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SUMMARY

Both a novel shearing interferometer and the first demonstration of particle image velocimetry
(PIV) to the stator-rotor gap of a spinning turbine cascade are presented. Each of these

techniques are suitable for measuring gas turbine representative flows.

The simple interferometric technique has been demonstrated on a compressor representative
flow in a 2-D wind tunnel. The interferometer has obvious limitations, as it requires a clear line
of sight for the integration of refractive index along an optical path. Despite this, it is a credible
alternative to schlieren or shadowgraph in that it provides both qualitative visualisation and a
quantitative measurement of refractive index and the variables to which it is dependent without

the vibration isolation requirements of beam splitting interferometry.

The 2-D PIV measurements have been made in the stator-rotor gap of the MT1 high-pressure
turbine stage within DERA’s Isentropic Light Piston Facility (ILPF). The measurements were
made at full engine representative conditions adjacent to a rotor spinning at 8200 rpm. This is a
particularly challenging application due to the complex geometry and random and periodic
effects generated as the stator wake interacts with the adjacent spinning rotor. The application is
further complicated due to the transient nature of the facility. The measurements represent a 2-
D, instantaneous, quantitative description of the unsteady flow field and reveal evidence of
shocks and wakes. The estimated accuracy after scaling, timing, particle centroid and particle
lag errors have been considered is + 5%. Non-smoothed, non-time averaged measurements are
qualitatively compared with a numerical prediction generated using a 2-D unsteady flow solver

(prediction supplied by DERA). A very close agreement has been achieved.

A novel approach to characterising the third component of velocity from the diffraction rings of
a defocusing particle viewed through a single camera has been explored. This 3-D PIV
technique has been demonstrated on a nozzle flow but issues concerning the aberrations of the
curved test section window of the turbine cascade could not be resolved in time for testing on

the facility. Suggestions have been made towards solving this problem.

Recommendations are also made towards the eventual goal of revealing a temporally and

spatially resolved 3-D velocity distribution of the stator wake impinging on the passing rotor.
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CHAPTER 1

INTRODUCTION

1.1  INTRODUCING THE PROBLEM

The advent of sophisticated numerical methods to study and predict flows has enhanced,
rather than diminished, the requirement for experimental measurements. An increased
level of understanding of the physical flow requires more detailed measurements for

verification, especially in separated and turbulent flows.

The gas turbine 1s a technically mature product. As the compressor and turbine sections
are already highly efficient, their performance converging to an asymptote, the
engineering need has been targeted towards manufacturing improvements and cost
reductions coupled with increased reliability by, for instance, reducing the number of
turbine blades. In contrast the combustors are largely considered to be black boxes, the
output response of a change in input is known but little is known about the internal
behavior of the combustor, especially when running off condition. The range and scope
of this thesis from velocity measurements in a gas turbine to a simple, quantitative

interferometric technique for compressible flows reflects the perceived engineering

need.



1.2 AIMS & OBJECTIVES

The aim of this work is to provide improved diagnostic techniques to increase the
fundamental understanding, and to verify numerical models, of the engines and their
flows. The innovative objectives of the work are to push forward the practical
performance of the measurements techniques and in the case of the PIV measurements
of the turbine., demonstrate how the technique can be applied in a hostile environment
with a complex geometry. The interferometric measurements show how quantitative
density measurements can be made using a combination of a novel optical arrangement
and analvsis software that is no more complex and no more sensitive to vibration than a

schlieren arrangement.

1.3 DESCRIPTION OF THESIS

The literature survey is not intended to provide details of current commercial systems,
but rather the general properties, uses and limitations of a number of key measurement
techniques. The survey is deliberately broad, covering measurements of temperature,
velocity, pressure and molecular species. It is intended to allow gaps in instrumentation
relevant to the two studies included in this thesis to be identified. The literature survey
has also aided a separate, ongoing, project to reconstruct tomographically the location of
heat release within a combustor operating at its stability limit. The shearing
interferometer and some of the tomographic algorithms presented in part 3

(multiplicative algebraic reconstruction and Abel transform) have also been used in this

ongoing project.



n : : : : :
Part 2 describes velocity measurements in an axial flow turbine mounted in a transient

test facility. The measurements have been made using a planar imaging technique called

particle image velocimetry (PIV).

