. 

To give a realistic 'between the points' measurement both the LDA and PIV data have 

been spatially averaged to give a continuous surface, figures 5.3c and 5.3d respectively. 

The LDA data was interpolated from a 16 x 10 grid of points to a continuous surface for 

display purposes using a Gaussian smoothing function whereby a surrounding 

measurement's contribution to a point on the continuous surface is weighted according 

to a Gaussian window. The amount of smoothing is adjusted by varying the standard 

deviation of the function (0.6 for the figure shown here). The velocity vectors have been 

plotted over the continuous surface to illustrate magnitude as well as direction. Owing 

to the irregular scattering of vectors produced by particle tracking an irregular Delaunay 

triangulation has been used to generate the continuous surface [1101. The Delaunay 

triangulation defines a grid where no data points are contained within a triangle's 

circumcircle. The original velocity vectors are preserved at the nodes of the mesh whilst 

a linear interpolation is used along the edges between the nodes to generate a continuous 

velocity map. A more detailed explanation of the application of the delaunay 

triangulation to sparse PlY data is included in chapter 8. 
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The continuous surfaces of Figures 5.3c and 5.3d show similar overall flow patterns but 

there are noticeable differences. The LDA measurements indicate that the flow shifts 

left to right between 22.5 and 27.5 mm above the nozzle. Figure 5.3c shows that some 

of the measurenlent points are missing in the lower comers of the plot. It is the absence 

of these entries that has distorted the results. The PIV data shows a reduction in the 

\vidth of the core further from the nozzle exit, a feature that is also present on the LDA 

measurements to a lesser extent. 

Figure 5.3e shows the scatter of both the particle tracking PIV and LDA velocities 

against .Y, and the mean velocities in y. PIV has captured a greater spread of velocities 

than LDA. This is expected as LDA returns the strongest velocity in the measurement 

volume over the sample time. PIV is an instantaneous measurement showing the entire 

range of velocities when the laser was fired. The data were intentionally recorded at the 

upper limit of the pairing algorithm, maximum of approximately 400 vector per image, 

the result of which is a large number of erroneous pairings. The spread of the PIV 

vectors appear to follow a common distribution with a scattering of random vectors. If 

the flow was assumed to follow a normal distribution, ie no shocks, the random vectors 

could be identified and removed from the solution. 

The scatter of the PIV data is clustered into 2 ms- l increments that gives an accuracy of 

+7% if the mean velocity is assumed to be 30ms- l
. The image centroids have been 

located using the centre-of-mass approximation that is intended to give sub-pixel 

accuracy. The mean displacement between pairs is approximately 16 pixels and implies 

that the centroids have only been located to the nearest pixel. This is believed to be due 

to a peak-locking effect of the centre-of-mass algorithm that biases the centroid towards 
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and integer pixel value. This is despite the particle images being undistorted and clearly 

visible. The scatter of the LDA data is small in comparison to that of the PlY data. 

There are some rogue values in the plot. These would appear to be due to a transposition 

error in the post processing rather than erroneous measurements. 

The mean velocities in the core of the jet are very similar, varying between 30 and 32 

ms- I
. although the LDA data's profile is smoother owing to the time averaging. There is 

some discrepancy in the periphery of the jet where PlY indicates a slower flow. The 

source of the error could be due to differences in the experimental set-up or the 

measurement techniques. Firstly, there could be some discrepancy between the areas 

measured and the flow conditions as the measurements were carried out by different 

operators at different sites at different times. Secondly, both LDA and PlY need to be 

set up for a range of velocities. With PlY, this is achieved by selecting the correct pulse 

separation. With LDA, the system has to be set to detect the correct range of 

frequencies. If the frequency corresponding to a given velocity is outside this range its 

signal will be attenuated. 

5.3.4 Conclusions of the 2-D PIV Measurements of the Nozzle Flow 

The finite resolution of the image capture system discriminates against velocity in about 

2 ms- I increments. For the PlY measurements considered here 2 ms-
I 

corresponds to a 

28 Ilm displacement or 1 pixel. If the average separation between particle pairs is 16 

pixels the accuracy of the measurement is +7%. The centre-of-mass approximation has 

not extended the D VR of the recording media. These figures assume that there are no 

further errors due to scaling, pulse separation, flow following ability of the seed etc. 
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The particle tracking has generated a large amount of spurious vectors owing to the 

ambiguous pairing process in a densely seeded flow. The upper limit on the vector yield 

per iluage was approxinlately 400 vectors over a 768 x 576 image. Unfortunately, higher 

seeding concentrations suitable for correlation analysis were not explored. The relatively 

10'" concentrations have created holes in the data and peak locking of neighbouring 

vectors. This problem could have been overcome by the introduction of more seed. The 

potential vector yield of the correlation would have been 48 x 36 vectors (1728 in total), 

approximately 4 times the upper limit of the pairing algorithm. It is therefore 

recommended that a high seeding concentration be used in the application on the ILPF 

to facilitate a correlation analysis, preferably with the use of a profile-fitting algorithm 

to the correlation peak to avoid the peak-locking effect of the centre-of-mass centroid 

estimation. 
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5.4 THIRD COMPONENT CHARACTERISATION 

Two three-component PlY approaches have been evaluated, the first a stereo camera 

arrangement, the second recording the diffraction pattern and intensity profile of a 

defocused particle through a single camera. 

5.-+.1 Stereo PIV 

The 2-D PlY measurements of the nozzle flow showed that the in-plane displacement of 

the exposures could be measured to an accuracy of + 7 %. A modest improvement in the 

sub-pixel accuracy of the centroid location would reduce this to a couple of percent. For 

the stereo camera approach the accuracy of the out-of-plane component is typically an 

order of magnitude worse than the in-plane measurement. Any non-corrected optical 

distortion between the two views further lowers the accuracy of the measurement. This 

hampers the application of this technique when the flow has to be viewed through a 

contoured window. 

The stereo approach is inevitably a compromise as it is desirable to have a large angle 

between the cameras to increase the accuracy of the out-of-plane measurement, but also 

a small angle to allow for a shallower depth-of-field. By tolerating a shallower depth of 

field a wider aperture can be used to see smaller, dimmer particles. This compromise is 

relaxed where the Scheimpflug condition is satisfied, see section 4.5.2, but the 

magnification error still needs to be corrected. 

109 



View 2 
View 1 

d] = do cos(8 1+80) 
d2 = do cos(82-80) 

Figure 5.4. Disparity between particle pairs viewed through stereo cameras. 

If a particle pair separated by displacement do, see figure 5.4, are viewed from angles ()j 

and fh their viewed displacement is dj and d2 respectively. As the angle increases the 

disparity between d j and d2 also increases, but the overlap between the depth of field of 

the two decreases and particles at the extremities of the images fall out of focus, unless 

corrected by rotating the plane of the image array. The out-of-plane component is 

calculated trigonometrically from the disparity between d j and d2• It is typically the case 

that for particle pairing the particles are separated by 10 to 15 pixels. If the disparity is 

only 1 pixel the error can be up to 10%. For high-speed flows it is typical that the out-of-

plane component of velocity may only be 10% of the mean velocity, the error therefore 

being as large as the component offlow being measured. 
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If the stereo canlera arrangement were to be applied to the ILPF it would need to fit 

\vithin the constraints of the containment rings that surround the test section. As the 

window into the test section is slender the cameras would need to be mounted parallel to 

the plane of the rotor. As the rotor contains approximately 60 blades the cameras can 

only rotated 60 relative to each other if both are to observe common areas not obscured 

by the presence of the blades. This separation assumes that the blades are flat and that 

rotor phase coincides with field-of-view. In reality the blades are far from flat and a 

sequence of frames as the rotor passes are required. Nor would the cameras be looking 

through the same section of the window. Owing to the envisaged low accuracy and the 

technical difficulties of applying stereo PlY to the ILPF it was not considered any 

further for this application. 

5.4.2 Three-component PIV by Defocusing 

Both the in and out-of-plane components of velocity of the flow from the nozzle unit 

have been measured using three-component PlY by defocusing. The apparatus used for 

the 2-D nozzle measurements was used for the 3-D measurements although the standoff 

distance, pulse separation etc. were adjusted accordingly. A calibration exercise was 

carried out prior to the experiment to establish a diffraction ring, intensity/depth 

relationship. The results for different flow angles are presented and show that it is 

possible to identify the particle position in three directions, within a turbulent flow, to a 

spatial accuracy of 20 J.lm. 
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A g on1etrical approximation of the ilnpression a particle makes in the image plane is 

nly valid \ hen the particle s diameter is at least ten times larger than the effective 

resolution limit of the lens so that diffraction can be neglected. When a particle is 

smaller than the resolution length the intensity magnitude in the image plane is largely 

dependent on its scattering characteristics. The intensity profile is determined by the 

transfer function of the imaging system which is influenced by the lens resolution and 

the degree of aberration. For the sizes of particles that are used in high-speed air flows 

« 1 ~m) the intensity profile of the image is given by the point spread function (PSF) of 

the lens. The scattered intensity profile does not significantly affect the shape of the 

Image. 

The phase of the light scattered from the particle is delayed as it passes through the lens 

giving the diffraction ring patterns shown in Figure 5.5. If the pupil function of the lens 

is symmetrical, a symmetrical diffraction pattern will result. If the lens is astigmatic the 

ring pattern will be distorted accordingly. 

Figure 5.5 Diffraction rings at incremental depths 

A point source at the origin of the object plane produces a spot image at the origin of the 

image plane. The image produced by the point source is called the point spread function, 

or PSF 1138]. It will take on the smallest possible size when the system is in focus. If an 

illuminated particle is considered to be a point source it can be shown that the profile of 
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the particle image changes from an Airy function for a focused diffraction-limited image 

to a series of concentric rings for the defocused particle. The number of rings, the 

intensity profile, and the diameter of the outer ring depend on the amount of defocusing. 

For an object amplitude distribution of Uo(Xo,Yo) , the image amplitude distribution, 

U;{.Yi.yJ, is given by (125) 

a) 

Uj(x j. y;}= J fh(xj + Mxo,Yj + Myo)x Uo(xo,yo)dxodyo 

Image 
amplitude 

distribution 

-00 

~------ ------~ ~-. ) V --y-

PSF Object 
amplitude 

distribution 

(5.1) 

see figure 5.6. The image of a point source can be considered as the summation of 

spatially distributed PSF spots across the aperture (more precisely the exit pupil) of the 

system. The image amplitude distribution can be described by the convolution of the 

object amplitude distribution with the PSF of the optical system, hence equation 5.1 can 

be rewritten as a convolution, 

(5.2) 
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Figure 5.6. Schematics of dimensions for equations 5.1 to 5.10. 
a. Geometrical image for an out-of-focus particle. 
b. Geometry of an aberration free optical system 
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The point spread function of the system, h(Xi,yJ is given by 

Pupil E-field of 
function converging 

spherical wave 

(5.3) 

where d; is the image distance (distance between the aperture plane and the image plane, 

Xj,.' 'j are coordinates in the image plane, M is the magnification and A is the wavelength 

of the monochromatic light. The pupil function P(x,y) describes the extent of the spatial 

transmittance of the aperture. The PSF represents the Fourier transform of the pupil 

function, 

(5.4) 

where lx, = j{d" Iy , = Xd, ' and 3{} denotes a Fourier transform. 

For coherent illumination, the image intensity is given by the square of the modulus of 

the image amplitude distribution, 

(5.5) 

Udrea (125] presents a simplified model of the intensity pattern of a defocused sub-

micron particle (that is considered to be a point source) imaged through a circular 

aperture. The nonnalised intensity of the particle centred on the origin is assumed to be 

an Airy distribution (99]. The defocusing of the particle is considered as a distortion in 

the optical path length because it introduces a relative delay and is considered as a 

115 



1 '1 c, t' (99) ( hr . '11 . . comp ex pUpl lUllC Ion monoc omatlc I umlnatlon). As the pupil function of the 

lens is symmetrical a symmetrical diffraction pattern will result. The PSF of a defocused 

systenl in polar co-ordinates can be expressed as [125) 

00 

he (Pi,e;) = h(Pi) = 21rM ~2 d~ JrP(r )e
jJrcr2

/A J o (2m-Pi / Adi}dr (S.6) 
/ A '0 

"'here Jo(21trp/Ad) represents a Bessel function of the zeroth order. Equation S.6 

describes the integration of the product of wave propagating through the aperture and 

Airy distribution in the field of the aperture. The pupil function also takes into account 

the difference in optical path owing to defocusing where 

() () 
jJrW(r)/ 

Prv r = Pre /A (S.7) 

W(r)~Erh (S.8) 

W(r) is called the aberration function. If the image plane is out of focus the amount of 

defocusing is given by 

1 1 1 
E =-+---

d d. f o I 

(S.9) 

The normalised distances for image and object defocusing are given by 

(S.10) 

Where d
i 
and do are the image and object distances respectively. 
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5.4.3 D focusing calibration 

In order t mea ure the out-of-plane component either the diffraction ring/depth 

relation hip need d to be calculated or calibrated. As in practice the pupil function of the 

lens i n t known and further aberrations may be present, a calibration exercise was 

condu t d. The diffraction pattern emitted through a 3 Jlm pinhole illuminated from a 

-Om W c ntinu u wave Nd -Y AG laser was used as a point source for the calibration, 

see figure 5.7. The diameter of the pinhole was smaller than the 3.9 Jlm resolution of the 

opti al t m. The pinhole was mounted on a translation stage connected to a 

displacement transducer with a resolution ofO.lJlm. The diffraction-limited lens used for 

the calibration e ercise was a long range microscope termed K2 [101
J• Working distances 

between 100 and 2500 mm can be achieved by using a range of objectives. The CF3 

objecti e that gives varying magnification between 2 and 5, andf-numbers between 2.58 

and 8 was used in the calibration exercise. The diffraction pattern was positioned in the 

centre of the field-of-view of the camera. Aperture of the K2 lens was fully open giving 

anf-number of 8 and a magnification of 3.2. The initial standoff distance of the pinhole 

was 139 mm. The pinhole was traversed from -500 to 1500 Jlffi (positive towards lens) 

in 5Jlm increments with an estimated precision of 0.1 Jlm (least significant figure on 

traverse). 

CCD 
array 

- .-If<.-.-.- .- .-.-.-.- .- .-.-.-.-.-.-.-.-.-.-.-.---.-.-.-----.-.-.-----.-.---.r----------- - ~ 

Diffraction 
limited lens 3Jlm pinhole on 

and aperture traverse 

Fibre coupled 50 mW, 
cw Nd:Y AG laser 

Figure 5.7. Experimental arrangement used in the 3-D calibration 
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Figure 5.8 . Calibration curves from measurements. (+) total image diameter, (x) 
diameter of the outer ring. (Figure taken from U drea [1251) 

a b c d 

e f g h 

Figure 5.9. Experimental measurements of the defocused point source. A. Y2 ring, £o~40 
J.lID b. 1 ring, £o~120!-lm c. 1 Y2 ring, £o~200!-lm d. 2 rings, £o~300!-lm e.2 Y2 

rings, £o~400!-lID f. 3 rings, £o~500!-lm g. 3 Y2 rings, £o~600!-lm h. 4 rings, £o~700 
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The overall diameter, and diameter of the diffraction rings, is shown to increase with 

respect to an increase in the distance from the object plane. There is a slight deviation in 

the S)1nmetry in shape and intensity of the rings that is expected to be owing to either 

lens aberrations or defects in the pinhole. The absolute intensity of the diffraction 

patterns in figure 5.9 cannot be compared, as the amount of light incident on the rear of 

the pinhole \vas adjusted throughout the experiment. This adjustment would not be 

necessary in a planar experiment where the thickness of the light sheet would restrict the 

range of the out-of-plane displacement (range of calibration was 2000 Jlm, light sheets 

are typically less than 1000 Jlm thick). Udrea [125] achieved a close similarity between 

this calibration data and theoretical profiles calculated using her modelled summarised 

in section 5.4.2. Differences between the two were attributed to the quantisation and 

superposition of aberrations on the diffraction patterns. 

Figure 5.8 shows the total image and outer ring diameters plotted against object 

defocusing. The diameters have estimated to a resolution of 1 pixel. The total image 

diameter can be used to measure the object defocusing to an estimated accuracy of 20 

Jlm, the diameter of the outer ring to 100 Jlm. A linear least-square fit was applied to the 

calibration data to obtain a linear model of the depth/outer diffraction ring diameter 

relationship. The position of a defocused particle relative to the focal plane can be 

calculated from this linear model. 
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5.5 3-D MEASUREMENTS OF A FREE AIR JET BY DEFOCUS SING 

5.5.1 Experimental method 

The diffraction ring calibration data was used to measure the 3-D velocity field of the 

nozzle flo\v described earlier 1126
]. An optical system similar to that used for the 2-D PIV 

111easuren1ents was used for the three-component measurements. A standoff of 139 mm 

and [number of 3.67 were used as in the calibration exercise. The focal plane was 

positioned 200 J-lm behind the light sheet so that the ring structure started with one ring. 

Particles with no ring structure were discarded in the analysis. A mean out-of-plane 

component of velocity was introduced by tilting the nozzle 10°, 20° and 30° relative to 

the light sheet. The laser was configured to give triple exposures for the tilted 

measurements. This made it easier to identify the particle tracks and increased the 

observed seeding concentration, see figure 5.10. The light sheet was estimated to be 

between 500-600 J-lm thick (measured from the bum mark produced by putting over 

exposed photographic paper in the path of the beam) . 

• 

Q C C 

o c c 

, . 

. ' ~e . ~ ~ • 
Figure 5.10. Defocused particles of the nozzle flow tilted at 30° to 

the plane of the light sheet. Triple exposure. 

120 



The 2-D PIV measurements taken prior to tilting the nozzle gave mean velocities of 

30.73 ms-
1 

and -2.13 ms-
1 

in y and x directions with standard deviations of2.60 ms-1 and 

.., 86 -1 . I h fi _. ms respectlve y over t e leld-of-view. Assuming the mean components and 

standard deviations of the velocity remain constant the calculated values of the out-of-

plane component of velocity are shown in table 5.1. The measured components are 

shown for comparison. 

It became apparent after the experiment that the nozzle flow has a bias of approximately 

2.13 ms-
1 

in the plane orthogonal to the axis of the nozzle. Further to this, during the 

experiment it became apparent that the turbulence level changed according to the 

seeding pressures used. This problem was remedied by injecting the seeding through the 

same nozzle inlet as the main air supply, prior to the flow straightening honeycomb, 

rather than through an inlet further up the nozzle body. It is expected that a rotation of 

the nozzle body may account for the discrepancy between the calculations and 

measurements, although they do fall within the estimated standard deviations. 

Tilting of nozzle Calculated z- velocity & std. Measured mean z-velocity & 

deviation, ms-1 std. Deviation, ms-1 

10° 7.42 +3.27 6.7 +2.2 

20° 12.51 +3.58 10.4 +3.3 

30° 17.21 +3.78 13.6 +4.7 

Table 5.1 Calculations and measurements of the out-of-plane component of the 
nozzle flow. 
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5.5.2 Results 
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vector plot of the 
nozzle flow tilted 
10°. 
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vector plot of the 
nozzle flow tilted 
30°. 

Figure 5.11 3-D displacement between the first and third exposures of8 overlaid 
frames. Nozzle tilted from y-axis. 
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5.5.3 Discussion of Results 

The 30 ms-
1 

nozzle flow has been measured in three dimensions uSIng PIV by 

defocusing. A calibration exercise was required to detennine a depth/diffraction pattern 

relationship. The relation has been shown to compare well with a theoretical model. A 

spatial resolution of 20 J.!m in all three components, an accuracy of 4 %, has been 

achieved using the calibration data over a 4 mm2 field-of-view using a 768 x 576 CCD 

camera. The technique removes the need for the wide angle of view traditionally 

required by stereo visualisation applications. 

The defocusing technique has a number of advantages in comparison to a stereo camera 

arrangement. As only one camera is required the set-up is essentially the same as for 2-

D, except that a smaller field-of-view is required if the diffraction patterns are to be 

resolved. The camera does not need to be aligned with a second camera or warping 

coefficients calculated, nor does a corresponding data set from the second camera need 

be recorded. The out-of-plane position is calculated for each individual particle from a 

single image. For stereo cameras a 2-D displacement recorded by each camera is 

calculated by correlation, a local averaging procedure. The 3-D displacement is 

calculated from corresponding local correlations. In other words, the 3-D velocity is 

detennined from the disparity between two in-plane measurements. As the disparity is 

typically a fraction of the in-plane displacement the error on the out-of-plane will be 

higher than the in-plane. 

The defocusing technique has a number of drawbacks primarily OWIng to the 

requirement to resolve the diffraction images. This necessitates a near diffraction­

limited imaging system and a small field-of-view in comparison to an equivalent 2-D 
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arrangement. A 4 mn1
2 

field-of-view was recorded by a CCD camera with a resolution 

of 768 x 576 pixels in the calibration and nozzle measurements. The data also needs to 

be spares to allow particle pairs to be identified. 

As the diffraction image diameters are three to five times larger than an equivalent 

focussed particle, a more powerful light source is required to compensate for the drop in 

the particle' s intensity profile as it becomes defocused. The seeding number density 

needs to be reduced if overlapping images are to be avoided. 

Udrea [1251 suggests the use of two cameras, looking along a common optical axis and 

sharing identical f-numbers and magnification but different distances from the in-focus 

image plane. to detennine the out-of-plane component from the difference in the peak 

and total intensity within the first ring structure. The advantage of the technique is that 

the accuracy in the out-of-plane could be maintained whilst realising a larger field-of­

view. The drawback of this approach, apart from the additional complexity of the set-up, 

is that the depth of the light sheet needs to correspond to the defocusing required to 

achieve a single diffraction ring. The variation between intensity and defocusing within 

this region is assumed to be linear. 

5.5.4 3-D PIV by Defocusing Through a Contoured Test Section Window 

Having successfully measured all three components of velocity of the free air jet, the 

test was repeated with the inclusion of the test-section window from the turbine cascade 

placed between the camera and flow. This Perspex window is machined to the contours 

of the section's outer casing. It contains a compound curvature surface and is of 
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approximately uniform thickness. The window has been hand polished to remove the 

cusps left by the Inachining process. This window acts as an additional lens that can be 

considered to act like two cylindrical lenses representing the difference in radii of 

curyature in each plane. 

The diffraction inlages, viewed through the test-section window without any attempt to 

correct distortions, were highly stigmatised. The process was repeated with the addition 

of a couple of weak cylindrical lenses in front of the camera lens. These lenses were 

rotated relative to each other to minimise the larger scale distortions in the window. 

Figure 5.12 shows a typical image. Despite these two lenses the diffraction images 

remained distorted beyond a limit that was acceptable from an analysis point-of-view. 

The distortion is not uniform across the field-of-view and the intensity of the particle 

images varies. presumably dependent on the particle's position in the light sheet and the 

diameter of the diffraction image. It was found during the calibration procedure, albeit 

over a large depth/diameter range, that the illumination intensity had to be increased as 

the diffraction ring pattern became larger in the image plane. No three-dimensional 

velocity measurements were attempt during the limited time available on the turbine 

cascade. Instead the emphasis was placed on gathering an extensive set of two-

dimensional data. 

It is believed that this three-component technique is applicable to this turbine, given 

more time and effort. From a qualitative viewpoint the optical correction that could be 

quickly achieved by rotating a pair of cylindrical lenses between the imaging lens and 

window was very significant. This correction alone may be sufficient where the out-of­

plane component can be inferred from an aberrated data set recorded by looking through 

125 



the test-section window. Where only the number of rings can be identified the resolution 

of the out-of-plane component is likely to drop from 20 !lm to 100 !lm [1251. 

The aberrations through the test-section window can be thought of as an additional 

conlplex amplitude function owing to the coherent illumination. The function could be 

corrected \yith a conjugate function recorded in a holographic optical element. A simple 

solution to the stigmatism problem would have been to fit an optically flat window into 

the test section. Such a solution may alter the aerodynamic qualities of the flow to be 

measured although the window would not need to be large owing to the finite resolution 

of the camera restricting the field-of-view. 
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Figure 5.12 a. Diffraction image recorded through test-section window of turbine cascade (inverted). 
b. Single diffraction image recorded through window after partial correction with cylindrical lenses (inverted). 
c. Diffraction image taken from calibration for comparison (inverted). 
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5.6 SUMMARY OF CHAPTER 

The Yelocity of a nozzle flow (~ 30 ms- I
) has been measured using 2-D PIV and LDA. 

The results exhibit a close similarity although the PIV data contains a wider scatter of 

yectors. The PlY data was processed using particle tracking and the particle centroids 

estimated using the centre-of-mass algorithm. This algorithm was shown not to improve 

the accuracy of the measurement, the accuracy of + 7 % corresponding to integer pixel 

displacements. The seeding concentration was insufficient for auto-correlation analysis, 

resulting in holes in the vector grid and peak locking. The upper limit on vector yield 

per image using particle tracking was approximately 300 vectors per image. The 

potential vector yield for auto-correlation using 32 x 32 pixel interrogation spot with a 

50 % overlap is 1728 vectors. 

Three-component PlY measurements have been made of the nozzle flow to a resolution 

of 20 microns in each direction. This translates to an estimated accuracy of 4% for 

velocity. The measurements were made over a 4 mm
2 

field-of-view at a standoff 

distance of 139 mm using a single camera. The out-of-plane component of velocity was 

detennined from the diffraction pattern and intensity profile of a defocused particle. The 

application of stereo PlY to the ILPF has been dismissed owing to limited optical access 

in the axial direction and blade shadowing in the tangential direction of the rotor. 

The same experiment was repeated with a curved perspex window placed between the 

camera and airflow. Owing to the distortions present in the window the third component 

of velocity could not be resolved. possible solutions to this problem have been 
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discussed. This technique cannot realistically be applied to the turbine cascade until this 

problem is addressed. 

Although the application of a cross-correlation camera failed, it does represent a 

potentially yery powerful tool for PlY measurements. The ability to capture two frames 

in quick succession not only allows the directional ambiguity in recirculating flows to be 

solyed but also allows the use of a higher seeding concentration to resolve smaller 

features in a flow. The camera is also triggerable and non-interlaced. The ability to 

trigger the camera would allow the same blade passage to be sampled to facilitate a 

statistical analysis of the mean and fluctuating aspects of the flow. 
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Chapter 6 

ApPLICATION OF PIV TO A SPINNING 

TURBINE CASCADE 

-
EXPERIMENTAL ARRANGEMENT 

Description of Chapter 

This chapter describes the optical arrangement applied to the ILPF. It 

covers optical access, light sheet delivery and the PIV system itself. 

The choice of seeding and seeding procedure are also explained. 
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6.1 OPTICAL ACCESS 

Gaining optical access into turbomachinery is not a trivial issue if the flow is not to be 

significantly disturbed. To give a line of sight a perspex window was fitted into one of 

the removable cassettes that make up the outer casing of the turbine stage. The inner 

contours of the window nlatched the compound curvature of the test section to preserve 

the characteristics of the flow. 

The Perspex window, made by Osney laboratories, Oxford University, was 

approximately 300 by 200 mm2 in size although only an area of approximately 200 by 

100 mm~ \,"as of uniform thickness (~12 mm). The window extended from upstream of 

the nozzle guide vanes to downstream of the trailing edge of the rotor, see figure 6.1. 

Despite being formed on a high precision 5-axis CNC machine and being stress 

relieved to remove any internal changes in refractive index the window still contained 

an 'orange peel ' surface finish. This was removed by a small amount of hand polishing 

at the expense of the geometric qualities of the window. 
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Window 

Periscopes 

Rotor 

b 

Figure 6.1 The test section window 
a. Photograph of window, periscope and light sheet incident on the rotor. 
b. The periscopes and windows fitted to the cavities within the nozzle guide vanes. 
c. Window removed from facility. Note ngvs form part of the window assembly. Rule included for scale. 
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A calibration grid was placed in the plane of the light sheet in order to establish the 

number of pixels per mm and to assess the gross distortions generated by the window. 

The maximum possible depth-of-field is required to allow for the changes in optical 

path length through the window. This is in conflict with the amount of light required to 

detect a particle. Diffraction-limited particle images were achieved at an I -number of 

fll. Acceptable particle images were also achieved at /8, although astigmatic 

distortions were observed in the areas of high window curvature. An I-number of /11 

was used throughout all the experiments described here in order to minimise distortions 

and to avoid misguiding particle detection algorithms. 

6.2 LIGHT SHEET DELIVERY 

The test -section only contained one optical access port. In previous studies optical 

periscopes have been introduced into the flow to launch the light sheet (112 &121]. The 

insertion of such probes obviously perturbs the flow, so they are typically mounted 

many tens of probe diameters further up or down stream. The geometry of the stage 

was such that it became difficult to illuminate sufficient areas of both the stator passage 

and the stator-rotor gap, as the blades obstructed the beam. A novel solution was found 

by launching the light sheets from within the nozzle guide vanes. Four removable 

nozzle guide vanes were fitted to the inner surface of the window using keyways. 

Although only loosely fitted to the window, the vanes became trapped into position 

once the window was bolted to the test section. Two of the nozzle guide vanes were 

hollowed out and fitted with flat windows in the pressure and suction surfaces. Slender 

optical periscopes of 8 mm in external diameter, which contained the light sheet 
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forming optic, were inserted into vane cavities allowing the illumination of both the 

tator pa age and stator-rotor gap. 

The penscope contained two positive cylindrical lenses that could be rotated and 

translated relative to each other to alter the focal length and orientation of the light 

sheet see figure 6.2. The lenses were not at 90° relative to each other, so did not define 

indi idual orthogonal components of the light sheet. Relative rotation between the 

lenses adjusted the focus of the light sheet, rotating them together altered the 

orientation of the light sheet. This gave a larger range of adjustment in the light sheet 

forming properties of a single probe that could be used to illuminate multiple regions of 

interest simply by rotating the lens. 

A broad-band dielectric mirror was fitted within the end of the probe. Three mirrors 

were available, 40°, 45° and 50°. A light sheet can only be tangential to the 

circumference of the test section at one point. The mirror was chosen so that this point 

occurred as near to the centre of the region of interest as possible. 

Securing 
Collar 

Periscope body 
(8 mm external diameter) 

Cylindrical 
Lenses 

Slot for lens 
access 

Aperture 

Dielectric 
Mirror 

Figure 6.2 Schematic of the periscopes inserted into hollowed out nozzle guide vanes. 
Used to form and project a light sheet into the test section. 
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The peri pe al catered for the fitment of a fibre optic delivery system. The fibre 

tern, dev I p d by Heriot-Watt University was made up of 19 multi-mode step 

inde fibre, ee figure 6.3. The 100 J-lm core diameter fibres were bonded together to 

form a fibr bundl 2 metre long. Th face of each of the fibres were polished prior to 

bonding. At the delaunch head the fibres were bonded in a round bundle whilst at the 

laun h end the fibre were mounted side by side to form a sheet like structure. The 

delaunch and launch ends of the bundle were housed in steel cylindrical and brass 0-

section fitting re pecti ely. The non-transparent cladding was bonded to these fittings. 

Figure 6.3. Fibre delivery system with circular bundle at input and 
fibres stacked in a line at the output to project a light sheet. 

The fibre delivery system was initially successful in delivering a good quality beam of 

the required power. However, after prolonged use during testing a significant 

deterioration in beam profile and power was detected. Continuous use caused the fibres 

to heat up and resulted in a decline in their optical properties. As a consequence a rigid 

optical system was used to relay the beam from the laser head to the periscope. 

The rigid optical system consisted of a series of dielectric mlrrors mounted on 

kinematic supports, see figure 6.4. The beam was projected parallel to the principal axis 
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f the facility. Thi allowed the facility to move in this axis without affecting the 

alignment f the beam. The movement only resulted in a change in the optical path 

length of th beam. This was important as the entire facility does move along this axis 

during the run, h nce the lidingjoint between the test section and exhaust tank. 

Relay 

Laser 

• Axial movement 

Window 

of the facility Rotor 

Figure 6.4 The rigid optical system used to relay the beam from the laser to the test 
section. Designed to accommodate axial movement of the ILPF during the run time. 

The camera system was also mounted onto a framework attached to the removable 

cassette. By adopting this approach the complete optical assembly, periscope, camera 

and ngvs, could be lined up and tested prior to fitment to the facility. This greatly 

simplified the setting up of the optical system, which could be carried out remote from 

the facility. 
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6.3 IMAGE ACQUISITION 

A strong emphasis was placed on the digital acquisition of the data, as this allowed an 

on-line assessment of the experiment. It also negated the requirement for time 

consuming wet processing. The low spatial resolution of CCD arrays in comparison to 

photographic film dictated that a lack of picture elements would be the limiting factor 

to the size of the field-of-view and the accuracy of the velocity measurements. 

Photographic films, such as Kodak T-Max 3200, offer approximately 100 lines/mm 

over 35 mm giving 3500 by 3500 picture elements with an ASAIISO rating of 3200. 

Digital 8-bit cameras typically offer 1000 by 1000 picture elements with a similar light 

sensitivity. As the accuracy of the velocity measurements depend on the number of 

picture elements between a particle pair, and the number of elements describing each 

particle, photographic film offers a far better resolution-to-range ratio than a CCD 

camera. However, in many applications it may not be possible to fully exploit the 

resolution of photographic media. Light levels or optical access may limit the field-of­

view, optical aberrations and the flow following abilities of a particle may limit the 

accuracy that can be appended to a measurement. If the spatial resolution cannot be 

realised, the real-time feedback, storage and archiving advantages, and processing and 

image manipulation options that are available to digital media are far more desirable. 

For the measurements described here the geometry of the test section restricted the size 

of the plane of illumination. Difficulties in launching a light sheet from a slender probe 

and the stagger angle of the stator vanes dictated that only segments of the stator 

passage and stator-rotor gap could be illuminated from a single optical probe. As only a 

small area could be illuminated at once a digital camera with a resolution of 1000 by 
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1000 pixels was initially chosen. As the distance from the trailing edge of the stator 

yanes to the crown of the rotor blades was only 15 mm the entire stator-rotor gap could 

be imaged with a 15 ~m1pixel resolution. The minimum resolvable spot size (Rayleigh 

distance ~ 1.22')....1) for anfnumber off11, as used in the experiments described here 

is 7 !lm, larger than the ~m1picture element resolution achievable with photographic 

filnl over this field-of-view. The approximate particle diffraction-limited spot diameter, 

from equation 4.9, is 18 ~m (77). If a particle pair was separated by 200 ~m and the 

particle centres were estimated to 5 ~m, one pixel, the particle displacement can be 

measured to an accuracy of 2.5% in the absence of other errors. 

With both particle palnng and auto-correlations there is a sign ambiguity in the 

direction of a velocity vector. In both cases a convention has to be defined prior to the 

analysis. If a flow contains recirculating regions, local rather than global conventions 

need to be defined, a process which normally requires human interaction. By capturing 

the first and second exposures on separate frames and either cross-correlating or pairing 

between the frames the directional ambiguity is removed. Capturing the data on two 

frames also allows higher seeding densities, and hence higher vector yield, to be used, 

an important compensation for not taking the high-resolution photographic route. 

A bespoke digital camera for PN applications, a PN-Cam 10-30 RS-170 digital 

camera, operating in the 'frame-straddle' configuration, was to be used for image 

acquisition. The frame-straddle configuration allows two frames to be captured in quick 

succession, separated only by a few microseconds to allow the charge on the CCD chip 

to be discharged, a period called the transfer time. The first and second frames integrate 

over 255 microseconds and 33 milliseconds respectively. Short pulse separations can be 
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achieved by tinling the first and second laser pulses to coincide with the end of the first 

and beginning of the second frames respectively. This cycle is triggerable and can be 

repeated at up to 15 Hz. The transfer time is a function of the amount of charge on the 

CCD chip. If the image is brightly illuminated and saturated the transfer time can be in 

excess of 10 nlicroseconds. If the mean background grey level is low and the image is 

sparsely seeded the transfer time can be reduced to less than a microsecond, although 

intensity nlay be lost and the first image may bleed into the second. 

At the time of the test the PIV -Cam 10-30 failed and an alternative camera system had 

to be found at short notice. A standard CCIR interlaced camera with a resolution of 576 

by 768 pixels was used in its place. To achieve a non-interlaced image the laser has to 

be fired when both the odd and even fields of the camera are integrating. As the delay 

until between the asynchronous reset pulse and this non-interlaced integration time was 

approximately 20 milliseconds the camera was considered to be non-triggerable in this 

high-speed application. As a result the camera was used as a timing master and hence 

the image acquisition was not locked to the rotor phase. Judicious use of the camera's 

field-of-view allowed a resolution of 26 J,!mJpixel to be achieved across the stator-rotor 

gap. 

The camera and lens, a Sigma 90 macro lens, were mounted on the framework attached 

to the optical cassette. The camera has a split body where the CCD housing and lens is 

remote from main camera body, so could be easily be accommodated on the mounts of 

the larger PIV -Cam. Despite this, the region of interest still had to be imaged off a 

front-silvered mirror owing to the space restrictions within containment rings of the 

facility. 
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6.4 THE PIV SYSTEM 

A Lumonics HY400 Q-switched Nd:YAG double pulsed laser was used as the light 

source. A doubler crystal was fitted to the laser to provide 532 run wavelength (green) 

light. The laser output is 50 mJ pulses with duration of 8 nanoseconds at 25 Hz. As the 

laser contains a single oscillator the pulse separations can only range from a few tens of 

nanoseconds to about 250 Jls after which the power diminishes. The laser can also 

generate triple pulses although this was not explored in this experiment. 
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The camera was connected to a frame-grabber board within a 486DX 100MHz PC, see 

figure 6.5. This allowed up to 72 frames to be captured at 25 Hz in the grabber board's 

memory prior to being written to the hard disk. A second camera can be connected to 

the PIV system to facilitate stereo recording although it was not explored in this 

application. 

The raw data 'v ere archived rather than real-time processed to allow the data to be post 

processed. Although real-time processing systems are commercially available, the 

preferred in-house processing and presentation algorithms are not suited to real-time 

use, as they are computationally intensive and not fully automated. Further to this, 

archiving of the raw data allows spurious results to be investigated and the data 

recovery to be maximised, even in the presence of varying signal-to-noise ratios. 

The laser and image capture systems were synchronised using an external triggering 

system referred to as the LFS (Laser Firing System). The LFS is an embedded 

computer system containing precision digital counters, signal conditioning and isolation 

circuits and digital-to-analogue converters. Upon receiving a remote trigger from the 

facility the LFS took complete control of the laser firing and video sequence, double 

pulsing the laser during the full field integration period of the interlaced camera. 

6.5 SEEDlNG 

A seeding procedure almost identical to that described by Towers [113] was adopted. 

0.5 /-lm styrene seed, suspended in water, was injected into the pump tube prior to 

pressurising it to the pre-run condition. Towers showed that this combination of seed 
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and seeder produced a size distribution ranging from 0.4 to 0.65 J..lm with a mean size of 

0.5 ~lm. The 0.6 J..lm particles were shown to take approximately 2.2 mm to a step 

change in velocity (normal shock) or 641 to 114 ms- I
. 

The pump tube was seeded for a period of 25 minutes whilst all the jets of the seeder 

were in operation. The pressure in the pump tube was dropped to 0.9 bar during the 

seeding process and the run was initiated as quickly as possible after the seeding 

procedure to minimise the amount of settling of the seed. 

142 



6.6 SUMMARY OF CHAPTER 

The test section window of the ILPF, supplied by Osney Labs., is mounted into a 

removable cassette that makes up part of the outer casing. It is approximately 300 x 200 

mm
2 

although only of uniform thickness over 300 x 100 mm2
. The contours of the 

window are matched to the profile of the outer casing to avoid perturbing the flow. The 

window provides optical access from upstream of the leading edge of the NGV s to 

beyond the trailing edge of the rotor. 

8 mm external diameter optical periscopes inserted into hollow NGV s were used to 

project light sheets into both the stator passage and stator-rotor gap through windows in 

both the suction and pressure surfaces. The beam was relayed to the periscopes using a 

rigid optical system that allowed the ILPF to move in the axial direction without 

disturbing the beam. A fibre optic beam delivery system was tried but found to be 

incapable of delivering 50 mJ pulses (8 ns pulse width) for prolonged periods. A 

frequency doubled Nd:Y AG laser (532 nm) was used as the light source. 

A CCD camera of resolution 768 x 576 pixels (8 bit) was used to record the PIV data 

after the cross-correlation camera failed and could not be replaced in time for the test. 

A resolution of 26 J.1m per pixel was achieved over the stator-rotor gap. The estimated 

diffraction limited particle diameter is 18 J.1m. 

0.5 J.1m styrene seed have been used. In a previous study 0.6 J.1m styrene seed was 

shown to take 2.2 mm to respond to a step change in velocity from 641 to 114 ms-
I
. The 

seeder was shown to give a size distribution from 0.4 to 0.65 J.1m with a mean of 0.5 

J.1m. The pump tube of the ILPF was seeded for 25 minutes prior to each run. 
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Chapter 7 

ApPLICATION OF PIV TO A SPINNING 

TuRBINE CASCADE 

RESULTS 

Description of Chapter 

This chapter shows the PIV data processed using an auto-correlation. 
The description of the results, discussion on the choice of processing 
method, accuracy etc is included in chapter 8. 

Resultsfor three separate runs of the ILPF are presented although the 
total data set consists of 20 runs, each with approximately 20 valid 
frames of data. Figures 7.1 to 7.5 are all made in the region of the 
trailing edge of the NGVs to the leading edge of the passing rotor. The 
figures show the effect the passing rotor has on the velocity 
distribution. Figures 7.6 and 7.7 show measurements in the stator 
passage and between the suction surface of the NGV and the leading 
edge of the rotor. Figure 7.1 to 7.7 use a common colour bar for 
comparison. Figures 7.1 to 7.7 have been subjected to one 'centroid­
node' smoothing iteration, described in chapter 8. Figure 7.8 shows 
vectors combined from the stator passage and stator-rotor gap for 
comparison against a CFD prediction. These data have not been 
smoothed. All data are of single instantaneous frames. The discussion 
of these results appears in chapter 8. 

The Reynolds number for all the measurements is 2.8 x 106
, based on 

the axial chord on the NGVs and downstream conditions. 
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Figure 7.1. Example of the data set recorded between the ngvs. Colour bar is 
in ms- I

, Coordinates are in mm. Processed using autocorrelation (64 x 64 
pixels). 
a. Region of interest between the ngvs 
b. Velocity surface generated using a Delaunay triangulation overlaying the 

raw piv image 
c. Velocity vectors overlaying the raw piv image. Colour and magnitude 
represent the magnitude ofthe velocity 
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Figure 7.2. Example of the data set recorded between the ngvs. Colour bar is 
in ms-I, Coordinates are in rnrn. Processed using autocorrelation (64 x 64 
pixels). 
a. Region of interest between the ngvs 
b. Velocity surface generated using a Delaunay triangulation overlaying the 

raw piv image 
c. Velocity vectors overlaying the raw piv image. Colour and magnitude 
represent the magnitude of the velocity 
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Figure 7.3. Example of the data set recorded between the ngvs. Colour bar is 
in ms-I, Coordinates are in mm. Processed using autocorrelation (64 x 64 
pixels). 
a. Region of interest between the ngvs 
b. Velocity surface generated using a Delaunay triangulation overlaying the 

raw piv image 
c. Velocity vectors overlaying the raw piv image. Colour and magnitude 
represent the magnitude of the velocity 
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Figure 7.4. Example of the data set recorded between the ngvs. Colour bar is in 
ms- 1

, Coordinates are in tnm. Processed using autocorrelation (64 x 64 pixels). 
a. Region of interest between the ngvs 
b. Velocity surface generated using a Delaunay triangulation overlaying the raw 

piv image 
c. Velocity vectors overlaying the raw piv image. Colour and magnitude 
represent the magnitude of the velocity 
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Figure 7.5. Example of the data set recorded between the ngvs. Colour bar is in 
ms-t, Coordinates are in mm. Processed using autocorrelation (64 x 64 pixels). 
a. Region of interest between the ngvs 
b. Velocity surface generated using a Delaunay triangulation overlaying the raw 

piv image 
c. Velocity vectors overlaying the raw piv image. Colour and magnitude 
represent the magnitude of the velocity 
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Figure 7.6. Example of the data set recorded between the ngvs. Colour bar is 
in ms- I

, Coordinates are in mm. Processed using autocorrelation (64 x 64 
pixels). 
a. Region of interest between the ngvs 
b. Velocity surface generated using a Delaunay triangulation overlaying the 

raw piv image 
c. Velocity vectors overlaying the raw piv image. Colour and magnitude 

represent the magnitude of the velocity 
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Figure 7.7. Example from the brief data set recorded from the higher of the two 
optical periscopes. Solutions from a single image shown in the background. 
Colour bar in ms-I 

a. The region of interest and the approximate rotor phase 
b. Velocity surface generated using a Delaunay triangulation overlayed the raw 

piv image 
c. Velocity vectors overlayed the raw piv image. Colour and magnitude 

represent the magnitude of the velocity 
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Chapter 8 

THE ApPLICATION OF PIV TO A SPINNING 

TURBINE CASCADE 

DISCUSSION 

Description of Chapter 

This chapter describes a comparison between particle tracking and 
auto-correlation applied to a single image recorded in the ILPF. 
Auto-correlation is shown to give a superior result and has been 
applied to the remainder of the data extending from the trailing edge 
of the NGV to the leading edge of the rotor, the suction surface of the 
NGV to the leading edge of the rotor and the stator passage. The 
measurements in each of these areas are described and their 
accuracies quantified. A comparison with a numerical prediction, 
produced using a 2-D unsteady solver, is also included. 

The relative spatial resolution and accuracy that could be attained 
with the cross-correlation camera is included for comparison against 
the camera that was used in this application. Recommendations are 
also made towards optimising accuracy and spatial resolution, 
making time-averaged and phase stepped measurements, 
measurements close to surfaces and 3-D PIV. 
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8.1 VECTOR EXTRACTION 

A single representative image has been processed using both particle tracking and auto­

correlation in order to identify the optimum vector yield and accuracy per image. This 

task was embarked upon after tests on the nozzle flow indicated that a correlation 

approach may be superior to the tried and tested particle tracking software that had 

previously been used at Warwick. 

8.1.1 Particle Tracking 

The particle tracking software applied to the test image, figure 7.5 (turb5 _27.tif), was 

AP2D (125). a development of Judge's APWin program [1091• AP2D uses a centre-of-mass 

centroid estimation to ascertain the particle centres. 

The palnng process consists of identifying individual particles and their centroids. 