The velocity measurements are of interest to the turbine engineer as the flow is
inherently unsteady, mainly due to the relative motion between the stationary nozzle
guide vanes (NGV) and the rotating rotor blades. The rotor blades periodically pass
through the wake and shock structure of the preceding nozzle guide vane row,
modulating the flow field over the blades. Fluctuations in pressure change the loading
on the blades and can cause vibrations. Changes in heat flux can give rise to thermal
fatiguing of the blades and variations in the angle of incidence of the rotor to the flow

direction can cause the blades to operate off the design condition.

This stator-rotor gap region is dominated by a complex three-dimensional flow owing to
the periodic interaction between the stator wake and the passing rotor. This region
represents a substantial loss within a turbomachine, but it is not well modeled by current
analysis methods. Nor has the instantaneous structure of the flow been previously
recorded, although extensive point measurements have been made using Laser Doppler
Anemometry (LDA) and Laser 2 Focus (L2F). The instantaneous structures revealed by
the PIV measurements are required in order to increase the fundamental understanding

of this region and to provide a test case to validate further calculations.

For the turbine measurements the emphasis is placed on gathering time-resolved,
accurate, velocity measurements at engine representative conditions to validate

fledgling time-varying calculations. Suggestions are also made towards realizing the



maximum permissible spatial resolution and improving the signal-to-noise ratio in the

presence of glare from mechanical surfaces in the field of illumination.

Part 3 describes the development and application of a simple shearing interferometer to
compressible flow fields. The shearing interferometer shears a single beam to produce a
finite fringe interferogram. It is less susceptible to vibration, in comparison to a beam
splitting interferometer, as the sheared beams are incident off common components. The
constraint on mechanical isolation from such sources is relaxed to a level equivalent to
that of a schlieren arrangement. It is envisaged that the shearing interferometer would be
applied either where a schlieren or beam splitting interferometer would normally be
used. The shearing interferometer would give a quantitative measurement of refractive
index or its dependent variables. In each case only a few, relatively inexpensive,

components are required to make the measurement.

The shearing interferometer has been applied to a two-dimensional transonic wind
tunnel and a shock-tube exhausting into ambient air. The measurements of the two-
dimensional wind tunnel were used both to evaluate the technique and to provide a first
pass characterization of the wind tunnel that was to be used for the calibration of
anemometry equipment. The purpose of the measurements on the shock-tube was to
provide flow visualization to aid the acoustic evaluation of jet-exhaust noise-suppressor
nozzles, or mixer-ejectors. The nozzles are designed to suppress noise by increasing the
contact area, and hence the interaction, between the exhaust jet and its ambient
surroundings. The visualisation of this interaction is intended to aid the mixer-ejector

designer by revealing the features that give rise to the acoustic signal. Such features



may be accelerated mixing-layer growth, the scale of eddies within it, or the length of

the exhaust core.

Conclusions, part 4, discuss the outcome of both these studies and reviews the new

knowledge generated.

1.4 NOVEL CONTRIBUTION

1.4.1 Velocity Measurements in the Stator-Rotor Gap of a Turbine
Cascade

The velocity measurements in the stator-rotor gap of a turbine cascade represent both a
new application of the PIV technique and a synthesis of new knowledge generated since

1. "3 on the same facility

the previous velocity measurements, presented by Towers et a
prior to the fitting of a spinning rotor. The flow measurement is far more spatially
resolved, in comparison with this previous study, with approximately five times as
many velocity vectors per unit area. The measurements were originally intended to be
phase locked to the rotor. Unfortunately, this could not be demonstrated owing to
equipment failure. The development of the flow with respect to the phase of the rotor

was therefore constructed by selecting the appropriate frames from a large data set

(approximately 200 frames of data).



I.4.2 Determination of the Out-of-Plane Component of Velocity from

Defocusing

A novel defocusing method of determining the out-of-plane component of velocity has
been explored on a free air jet exhausting into air. The accuracy to which the out-of-
plane component can be measured was found to be comparable to that of the in-plane
component it the particle’s diffraction pattern can be resolved. These preconditions
dictate that diffraction-limited optics and either a high-resolution camera, or small field-
of-view, are required. The former precondition could not be satisfied on application to
the turbine cascade as the compound curvature and small-scale aberrations of the
window could not be corrected. Recommendations have been made to overcome this

problem.

1.4.3 Development and Application of a Simple Shearing Interferometer to

Phase Objects

A simple, low cost, shearing interferometer has been developed and demonstrated with
application to compressible flow fields and flames. The original idea was conceived to
be a teaching aid to demonstrate the principle of phase by projecting a series of
interference fringes. This thesis describes its development from an educational toy into
a measurement tool capable of revealing quantitative information of compressible flow
fields. This has been achieved by identifying the variable that is being measured by the
interferogram and creating strategies that can be used to extract it. Tomographic
algorithms have been used to reconstruct the phase object where necessary. The
shearing interferometer can be used to reveal quantitative information about the density

distribution of a flow field where either schlieren photography or shadowgraphs would

traditionally be used.