Minimum and maximum velocities and approximate direction are required to identify a 

segment within which the second exposure must fall. Erroneous vectors will be 

generated if multiple exposures exist in the segment. This prerequisite defines the upper 

limit on the seeding concentration and is therefore only applicable to sparse data. 

8.1.2 Auto-Correlation 

The auto-correlation software was PIV Proc, kindly supplied by Wernet [1271. PIVProc 

uses a 3-point Gaussian estimator to locate the centre of the satellite peaks in the auto­

correlation plane. The estimated accuracy of the centroid location is 1I10
th 

pixel 

assuming that the particle image diameters are 1 to 2 pixels in diameter and each 

154 



interrogation spot contains about 10 particle pairs. A high seeding concentration is 

required to satisfy this prerequisite. 

8.1.3 Comparison of Results generated using Particle Tracking & Auto­

Correlation 

Figure 8.1 shows the scatter of the components of particle displacement in pixels. It is 

inunediately obvious that the tracking vectors are grouped into bands. This is believed 

to be due to a bias in the centre-of-mass estimation to integer pixel values. As the mean 

displacement between successive exposures is only 5.6 pixels the accuracy is only 18 

%. The vector yield is 501 vectors. The scatter of the data indicates a large number of 

spurious vectors. 

The auto-correlated data contains 1020 vectors with displacements that do not appear to 

be banded into discrete displacements or randomly scattered. The location of the vectors 

is banded owing to the regular grid interrogation spots of 64 x 64 pixels with a 75 % 

overlap. The auto-correlation software offers both the highest vector yield and accuracy 

in the displacement, albeit by calculating a local average velocity rather than an 

individual pairing. 
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Figure 8.1 Scatter of the PIV data processed by particle tracking and auto-correlation 
a. 'x' component of displacement in pixels versus 'x' co-ordinate 
b. 'y' component of displacement in pixels versus 'y' co-ordinate 
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8.1.4 POST PROCESSING 

A novel meshing algorithm has been written to produce a continuous velocity surface 

from the sparse vectors (script included in appendix). The algorithm was originally 

written to interpolate between the sparse vectors produced during particle tracking, but 

is equally applicable to the regular grid of vectors produced by auto-correlation. 

The algorithm uses a Delaunay triangulation (110) where the nodes of the mesh represent 

the individual velocity vectors, see figure 8.3a & b. A linear interpolation is used along 

the edges of the triangles and the surface is a linear interpolation between the three 

nodes. The original vectors are not compromised as they are kept in the solution. 

Extrapolation is avoided as the triangulation only links existing vectors. Excessive 

triangle edge lengths can also be identified and removed automatically. 

The interpolation procedure can be extended to calculate a further vector, or node, at the 

centroids of the triangles weighted according to the three surrounding nodes, see figure 

8.3c. The data can be smoothed by calculating the velocity at the centroid of each 

triangle weighted by its three surrounding neighbours and interpolating between the 

centroids back to the original nodes, see figure 8.2. This smoothing operation has been 

frequently used on data produced by particle tracking as it crops the peaks of individual 

rogue vectors. This smoothing procedure is less applicable to correlated data as the 

erroneous vectors, which are usually readily identifiable due to extreme magnitude or 

direction, are routinely discarded at the correlation stage. 
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Interpolated back 
to original nodes 

Figure 8.2 The affect of the smoothing over a velocity plot. Red line is the 
interpolation between red dots that represent the original vectors. Blue dots represent 
interpolated velocity at centroids. Green dots represent interpolation between 
centroids at the original vector locations. 
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Figure 8.3. Post processing of the velocity data (taken from figure 7.5) 
a. Location of the sparse vectors produced using particle pairing (turb5 _27) 
b. Delaunay triangulation of the sparse vectors (edges over 50 pixels removed). 
c. Refmed Delaunay mesh. Additional nodes at centroids of original triangles. 
d. Linear interpolation along triangle edges, Surface interpolated with respect to all three nodes 
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8.2 DESCRIPTION OF RESULTS 

Figures 7.1 to 7.7 show single, instantaneous, images plotted in three different ways to 

expedite the representation of the velocity distribution and the underlying particle 

concentration. The first of the plots is used to show the region of interest and the 

approximate rotor phase. The rotor phase is estimated from the position of the rotor in 

the raw image. In the second plot the interpolated velocity distribution, produced using 

Delaunay triangulation, one smoothing iteration and one centroid-node iteration, has 

been plotted over the original raw image. The velocity distribution is slightly 

transparent so that the underlying seeding concentration or noise can be used to 

ascertain the confidence of the local velocity. Sparsely seeded or noisy areas can 

produce erroneous or inaccurate vectors. Finally, a vector plot, again overlaying the 

original raw image, shows the output from the auto-correlation analysis. The regular 

grid of vectors correspond to the 64 x 64 pixel interrogation spots used in the auto­

correlation analysis, with a 75 % overlap with neighbouring spots. Holes in the grid 

occur owing to noise and a lack of seed. Both the colour and magnitude of the vectors 

are used to represent the magnitude if the velocity. 

8.2.1 Trailing edge ofNGV to leading edge of rotor 

Figures 7.1 to 7.5 show the velocity distribution between trailing edge of the NGV and 

the leading edge of the rotor as the rotor passes upwards through the field-of-view. The 

sequence also shows the scanning of the light sheet between frames as the laser comes 

up to temperature. The parameters of the analysis, errors etc. are summarised in table 

8.1 
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The wake of the NGV can be clearly seen in all of the images in the sequence. The 

wake of the lower NGV can also be seen in figures 7.4 and 7.5 in the absence of the 

rotor. Where the rotor is present the flow accelerates over its crown to a velocity of 380 

ms-
1

• Two thirds of the way across field-of-view is a gap between the stationary NGV 

inner annulus and the rotor hub. A small amount of oil seeps from this gap during the 

run and gathers on the downstream side of the window, aberrating the image. The test 

section window was removed after every two runs for cleaning and to treat it with a 

coating of car windscreen demisting agent. It is difficult to get seeding in boundary 

layers and wakes. Holes in vector grid round the trailing edge of the NGV are common 

in all of the images in the sequence. All the images clearly show the slow NGV wake, 

but in most the interpolation algorithm has spanned across the gaps in the vector grid 

and artificially generated holes in the wake. Nevertheless, the cells in the wake are 

present in every picture of the sequence and are consistent with the expected position 

and size of the wake. The spacing of the cells does not coincide with the nodes of the 

correlation grid implying that they are not a feature of the vector extraction algorithm. 
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Figure 7.1 7.2 7.3 7.4 7.5 

Filename Turb5 25 Turb5 28 Turb5 26 Turb5 29 Turb5 27 - - - - -

Estimated Relative Rotor 00 1.30 2.50 4.20 4.90 

Phase 

Run Number 1943 

Reynolds Number 2.8 x 106 

Height Mid-span 

Total temperature 315 K 

Number of vectors 1073 1052 798 914 1020 

Pulse separation (ns) 539 

Y scaling 26.12 /-lmlpixel 

X scaling 25.97 /-lmlpixel 

Scaling used 26.04 /-lmlpixel 

Scaling error 0.3 % 

Field-of-view 20x 15mm 

Interrogation spot size 64 x 64 pixels, 1.66 x 1.66 mm 

Interrogation spot overlap 75 % 

Mean particle displ. 5.6 pixels, 146 /-lm 

Image displ. accuracy 5.40 % 

Estimated total accuracy 5.70 0/0 

(scaling + image displ.) 

Table 8.1 Parameters for PlY data in stator-rotor gap 
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8.2.2 Stator passage 

Figure 7.6 shows the velocity distribution in the stator passage. As the rotor phase is 

unknown its silhouette has been excluded from figure 7.6a. The direction of the light 

sheet propagation is approximately in the direction of the walls of the neighbouring 

NGV s. There is, therefore, little glare in the image and the seed is clearly visible. The 

seed is also visible in high concentrations, thus giving very few holes in the grid of 

vectors. The parameters of the analysis, errors etc. are summarised in table 8.2. 

The flow is accelerating through the stator passage except for adj acent to the trailing 

edge of the lower NGV where the flow decelerates from 300 to 250 ms-1 in a line 

normal to the vane's chord. The velocity is recovered 2 to 3 mm downstream. 
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Figure 7.6 i 

Filename Stat2 26 

Run number 1953 

Reynolds Number 2.8 x lOb 

Height Mid-span 

Total temperature 315 K 

Number of vectors 1016 

Pulse separation 840ns 

Scaling (parallel to chord) 26.66 J..lInlpixel 

Scaling (nonnal to chord) 28.15 , .. un/pixel 

Scaling used 27.40 ,.lIn/pixel 

Scaling error 2.7% 

Field-of-view 21 x 15.7 nun 

Interrogation spot size 64 x 64 pixels, l.75 x l.75 mm 

Interrogation spot overlap 75 % 

Mean particle displ. 8.5 pixels, 233 /-lm 

Image displ. Accuracy 3.60% 

Estimated total accuracy 6.30/0 

(scaling + image displ.) 

Table 8.2 Parameters for the PN data in the stator passage. 
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8.2.3 Suction surface ofNGV to leading edge of rotor 

Figure 7.7 shows the velocity distribution three-quarters of the way down the suction 

side of an NGV with the field-of-view extending to the leading edge of the rotor. This 

field-of-view was only measured over two runs, therefore the data set in this area is 

limited. The light sheet launch position was common to that used for the stator passage 

measurements shown in figure 7.6. This is essentially the same light sheet, but further 

downstream, and is limited in width due to the walls of the NGV s (the beam originated 

from the leading edge of an NGV). The parameters of the analysis, errors etc. are 

summarised in table 8.3. 

The visible seeding concentration is low and the background noise is high owing to 

glare from a rotor that has passed through the field-of-view and the oil that has gathered 

on the window downstream of the rotor hub gap. The silhouette of the next rotor can 

just be seen in the bottom right hand comer. There is a further feature, expected to be a 

shock, in the background image that appears to be emanating from the NGV and gets 

wider but dimmer towards the centre of the image. The line of action of this shock 

coincides with the rapid deceleration in the velocity data from 370 to 300 ms- I
. 

There is an ambiguity in location in the velocity distribution on the rotor phase diagram, 

figure 7.7a. All the previous images had a stationary datum, the trailing edge of the 

NGV, which could be used to locate the velocity distribution precisely relative to the 

NGV s. This region of interest does not have such a datum and the positioning of the 

velocity distribution has been approximated from the distance between the line of action 

of the rotor and suction surface of the NGV. 
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Figure 7.7 

Filename Turn 1 33 -

Estimated Relative Rotor 3.3 0 

Phase 

Run number 1959 

Reynolds Number 2.8x lOb 

Height Mid-span 

Total temperature 315 K 

Number of vectors 418 

Pulse separation 640ns 

Scaling (parallel to chord) 25.74 ~l1n/pixel 

Scaling (normal to chord) 25.48 ~tInipixel 

Scaling used 25.61 !-lmJpixel 

Scaling error 0.5% 

Field-of-view 19.7 x 14.8 mm 

Interrogation spot size 64 x 64 pixels, l.64 x l.64 mm 

Interrogation spot overlap 75 % 

Mean particle displ. 8.0 pixels, 205 !-lm 

Image displ. Accuracy 3.75 % 

Estimated total accuracy 4.25% 

(scaling + image displ.) 

Table 8.3 Parameters for the PIV data between the suction surface of the 
NGV and the leading edge of the rotor. 
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8.2.4 Conlparison with Numerical Prediction 

Figure 7.8 shows a PlY measurement and a CFD prediction of the velocity distribution 

from the stator passage to the leading edge of the rotor. The PlY result is made up from 

the two images of data shown in figures 7.2 and 7.6. The two have been combined so 

that the region of interest extends to the area of the prediction. There is a small overlap 

in the two occurring at the trailing edge of the NGV. The PIV data has not been 

smoothed and each of the frames represents one, instantaneous result. In the absence of 

smoothing the velocity surface appears to consist of blocks, a feature of the 

interrogation spot size used in the auto-correlation. The 2-D, unsteady prediction, 

supplied by DERA Pyestock, was performed using the UNSFLO code by Giles (128). 

The nleasurement and prediction are in very close agreement for the majority of the 

region of interest but there are significant differences, the reasons for which becoming 

apparent once the shortcomings of the two are explained. The prediction was created 

using a 2-D unsteady solver. The solver uses separate grids for the inviscid and viscous 

regions that are interfaced together to produce a continuous result. The viscous regions 

are modelled using an '0' grid that, as the name suggests, surround the mechanical 

surfaces to describe the boundary layers. The remainder of the flow is modelled using 

an inviscid 'H' grid made up of sheared quadrilaterals. Problems occur where the 

boundary layer separates and the interface between the two grids moves, and in the 

modelling of the wake. The wake exists in the inviscid grid in the absence of viscous 

dissipation. In reality the wake will mix out quicker than in the prediction. This effect is 

evident in the prediction where the wake neither contains vortical structures nor 

broadens with distance from the trailing edge. 
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In contrast the wake shown in the measurement broadens with distance from the trailing 

edge and contain cells that would appear to be consistent with a Karman vortex street. 

Caution should be emphasised, as the measured velocity surface is an interpolation of a 

grid of coarsely spaced vectors. However, the cell like structure is present in all the 

measurements of the wake and does not coincide with the spacing of this grid although 

its extent maybe accentuated by its finite spatial resolution. 

Both the measurement and prediction show a deceleration of approximately 50 ms- I 

either side of the trailing edge, which seems to extend in a direction normal to its chord. 

In neither case does the deceleration extend to the suction surface of the adjacent NGV 

were the flow accelerates to approximately 320 ms- I
. The velocity is recovered 5 mm 

downstream. In each case the flow accelerates over the rotor crown to in excess of 360 

ms-
l
. Again the pattern of acceleration is similar between the two. 

Unfortunately, the measurement does not extend to close to the mechanical surfaces or 

to the areas that are not served by a light sheet. As a result it does not cover the 

complete area of the prediction. 

8.2.5 Accuracy, Resolution & Sources of Errors 

The errors in the measurements come from a combination of five sources, laser timing, 

estimation of particle image displacements, scaling from pixels to real world 

dimensions, the ability of the particle to follow the flow and the accuracy to which the 

location of the light sheet is known. All of the measured displacements are assumed to 

be in the plane of the light sheet. The variation in the timing of the laser, and hence the 

pulse separation, is minimal and was logged during the experiment for verification. The 

168 



error fronl timing is therefore negligible. The accuracy of the particle image 

displacements is expected to be in the region of 3 % depending on the distance between 

exposures, the mean diameter of the exposures and the number of pairs in the 

interrogation spot relative to the background noise. Areas that contain too few pairs 

have been removed from the solution. The accuracy of the centroid location is estimated 

to be 1I10th of the particle image diameter. As the particle image diameters range from 2 

to 4 pixels the accuracy is estimated to be 0.3 of a pixel. The average accuracy on the 

particle image displacement is 4.250/0. The scaling errors result from the conversion 

from pixels to meters. The scaling factor will not be uniform across the images owing to 

the curvature of the windows. However, orthogonal scaling components, calculated 

from a reference grid in the field-of-view, show that the variation is of the order of 1 %. 

As this error is small, compared to the error in determining the particle image 

displacements, the mean of the two orthogonal scaling factors for each region of interest 

has been used. 

Towers [1131 showed that the 0.6 Jlm styrene seed takes 2.2 mm to assume the 

downstream velocity of a normal shock of step change from 641 to 114 ms-
I
. The 

difference in the minimum and maximum velocities over all the measurements in the 

ILPF is 200 ms- I . The lag of the 0.6 styrene seed used in this experiment is likely to be a 

fraction of a millimetre and therefore a fraction of the interrogation spot size of 1.6 mm. 

It is expected that the errors owing to particle lag will be small compared to scaling and 

particle image displacement errors. It will, however, have an effect on the distribution of 

the seeding, evidence of which can be seen in the NGV wakes. 
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The plane of the light sheets was initially reconstructed from the depths of the optical 

periscopes inserted into the NGV s. This approach was found to be inaccurate as the 

depth of the light sheet depended on the alignment of the beam with the axis of the 

periscope. The planes were eventually reconstructed from the light sheet bum marks on 

the NGVs and rotors that had been coated with a matt black paint to avoid glare prior to 

running. The depth of the light sheet is known only to the nearest mm. The light sheet 

was projected from periscopes in NGVs at different angular positions to the field-of-

vie,v and is flat rather than cylindrical. The light sheet is therefore at the approximate 

mid-span only along the centreline of the images. The peripheries of the images deviate 

from mid-span by approximately 1/5th mm. 

The use of a 64 x 64 pixel interrogation spot size gives a vector every 1.66 mm and a 

smallest resolvable length scale of the same size. A 75 % overlap has been used to give 

a vector every 0.415 mm. The Dynamic Velocity Range (D VR), the ratio of the 

maximum and minimum resolvable velocities from equation 4.1, for a maximum 

displacement defined by Adrian's 1f4 rule [771 of 16 pixels and centroid location to 0.3 

pixels is 

16 
DVR= =17.8 

0.3x3 

This ratio is somewhat misleading in that it assumes that overlapping particle images 

separated by 0.3 pixels can be resolved. With cross-correlation they can be resolved, but 

for auto-correlation the minimum separation would be the same as the mean particle 

image diameter that gives a DVR of 1.8. The Dynamic Spatial Ratio (DSR), the ratio of 

the minimum and maximum resolvable length scales given by equation 4.2, is 
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DSR = 768 =48 
16 

where the image contains 768 pixels in one dimension and 16 pixels is defined by 

Adrian' s (771 Y.t rule. The product of the DVR and DSR, which is often used as a 

benchmark with which to compare combinations of recording media and analysis 

algorithm, is 854. 
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8.3 RECOMMENDATIONS FOR FURTHER WORK 

8.3.1 Optimisation for a Cross-Correlation Camera 

The original intention was to apply a triggerable cross-correlation camera to the ILPF 

rather than a non-triggerable, non-cross-correlation camera. Unfortunately, the cross-

correlation camera failed and could not be replaced in time for the test. With the benefit 

of the results presented here, hindsight allows the optimal configuration for such a 

cross-correlation camera to be defined. 

The camera has a resolution of 1000 x 1000 pixels that would give 20 ~m per pixel over 

the 20 x 20 mm2 field-of-view required to observe both the trailing edge of the NGV 

and the leading edge of the rotor. The accuracy of the measurement, excluding that 

corresponding to the displacement between exposures, is of the order of 1 %. If the 

particle images are only 1 to 2 pixels in diameter the minimum displacement required to 

achieve a comparable accuracy of 1 % is 10 pixels between exposures. A pulse 

separation of 1.18 ~s would give a 10 pixel displacement of the minimum recorded 

velocity of approximately 170 ms- I
. The maximum velocity would give a displacement 

of 23 pixels. If there were a 16 pixels shift, in the direction of the mean flow, between 

cross-correlated areas the interrogation spot size could be reduced to 32 x 32 pixels, an 

area of 640 x 640 ~m2 and still satisfy Adrian's 1;4 rule [77). If the light sheet were 0.5 

mm thick a seeding concentration of 50 seed mm-3 would be required to give 10 particle 

pairs per interrogation spot, a requirement that is only just satisfied in the most densely 

seeded areas in the results presented here. The D VR would be 

DVR = (32/4)+ 16 = 120 
0.lx2 
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The DSR and product of the DVR and DSR would be 

DSR = 1000 = 42 
(32/4) + 16 

(D VR XDSR ) = 5040 

The spatial resolution could be extended still further by cross-correlating in an iterative 

manner so that the shift between cross-correlated regions can be defined locally to allow 

the interrogation spot size to be as small as possible. The limit of such an approach 

would involve cross-correlating individual pairs, assuming that the cross-correlation 

peak can be identified in the presence of noise. 

8.3.2 Measurements Close to Mechanical Surfaces 

Glare and blade shadowing hamper measurements close to mechanical surfaces. Schodl 

(18) adapted his L2F system to collect light through two apertures and a spatial filter. The 

approach is similar to the 3-D PN technique described in section 4.5.3 except that the 

spatial filter allowed light to be collected only from a narrow axial region. Schodl also 

explored the use of an unnamed fluorescent seed of 1 !-lm in diameter in a high-speed 

turbomachinery application, but later rejected them owing to the inability to follow the 

flow sufficiently. 
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Fluorescent seed could also be used in the ILPF assuming they adequately follow the 

flow and can be seen. The excitation wavelength must also not make any of the 

surrounding surfaces or gas within which they are suspended fluoresce. Fluorescent 

polystyrene microspheres, loaded with a variety of dyes, are available in sizes ranging 

fr 0 02 4 . d' (129) . . 
om. to ~m In Iameter . A range of excItation wavelengths are available, 

most notably at 488 and 354 nm which coincide with the emission lines of argon ion 

and frequency tripled Nd:Y AG lasers respectively. As the emission line can be easily 

filtered from the excitation line the image of the seed can be separated from that of its 

surroundings. As the fluorescent signal is typically much smaller that Mie-scattered 

signal an image intensifier would be needed in front of cross-correlation camera 

explored here. 

8.3.3 Time Averaged Measurements 

The PIV data presented here give a spatial velocity distribution at an instant in time. 

None of the results have been combined to give a time-averaged result, as the camera 

acquisition could not be locked to the rotor phase. If the acquisition could be locked, the 

same rotor position could resampled over multiple revolutions to give time-averaged 

quantities at each of spatial locations of the vector grid. Phase locking of the acquisition 

would also allow the rotor position to be phase stepped between acquisitions to show 

how the flow develops as the rotor passes. 

A time-averaged velocity error is composed of both statistical and systematic 

contributions. Increasing the number of samples reduces the statistical error. Reducing 

the systematic error involves minimising errors from particle image displacement, 
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timing, scaling etc. described in the previous section. The systematic error needs to be 

smaller than the fluctuating aspect of the flow if turbulent intensities are to be identified. 

The acquisition of the time-averaged aspect of the flow therefore necessitates a very 

rigorous experimental procedure. 

An alternative to phase stepping over multiple revolutions would be to acquire a quick 

succession of images as the rotor passes the field on the same revolution. High speed, 

intensified cameras originally designed for ballistics studies are available, an example of 

which is described in [130]. This intensified imaging system allows up to 24 frames to 

be recorded at an equivalent frame rate of up to 20 000 000 frames per second. Output is 

either to photographic film or 16 bit cooled CCD of ISO 30 000 equivalent sensitivity 

(camera used here was approximately ISO 3000 equivalent, 8 bit). The period for a rotor 

to traverse a stator passage is approximately 300 ~s. The system described in [130] 

would allow 12 frame pairs, for cross-correlation, to be recorded over this period. A 

light source that could be double pulsed at 50 kHz would be required. 

8.3.4 3-D PlV in the lLPF 

Three-dimensional measurements are of importance close to, and in the wake of, 

mechanical surfaces as these regions determine the heat transfer two and from the 

blades and can contain flow with a large out-of-plane component of velocity. 

The application of stereo PIV to the ILPF has already been discussed in section 5.4.1 

and was dismissed owing to the restricted optical access and blade shadowing. 3-D PIV 

by defocusing through a diffraction-limited lens was also presented in section 5.4.2 but 
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was not applied to the ILPF due to the aberrations present in the window. Possible 

remedies to this problem have been discussed, as has a two camera defocusing approach 

that potentially allows a field-of-view of similar dimensions to that used in 2-D PIV to 

be achieved. 

An alternative approach would be to exploit defocusing through an aperture mask as 

presented by Gharib (124) and discussed in section 4.5.3. The use of a single camera with 

an aperture mask neither suffers from the blade shadowing effects of stereo cameras nor 

requires a diffraction-limit optical arrangement between the scatterer and the image 

plane. Equation 4.18 can be used to assess the resolution in out-of-plane displacement 

for a given optical arrangement. For the optical arrangement summarised in table 8.4, an 

out-of-plane displacement of 40 !-lm would correspond to a 1 pixel separation between 

exposures. The in-plane resolution would be 20 !-lm per pixel. The out-of-plane 

resolution could, as could the in-plane, be extended by adopting sub-pixel accuracy. It is 

expected that the replacement of three circular apertures, as used by Gharib, by a couple 

of parallel slits at the periphery of the aperture would give an improved resolution 

(parallel markers are often used when visually recording tensile testing data). 
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Field-of-view 20 x 20mm 

Distance between apertures, d 50mm 

Focal length of lens,! 23mm 

Distance to object plane, do 100mm 

# pixels, pixel size 1000 x 1000, 6 x 6 J..lm 

Out-of-plane displacement for 1 pixel separation 40 J..lm 

In-plane displacement for 1 pixel displacement 20 J..lm 

Table 8.4. Parameters used to assess resolution of 3-D PIV by defocusing through 

aperture masks 
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8.4 SUMMARY OF CHAPTER 

Both particle tracking and auto-correlation have been applied to a single image recorded 

in the ILPF. Particle tracking gave 501 vectors, many of which were spurious. The 

centre-of-mass centroid approximation was applied but was found not to improve the 

accuracy of the measurement. The accuracy was estimated to be + 18%, which 

corresponds to integer pixel displacements with an average separation of 5 to 6 pixels. 

The auto-correlation gave 1020 vectors using a 64 x 64 interrogation spot size with a 

75% overlap. The particle centres are conservatively estimated to be located to 0.3 of a 

pixel, giving an accuracy of + 5.4% for the image displacement. Auto-correlation was 

used for the remainder of the images. 

The velocity distributions have been plotted using a Delaunay triangUlation to produce a 

non-smoothed, non-extrapolated but interpolated surface that contains all of the original 

velocity vectors. Smoothing can be applied if necessary. 

Velocity distributions extending from the trailing edge of the NGV to the leading edge 

of the rotor, the suction surface of the NGV to the leading edge of the rotor and stator 

passage have been presented and described. A single, instantaneous, non-smoothed 

measurement has also been shown to have very close similarity with a numerical 

prediction produced using a 2-D unsteady solver. 

The velocity vectors are expected to be accurate to approximately + 5% when scaling 

errors and image displacement errors are combined. The particle response is less than 

the interrogation spot size for all the flow features in the regions of interest. The plane 
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of the light sheet has a 1/5
th 

mm deviation from mid-span height at the periphery of the 

tmages. 

The auto-correlation gave a vector every 1.66 mm and the same resolvable length scale. 

A 75%) overlap was used to give a vector every 0.415 mm. The DVR is 17.8, the DSR 

48, the product of which is 854. An optimal arrangement based on the cross-correlation 

camera \vould give a vector every 0.64 mm for an interrogation spot size of 32 x 32 

pixels. The DVR would be 120, the DSR 42, the product of which is 5040 whilst 

maintaining an estimated accuracy of 1 % for the image displacement. 

Recommendations have been made for further work. The first recommendation is for 

the iterative cross-correlation of two images with the shift between cross-correlated 

regions converging on the mean displacement within the interrogation spot. This would 

allow the interrogation spot size to be reduced to give a greater vector yield and spatial 

resolution. The use of fluorescent seed has been recommended for measurements close 

to surfaces, the emission wavelength being separated from the excitation wavelength to 

remove glare and background illumination. Time-averaged and phase stepped 

measurements have also been discussed with the emphasis being placed on reducing 

systematic errors below the levels of the fluctuating aspect of the flow. The 

investigation of 3-D PIV by defocusing through the aperture mask of a single camera is 

also recommended in preference to other 3-D PIV techniques. 
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Chapter 9 

SHEARING INTERFEROMETER 

THEORY FOR ApPLICATION 

Description of Chapter 

The operating principle and theory behind applying the shearing 
interferometer to compressible flow fields is presented. To achieve 
this it has been necessary to review the fringe analysis software that 
has been used and the tomographic theory applicable to 
reconstructing refractive index distributions from a limited number of 
projections. 

The review of the tomographic theory has been extended to example 
reconstructions of synthetic distributions modelled in the MatLab 
environment. Their application has not been applied further here but 
they are subjects of a further project outside the realms of the thesis. 
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9.1 INTRODUCTION 

Although the range and accuracy of measurement instrumentation is constantly 

improving there is still a requirement for simple, quick to apply, maybe qualitative 

visualisations of fluid flow. The shearing interferometer is means of achieving, in the 

first instance, a qualitative visualisation. By analysing the visualisation with the 

necessary algorithms it can be extended to a quantitative measurement of density. 

The shearing interferometer differs from beam splitting interferometers in that the 

interfering beams occupy common optical paths and are incident on the same 

components. It is therefore far less sensitive to relative movement between the 

components. It is envisaged that the shearing interferometer would be used where either 

a schlieren or shadow graph would nonnally be used. 

In chapters 10 and 11 the application of the shearing interferometer to 2-D wind tunnel 

containing a compressor representative flow, and a shock tube used for the acoustic 

testing of jet noise suppressor nozzles, are described. In the fonner the measurement is a 

first pass characterisation of the flow prior to the evaluation of anemometry equipment. 

In the latter the visualisation was secondary to, and must not interfere with, the acoustic 

testing of the suppressor nozzles. In each case either a visualisation or a quantitative 

density measurement has been accomplished. The relevant theory for the successful 

application of the shearing interferometer is presented in the remainder of this chapter. 
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9.2 OPTICAL PATH DIFFERENCE 

At velocities below 0.3 of the speed of sound air density can be assumed to be constant. 

As the velocity increases this assumption becomes no longer valid and the density 

distribution becomes inhomogeneous. As the air density within the flow field changes, 

its refractive index changes with an approximately linear relationship unless extreme 

temperature or pressures are encountered. This relationship is described by the 

Gladstone-Dale equation (91), 

/-l-1 = Cp (9.1) 

where /-l is the refractive index, p is the density and C is the Gladstone-Dale 

constant (2.256x10-4 m3/kg for light of632 nm in wavelength). 

As a light ray is transmitted through a region of higher refractive index it becomes 

retarded relative to a ray that has not passed through such a region. The retarded ray 

experiences a longer optical path length than that of the unretarded ray. By measuring 

the difference in optical path lengths the difference in refractive index, and hence the 

differences in density along the optical paths can be calculated. Assuming refractive 

index bending to be negligible the optical path difference between the two rays is given 

by 

~f//(X,y) = fU(XI'YI'Zl) - /-l(x2 'Y2 ,Z2 )dz 

= J~/-l(x,y,z)dz = NA (9.2) 
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where A is the wavelength of the illuminating light and the fringe order number, N=O, 

+1, +2, ... for positive (additive) interference, ie bright points and N= +1/2, +3/2, ... for 

dark points. Assuming two-dimensionality dz becomes a constant, say I. Combining 

equations 9.1 and 9.2 the change in density at point x,y is given by 

;). (x ) = AN(x,y) 
p ,y CI (9.3) 

9.3 INTERFEROMETRY 

The human eye and most forms of recording media are sensitive to light intensity 

( amplitude) but not phase. Interferometry is a successful means of transforming the 

phase information into an amplitude object that can be observed and recorded. This is 

achieved by combining two coherent beams to generate an interference pattern of light 

and dark fringes that represent the phase difference (optical path difference) between the 

two beams. 

9.4 THE SHEARING INTERFEROMETER 

An interference pattern can be created using a beam-splitting interferometer such as the 

Mach-Zehnder. This kind of interferometer is susceptible to noise as the reference and 

object beams occupy separate optical paths. A fraction of a wavelength movement 

between the two beams can generate a whole wavelength phase shift at the 

interferogram. 

For a shearing interferometer a single beam is projected through the flow-field of 

interest onto a shearing device, which splits it into two beams that are slightly displaced 
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relative to each other but still occupy common optical paths. The two beams interfere to 

produce lines of constant phase difference between two overlapping points separated by 

the direction and magnitude of the shear. The beam is sheared after the flow-field, rather 

than before. otherwise the interfering beams would occupy the same path through the 

flow-field and undergo the same phase change to no net effect. 

Figure 9.1 shows a simple beam shearing arrangement consisting of a cube beam 

splitter and a couple of front-silvered mirrors. One of the mirrors is slightly tilted 

relative to the normal of the second mirror so that the recombined beams at the exit of 

the beam splitter are misaligned. The displacement between the two beams is called the 

shear distance that, for this arrangement, increases with x. As the emergent beams 

overlap they interfere to produce lines of constant phase difference. 

Shear ;!::::===="""""-----; Front silvered 
angle mirrors 

Incident 
ream ----------~-----.~------~ 

Beam 
splitter IL-__ -+l ___ --' 

x 
Shear 
distance 

Figure 9.1. Using mirrors and a beam splitter as a beam-shearing device. 

Figure 9.2 shows an alternative shearing arrangement where a back-silvered mirror is 

used as the shearing device. The initial glass surface of the mirror and its back silvering 

each reflect a portion of the light along slightly displaced but common optical paths. 
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Figure 9.2. The Shearing Interferometer 

The two sheared beams interfere to produce a finite fringe interferogram (straight 

fringes). The fringe deformation represents optical path difference, and hence the 

change in density, between two sheared points in the object beam that coincide at a 

point (-r,)y on the screen. The amount and direction of shear is a function of the angle of 

incidence between the shearing mirror and the object beam, and the thickness of the 

glass of the mirror 

d=2ttan9,cosB; = ~ , , 
,,2 _ ,,~sin2 B. 
1"", 1"", I 

(9.4) 

where t is the thickness of the mirror, Si is the angle of incidence and St is the angle of 

transmissivity and ~I is the refractive index of air (or the medium in which the mirror is 

suspended), see figure 9.3. Increasing the amount of shear increases the number of 

fringes (carrier frequency) and the distance between the two points over which the 

change in density is calculated. 
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Mirror 

Back 
silvering 

Figure 9.3. Beam shear 'd' produced using a back-silvered mirror 

The back-silvered mirror was used in preference to the beam splitter arrangement for 

several reasons. As the beams originate from the same optical component it is less 

susceptible to relative motion between the components. Large back-silvered mirrors are 

inexpensive and allow large fields of view to be measured. If a divergent beam is 

sheared the shear distance remains constant in size relative to the size of the field-of-

view. There will also be a small magnification difference between the sheared beams 

owing to the optical path length through the thickness of the shearing mirror. The 

compromise that has to be made for these favourable attributes is one of adjustability. 

Adjusting the amount of shear (rotating the mirror) meant that the screen and camera 

needed to be relocated in accordance with the position of the projected fringe pattern. 

Figure 9.4a shows the lines of constant phase produced by a shearing interferometer. A 

CO
2 

jet of higher refractive index than its surroundings, 1.00045 for CO2 and 1.00014 

for ambient air, has been positioned in the optical path of the beam. The optical path 
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difference generated by the CO2 jet manifests itself as bending of the lines of constant 

phase that can be related to the refractive index profile of the jet. Figure 9.4b shows the 

Ull\\Tapped phase map where the bending of the fringes has been quantified using the 

FFT technique that will be described in a later section. The greyscale represents the 

number of wavelengths delay, or fringe order number, that the beam has experienced. 

Figure 9.4c shows a plot of the fringe order number across the CO2 jet. The fringe order 

number represents the difference in optical path relative to a sheared point rather than 

the absolute optical path difference. An integrating in the direction of shear from a 

known datum can used to derive the absolute optical path difference. 

The shearing interferometer can also be used as a fringe proj ection device for surface 

contouring. Figure 9.5a shows the fringes projected onto eye of a manikin. The surface 

contours can be determined from triangulation if the camera is at an angle to optical 

path of the projected fringes. The grey scales of figure 9.5b represent the contours of the 

surface. 
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Figure 9.4. Measurement of a CO2 jet using a shearing interferometer 
a.The raw interferogram 
b. The unwrapped phase map of the interferogram 
c. Plot of the normalised intensity, equivalent to fringe order number, 
through the cross-section of the C02 jet indicated in 'b'. 
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Figure 9.5. The shearing interferometer used as a fringe projection system for surface contouring. 
a. The fringes projected onto the eye of a manikin. Camera placed at an angle to the optical path of the illumination. 
b. The fringe pattern solved using the FFT approach. A reference image (fringes projected onto a flat surface) has been subtracted 
to remove distortions in the image due to non-straight reference fringes. 
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9.5 THE FOURIER TRANSFORM METHOD OF FRINGE 

ANALYSIS 

The Fast Fourier Transform (FFT) method of extracting the phase information from 

finite fringe interferograms is described. The phase information, extracted using the 

FFT, is presented as arctan fringes. The arctan fringes give a phase distribution with 2n 

discontinuities from which the sign of phase changes can be determined. A largely 

nOIse-Immune approach to unwrapping the modulus 2n phase information into a 

continuous surface is also described. The description broadly follows the treatments 

giyen by both Judge [109] and Bryanston-Cross [111]. 

Both algorithms are embodied into a software package called FRAN [109] that has been 

used to process the data included herein. The preconditions and ambiguities in using 

FRAN are discussed. MatLab [110] has been used to demonstrate the FFT approach and 

highlight the uncertainties in this implementation. 

The phase information is encoded into the interferogram in the form of bending of the 

fringes. As the fringes are deformed the uniform spacing between the fringes is lost, 

generating localised areas of compressed and expanded fringe spacing. Scanning across 

these areas would reveal changes in the fringe frequency corresponding to the change in 

fringe spacing. By extracting this fringe frequency from the dominant carrier frequency 

the required phase information is isolated. This is achieved by using a Fourier transform 

[111 &112] , equations 9.5 and 9.6 giving the Fourier and inverse Fourier transforms 

respectively. 
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00 

G(u) = Jg(x )e-J27tUX dx (9.5) 
-00 

00 

g(x)= JG(u)e J21tUX du (9.6) 
-00 

The discrete Fourier transform is more suitable to computational methods, the discrete 

transform pair being defined as 

1 N-l - J21tnk 

G(n) = -Lg(k)e N 

N k=O 

(9.7) 

(9.8) 

where n=O,l ,2,3, ..... ,N-1. 

The interferogram can be described by (111 & 112] 

g(x,y) = a(x,y) + b(x,y) cos[21t/oX + ~(x,y)J (9.9) 

where a(x,y) is the background amplitude and b(x,y) the modulation noise./o is the 

carrier frequency in the x direction and ~(x,y) is the phase information of interest. 

Equation 9.9 is written in its complex form as 

g(x,y) = a(x,y) + 1/2 b(x,y) (cos [21t/oX + ~(x,y)J + jsin [21t/oX + ~(x,y)J 

+ cos[21t/oX + ~(x,y)J - jsin[21t/oX + ~(x,y)J) 
(9.10) 
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\vhere cos[21tj;~\ + $(x.y)} - jsin[21tJoX + $(x,y)} is the complex conjugate. 

Equation 9.10 can be written in a more convenient form thus 

g(x.y) = a(x.y) +b(x,y)12 ((!~(x.y) d'2rrjox + e:i~(x.y) e:i2rrjoX) 

(9.11 ) 

Letting c(x.y) b(x.J )d·~(x.Y) 12 and c * (x,y) be its complex conjugate, equation 9.11 

becomes 

g(x,y) = a(x,y) + c(x,y)J2rrjox + c *(x,y)e:i2rrjox (9.12) 

The FFT assumes that the raster of pixels is a periodic part of a continuous signal. The 

periodicity is removed by weighting the intensity of the raster of pixels using a Papoulis 

window [111], see figures 9.6 a and b. If the raster was not weighted in this way a ringing 

phenomena associated with the length of the raster would be generated in the frequency 

domain. The Fourier transform of the intensity distribution is given by 

* G(j,y) = A(j,y) + C(f-/o,y) + C (f+/o,y) (9.13) 

The power spectrum of the raster consists of two spectral side lobes corresponding to 

the second and third terms of equation 9.13, centred round the carrier frequency, see 

figure 9.6c. 
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As the side lobes are symmetric about the carrier frequency only one needs to be 

considered. It is desirable for $(x,y) to be a slowly varying function compared to the 

carrier frequency. The carrier frequency needs to be higher than the phase frequency in 

the entire iInage, lower than the maximum frequency that is resolvable. If this is 

achieved the peaks in frequency space will be clearly separated. By weighting one of 

the side lobes using a Hanning window (Ill), see figure 9.6c, and translating it to the 

origin, see figure 9.6d, by the carrier frequency, C(f,y) is obtained. A Hanning window 

is used to prevent the creation of periodic noise in the filtered data. The phase map is 

calculated using the inverse transform of C(f,y). The phase distribution is given by 

- [3[ c(x,y)] J 
Hx,y} - arctan 9t[c{x,y}] (9.14) 

\yhere 3[c(x,y)} and 'Jt[c(x,y)} are the imaginary and real components of c(x,y) 

respectively. The use of the arctan function gives a discontinuous phase map wrapped in 

a modulus of 2n, figure 9.6e and f. The discontinuous form of the arctan function 

removes the directional ambiguity in unwrapping the phase. The sign convention, 

although arbitary in FRAN, can later be corrected from the direction of shear. 

Figures 9.6 e and fshow the wrapped maps of the same raster of pixels processed using 

the FFT approach. In each case a different carrier frequency has been specified resulting 

in a gradient in the phase information between the two. The carrier frequency is 

inevitably inhomogeneous over the spatial extent of the interferogram owing to 

divergent beams, misalignments etc. In FRAN the carrier frequency is calculated from 

one raster of pixels but used globally over the entire image. The outcome is a gradient 

on the unwrapped phase owing to the distortions present in the reference state. The 
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solution is to process both a reference, in the absence of the flow, and subject images 

using identical carrier frequencies. The reference unwrapped phase map is subtracted 

from the subject's to remove the distortions. In practice obtaining an unwrapped phase 

map is difficult owing to ambiguities in the fringe data, speckle noise and the resolution 

of the imaging system. 
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Figure 9.6. The FFT method of extracting the phase information from fmite fringe interferograms 
a. Intensity data of one raster of pixels and weighting window. b. Intensity data weighted by window. 

c. Power spectrum of raster with carrier frequency and deformation. 
d. Side lobe after weighting by Hanning window and translated by the carrier frequency to the origin. 

e & f. Wrapped phase produced by selecting different carrier frequencies, f is correct, e has a gradient due to incorrect carrier frequency 
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FRAN uses a nlinimum spanning tree as a mechanism for computing the consistency of 

possible phase-unwrapping routes (109 &1111. An unwrapping path is constructed in order 

to maximise confidence, confidence being weighted according to a minimum spanning 

tree. At its lowest level paths between pixels are compared to circumvent spike noise. 

Neighbouring pixels to each individual pixel are considered, the path progressing to the 

pixel \vith the minimum phase change. As the unwrap path seeks to minimise the phase 

change at each step the spike noise, characterised by a rapid change in phase, is not 

considered until the end of an unwrap path. Its threat to the overall solution is therefore 

minimised. 

At a higher level, tiles of pixels are compared to deal with local area inconsistencies 

such as aliasing and natural inconsistencies. The aim is that areas of local 

inconsistencies are contained within the tiles and are dealt with in a similar way to spike 

noise. Inconsistencies are detected by comparing against the unwrapped edges of 

neighbouring tiles. Inconsistencies are avoided in the unwrap path. The tiles are made to 

overlap each other slightly to aid the comparison. In addition to this, edge-detection 

algorithms are used to find out whether there are fringes present within a tile. If no 

fringes are found then clearly the tile does not need to be unwrapped. This greatly 

reduces the time required for the unwrapping process, especially where large areas of 

non-fringe infonnation are included in the image such as silhouettes and boundaries. 

By adopting this largely noise-immune phase-unwrapping strategy, a fringe pattern can 

be solved despite the presence of spike noise and local area inconsistencies. Their threat 
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to the overall solution is minimised by only including them at the end of an unwrap path 

or excluding them from the solution. 
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9.6 TOMOGRAPHIC RECONSTRUCTION OF DENSITY FIELDS 

Interferometry can give the projection of a density field. The optical path length is a 

convolution of the density and its spatial extent within the optical path. For a two­

dimensional flow field this spatial extent is known and only one projection is required 

to calculate the density distribution in the flow field. Multiple projections are required 

to spatially resolve three-dinlensional density distributions. 

Where the number of projections is limited, assumptions need to be made about the 

refractive index distribution to facilitate a reconstruction. Equation 9.3 can be used if 

the flow is assumed to be two-dimensional. An Abel inversion can be used if the flow is 

assumed to be axis-symmetric whilst an algebraic reconstruction can be applied where 

there are limited data of a three-dimensional flow. Descriptions of the Abel inversion 

and Algebraic Reconstruction Technique (ART), the latter following the pragmatic 

overview given by Lawton (29], are included to facilitate the three-dimensional 

reconstruction. Brief overviews of Fourier Slice theory, filtered, and convolution back­

projection methods are also included, although their application to the limited data 

presented here is questionable (typically projections every 2° to 6° steps over 180° are 

required). 

9.6.1 Axial Tomography 

Axial tomography refers to the reconstruction of a cross-section, or slice, through an 

object. The slice is reconstructed by means of a mathematical manipulation of the data 

gathered by passing many beams through the slice. The first medical applications of 

axial tomography used X-rays to map areas of constant absorption coefficient. Whilst 
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,. -rays are used for solids, UV, visible and near IR radiation are nonnally used for 

gasses and liquids. 

Most of the tomography texts are lUlderstandably biased towards the reconstruction of 

absorption coefficient [29 & 114J through a two-dimensional slice, as they are geared 

to\vards medical applications. Interferometry is concerned with the phase difference 

through a transmitting object rather than the beam attenuation. The analysis is 

essentially the san1e in that the refractive index field, not the absorption coefficient, is 

reconstructed. 

Figure 9.7 shows a typical arrangement used for axial tomography where a line of 

radiation sources emit a parallel set of rays through the test object onto a linear array of 

detectors. A projection at a given angle, 8, is made up of many individual paths. A 

complete scan is typically made up of many projections at increments of 2° to 6° over 

180°. A three-dimensional object can be reconstructed by stacking the individual slices. 

p 

Transmitted 
intensity 

L-----.I(p) 
Detector 

Figure 9.7. Axial tomography 
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The proj ction process, the coordinate system of which is shown in figure 9.8, can be 

d sClibed analytically using the Radon Transform 11 91, 

= ff(x z )5(x-pcosB-qsinB,z-qcosB+ psine )dq (9.15) 

\ here f (.Y,::) is the source function, e is the beam angle from the z aXIS, p is the 

transverse coordinate, 8 is the Dirac delta function and q is the coordinate along the ray 

path. f,. (p,e) represents the one-dimensional projection off(x,z) onto a line orientated at 

an angle e \vith the z axis. 

The integration is idealized into a line integration rather than a strip integration that 

accommodates the finite thickness of the rays or detector element pitch. Inverting the 

Radon transform gives the source function, f(x,y). The following sections describe some 

of the inversion techniques. 

X 

q 

z = q case - p sine 
x = q sine + p case 

q = z case + x sine 
p = x case - z sine 

~~ ____ L-____________________________ ~z 

Figure 9.8. Proj ection coordinate system 
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9.6.2 Abel Inversion 

hl the case of radial symmetry the two-dimensional slice can be determined from one 

projection. The premiss of the Abel inversion is that a refractive index distribution can 

be divided into a series of constant refractive index, concentric rings. The inversion 

process involves onion peeling the distribution layer by layer. Figure 9.9 shows a ray 

passing through a refractive index field. Neglecting refraction the optical path difference 

nlay be 'written as [19) 

z, 
\V (x) = 2 f n (r }dz (9.16) 

o 

Differentiating along the optical path, x is constant gives rdr = zdz and substituting 

(9.17) 

z 

Figure 9.9. Optical path through a radially symmetric refractive index field 
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Therefore equation 9.16 can be written 

(9.17) 

If the optical path difference is recorded by the interferometer for all values O<x<R or , 

preferably further than R to include areas outside the flow, then equation 9.17 may be 

inverted to give the refractive index in the range O<r<R [19 & 291• 

(9.18) 

\vhere 

Such an inversion is known as an Abel Inversion. \jJ(x) is not usually an analytical 

function of x, but is recorded by the interferometer over a finite number of rays owing to 

the finite resolution of the recording media. 

9.6.3 Application of Abel Inversion to a Propane Flame 

Figure 9.1 Oa shows the interferogram of a propane flame emitted from a radial burner 

taken from both references [111 & 115] by Bryanston-Cross. The interferogram is not 

the result of a sheared beam but the interference of a plane wave with a tilted wave front 

to produce carrier fringes. 
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Figure 9. lOb shows the unwrapped phase map produced using the FFT technique. The 

solution contains localized tile failures but the Minimum Spanning Tree phase 

unwrapping algorithm has preserved the overall integrity of the global solution. As the 

flanle is assumed to be radially symmetric the Abel Inversion algorithm need include 

only one half of the flame. The left-hand side of the flame contains the least tile failures 

so \yill be the subject of the remainder of the analysis. Neither the angle of tilt between 

the plane and reference beams nor the dimensions of the flame are known so the 

analysis remains dimensionless and all axis coordinates refer to pixels only. 
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Figure 9.10. The analysis of a tilted wave interferogram projected through a propane flame. 
a. The tilted wave interferogram. 
b. The unwrapped phase map of half the interferogram (highlighted in red). 
c. Cross section through the propane flame calculated using an Abel inversion. 

Highlighted areas contain localized failures discussed in text. 
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The integration and differentiation in equation 9.18 is to be carried out numerically. To 

achieve this the equation can be discretised as follows, 

(9.19) 

This discretisation has been implemented and tested in the MatLab environment. Figure 

9.11 a shows a synthetic density field with a Gaussian profile. Figure 9.11 b shows the 

reconstructed profile plotted against the original synthetic profile for successively 

higher resolutions of 100, 300 and 500 square pixels. The reconstructed solution 

improves as the resolution increases . 
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Figure 9.1l. Testing of the discretisation of the Abel Inversion, equation 9.19, using a synthetic density field 

a. The synthetic density field ..' 
b. Original cross section plotted against reconstructions at succeSSIvely higher resoluhons 

The discretisation has been successfully applied to the unwrapped phase map of the 

propane jet, figure 9.10c. The solution has been subjected to a 9 x 9 median filter to 

reduce the spike noise. Figure 9.10c shows a ring of higher refractive index of similar 
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diameter to the burner exit that grows in diameter further downstream. The profile is 

sinlilar to that measured by Bryanston-Cross 11151 using thermocouples and coincides 

\vith the hottest part of the flame (~1000 °C). However, some of the features of figure 

9.10c are artifacts of the analysis and noise. Areas A and B coincide with localized tile 

failures. The tile failures occur for two reasons. Firstly, the resolution of the 

interferogram has been reduced owing to computational limitations (insufficient 

lnemory). As a result the resampled interferogram may simply not have sufficient 

resolution to resolve the compressed fringes. Secondly, the phase information encoded 

\Yithin the deformation of the fringes needs to be a slowly varying function in 

comparison to the carrier frequency. This is necessary to successfully discriminate 

between the phase information and the carrier frequency in the frequency domain. The 

top third of the solution, area C, seems to have an offset in comparison with the rest of 

the image. This is because the silhouette in the top left-hand comer obscures part of 

flame and has been (incorrectly) included in the Abel inversion. 

9.6.4 Algebraic Reconstruction Technique (ART) 

As with other tomographic reconstruction techniques ART uses projections to 

determine the unknown coefficients within the cross-section of a medium. ART can be 

best described by the use of an example 1291• 

Figure 9.12a shows a three by three grid of coefficients. The grid elements, or pixels, 

are assumed to have unit dimension and the coefficient is uniform within its pixel. 

Adj acent to the grid are shown the vertical and horizontal ray sums that make up the 

projections. The grid contains 9 entries whilst we have 6 ray sums. The problem is 

therefore, as is typical of tomography, indeterminate. 
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column 1 would be multiplied by 4/5.33, column 2 by 
5/5.33 etc. After just one iteration the reconstructed grid 
gives row and column sums that are converging on those 
given in part a. 

Figure 9.12. Example of the multiplicative algebraic reconstruction technique. 
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Initially the entries of the reconstructed grid are assumed to be unity. The rows are first 

nlultiplied by their respective row sum divided by the number of pixels in the row, 

figure 9.12b. The columns are then multiplied by the sum of the elements in the 

reconstructed column and divided by the column ray sum given in figure 9.12a. 

Several iterations of this scaling process may be required before the sum of the scaled 

rows or columns converge to a steady solution. As the problem is indeterminate the 

reconstructed grid converges to a solution, not necessarily the correct solution. 

In the example shown in figure 9.12, multiplicative ART (MART) was used to scale the 

rows and columns by multiplication. An alternative to MART is to use addition ART 

(AART) to scale the rows and columns. With AART the difference between the 

reconstructed and original ray sum, divided by the number of pixels in the ray sum, is 

added to each of the entries. MART is often used in preference to AAR T as it cannot 

produce negative coefficients. 

In the example only two orthogonal projections corresponding to the x,y coordinate 

system were used. In practical measurements the use of two orthogonal projections may 

not be possible or sufficient to reconstruct the domain. In such situations projections 

that do not coincide with the x,y coordinate system need to be considered. 

Figure 9.13 shows an arbitrary ray passing across a domain from a source to a detector. 

The ray has a finite thickness that will overlap both whole and part elements. The 

multiplicative or arithmetic scaling needs to be weighted either according to the area of 

this overlap or on a binary basis according to the presence of the centroid of the element 

within the ray. 
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Figure 9.14 shows an application of MART to a synthetic domain generated in the 

~latLab environment. The domain has been reconstructed using both 2 and 4 

projections with 16 ray sums per projection. The use of 4 projections produces an 

obvious dividend in tenns of reconstructing the offset peak. 
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W ij = shaded area/82 

x x 

Wij = 1 if centroid lies within beam 
otherwise w· . = 0 IJ 

x 

Figure 9.13. A ray passing through a domain, partially 
overlapping some of the elements 

a. 

b. 
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9.6.5 Overview of Other Reconstruction Techniques 

T\vo of the most common analytical reconstruction methods that are used where the 

object under study can be accessed from a full 1800 are filtered back projection and 

convolution back projection. The Fourier Slice theorem forms the basis for both of these 

techniques. 

Fourier Slice Theorem 

The Fourier Slice Theorem links the two-dimensional Fourier Transform to the one­

dimensional Fourier Transform of its projection (19,29 & 113]. It states the Fourier 

Transform of a projection of an object at angle 8, 3(f,.(p,8)}, is equal to the Fourier 

Transform of a line at an angle 8 through an object, Fr(q,8) (19]. With reference to 

figures 9.8 and 9.15 it follows that [138] 

3{fr (p,B)} = Fr (q,8 ) (9.20) 

(9.21) 

D{u, v) = 3{f{x, z)} (9.22) 

where D(u,v) is the Fourier transform of the object in Cartesian coordinates. If all the 

projections are known, the complete frequency field can be built, from which the 

inverse Fourier Transform will yield the original object. 
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u 

Figure 9.15. Diagrammatic explanation of Fourier Slice 
theorem 

Back Projection 

Back proj ection is a simple, inexact, but less computationally intensive method of 

reconstructing the object. The back projection is described by [138] 

(9.23) 

Each projection is expanded (back projected) along the beam axis and the superimposed 

(summed) back projections produce an approximate reconstruction 

Filtered Back Projection 

For the filtered back projection method the filtered inverse Fourier Transforms of the 

projections are determined individually [19]. As the frequency domain is reconstructed 

from lines radiating from its origin it will never be fully defined from a limited number 

of projections. Furthermore, in order to carry out a Fast Fourier Transform the radial 

frequency values need to be interpolated to a Cartesian grid. As the interpolation error 

increases with distance from the origin the lower frequencies will be reconstructed more 
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accurately than the high frequencies. Filtered back projection avoids this problem by 

negating the requirement to construct the frequency domain. The high frequency aspects 

of the reconstnlction are therefore preserved to a greater extent than if the frequency 

domain had been reconstructed through interpolation. 
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9.7 SUMMARY OF CHAPTER 

Refractive index changes approximately linearly with density. A ray of light that is 

transmitted through a region of high refractive index will be retarded relative to a ray 

that has not. The optical path difference is the difference in the path integrals, a 

conyolution between refractive index and its thickness along the optical path, of the two 

rays (line integral in the absence of refractive bending). 

The shearing interferometer is a simple means of recording optical path difference. The 

interferometer is used to shear a coherent beam that has passed through a phase object 

into two slightly displaced beams that occupy common optical paths. The two sheared 

beams interfere to produce a finite fringe interferogram. The optical path difference 

bet\yeen overlapping sheared points manifests itself as a bending of the fringes. A one 

wa\'e1ength shift of a fringe represents an optical path difference of 1 wavelength. The 

measurement is relative to the sheared point rather than absolute. As all the beams are 

incident off common components and occupy common optical paths the interferometer 

is no more sensitive to vibration than an equivalent schlieren set-up. 

The phase information can be automatically extracted from the interferogram by the 

FFT approach. The wrapped phase map can be unwrapped using the minimum spanning 

tree algorithm that unwraps round localised noise, either excluding it from the solution 

or only including it at the end of an unwrap path. 

The carrier fringes produced by the shearing interferometer are typically not uniform 

across the extent of the image. The phase distribution of the reference state needs to be 

subtracted from disturbed state to remove these non-uniformities. The carrier frequency 

215 



needs to be higher than the phase frequency, but low enough to be resolved by the 

camera, to enable the segregation the phase information. 

The distribution of refractive index, or density, within a phase object can be 

reconstructed by tomographic means. The reconstruction is typically indeterminate 

\vhere the number of projections is limited. Assumptions are made about the geometry 

of the refractive index distribution to facilitate a reconstruction. Radially symmetric 

phase objects can be reconstructed using an Abel transform whilst a 3-D solution can be 

generated fronl a limited number of projections by using an algebraic reconstruction. 
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Chapter 10 

ApPLICATION OF THE SHEARING 

INTERFEROMETER TO A 2-D 
TRANSONIC AIR FLOW 

Description of Chapter 

This chapter describes the application of the shearing interferometer to 
a two-dimensional transonic wind tunnel at Rolls Royce, Derby. 

A single, collimated beam has been projected through the flow field and 
sheared using a back-silvered mirror to produce a fringe pattern. The 
fringe pattern has been analysed using the Fast Fourier Transform 
(FFT) method /109 & 1111. The subsequent 'wrapped' phase map is 
'unwrapped' using the largely noise immune Minimum Spanning Tree 
(MST) technique. This allows the flow field to be solved despite the 
presence of discontinuities such as shocks. 

The shock structures were observed to be similar to those revealed by a 
holographic interferometer /221. 
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10.1 INTRODUCTION 

Calculating the inter-passage flow in turbomachinery is difficult because of the 

existence of shock structures and turbulent regions. As numerical techniques increase in 

their sophistication experimental methods are required to validate them. Bryanston­

Cross and Denton \221 made a 2-D quantitative visualisation of the density and Mach 

number distribution of the 2-D wedge rig, as it shall now be referred to, at Rolls-Royce, 

Derby. The measurements were made using a holographic interferometer at a 

compressor representative flow condition of inlet Mach number 1.45 and compared 

against an inviscid prediction. Bryanston-Cross's measurements were made in the early 

1980s. 2-D measurements integrated over the line of sight are no longer considered to 

be sufficiently accurate to reveal the flow between highly three-dimensional compressor 

blades. 

The measurements presented here are also 2-D and integrated over the line of sight. The 

purpose of these measurements differs from those described by Bryanston-Cross in that 

they were to be used as a quick, first pass characterisation of the flow field prior to the 

testing of a new 3-D anemometry system. To achieve this the optical arrangement had 

to be simple to set up and negate the requirement for excessive vibration isolation. The 

use of the shearing interferometer allowed measurements covering one half of the test 

section (symmetrical about the centreline of the wedge) to be made at mass flow rates 

from 0.6 to 1.0 kg/s in increments of 0.02 kg/s in the space of one day. Only the results 

of the 0.66 kg/s mass flow rate will be presented here. 
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10.2 TWO-DIMENSIONAL WEDGE RIG 

The \vedge rig is designed to maintain transonic flow continually through the test 

section. To achieve transonic flow a two-dimensional convergent-divergent nozzle was 

used to accelerate the flow through the 35.6 mm wide tunnel section containing the test 

body, from which it was then exhausted to atmosphere. Although the test section is very 

narrow the flow through it was assumed to exhibit two-dimensionality as described in 

[12]. A nine degree wedge was introduced into the test body to create a transonic 

compression of the flow, figure 10.1. The wedge and test body were designed to 

produce a strong leading edge shock that at speeds of approximately Mach 1.5 was 

considered to be similar to that generated in the first stage compressor of a typical 

commercial gas turbine engine. A summary of the operating conditions is given in table 

10.1. 

Unfortunately, on the day of the test one of the test section windows was found to be 

broken. The upper right-hand comer of the window can be seen to be missing in figure 

10.1. As the missing fragment is downstream of the leading edge of the wedge and only 

extends to one side the decision was made to only consider the lower side of the wedge, 

downstream of its leading edge. The asymmetry affected the flow at the wedge tip 

where the air was found to be slower and denser than expected. 
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Figure 10.1 The test section of the wedge rig 

Continuously running tunnel 

Exhaust to ambient air 

Reynolds number based on the 5xl05 

tunnel width 

Width of tunnel 35.6mm 

Height of tunnel 68.5mm 

Angle of wedge 9° 

Thickness of wedge. 7mm 

Table 10.1 Dimensions of the wedge rig 
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10.3 EXPERIMENTAL ARRANGEMENT 

The optics consisted of a 5 m W Helium Neon laser, a mICroscope objective of 

numerical aperture 0.4, a plano-convex lens of diameter 100 mm, focal length 150 mm 

and a 150 mm square, 3 mm thick back silvered mirror. The laser, microscope objective 

and plano-convex lens were mounted on an optical rail placed approximately one metre 

in front of the wind tunnel, see figures 10.2 and 10.2. The beam was expanded using the 

microscope objective and collimated into a beam of approximately 75 mm using the 

plano-convex lens. Efforts were made to make the beam as perpendicular to the wind 

tunnel as possible. The back-silvered mirror was mounted approximately 20 cm behind 

the \vind tunnel on a scaffolding frame using a temporary mount. The mirror was 

rotated about the x-axis until the fringes were parallel with the direction of flow, thus 

being in a suitable alignment for the proposed FFT analysis. The proximity of the 

laboratory wall prevented the mirror from being rotated to an ideal angle. As a result 

each fringe was described by approximately ten pixels across its width rather than the 

optimum figure of five. The reflected beam was projected on to a piece of white paper 

wrapped round a piece of flat sheet metal. This gave a grain free image with little glare 

from the dull surface of the paper. The screen was positioned to be as near as possible to 

the normal of both the reflected beam and the view from the CCD camera. The reason 

for this was to avoid distorting the image due to a sloping screen and to allow the CCD 

camera to focus on the entirety of the image. The images were recorded with an 8 bit 

monochrome CCD camera with 560 by 450 pixels. 

Results were gathered from flow rates of 0.6 kg/s to l.0 kg/s in increments of 0.02 kg/s 

as within this region an interesting shock structure developed. Four reference shots were 
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tak n b fore, after and during the capture sequence. Only the measurement at 0.66 kg/s 

is considered here. 

Figure 10.2 The shearing interferometer applied to the wedge rig. 
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10.4 RESULTS 

Figure 10.3 Fringes projected through the wedge rig 
a. Reference image in the absence of the flow 
b. Flow on, mass flow rate of 0.66 kg/s, Mach 1.5 at inlet, flow 

from left to right 
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10.5 INTERPRETATION OF RESULTS 

10.5.1 Analysis of the Fringe Patterns 

Figures 10.3a and b show the flow off and flow on results respectively. The flow off 

reference image shows the fringes running parallel to the axis of the wind tunnel. The 

shear is in the orthogonal direction with a magnitude of % mm, which corresponds to 

approximately 9 pixels in the y-direction. The reference fringes are not unifonn so 

eannot be described by a single carrier frequency. A single carrier frequency of 0.1289 

eye les per pixel was chosen as it gave a solution with a minimum number of tile failures 

and discontinuities in the unwrapped phase map. The fringe order height map was 

subtracted from that of the flow on state, processed with the same carrier frequency and 

tile size of 10 pixels, in order to remove phase contribution of the non-unifonn 

reference fringes. 

Figure 10.3b can be used as a qualitative visualisation of the shock structure without 

further analysis. The rapid changes in density at the shocks show up as abrupt 

deviations in the path of the fringes. Refraction is also evident, as the light has been 

squeezed out at the leading edge of the wedge and at the vertex of the Prandtl-Meyer 

expansion fan at the end of the wedge taper where the flow changes direction. The 

silhouettes of the wedge and tunnel wall also appear to have become wider owing to 

refraction in the high density gradients close to the surfaces. 

Figure 10.4a shows the density distribution relative to a sheared point in kg/m
3

. The 

solution has been produced by subtracting the fringe order height map of the flow off 

condition from that of the flow on. The change in density has been calculated using 
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equation 10.3 as two-dimensionality has been assumed. Holes in the solution occur 

where a silhouettes or noise interrupt the tiles. 

Figure 10.4b illustrates the integration of the raster of pixels from figure 10.4a, 

indicated by a red line, in order to calculate the absolute density. This raster of pixels 

was chosen as it crosses both the leading edge shock and what appears to be an 

expansion wave emanating from a change in direction of the tunnel wall. The blue and 

red lines of figure 10.4b show the relative changes in density of flow on and off 

conditions respectively. The flow off has been subtracted from the flow on and the 

offset removed. The changes in density of sheared points, separated by 9 pixels, have 

been summed along the raster to determine the absolute density with an unknown offset, 

shown by the black line. For the green line the offset has been estimated using oblique 

shock theory [106] 

P2 _ tane 
PI - tan (e - p ) (10.1) 

where P is half the angle of the wedge, e is the angle of the oblique shock, PIan P2 are 

the pre and post shock densities respectively. The absolute density could also be 

calculated from points of known stagnation and the isentropic relations either side of the 

leading edge shock. From figure 10.4b the change in density across the shock (between 

pixels 70 and 125 on the x-axis) is 0.3 kglm3
. Substituting P2-PI=0.3 into equation 10.1 

gives PI = 0.803 kglm3 and P2 = 1.103 kglm3
• The density ratio across the shock is 1.37 

for a shock angle of 53° +1°. If the pre and post shock densities are known the pre and 

post shock Mach numbers can also be calculated from the following equations taken 

from White [106] 
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2 

1 

2 

(10.2) 

(10.3) 

where 1'!1 and M2 are th~ pre and post shock numbers respectively and y=l.4 for air. The 
calculatIons are summansed in table 10.2. 

Pre shock Post Shock 
Measured density, kg/mJ 0.803 1.103 
Density ratio 1.374 
Mach number 1.526 1.196 

Table 10.2 Pre and post shock densities and Mach numbers. 

10.5.2 Description of Results. Mass flow rate 0.66 kg/so 

Close to the wedge. 

The flow approaches the leading edge with a Mach number of 1.53. A shock is formed 

at the leading edge of the wedge that slows the flow down to Mach 1.20 and turns the 

flow to run parallel with the profile of the wedge. At the end of the wedge taper a 

Prandtl-Meyer expansion accelerates the flow to its pre shock Mach number. 

Close to the tunnel wall surface. 

The abrupt change in direction at the tunnel wall at A creates a weak shock wave. The 

post shock Mach number quickly recovers to its pre-shock value of 1.3 only to 
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encounter another weak shock that appears to originate from the tunnel wall at B. The 

region imnlediately above B appears to contain a break in the unwrapped map that 

coincides with a region of poor fringe definition in figure 10.3b. The flow close to the 

tunnel wall from here on, C, contains noise where the silhouette has encroached into the 

tiles used in the unwrapping process. There is, however, a change in density along a line 

that continues downstream beyond the field-of-view that may be a separated region 

originating at . ..t. 

1 O.5.3Resolution in Density 

The fringe number corresponds to a convolution between the density change and the 

optical path length through the region. As the wind tunnel is two-dimensional the 

change in density between two sheared points required to produce a single fringe shift 

can be calculated using equation 10.3, 

!J.. = ~ = 6.3 * 10-
7 

= 0.078k / m 3 

p IC 35.6 * 10-3 * 2.256 * 10-4 g 

lO.5.4First Order Approximation of Refraction 

The incident beam will always be normal to the interface of the change in refractive 

index if the flow is assumed to be two-dimensional and the beam is aligned to the 

normal to the test section windows. From Snell's law the refractive bending will 

therefore be zero. Although the flow is assumed to be two-dimensional Bryanston-Cross 

[22] observed that although the features exhibited two-dimensionality across the major-

span of the tunnel the foot of shocks broadened close to the windows. 
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The amount of refractive bending can be measured by sending a beam of light through 

the wind tunnel and recording its displacement between the flow off and on conditions. 

Unfortunately, this test was not carried out. The refractive bending is expected to be 

significant close to the surfaces owing to the density gradient of the boundary layers. 

The refractive effect will extended to the corresponding sheared point. The apparent 

broadening of the silhouette of the wedge between the flow off and on conditions is 

believed to be due to refractive bending. 

10.6 DISCUSSION 

The fringe patterns presented here represent a challenging application for interferometry 

as the flow contains gradual changes in density followed by abrupt changes owing to 

the shocks. The carrier frequency needs to be higher than the phase frequency, so that 

they can be separated from the low frequency information in frequency space. The 

presence of shocks therefore dictates that a high carrier frequency is used. In this 

application the carrier frequency was approximately 0.13 cycles per pixel, the maximum 

that could be achieved at the time of the experiment. Figure 10.5 shows the power 

spectrum of the raster of pixels considered in figure 10.4b. It is not clear where the low 

frequency information from silhouettes etc ends and where the required side lobe 

begins. However, the ambiguity is not believed to be the cause of the tile failure in 

figure 10.4a as the failures correspond to regions in the original fringe pattern, figure 

10.3b, where the fringes cannot be resolved either due to insufficient spatial resolution 

or a blurring of time variant aspects of the flow. A simple solution to the blurring effects 

would be to reduce the camera's integration time. The number of carrier fringes can be 
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increa ed by using more shear and opening up the camera's aperture to reduce the 

pe kle ize if it i larger than the pixel size. 
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Figure 10.5 The power spectrum of the raster of pixels 
considered in figure 10.4b 

0.5 

The density close to the surfaces is hidden by the stepped edges of the tiles used in the 

unwrap path. The tile size of lOx 10 pixels used here was the lower limit that can be 

achieved with the FRAN software. Even in the absence of the tile obscuration these 

regions are likely to be dominated by refractive bending owing to the steep density 

gradients of the boundary layers. 

It is imperative that the analysis technique is robust enough to find a path around the 

discontinuities without jeopardising the overall solution. Shock waves or other abrupt 

changes in the flow field can cause a discontinuity in the fringe field. The 

discontinuities appear as a jagged, stepped transition between grey levels. Shocks are to 
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be expected in transonic flows so it is important that they are allowed for in the analysis 

\vhilst still solving the continuous surface. With FRAN the minimum spanning tree 

method of phase unwrapping is able to find a path around the majority of the 

discontinuities. If the discontinuity is surrounded by a continuous unwrap path the 

solution either side of the discontinuity is still valid. If the discontinuity cuts off an area 

the flow in this region is offset by an unknown amount from the rest of the flow field. 

Unless the knowledge of the flow is sufficient to calculate this offset the region can only 

be described as an entity separate from the rest of the flow field. 
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10.7 SUMMARY OF CHAPTER 

Density measurements have been made in a 2-D wind tunnel with an inlet Mach number 

of l.5 using the shearing interferometer. The test section of the 35.6 mm wide, 68.5 mm 

high \vind tunnel contains a wedge profile with a half angle of 9°. The measurements 

\"ere used as a first pass characterisation of the flow through the tunnel in preparation 

for the evaluation of anemometry equipment. Measurements were made at mass flow 

rates from 0.6 to 1 kgls in 0.02 kgls increments within the space of one day. Only the 

0.6 kg/s nlass flow rate has been considered here. 

The shearing interferometer can be used to provide either a qualitative visualisation or 

quantitative information about density if the phase information is extracted from the 

interferograms. The FFT method of fringe analysis and the MST phase unwrapper have 

been used to get this information in the presence of discontinuities in the fringe data and 

spike noise. A back-silvered mirror was used to give a shear of 314 mm (9 pixels) in a 

direction orthogonal to the axis of the facility. The carrier frequency was approximately 

0.13 cycles per pixel. 

The unwrapped map shows a strong leading edge shock from the leading edge of the 

wedge and a Prandtl-Meyer expansion fan at the end of the wedge taper. The pre and 

post shock Mach numbers are l.526 and l.196 respectively. Oblique shock theory has 

been used to calibrate the relative density measurements for absolute density. 
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Chapter 11 

ApPLICATION OF THE SHEARING 

INTERFEROMETER TO A SHOCK-TuBE 

EXHAUSTING INTO AMBIENT AIR 

Description of Chapter 

The chapter describes the application of a simple interferometric 
shearing device to a shock tube used to evaluate noise-suppressor 
nozzles relevant to the High-Speed Civil Transport programme. The 
problems in making such an aircraft fit within modern certification 
standards and the rationale of the reflection-type shock tube is also 
discussed with regard to testing time and economics relative to an 
equivalent continuous running facility. A brief overview of the gas 
dynamics, function and dimensions of the facility is also included. 

The shearing interferometer allows a projection of the change in 
refractive index of a medium to be measured. The change in refractive 
index can either be due to a change in density of the fluid or the 
presence of a gas of differing Gladstone-Dale constant. The Fourier 
Transform method of fringe analysis and a largely noise-immune 
phase-unwrapping algorithm are described. 

The analysis of a single result recorded on the shock tube is also 
included. Recommendations are made regarding the future 
application of the shearing interferometer to this facility. 
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11.1 INTRODUCTION 

11.1.1 Introducing the Problem 

Airport regulations and aircraft noise certification requirements govern the maximum 

noise level that an aircraft is permitted to produce. The principal source of noise is the 

aircraft engine 11021 . The compressor, turbine and exhaust jets all produce noise levels 

that increase, to varying degrees with the relative airflow velocity. Of these it is the 

exhaust jet that is likely to be dominant, so a reduction in the exhaust jet velocity will 

have the strongest influence on the overall noise level. 

The exhaust jet noise is due to the mixing of the exhaust gases with the atmosphere and 

is influenced by the shearing action and relative velocity between the two. The small 

eddies which are found near the exhaust duct generate high frequency noise, see figure 

11.1. These eddies coalesce and grow into larger eddies that generate low frequency 

noise. If the jet speed exceeds the speed of sound the jet core will contain a criss-

crossing shock pattern that may produce a single tone under certain circumstances and 

can amplify the mixing noise at certain frequencies . 

Nozzle Small eddies 
(high freq. Noise) 

Mixing region 

Large eddies 
(low freq. Noise) 

Figure 11.1. Exhaust core jet and mixing region of a compressible jet 
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Th noise level can be reduced if the mixing rate is accelerated or the relative velocity is 

reduced. Corrugated-lobe-type suppressors, see figure 11.2, promote mixing by 

incr asing the contact area between the exhaust jet and the atmosphere but deep lobes 

can have perfomlance penalties in terms of thrust, weight and drag. 

Figure 11.2. Lobe type suppressor nozzle (103) 

The purpose of the MIT shock tube is the acoustic evaluation of noise suppressors, or 

mixer-ej ectors, relevant to the HSCT programme. 

11.1.2 Aims & Objectives 

The aims and objectives of the work presented here is to aid the acoustic evaluation by 

visualising the mixing and other flow features for correlation against the acoustic 

signals. It is intended to reveal information that can be used to revise the design of the 

profiles, such as the onset of boundary-layer separation, vortical interactions, viscous 

dissipation along the chord of the profile, etc. 
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A qualitative indication of mixing integrated over the entire run time is the primary 

requirement of the visualisation. Snapshots of the jet development, velocity, spatial 

density distributions and the location of shock structures are desirable but not essential. 

The optical access must not interfere with the acoustic tests. Whilst optical access from 

three directions can be accommodated, the insertion of windows can compromise the 

geometry of the ejector or the location of other instrumentation such as pressure 

transducers. Optical access was artificially restricted in the tests described here as the 

measurements were made in the absence of the mixer-ejectors, because their details are 

not in the public domain. 

11.1.3 Overview of Experiments 
These measurements were made when the shock-tube facility had only recently come 

online. The acoustic testing completed prior to this visualisation contained unexpected 

features that were believed to be due to an incomplete jet development within the quasi-

steady runtime. 

A troubleshooting stage was embarked upon that diagnosed inconsistent firing and jet 

development. A high-speed camera was used to show that the plug, that was used to 

close the shock-tube during priming, was only a couple of diameters downstream of the 

nozzle exit by the end of the quasi-steady runtime. Cut-down plugs that were projected 

beyond the field-of-view within the runtime were used for subsequent tests, although 

the plug can still be seen in some of the results. Low weight plugs were manufactured 

but were not available in time for the tests described here. Despite this, only one 

representative result was recorded with the shearing interferometer in the time available 
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after the troubleshooting stage. Its acquisition can largely be attributed to chance owing 

to the inconsistent firing of the facility. As a consequence, the result has not been 

subjected to a tomographic reconstruction, as the dimensions and centreline of the jet in 

the field-of-view are unknown. Despite this, the result has been solved for unwrapped 

phase and demonstrates the suitability of the shearing interferometer to this application. 

Some of the results recorded during the troubleshooting stage, Mie-scattering and 

focused schlieren, are included for comparison against the interferometric measurement. 
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11.2 THE MIT SHOCK TUBE [103,104 &105] 

Combustion or electric-arc-heated steady-flow facilities are the primary means used to 

gather fluid mechanics and acoustical data from noise-suppression nozzles. Such 

facilities have high running costs requiring nozzle designs that are both mechanically 

and thermally robust. Subscale nozzles can cost between $10 000 and $100 000 dollars 

and take several months to design and fabricate. Time and fiscal constraints provide the 

motivation for a more flexible and efficient method of investigating nozzle design 

concepts (105). 

The MIT shock tube is a mechanically simple, versatile, and low-cost means of 

generating a supersonic free jet over a wide range of total pressures and temperatures 

comparable to steady-state facilities. Moreover, the isentropic shock heating provides a 

near-unifonn total temperature and pressure profile at the nozzle inlet. 

The isentropic compression allows nozzle pressure ratios (NPR) and total temperature 

ratios (TTR) relevant to the HSCT ejector programme to be achieved without the 

additional heating requirement of a continuously running facility. As the nozzles are 

only subj ected to high temperatures for a few tens of milliseconds the nozzles can be 

made from cast aluminium or stereo lithographic resins rather than more thermally 

robust materials that typically cost an order of magnitude more to manufacture. The 

compromise for this mechanical simplicity is the brief, quasi-steady, test time. 
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Figure 11.3. The Gas Dynamics of the Shock Tube 
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The shock tube consists of three zones, the driver, diaphragm and driven sections, each 

separated by aluminium diaphragms, see figure 11.3a. The tube is primed for firing by 

evacuating the driven section to approximately 0.2 bar whilst pumping up the driver 

section to pressures between 2 and 6 bar, see figure 11.3b. As the pressure difference 

bet\veen the driven and driver sections will exceed the burst pressure of the diaphragms, 

the diaphragm section is pumped up to an intermediate pressure. The driven section is 

closed to the anlbient surroundings by plugging the nozzle with a rubber bung. If a 

mixer-ejector is fitted, the rubber bung is replaced with a third diaphragm. 

Exhausting the diaphragm section to a vacuum tank fires the tube. The pressure on the 

diaphragm separating the driver and diaphragm sections exceeds its burst pressure and 

ruptures it, closely followed by the second diaphragm, see figure 11.3c. To aid 

consistent firing a set of knife edges surrounding a tapered needle are positioned 

adjacent to each diaphragm. As the diaphragm deforms it interferes with the blades and 

ruptures the disk in a repeatable criss-cross fashion. 

The expansion of the driven section acts like an impulsively started piston. A shock 

wave propagates through the driven section heating the gas whilst expansion waves 

propagate through the driver gas, reducing its pressure and accelerating it in the 

direction of the nozzle. 

The valid run time starts when the incident shock is reflected from the nozzle endplate 

leaving a volume of high-pressure, high-enthalpy gas in its wake, which is expanded 

through the nozzle. The pressure ratio between the driver and driven sections allows the 

. fl d h k bid [105] stagnation temperature and pressure behInd the re ecte s oc to e regu ate . 
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It is assumed that the driver and driven gases do not mix and their contact faces are 

analogous to the surface of a piston. The gas composition of the driver section is 

defined so that the speed of sound is constant across this interface. This avoids the 

production of extraneous waves as the reflected shock passes through it. The arrival of a 

second shock at the nozzle endplate determines the end of the valid run time. The 

required gas composition is achieved by evacuating the driver section prior to filling 

\vith a mixture of helium and air, the quantities of each is a function of the pressure ratio 

between the driven and driver sections. 

The driven section contains four flush-fitting pressure transducers that are used to 

determine the primary nozzle pressure, the shock speed and the valid run time. The 

duration of the valid, steady run time is limited either by the exhaustion of the test gas 

or the arrival of a second shock at the nozzle endplate. Figure 11.4 shows the shock 

propagation along the length of the shock tube with respect to time. TJ represents the 

period between the first shock and its reflection from the contact interface between the 

driver and driven gases. As mentioned before this phenomenon can be avoided by 

matching the speed of sound across the interface. Twave represents the period between 

the arrival of the first shock and the reflected head of the primary expansion, or the 

weak secondary expansion generated by the reflected shock overtaking the tail of the 

primary expansion, at the nozzle endplate. The net test time is t J or twave, whichever is 

shorter, minus the time required to initiate a flow through the nozzle and to achieve a 

quasi-steady state. 
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Figure 11.4. Shock propagation in the shock tube with respect to time (105]. 

This reflection-type tube is designed to produce a flow at total temperatures and 

pressures analogous to those at the exit of a gas-turbine engine. Using air as the test gas, 

total pressures up to 38 bar and total temperatures up to 1750 K can be achieved. 
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11.3 EXPERIMENTAL ARRANGEMENT 

A common optical system was used for the measurements of a CO2 jet, shown in figure 

9.2, and the Shock Tube. The optics consisted of a 5 mW Helium Neon laser a , 

nlicroscope objective of numerical aperture 0.25, a spatial filter, a plano-convex lens of 

diameter 100 mm, focal length 150 mm and a 150 mm2 
, 3 mm-thick back-silvered 

mirror. The beam was projected through the objective and spatially filtered with a 3 /-lm 

pinhole. The divergent beam was collimated using the plano-convex lens to give a beam 

diameter of approximately 70 mm. The beam was incident on the back-silvered mirror 

approxinlately 50 cm away from the lens. The nozzle exit was positioned between the 

plano-convex lens and the mirror. The angle of incidence between the beam and mirror 

was adjusted to achieve a suitable compromise between fringe contrast and resolution 

when the fringes were projected on to a sheet of over-exposed bromide paper 

(photographic paper). The bromide paper was only used as a screen onto which the 

fringes could be projected. A CCD camera was used to record the image projected onto 

this screen. The blackened bromide paper was used as a screen as it appeared to give a 

smaller speckle size through the imaging lens and gave good fringe contrast in 

comparison to the under-exposed, white, bromide paper. The smaller speckle size 

allowed a higher carrier frequency to be used. 

Both the beam from the interferometer and view from the camera were positioned as 

close as possible to the normal of the screen. The images were captured using a CCD 

camera with a resolution of 1000 x 1000 and exposure time of 30 milliseconds. The 

camera was coupled to a frame grabber within a PC that also contained the FRAN 

fringe-analysis software. The camera standoff was adjusted to give approximately 10 

pixels per fringe through the Macro 90 lens. The departure of the plug from the nozzle 
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was used as a trigger for the camera. No trigger was required for the laser as it was 

continuous wave. 
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11.4 RESULTS - SHOCK TUBE 

b 
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Figure 11.5a. The raw interferogram of the 20th scale (2 inch diameter) nozzle, 
NPR-2.3, TTR=2.3. 
b. The fringe order height map representing the bending of the fringes relative to a 
reference picture (reference not shown). 
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Figure 11.6. Seeded with 0.59 Jlm seed, NPR 2.5, 12 millisecond delay from pressure 
transducer trigger. 

Figure 11.7. Focused schlieren image. Diamond pattern can just be seen. 
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11.5 INTERPRETATION OF RESULTS 

11.5.1 Description of Results 

The shock tube was fired many times before the measurement shown in figure 11. S was 

obtained. As its acquisition can be put down to chance the application of the shearing 

interferometer to the shock tube was far from optimised. The timing of the acquisition 

cannot be verified against the valid run time, nor is its scale or location relative to the 

shock tube certain. 

Figure 11.Sa shows the fringe pattern projected through the flow field. The silhouette 

half the 20th scale nozzle (SO mm diameter) is in the bottom left-hand comer of the 

image. The otherwise straight fringes have been disturbed by the change in refractive 

index of the jet relative to the surroundings. A shock can be seen dissecting the fringes 

from the comer of the nozzle. Unfortunately the shock appears as a break in the fringes 

rather than bending and so is not apparent in the solution. A refraction 'bubble' has also 

occurred at the nozzle's edge due to the extreme refractive index gradient. 

Figure 11.Sb shows the fringe order height map of a projection through the nozzle flow. 

The figure clearly shows three distinct areas, an expansion fan originating from the edge 

of the nozzle, its ambient surroundings and the core of the jet. The nozzle flow is 

choked and therefore under expanded. 

Figure 11.Sb shows the fringe order height map of figure 11.Sa after a reference fringe 

order height map has been subtracted. The reference was subtracted to allow for the 

non-uniform carrier frequency of the undisturbed state. The reference was recorded in 

the absence of the nozzle silhouette to get a datum for every point as the nozzle moves 
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rearward during the run. The fringe order numbers are relative rather than absolute and 

their sign is a function of the convention used in the analysis, ie whether a fringe 

bending to the left or right is positive. 

The holes in the fringe order height map correspond either to the silhouette, spike noise 

or tile failures. Tile failures are apparent adjacent to the periphery of the nozzle which 

correspond with a region of poor fringe definition in figure 11.5a.The tile failures have 

been contained in the unwrap path and their threat to the overall solution has been 

minimized. This is a corollary of the Minimum Spanning Tree phase unwrapper that 

unwraps in the direction of the minimum phase change. Abrupt changes in phase, such 

as noise and discontinuities, are only considered at the end of an unwrap path. 

11.5.2 Comparison with Mie-Scattering & Schlieren Measurements 

Figure 11.6 shows the jet emitted from the quarter inch nozzle for a nozzle pressure 

ratio of2.5. The flow has been seeded with 0.6~m diameter styrene particles, which are 

illuminated as they pass through a light sheet provided by a 10 Watt all channels, 

continuous wave, Argon Ion laser. The image was recorded using a 1000 by 1000 pixel 

camera coupled to an image intensifier. The camera shutter has been opened 11 

milliseconds after the trigger to capture the last 5 milliseconds of the valid run time. The 

figure shows the bright core being engulfed by the shear layer approximately 5 

diameters down stream. The small saturated areas surrounding the jet are fragments of 

the sound insulation of the anechoic chambers (fibre glass) stirred up by successive 

firing of the shock tube. 
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The focused Schlieren, similar to that described by Weinstein [108), provides a 

qualitative visualization of the strongly refracting features of the flow but unfortunately 

its sensitivity is insufficient for the mixer-ejector representative flows. Figure 11.7 

shows the criss-crossing expansion and compression waves at the nozzle exit. 

1l.5.3 Tomographic Reconstruction 

An Abel Transfonn can be used to reconstruct the nozzle flow if it is assumed to be 

radially symmetric. This approach was successfully applied to the propane burner 

shown in section 10.5.3. In theory the application of the Abel Inversion, equation 10.18, 

would be simpler as the shearing interferometer gives the differential of density relative 

to a sheared point that would otherwise need to be calculated computationally. 

Unfortunately the scale, but more importantly the centerline and hence the line of 

symmetry, is not known. A tomographic reconstruction can therefore not be accurately 

applied in this case. However, the contrast and minimal noise in figure 11.5b implies 

that a tomographic reconstruction could have been applied to those rasters of pixels that 

stretch from the periphery to the centerline of the jet without being broken by tile 

failures. 

11.5.4 Optical Path Difference at Nozzle Exit 

Before the optical path difference between a ray passing through the nozzle jet and 

ambient can be calculated an estimation of the jet geometry and density is required. This 

. . . . fl I' [106) d . th t th d 't has been achIeved USIng the IsentropIc ow re abons an assumIng a e enSI y 

profile across the jet is unifonn at the exit. 
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The nozzle pressure and total temperature ratio for the result shown in figure 11.5 were 

both 2.3. This gives a (static) density of 0.66 kg/m3 in the jet. Ambient (stagnation) 

density is assumed to be 1.19 kg/m3 giving a difference in density of 0.53 kg/m3. 

The optical path difference through the centerline of the jet relative to ambient using 

. 10 3 N( ) C~p(x,z )z " equatIon .. x,Z = A = 9.5 wavelengths relatlve to ambIent. At the 

centerline of the jet the optical path difference between sheared points will be small if 

the diameter of the jet is much larger than the amount of shear (dN/dr-O). 

The maximum optical path difference relative to a sheared point will occur at the 

periphery of the jet. The shear was approximately 1.7 mm normal to the axial direction 

of the nozzle. The nozzle was 50 mm in diameter. The maximum optical path difference 

of a jet of uniform core will occur at a radius of 23.3 mm at the exit. Using equation 

10.3 the optical path difference is 3.4 wavelengths. The measured optical path 

difference at the periphery of the nozzle exit, shown in figure 11.5b, is approximately 

2.5 wavelengths. This smaller optical path difference is expected as the jet expands at 

the nozzle exit. 

11.5.5 Resolution in Density 

The optical path difference is a function of the change in density and optical path length. 

The resolution in density is estimated at a radius of 23.3 across the jet relative to an 

ambient ray. Along this path a change in density of 0.15 kg/m3 will give an optical path 

difference of one wavelength. Assuming ten pixels per cycle and satisfying the Nyquist 
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criterion this gives a resolution in density relative to a sheared point of 0.03 kg/m3, 

neglecting refraction. 

11.5.6 First Order Approximation of Refraction 

U . . 11071 sIng tngonometry and Snell's Law , from figure 11.8 its can be shown that 

Figure 11.8. Refraction of a ray passing through a circular region of higher 
refractive index than its surroundings 

(1l.1) 

At a radius of 23.3 mm, a jet density of 0.66 kg/m3
, ambient density of l.19 kg/m

3
, jet 

radius, R, of 25 mm, the deviation of the transmitted ray from its original path, u, is 

0.035° (6.17xl0-4 radians). Over a further path length of 1 m gives a ray displacement 

of 0.6 mm from its unrefracted path. This is 36%) percent of the shear distance (1.7 mm) 

so is not negligible at the jet periphery. 
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11.6 DISCUSSION 

The result shown in figure 11.5 implies that the shearing interferometer could be used to 

provide a quantitative visualisation of the nozzle flow at exit of the shock tube. 

Ho\vever, its applicability for revealing the flow further downstream is unknown. The 

successive expansion and compression waves will cease and the density change will 

reduce as viscous damping takes effect. 

A possible solution would be to seed the driven volume of the shock tube with a gas of 

lower refractive index to accentuate a change in optical path length even if the flow was 

assumed to be incompressible. For instance, a change from air to argon in the driven 

section would be equivalent to a change in density relative to ambient of -0.36 kg/m3
. 

This would be in addition to the change in density of the jet due to velocity (assuming it 

is less dense than ambient). 

A correction in the makeup of the driver gas would be needed to compensate for the 

difference in speed of sound between the driven and driver sections if a seed gas was 

used. This correction would be needed to avoid the creation of erroneous reflected 

shocks within the tube that would terminate the valid run time. 

If such a solution were permissible the shearing interferometer could be used to measure 

the mixing at the exit of the chute racks. Axial symmetry could be assumed in a 

reconstruction if lines of sight were available from two directions. Refraction could also 

be greatly reduced if the flow was contained within windows orthogonal to the optical 

path. 
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11.7 SUMMARYOFCHAPTER 

A shearing interferometer has been used to visualise the flow emitted from a shock tube 

designed to simulate the flow conditions relevant to the HSCT mixer-ejector 

programme. The prinlary purpose of the shock tube is the acoustic testing of jet noise 

suppressor nozzles, or mixer-ej ectors. The visualisation is secondary to, and must not 

interfere with, the acoustic testing. The measurements presented in this chapter were 

l1lade at a nozzle pressure ratio of 2.3, total temperature ratio of 2.3, in the absence of a 

mixer-ejector. The shock tube exit consists of a 50 mm diameter conical nozzle. 

The measurements were made when the shock tube had only recently become 

operational and its successful firing had not been verified. The visualisation diagnosed 

incorrect jet development in the quasi-steady run-time (~ 10 ms) owing to the 

interference of the plug that was used to close the driven volume with the flow. This 

problem was remedied but only in time to allow one on-condition result to be acquired 

with the shearing interferometer. This single result, integrated over the entire quasi­

steady run-time, has not been subjected to a tomographic reconstruction, as the scale 

and exact position of the measurement are unknown. The result does, however, provide 

a qualitative visualisation that indicates the suitability of the shearing interferometer for 

this application. 

The optical path difference and hence density through a cross-section exit has been 

compared with that which would be produced from a jet of uniform density of 0.66 

kg/m3 (calculated from the NPR and TTR). The measured optical path difference at the 

periphery of the jet is 2.5 wavelengths. A uniform top-hat profile would give a 3.5 
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wavelength optical path difference. This difference is expected as the shear layer 

reduces the density gradient between the core and ambient. 

The change in density required at the periphery of the jet to give 1 wavelength optical 

path difference relative to ambient is 0.15 kg/m3
. The refraction at the periphery of the 

jet \vas expected to be 36 % of the shear (1.7 mm) by the time the beam was incident on 

the screen. 

As the density change diminishes downstream of the nozzle it is recommended that the 

driven volume be doped with argon to increase the density change. The addition of the 

argon \vould be equivalent to a change in density of 0.36 kg/m3 that would be in 

addition to changes due to velocity. The mixture of the driver section would need to be 

adjusted accordingly to prevent the creation of erroneous reflected shocks within the 

tube that may prematurely terminate the quasi-steady run-time. 
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Chapter 12 

CONCLUSIONS 

-
OPTICAL INSTRUMENTATION FOR 

FLUID FLOW IN GAS TURBINES 
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13.0 CONCLUSIONS 

Two optical diagnostic techniques have been demonstrated in gas turbine representative 

flows. The simpler of these, a novel shearing interferometer, has first been applied to a 

hvo-dimensional wind tunnel operating at a compressor representative condition and, 

secondly, a simulated jet exhaust flow. The second technique, particle image 

yelocimetry. has been applied to a turbine representative flow, again operating in the 

transonic region. 

Although described in the latter half of the thesis the shearing interferometer is 

described as a first pass technique that is used to characterise a flow in preparation for a 

more sophisticated anemometry technique (LDA). It will therefore be described here 

first. 

The shearing interferometer has first been used to make density measurements in a 2-D 

wind tunnel operating at an inlet Mach number of 1.5. The interferometer measures the 

optical path difference, and hence density, relative to a sheared point. The optical path 

difference manifests itself as rarefied or compressed fringes that have been analysed 

using the Fourier Transform method to extract the phase information. The phase 

distribution has been unwrapped using a technique that unwraps round the noise, either 

excluding or only including it at the end of an unwrap path. The result is a continuous 

phase distribution that can be calibrated for absolute density. The measurements in the 

2-D wind tunnel were converted to absolute density using oblique shock theory. This 

theory was also used to determine the pre and post leading shock Mach Numbers of 

1.20 and 1.53. The resolution in density through the 35.6 mm thick wind tunnel was 
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found to be 0.078 kg/m
3 

for an optical path difference of I wavelength (l wavelength 

fringe shift). 

The shearing interferometer has also been used to visualise the jet emitted from a shock 

tube operating at a nozzle pressure ratio of 2.3, total temperature ratio of 2.3. The shock 

tube is designed for the acoustic evaluation of jet exhaust noise suppressor nozzles, or 

mixer-ejectors, relevant to the high-speed civil transport programme. The visualisations 

\yere secondary to, and therefore couldn't interfere with, the acoustic testing. The 

mixer-ejectors were not fitted for these tests. The testing occurred at a time when the 

shock tube had only recently come on line. The visualisations diagnosed incorrect 

development in the quasi-steady run time (shock tube corking mechanism interfering 

with the flow). The one on-condition image that was acquired has been processed to 

reveal an under expanded jet. The unwrapped phase map has not been calibrated for 

density as the scale and alignment of the field-of-view relative to the nozzle exit is 

unknown. The unwrapped map does, however, provide a qualitative visualisation that 

illustrates the suitability of the shearing interferometer for this application. As the 

density change diminishes downstream of the nozzle, it is recommended that the flow 

be doped with argon to increase the refractive index change. The use of argon will give 

a change refractive index equivalent to a change in density of 0.36 kg/m3 that will be in 

addition to any changes due to velocity. This will allow the mixing of the argon with the 

ambient air to be visualised downstream of the mixer-ejectors. 

The shearing interferometer is simple and was quick to apply in each application. For 

example, the measurements on the wind tunnel made at mass flow rates from 0.6 to 1 

kg/s in 0.02 kg/s increments were made in the space of one working day. The 
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interferometer consists of only a few inexpensive optical components. Large regions of 

interest can be investigated, as the shearing device is merely a back-silvered mirror. As 

the sheared beams are incident of common optical components it is no more sensitive to 

vibration than a schlieren or shadowgraph arrangement. The shearing interferometer has 

the obvious advantage over these techniques in that it can be used to give accurate 

information of the density distribution. As the measurement is encoded in phase rather 

than anlplitude its accuracy is not compromised by background illumination. The 

shearing interferometer cannot be applied were there is no line of sight through the flow 

or \"here the flow is contained within a complex 3-D geometry such as an annular 

compressor or turbine. 

2-D planar velocity measurements have been made in the stator-rotor gap and stator 

passage of a short duration spinning turbine cascade. The cascade was operated at an 

engine representative Reynolds number of 2.8 x 106 based on the axial chord of the 

nozzle guide vanes. The measurements have been made using a technique called 

particle image velocimetry, the individual frames of which represent an instantaneous 2-

D description of the spatial velocity distribution. Although a development of those 

presented by Bryanston-Cross (139], they represent the first to be made in the presence of 

a spinning rotor. These measurements also differ from Bryanston-Cross' s in that the 

data have been recorded using a CCD camera rather than by photographic means. 

Automatic vector extraction algorithms and novel post processing algorithms have been 

used to increase the vector yield per image by an order of magnitude (~1 000 vectors per 

image) and achieve an estimated accuracy of + 5%. A close agreement has been 

achieved between instantaneous, non-smoothed measurements and a numerical 

prediction generated using a 2-D unsteady flow solver (prediction supplied by DERA). 
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The measurenlents show evidence of a Karman vortex street in the wake of the NGV s 

and wake broadening that has not be predicted by the flow solver. 

An evaluation exercise was embarked upon prior to testing on the turbine cascade to 

assess the hardware and analysis routines that were available. A 1000 x 1000 pixel 

camera with the ability to capture two frames of data only a microsecond apart was 

eyaluated but failed and could not be replaced in time for testing on the facility. A back-

up camera system was used for testing on the turbine cascade. The acquisition could not 

be locked to the rotor phase, as the back-up camera was not triggerable. Neither could 

the frames be cross-correlated, as their exposures were tens of milliseconds apart. As a 

consequence, no statistical analysis of the time-mean aspect of the flow has been 

embarked upon. A pseudo phase-stepped sequence of frames, of the rotor passing 

through the region of interest, has been constructed from the large volume of data (20 

runs, 20 useful images per run). 

Particle tracking and correlation analysis have been compared both on a nozzle flow and 

on the data from the turbine cascade. The particle tracking software was found to 

produce many (~30 %) erroneous vectors for high seeding concentrations (upper limit 

of 400 vectors over a 768 x 576 image). Despite using the centre-of-mass algorithm to 

detennine the particle centres the vectors were banded into increments of velocity that 

corresponded to integer pixel displacements. An auto-correlation algorithm with a 3 

point Gaussian estimator for determining the centroid of the satellite peak in the 

correlation plane was found to give an accuracy of 1I10th if the seeding concentration 

. . . t) [127) was sufficiently high (15 paIrs per InterrogatIon spo . 

259 



A noyel 3-D PlY technique that determines the out-of-plane component of velocity 

from the defocusing of a particle viewed through a single camera has also been 

investigated. A calibration exercise showed that the out-of-plane component could be 

determined to a resolution of 20 /lm over a field of view of 4 mm2 from the total 

dianleter of the diffraction pattern of a particle viewed through a diffraction limited lens 

((-number 8, magnification of 3.2). The calibration data compared favourably with 

theoretical models of the defocused particle images supplied by Udrea [1251. An attempt 

to nlake 3-D velocity measurements through the test section window of the turbine 

cascade failed as the aberrations through the window could not be corrected in time for 

testing on the facility. Suggestions have been made to rectify this problem. 

Recommendations have also been made towards improving the application of 2-D PIV 

to complex turbine geometries. The first is the use of fluorescent seed to allow 

measurements close to mechanical surfaces where glare would otherwise dominate. A 

suitable supply of dyed styrene micro spheres available in a range of sub-micron size has 

been identified. 

The possible improvements that could have been achieved with the cross-correlation 

camera, had it not failed, have been discussed in terms of improving accuracy and 

vector yield per image. It has been shown that a potential vector yield of 3900 vectors 

per image can be achieved at an accuracy of 1 % (32 x 32 interrogation spot with a 50 

% overlap, 50 seed per mm3
). A novel adaptation of the cross-correlation analysis has 

been suggested to iteratively cross-correlate with progressively smaller but shifted 

interrogation spots, thereby maximising the vector yield and increasing the spatial 

resolution. The acquisition of a sequence of images at a constant rotor phase to establish 
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time-averaged quantities has also been discussed, as has the acquisition of a sequence at 

phase-stepped increnlents in rotor position. For the former the emphasis has been placed 

on reducing systematic errors to a level significantly below those of the fluctuating 

conlponents of velocity. For the latter a high speed intensified camera system with a 

frame rate of 20 000 000 frames per second has been suggested for recording the 

interaction of an individual rotor blade as it passes through the stator wake. 

The path of this thesis goes from the concept of a simple, novel interferometric device 

for measuring density distributions, to the first application of a state-of-the-art 

anemometry technique to a spinning turbine cascade. In each case new knowledge is 

presented about the flow to which they are applied. Recommendations have been made 

towards attaining spatially and temporally resolved 3-D velocity vectors within 

turbomachinery representative flows. 

261 



REFERENCES 

[1] Yeh Y., Cummins H.Z., Localised Fluid Flow Measurements with a He-Ne Laser 

Spectrometer, Applied Physics Letters, Vol. 4, pp.176-178, 1964 

[2] Principles of Laser Doppler Anemometry, Powerpoint presentation, Dantec 

measurement technology, www.dantecmt.com. 1999 

[3] Menon R.K., Three Component Velocity Measurements in the fnterblade Region of 

a Fan, TSI Incorporated, International Gas Turbine Conference, 87-GT-207, Anaheim, 

CA, June, 1987 

[-+] Dantec Newsletter, Volume 5, No.1, 1998 

[5] Laser Doppler Velocimetry Systems, TSI Incorporated, 1996 

[6] FiberFlow 5-Beam Probe, Dantec Newsletter, Volume 5, No.2, 1998 

[7] Witze P.O., Application of LDV to Spark-ignition Engines, Flow Lines, L5.2. CRF 

Sandia National Laboratories. 1989 

[8] Jaffri K., Hascher H.G., Novak M., Lee K., and Schock H., Michigan State 

University; and Bonne M. and P. Keller P., Chrysler Corporation, Tumble and Swirl 

Quantification within a Motored Four-Valve Sf Engine Cylinder based on 3-D LDV 

262 



Afeasurements, SAE Paper 970792, International Congress & Exposition, Detroit, 

Michigan, February 24 - 27, 1997 

[9] Hascher H.G., Jaffri K., Novak M., Lee K., and Schock H., Michigan State 

University; and Bonne M., and Keller P., Chrysler Corporation, 'An Evaluation of 

Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine 

llsing 3-D LDV Measurements', SAE Paper 970793, International Congress & 

Exposition, Detroit, Michigan, February 24 - 27, 1997 

[10] Komine H., System for measuring velocity field of fluid flow utilising a laser­

Doppler spectral image converter, US Patent 4 919 536, 1990 

[11] Meyers J.F., Komine H., Doppler Global Velocimetry - A New Way to Look at 

Velocity, ASME Fourth International Conference on Laser Anemometry, Cleveland 

Ohio, August 1991. 

[12] Roehle I., Willert C., Schodl R., Recent Applications of Three-Dimensional 

Doppler Global Velocimetry in Turbo-Machinery, 9th Int. Symp. On App. Of Laser 

Tech. To Fluid Mechanics, Vol. 2, pp: 34.2.1-34.2.8, July 1998. 

[13] Roehle I., Doppler Global Velocimetry, VKI-Lecture, German Aerospace Research 

Establishment (DLR), Institute for Propulsion Technology, Linder Hohe, 51140 

Cologne, Germany, 1998. 

[14] Nelson E., Hot Wire and Hot Film Anemometry, TSI Inc, 1984. 

263 



[15] Principles of Constant Temperature Anemometry, PowerPoint Presentation, 

\V\v\v.dantecnlt.conl, Dantec Measurement Technology, 1997-99 

[16] Cantwell B., Coles D., An experimental study of entrainment and transport in the 

turbulent near wake of a circular cylinder, 1. Fluid Mech. 1983. Vol:136, pp: 321-374. 

[17] Schodl R., Forster W., Multicolor Fiberoptic Laser-2-Focus Velocimeter For 3-

Dimensional Flow-Analysis, AIAA Journal, 1991, Vol.29, No.8, pp.1290-1297 

[18] Schodl R., A Laser-2-Focus (L2F) Velocimeter For Automatic Flow Vector 

jfeasurements In The Rotating Components Of Turbomachines, Journal Of Fluids 

Engineering-Transactions Of The ASME, 1980, Vol. 102, NoA, ppA12-419 

[19] Timmerman B., Holographic Interferometric Tomography for Unsteady 

Compressible Flows, Thesis, 1997, ISBN 90-5651-044-4. 

[20] Bassett M.D., Pearson RJ., Winterbone D.E., Clough E., Visualisation of wave 

propogation in a three pipe junction, Int. Conf. On Optical methods and Data 

Processing in Heat and Fluid Flow, IMechE Conference Transactions, 1998, 

C5411044/98 

[21J Burnett M., Bryanston-Cross PJ., Measurement of Transonic Shock Structures 

using Shearography, Laser Interferometry VIII: Applications. Proceedings of SPIE 

[2861-19J, July 1996 

264 



[22] Bryanston-Cross PJ., Denton J.D., Comparison of Interferometric 

Afeasilrements and Computed Flow Around a Wedge Profile in a Transonic Region, 

ASME 82-GT -258, 1982 

[23] Vest C.M., Holographic Interferometry, Wiley, 1979. 

[24] Greenhalgh D.A., Inelastic Scattering Laser Diagnostics; CARS, Planar LIF and 

Planar LII, To appear in Optical Diagnostics for Flow Processes, Eds.: L. Lading, P. 

Buchave, G. Wigley, Plenum, N.Y. 1994 

[25] Eckbreth A.C., Laser Diagnostics for Combustion Temperature and Species, 

Abacus Press 1988, ISBN 0-85626-344-3 

[26] Goss L.P., CARS Instrumentation for Combustion Applications, Instrumentation for 

Flows with Combustion, Edited by A.M.P.K. Taylor, Chapter 4, pp: 251-322, 1993, 

ISBN 0-12-683920-4 

[27] MSTB Measurement Technologies, NASA Langley Research Centre, 

http://mstb/larc/nasa. gOY Itech/listing.html. 2000 

[28] Brown M.S., Roberts W.L., Single Point Thermometry in High Pressure, Sooting, 

Premixed Combustion Environments, Journal of Propulsion and Power, Vol. 15, No.1, 

Jan-Feb 1999, pp:l10-118 

265 



[29] Lawton B., Klingenberg G., Transient Temperature in Engineering and Science, 

Oxford Science Publications, Oxford University Press, 1996, ISBN 0 19 856260 8 

[30] Shoji H., Saima A., Sasao T., Arai 1., Ikeda S., Iwasaki M., Clarification of the 

Combustion Reaction Mechanism in a Spark Ignition Engine by Spectroscopic Analysis, 

JSAE Review, Vol. 13, No.2, pp: 4-9, April 1992. 

[31] Shoji H., Sasao T., Saima A., Iwasaki M., Measurement of Radical Luminescence 

Intensity in Abnormal Combustion in a Spark Ignition engine, Proceedings of the 

ASME/JSME Thermal Engineering joint Conference, pp:495-502, Book No: I0309C -

1991. 

[32] Huang Y., Yan Y., Lu G., Reed A., Measurement of Temperature Distribution in a 

Model Furnace using the Two-Colour Method, SPIE 3783-42, Oct. 1999 

[33] Allison S.W., Gillies G.T., Remote Thermometry with Thermographic 

Phosphors: Instrumentation and Applications, Review of Scientific Instruments, 

68(7), July 1997, pp: 2615-2650 

[34] Zhang Z.Y., Grattan K.T.V., Palmer A.W., Meggitt B.T., Potential for 

temperature sensor applications of highly neodymium-doped crystal and fibre at up 

to approximately lOOrfC, Review of Scientific Instruments, 68(7), July 1997, pp: 

2759-2763. 

266 



[35]Zhang Z.Y., Grattan K.T.V., Palmer A.W., Meggitt B.T., Sun T., Fluorescence 

decay-time characteristics of erbium-doped optical fibre at elevated temperatures, 

Review of Scientific Instruments, 68(7), July 1997, pp: 2764-2766. 

[36] McGee T.D., Principles and Methods of Temperature Measurement. Wiley­

Interscience Publication, 1988, ISBN 0-471-62767-4 

[37] Private Communication, Dr. D. Harvey, SRC, Rolls-Royce, Derby. 2000 

[38] Campbell B.T., Liu T., Sullivan J.P., Temperature Sensitive Fluorescent Paint 

Systems, AIAA paper, 94-2483, June 1994 

[39] Schanze K.S., Carroll B.F., Korotkevitch S., Morris M. J., Temperature 

Dependence Of Pressure Sensitive Paints, AIAA Journal, 1997, Vo1.35, No.2, pp.306-

310 

[40] Cattafesta III L.N., Liu T., Sullivan J.P., Uncertainty Estimates for Temperature­

Sensitive Paint Measurements with Charge Coupled Device Cameras, AIAA Journal, 

Vol. 36, No. 11, November 1998. 

[41] Thermographic Measurements Co. Ltd., Riverside Buildings, Dock Rd. Ind. Est., 

Connah's Quay, Flintshire, CH5 4DS, Web: www.thermax.com 

267 



[42] Hilton M., Lettington A.H., Wilson C.W., Gas Turbine Exhaust Emissions 

Monitored Using Nonintrusive Infrared Spectroscopy, Transactions of the ASME, July 

1998, Vol. 120 pp:514-518. 

[43] Hilton M., Gas Turbine Exhaust Emission Monitoring using Passive Fourier 

Transform Infrared Spectroscopy, University of Reading, September 1995. 

[44] Heland J., Haus R., Schafer K., Remote Sensing and Analysis of Trace Gasesfrom 

Hot Aircraft Engine Plumes using FTIR Emission Spectroscopy, Proc. 3rd lnt. Symp. On 

Transport and Air Polution, A vignon, 1994. 

[45] Thompson D.M., Nattrass S.R., Full Mid-IR Spectral Characterisation of 

Lubricant in the Ring Pack of a Running Diesel Engine by Time-Resolved FTIR 

Spectroscopy, 1996, SAE 962003 

[46] Edinburgh Instruments http://www.edinst.com/.2000 

[47] Ie Gal P., Farrugia N., Greenhalgh D.A., Development of Laser Sheet Drop Sizing 

(LSD) for Spray Characterisation, ImechE Conference Transactions, C5411048/98, 

1998 

[48] Locke R.J., Zaller M.M., Hicks Y.R., Anderson R.C., Non-Intrusive Laser Induced 

Imaging for Speciation and Patternation in High pressure Gas Turbine Combustors, 

SPIE September 16th_18 th 1999, Santa Barbara, California. 

268 



[--1-9] Seitzman J.M., Hanson R.K., Two-Line Planar Fluorescence for Temporally 

Resoil'ed Temperature Imaging in a Reacting Supersonic Flow over a Body, Applied 

Physics B, 57, pp: 385-391, 1993. 

[50] Seitzman J.M., Hanson R.K., Comparison of Excitation Techniques for 

Quantilalil'f? Fluorescence Imaging of Reacting Flows, AlAA Journal, Vol:31, No:3, 

pp: 513-519,March 1993 

[51] McMillin B.K., Seitzman lM., Hanson R.K., Comparison of NO and OH Planar 

Fluorescence Temperature Measurements in Scramjet Model Flow fields, AIAA 

Journal, Vol:32, No: 10, pp: 1945-1952, October 1994. 

[52] Seitzman J.M., Hanson R.K., DeBarber P.A., Hess C.F., Application of Two-Line 

Planar Laser Induced Fluorescence for temporally Resolved Planar Thermometry in 

Reacting Flows, Applied Optics, Vol. 33, No. 18, 20th June 1994 

[53] Greenhalgh D.A., Inelastic Scattering Laser Diagnostics; CARS, Planar LIF and 

Planar LII, To appear in Optical Diagnostics for Flow Processes, Eds.: L. Lading, P. 

Buchave, G. Wigley, Plenum, N.Y. 1994 

[54] Dec lE., Canaan R.E., Porter E.L., PLIF Imaging of NO Formation in DI Diesel 

Engine, Sandia Combustion Research, 1998 Technical Review, 

http:///www.ca.sandia.gov 

269 



[55] Witze P.O., Green R.M., LIF and Flame-Emission Imaging of Liquid Fuel Films 

and Pool Fires in an SI Engine, Sandia Combustion Research, 1997 Technical Review, 

http:///wwvv.ca.sandia.gov 

[56] Reeves R.M., Musculus M., Two Laser Induced Fluorescence Techniques for 

Combustion Investigations, Meeting on Engineering Applications of optical diagnostic 

techniques. NAC Stoneleigh Park, 20th October 1999. 

[57] Mewes B., Seitzman J.M., Soot Volume Fraction and Particle Size Measurements 

lvith Laser Induced Incandescence, Applied Optics, Vol: 36, No: 3, January 1997 

[58] \Tander Wal R.L., Ticich T.M., Stephens A.B., Optical and mlcroscopy 

investigations of soot structure alterations by laser-induced incandescence, Applied 

Physics B, 67, pp:115-123, 1998 

[59] Vander Wal R.L., LIF-LII measurements in a turbulent gas-jetjlame, Experiments 

in Fluids 23, pp:281-287, 1997. 

[60] Greenhalgh D.A., Inelastic Scattering Laser Diagnostics; CARS, Planar LIF and 

Planar LII, To appear in Optical Diagnostics for Flow Processes, Eds.: L. Lading, P. 

Buchave, G. Wigley, Plenum, N.Y. 1994 

[61] Vander Wal R.L., LIF-LII measurements in a turbulent gas-jetjlame, Experiments 

in Fluids, 23, 1997, pp:281-287 

270 



[62] Naqwi A., Sizing of Irregular Particles using a Phase Doppler System, ASME 

1995, HTD-Vol. 3211FED-Vol. 233, 1995 IMECE 

[63] Naqwi A.A., Menon R., A Rigorous Procedure for Design and Response 

Determination of Phase Doppler Systems, Developments in Laser Techniques and 

Applications to Fluid Mechanics, Springer-Verlag, 1995 

[64] Naqwi A.A., Durst F., Light Scattering Applied to LDA and PDA Measurements 

Part 1: Theory and Numerical Treatments, Particle and Particle System 

Characterization 8, 1991 

[65] Naqwi A.A., Durst F., Light Scattering Applied to LDA and PDA Measurements 

Part 2: Computational Results and their Discussion, Particle and Particle System 

Characterization 9, 1992 

[66] Principles of Phase Doppler Anemometry, Powerpoint presentation, Dantec 

Measurement technology, http://www.dantecmt.com. 2000 

[67] Le Gal P., Farrugia N., Greenhalgh D.A., Development of laser sheet drop sizing 

(LSD) for spray characterisation, ImechE 1998, c5411048 p.p: 113-120. 

[68] Sanker S.V., Maher K.E., Robart D.M., Barchalo W.D., i h lnt. Conf. On Liq. 

Atomisation and Spray Sys., Seoul, Korea, 1997 

[69] (Ref: http://www.dukescientific.com). 2000 

271 



[70] Private communication with Heather Booth, Oxford Lasers, 

(http://www.oxfordlasers.coml). 2000 

[71] Rawle A., The Basic Principles of Particle Size Analysis, Malvern Instruments, 

http://www.malvern.co.ukl, 1999 

[72] Rawle A., Particle Sizing - An Introduction, Malvern Instruments, 

http://www.malven1.co.ukI, 1999 

[73] TSI Incorporated, Particle Instrument Division, 2000 

[74] Jeung I.S., Response Characteristics of the Knollenberg Active Scattering Aerosol 

Spectrometer to Light Absorbing Aerosols, Optical engineering, 29(3), pp: 247-252, 

March 1990. 

[75] Particle Measuring Systems Inc. (http://www.pmeasluing.com). 2000 

(76] Merzkirch W., Flow Visualisation, Academic press Inc., 2nd Edition, 1987 

[77] Adrian R.J., Multi-point optical measurements of simultaneous vectors in unsteady 

flow, a review, 1986, Int. 1. Of Heat and Fluid Flow, Vol. 7, No.2, pp: 127-143 

[78] Adrain R.1., Statistical Properties of Particle Image Velocimetry Measurements in 

Turbulent Flow, Laser Anemometry in Fluid Mechanics, 1988, pp: 115-129, Ladoan: 

Lisbon, Portugal. 

272 



[79] Lai W.T., Particle image velocimetry: A new approach to experimental fluid 

research, Th. Draco (ed.) Three dimensional velocity and vorticity measuring and 

inlage analysis techniques, 61-92, 1996, Kluwer Academic Pulishers, Netherlands. 

[80] Wernet M.P., Digital PIV Measurements In the Diffuser of a High Speed 

Centrifugal Compressor, 20
th 

AIAA Advanced Measurement and Ground Testing 

Technology Conference, June 1998, AlAA-98-2777 

[81] Barnhart D.H., Chan V.S.S., Gamer C.P., Halliwell N.A., Coupland J.M., 

Volumetric three dimensional flow measurements in Ie engines using holographic 

recording and optical correlation analysis, Int. Conf. On Optical methods and Data 

Processing in Heat and Fluid Flow, !MechE Conference Transactions, 1998, 

C541/007/98. 

[82] Van Oord J., The Design of a Stereoscopic DPIV-system, MEAH-161, May 1997, 

Laboratory for Aero and Hydrodynamics, Rotterdamseweg 145, 2628 AL Delft, 

Netherlands. 

[83] Liu Z.C., Adrian R.J., Meinhart C.D., Lai W., Visualisation of Structure Within a 

Turbulent Boundary Layer using a Stereoscopic Particle Image Velocimeter, 8
th 

Int'l 

Symp Applications of Laser Techniques to Fluid Mechanics, Lisbon, July 8
th

_II th, 1996. 

[84] Adrain RJ., Particle imaging techniques for experimental fluid mechanics, Annual 

Review of Fluid Mechanics, 23, pp: 261-304, 1991. 

273 



[85] POlrcrView Stereoscopic PIV System, TSI Incorporated 1998. 

[86] Towers C.E., Bryanston-Cross PJ., Judge T.R., Application of Particle Image 

Velocimetl)' to Large Scale Transonic Wind Tunnels, 1991, Opt. Laser Tech., 23(5). 

[87] Bryanston-Cross PJ., Epstein A.H., The Application of Sub-Micron particle 

Visualisation for PIV (Particle Image Velocimetry) at Transonic Speeds, 1990, Prog. 

Aerospace Sci, 27, pp: 237-265 

[88] Bryanston-Cross PJ., Judge T.R., Quan C., Pugh G., Corby N., The Application of 

Digital Particle Image Velocimetry (DPIV) to Transonic Flows, 1995, Prog. Aerospace 

Sci., Vol: 31, pp: 273-290. 

[89] Bryanston-Cross PJ., Funes-Gallanzi M., Quan C., Judge T.R., Holographic 

Particle Image Velocimetry, OEL annual publications review 1995, University of 

Warwick. 

[90] Bryanston-Cross PJ., Denton J.D., Comparison of Interferometric Measurements 

and Computed Flow around a Wedge Profile in a Transonic Region, ASME, 82-GT-

258, 1982 

[91] Vest C.M., Holographic Interferometry, John Wiley and Sons, 1979. 

274 



[92] Towers C.E., Bryanston-Cross P.I., Towers D.P., PIV in large scale transonic wind 

tunnels: seed particle detectability and flow following, OEL annual publications review 

1995, University of Warwick. 

[93] Towers C.E., The Development of Whole Field Particle Imaging Techniques for 

Quantitative Velocity and Size Measurements Applied to Large Scale Transonic 

Aerodynamic Testing and Combustion Research, Ph.D. Thesis, University of Warwick, 

May 1994 

[94] Adrian R.J., Laser Velocimetry, Fluid Mechanics Measurements, Second Edition, 

Edited by R.I. Goldstein, 1996, ISBN 1-56032-306-X, pp: 175-293. 

[95] Hinze J.O., Turbulence: An Introduction to its Mechanism and Theory, McGraw­

Hill Book Company Inc., 1959. 

[96] Durst F., Melling A., Whitelaw J.H., Principles and Practice of Laser Doppler 

Anemometry, Academic Press Inc., 1981. 

[97] Feller W.V., Meyers J.F., Development of a controllable particle generator for 

LDV seeding in hypersonic wind tunnels, pp.342-357, 1976, in E.R.G. Eckert (ed.), 

Minnesota Symp. On Laser Anemometry Proc., 1975, University of Minnesota, 

Department of Conferences, Minneapolis, 1976 

[98] Adrian R.J., Laser Velocimetry, in Fluid Mechanics Measurements, 2nd Edition, 

R.J. Goldstein (ed.) pp: 175-293, Taylor and Francis, 1996 ISBN 1-56032-306-X 

275 



[99] Goodman lW., Introduction to Fourier Optics, 1968, New York: McGraw-Hill pp: 

287 

[100] Adrain R.J., Yao C.S., Pulsed Laser Technique Application to Liquid and Gasious 

Flows and the Scattering Power of seed Materials, 1985, Applied optics, Vol. 24, No 1, 

44-52. 

[101] Infinity K2 Long Distance Microscope, Infinity Photo-Optical Company, 

Boulder, Colorado 80303, USA 

[102] The Jet Engine, 4th Edition, Rolls-Royce,1986, ISBN 0 902121 04 9 

[103] Aero-Environmental Research Laboratory, Web page, 1996, www.mit.edu 

[104] Kerwin, J.M., Design of a Shock Tube for Jet Noise Research. Master's Thesis, 

Massachusetts Institute of Technology, 1996. 

[105] Kirk D.R., Creviston D.O., Waitz I.A., Aero-acoustic measurements of transient 

hot nozzle flows, Aero-Environmental Research laboratory, Massachusetts Institute of 

technology, Cambridge, Massachusetts, MA 02139 - to be submitted. 

[106] White F.M., Fluid Mechanics, Fourth Edition, McGraw Hill, 1999, ISBN 0-07-

116848-6 

276 



[107] Hecht E., Optics, Addison-Wesley, 1974 

[108] Weinstein L.M., Large Field High Brightness Focused Schlieren System, AlAA 

Journal, Vol: 31, No: 7, pp: 1250-1255, July 1993 

[109] Judge T.R., Quantitative Digital Image Processing for Fringe Analysis and 

Particle Image Velocimetry, Ph.D. Thesis, University of Warwick, 1992 

[110] MatLab 5, MathWorks, Inc., 24 Prime Park Way, Natcik, MA 01760, 

\\ \\ \\' .mathworks.com 

[111] Bryanston-Cross P.J., Quan C., Judge T.R., The Application of the FFT Method 

for the Quantitative Extraction of Information from High-Resolution Interferometric 

and Photoelastic Data, Optics and laser technology, Vol: 26, No: 3, 1994. 

[112] Judge T.R., FRANSYS fringe analysis system documentation, Optical Engineering 

Laboratory, School of Engineering, University of Warwick. No date supplied. 

[113] Towers C.E., The Development of Whole Field Particle Imaging Techniques for 

Quantitative Velocity and Size Measurements Applied to Large Scale Transonic 

Aerodynamic Testing and Combustion Research, Ph.D. thesis, University of Warwick 

1994 

[114] Herman G.T., Image Reconstruction from Projections. The Fundamentals of 

Computer Tomography, Academic Press, 1980, ISBN 0-12-342050-4. 

277 



[115] Bryanston-Cross PJ., Towers D.P., Quantitative Holographic Interferometry 

Applied to Combustion and Compressible Flow Research, SPIE 1732-70, March 1993. 

[116] Edmunds lD., Harvey D., Wiseall S.S., Recent Developments in the Application 

of Laser Doppler Anemometry to Compressor Rigs, May 1998, AGARD Conference 

Proceedings 598, Advanced Non-Intrusive Instrumentation for Propulsion Engines, 

Paper 16. 

[117] Thomas PJ., Butefisch K.A., Sauerland K.H., On the motion ofparticles in afluid 

under the influence of a large velocity gradient, Experiments in Fluids 14, pp:42-48 

(1993) 

[118] Udrea D.D., Bryantson-Cross P.J., Lee W.K., Funes-Gallanzi M., Two sub-pixel 

processing algorithms for high accuracy particle centre estimation in low seeding 

density particle image velocimetry, Optics and Laser Technology, Vol. 28, No.5, pp. 

389-396, 1996. 

[119] Oldfield M.L.G., Bryanston-Cross P.l, A study of passage flow through a 

cascade of turbine blades using image plane holography, AGARD Conference 

Proceedings, No. 399, Propulsion and Energetics Panel, 6ih Symposium, Pennsylvania, 

May 1986, pp.31-1.32-15. 

[120] Gogineni S., Estevadeordal J., Sarka B., Goss L., Copenhaver W., Application of 

Two-Colour Digital PIV for Turbomachinery Flows, AGARD Conference Proceedings 

278 



598. Advanced Non-Intrusive Instrumentation for Propulsion Engines. pp. 49-1:49.12, 

1998 

[121] Wernet M.P., Demonstration of PIV in a Transonic compressor, AGARD 

Conference Proceedings 598, Advanced Non-Intrusive Instrumentation for Propulsion 

Engines. pp. 51-1:51-13,1999 

[122] Towers D.P., Buckberry C.H., Reeves M., Development of a 2 colour PIV system 

from in-cylinder spark ignition engine flows, 9th Int. Symp. On Applications of Laser 

Techniques to Fluid Mechanics, Vol. 1, pp. 12.5.1:12.5.8,1998 

[123] Westerweel 1., Fundementals of Digital Particle Image velocimetry, Meas. Sci. 

Technol. Vol. 8, pp. 1379-1392, 1997 

[124] Gharib M., Modares D., Dabiri D., Pereira F., Taugwalder F., Development and 

application of a Defocusing Three dimensional DPIV Technique for the Mapping of 

two-Phase Bubbly Flows, 9th Int. Symp. On Applications of Laser Techniques to Fluid 

Mechanics, Vol. 1, pp. 16.5.1:16.5.7,1998 

[125] Udrea D.D., High Accuracy Flow Velocity Measurements Using Particle Image 

Velocimetry, Ph.D. Thesis, University of Warwick, 1997 

[126] Judge L.S., Burnett M., Udrea D.D., Lee W.K., Bryanston-Cross PJ., Whole-field 

instantaneous measurements in air, Proceedings SPIE, Paper No. 3172.56, pp. 551-560, 

1997 

279 



[127] Wernet M.P., Particle Image Velocimetry Processing: PIVProc, PIVProc user 

manual, 19th April 1999. 

[128] Giles M.B., Validation of a Numerical Method for Unsteady Flow Calculation, 

ASME Journal of Turbomachinery, Vol. 115, pp.11 0-117, 1993 

[129] FluoSpheres Fluorescent Microspheres, Product Information Sheet, March 1997, 

Molecular Probes Inc., 4849 Pitchford Ave.,Eugene 

[130] Ultranac. The Ulimate High Speed Imaging System, IMCO Electro-Optcs 

Ltd.,1-t."16 Saffron Court, Southfields Ind. Pk., Basildon, Essex, SS15 6SS, UK 

[131] Doukelis A., Mathioudakis K., Founti M., Papailiou K., 3-D LDA Measurements 

in an Annular Cascade for Studying Tip Clearance Effects, May 1998, AGARD 

Conference Proceedings 598, Advanced Non-Intrusive Instrumentation for Propulsion 

Engines, Paper 4. 

[132] Durst F., Melling A., Whitelaw lH., Principles and Practice of Laser Doppler 

Anemometry, Academic Press, London, 1981. 

[133] Goldstein R. J., Kreid D. K., Measurement of Laminar Flow Development in a 

Square Duct using a Laser Doppler Flowmeter, Journal of Applied Mechanics, Vol. 34, 

pp. 813-817,1967. 

280 



[134] Carpenter P. W., Private communication, August 2000. 

[135] Erf R. K., Speckle Metrology, ISBN 0-12-241360-1, Academic Press, London, 

1978 

[136] Ardley S., Fottner L., Beversdorff M., Weyer H., Laser-2-Focus Measurements 

on a Turbine Cascade with Leading Edge Film cooling, May 1998, AGARD 

Conference Proceedings 598, Advanced Non-Intrusive Instrumentation for Propulsion 

Engines, paper 12. 

[137] Versteeg H. K., Malalasekera W., An Introduction to Computational fluid 

Mechanics, The Finite Volume Method, Longman, 1995 

[138] K.R. Castleman, Digital Image Processing, 1996, Prentice Hall, ISBN 0-13-

211467-4. 

[139] Bryanston-Cross.P.J, Towers.C.E, Towers.D.P, Judge.T.R, Harasgama.S.P & 

Hopwood.S.T. The Application of Particle Image Velocimetry (PIV) in a Short 

Duration Transonic Annular Turbine Cascade. Journal of Turbomachinery (ASME), 

Vol 113 pp 504-510. July 1992 IS: 0402-1215 

[140] Hilditch M.l, Smith G.C., Anderson SJ., Chama K.S., Jones T.V., Ainsworth 

R.W., Oldfield M.L.G., 1996, Unsteady Measurements in an Axial Flow Turbine, 

AGARD-CP-571, Loss Mechanisms and Unsteady Flows in Turbomachines, Proc. PEP 

85th Symp., Derby, May 1995, pp24-1: 24-9 

281 



[141] Moore C.J., Jones D.G., Haxell C.F., Bryanston-Cross P.J., Parker R.I., Optical 

Methods of Flow Diagnostics in Turbomachinery, 1981, proceedings of International 

Conference on Instrumentation in Aerospace Simulation Facilitites, ICIASF81, pp:244-

255 

[142] Hilditch M.A., Fowler A., Jones T.V., Chama K.S., Oldfield M.L.G., Ainsworth 

R.\V .. Hogg S.l., Anderson S.J., Smith G.C., 1994, Installation of a Turbine Stage in the 

Pyestock Isentropic Light Piston Tunnel, 1994 ASME Turbo Expo, The Hague, 

Netherlands, ASME 94-GT-277 

[143] Goodisman M.I., Oldfield M.L.G., Kingcombe R.C., Jones T.V., Ainsworth 

R.W., Brooks A.J., 1992, An Axial Turbobrake, ASME Journal of Turbomachinery, 

April 1992, Vol. 114, No.2, pp. 419-425, (Also ASME paper 91-GT-1). 

[144] Brooks A.J., Colbourne D.E., Wedlake E.T., Jones T.V., Oldfield M.L.G., Schultz 

D.L., Loftus P.J., 1985, The Isentropic Light Piston Cascade Facility at RAe Pyestock, 

AGARD PEP CP-390, Heat Transfer and Cooling in Gas Turbines, Bergen, 1985, (Also 

RAe Tech Memo PI053, 1985). 

282 



Appendix A 

MatLab script for plotting Delaunay triangulation 
of an irregular grid of vectors 

'deltri4.m' 
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l% Delaunay Triangulation and iterpolation smoothing 
0/0 Mark Burnett, 1997 
% 
0/0 Subject is a 4 column matrix vel file of the form 
% 
% [x;y;velocity magnitude;velocity angle] 
% 
0/0 Before running the program define the velocity file,eg: 
010 
0/0 yelfile=[x,y,v,a]~ 

0/0 
0/0 Smoothing iterations - interpolates to cenroids then interpolates 
0/0 back to nodes 
% 
~o Centroid node iterations - Calculates values at element centroids 
% and considers that as an additional 
% node hence trebling the 
% number of elements 
0/0 
0/0 Maximum edge length - specify maximum edge length thus limiting 
010 element sizes 
% 
0/0 'velfile' is rewritten if any smoothing or centroid node interations 
0/0 are specified. 'velfile' should be reassigned if the original 
% velocities are to be restored. Otherwise processing time may increase 
% as the interolated nodes are considered as data points, increasing the 
0/0 size of the velocity file. 
% 
%--------------------------------------------------------------------

%GUlbit 
prompt={'Number of smoothing iterations:','Centroid-Node iterations','Maximum edge 
length:'} ; 
def={'O','O','50'} ; 
title='Delaunay Triangulation'; 
lineNo=1; 
answer=inputdlg(prompt,title,lineNo,def); 
iter=str2num( char( answer( 1,1))); 
cniter=str2num(char(answer(2, 1))); 
maxlen=str2num(char(answer(3, 1))); 

velfile=unique( velfile, 'rows'); 
[a b c]=unique(velfile(:,1 :2),'rows'); 
temp=velfile(b,: ); 
velfile=temp; 
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0/oconstant=1/(38400*0.000000S39); 
(Yoconstant= 11 (390 S 0*0.000000640); 
%)constant= 1 1(36S00*0. 000000840); 
0/ovelfile(:,3)=velfile(:,3). *constant; 
°oyelfile( :,4 )=velfile( :,4). *constant; 

% Velocity conversion for tartS only 
% Velocity conversion for taru1_33 only 
% Velocity conversion for statS only 

0/0 Convert to magnitude and angle 
velfile(:,3)=(sqrt((velfile(:,3)."2)+(velfile(:,4)/'2))); % Converts dx dy to magnitude 

0/0 Convert from pixels to mm, tartS only 
%velfile(:, 1 )=velfile(:, 1 )./38.4; 
o/oyelfile(: ,2)=velfile(: ,2)./3 8.4; 

% Convert from pixels to mm, taru1_33 only 
%yelfile(:, 1 )=velfile(:, 1 )./39.0S; 
%velfile(: ,2)=velfile(: ,2)./39. OS; 

0/0 Convert from pixels to mm, statS only 
%velfile(:, 1 )-velfile(:, 1 )./36.S; 
%velfile( :,2)=velfile( :,2)./36.S; 

0/0 Velocity with no interpolation 
e=[ 1 1 1 1 1 1 ]'; 
xy=velfile(:,l :2); 
0/0xy(:,2 )=xy(: ,2)+22; 
connec 1 =delaunay(velfile(:, 1 ),velfile(:,2)); 

% Centroid-Node iterations 
if cniter>O, 
for ctrl =1 :cniter, 

[m,n ]=size( connec 1); 
vctr=pdeintrp(xy',connec 1 ',velfile( :,3)); 
actr=pdeintrp(xy' ,connec 1 " velfile(:,4)); 
x=velfile(:, 1); 
y=velfile(:,2); 
v=velfile(:,3); 
a=velfile(:,4); 

for ctr2= 1 :m, 

% The xy coordinates of the triangles 
xl =velfile( connec 1 (ctr2, 1),1); 

010 Usually commented out 
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yl =velfile( connec 1 (ctr2, 1 ),2); 
vI =velfile( connec 1 (ctr2, 1 ),3); 
x2=velfile( connec 1 (ctr2,2), 1); 
y2=velfile( connec 1 (ctr2,2),2); 
v2=velfile( connec 1 (ctr2,2),3); 
x3=velfile( connec 1 (ctr2,3), 1); 
y3-velfile( connec 1 (ctr2,3),2); 
v3=velfile( connec I (ctr2,3),3)~ 

0/0 The mid-point betweeb two nodes 
xmidl=((x2-xl)/2) + xl; 
ymidl=((y2-yl)/2) + yl; 

% 2/3rd from node to mid-point 
xctr=x3-((x3-xmidl )*(2/3)); 
yctr=y3-((y3-ymidl )*(2/3)); 

0/0 Appending to xy coordinates 
x=[ x;xctr]: 
y=[y:yctr] ; 

end· , 

v=[ v:vctr']: 
a=[ a;actr']; 
velfile=[x y va]; 
connec I =delaunay(x,y); 
xy=[x y]; 

end· , 
end· , 

trim 

% Velocity smoothing 
if iter>O, 
for ctr=l :iter, 
velocity=velfile(:,3); 
velocity=pdeintrp(xy',connec I ',velocity); 
velfile( :,3)=pdeprtni(xy',connec I' ,velocity); 
ang=velfile(:,4 ); 
ang=pdeintrp( xy' ,connec I ',ang); 
velfile( :,4)=pdeprtni(xy',connec I ',ang); 

end; 
end· , 
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0/0 Remove entries that contain a zero velocity 
nonzero=find(velfile(:,3)); % Returns indices of non zero velocities 
x=velfile(nonzero, 1)~ 
y=velfile(nonzero,2)~ 
v=velfile(nonzero,3); 
a=velfile( nonzero,4); 
velfile=[x y v a]~ 
connec 1 =delaunay(x,y): 
xy=[x y]: 
trim 

0/0 Plotting the velocity 
%figure 
pdeplot(xy' ,e,connec 1 ','xydata', velfile(: ,3)' ,'colormap', Jet', 'colorbar', 'off) 
axis('equal') 
axIS Image; 
0/0caxis([174388]); 010 Used to make tart, stat and tam use same colourbars 
caxis([min( velfile( :,3)) max(velfile( :,3))]); 
%caxis([192385]); % Used for cfd comparison 
colorbar(,v'); 
0/0axis([-36.6 43.5 -60 58.6]) 
hold off 
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from this thesis 

Particle Image T relocimetry Measurements from the Stator-Rotor Interaction Region of a 
High pressure Transonic Turbine Stage at the DERA Isentropic Light Piston Facility, 
AGARD 90

th 
Symp. Advanced Non-Intrusive Instrumentation for Propulsion Engines, 20-

24th October 1997. Paper No. 46 (Unnamed author) 

Measurements of Transonic Shock Structures using Shearography. Laser Interferometry 
VIII: Applications. Proceedings of SPIE [2861-19]. 

Measurements of a free air jet using Particle Image Velocimetry, (PIV), and Laser Doppler 
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The instantaneous determination of a transonic stator wake and turbulent burst in a low 
speed boundary layer in air using particle image velocimetry (PIV). IMechE 1998, 
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Transonic PIV measurements made in the stator trailing edge and rotor region of the ILPF 
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