Chapter 2

REVIEW OF OPTICAL METHODS FOR
FLUID FLOW

Description of Chapter

This chapter presents and discusses some of the optical techniques
that are used to measure fluid flow and combustion in gas turbines.
The intent is to give some idea of the range of measurands and the
techniques that can be used to measure them. This knowledge has
been used to identify gaps in optical instrumentation required to
increase the understanding of the fluid flow and to verify fledgling
numerical models.

The field of optical flow diagnostics is very wide so such a survey
cannot possibly be exhaustive. It does, however, include a
discussion of both well established techniques, some of which have
been implemented into commercial systems, and some, highly
specialized, laboratory curiosities that may come of age in the

future.



2.1 INTRODUCTION TO THE REVIEW

The optical diagnostics discussed in this chapter can be split into two categories, those
that measure a flow parameter directly and those that measure the dynamics of a body
carried by the fluid flow. This body can either be a flow tracing marker, such as a
bubble, particle or condensation, or even a seed gas or dopant that can be provoked into
giving a fluorescence signature indicative of its surroundings. All the techniques require
optical access, either from one direction, or from two typically orthogonal directions, or
by a line of sight clear through the region of interest. The interrogated area can either be
a volume, two-dimensional plane, point or line integral. All have preconditions that
need to be satisfied prior to their successful application. Gaps in the current
instrumentation for combustion and fluid flow in gas turbines are identified at the end of
the chapter. The discussion makes reference to the need to increase the understanding of

the fluid flow and to verify numerical predictions.



2.2 VELOCITY & VISUALISATION

2.2.1 Laser Doppler Anemometry (LDA)

Laser Doppler Anemometry is a non-intrusive optical technique for measuring the
velocity of a fluid at a point. Since its invention in 1964 by Yeh and Cummins " it has
matured into a now well-established optical technique that is commonly used in
industry. A concise explanation of LDA is given by Dantec ! whilst a more rigorous

explanation is given by Durst et al "*2,

LDA allows up to three components of velocity to be measured at any one time over a
small volume, the size of which is determined by the intersection of two or more beams
of coherent light . The interference of the intersecting beams generates fringes within
the measurement volume through which flow tracing particles can pass, see figure 2.1.
The intensity of the light scattered by the particle as it passes through the measurement
volume is modulated according to the spacing of the fringes and the component of
velocity of the particle normal to the plane of the fringes. The frequency of the pulses in
the scattered intensity is equal to the velocity of the particle divided by the spacing of

the fringes.

Figure 2.2 shows a schematic of a typical laser Doppler anemometer in the backscatter
configuration. The anemometer consists of two sections, the transmitting and receiving
systems respectively. The former consists of a coherent laser source, the beam of which
is split and launched into polarization-maintaining single-mode fibers that relay the
beams to the launch head. Each of the emerging beams is collimated and focused within
the measurement volume. Each beam converges onto a common point that defines the

extent of the measurement volume. The two overlapping beams interfere to produce



fringes perpendicular to the plane of the converging beams, see figure 2.1. The fringe
spacing can be calculated if the direction and wavelength of the two intersecting beams

1s known. The measurement of velocity is therefore absolute.

As the measurement volume has dimensions of the order a 100 um the spatial resolution

is potentially very high, although in practical applications it can be limited by the
prolonged time periods required to traverse and map large areas. The close proximity of
surfaces. to within a millimetre of the center of the measurement volume, can mask the
Doppler signal. In turbomachinery applications it is often the case that the beam is

"chopped’ in phase to the passing rotor to avoid saturation of the photo-multipliers "',

The measurement of each additional component of velocity requires a further pair of
intersecting beams. In a two-component system the second pair of beams is usually
launched from the same launch head as the first but from an orthogonal orientation. The
interference fringes are therefore also orthogonal to the first set. A different illuminating
wavelength is used to distinguish the multiple channels. For a three-component system
the third channel is often launched from a separate head remote from the first, see figure
2.3 45 116 & 131 The measurement volume is defined by the overlap of three pairs of
beams, reducing the size of the volume and increasing the spatial resolution. LDA
systems that measure three components from five beams launched from a single launch
head are commercially available, but the accuracy in the out-of-plane component is
reduced for long focal distances ¥l However, they are mechanically stable and easy to
align owing to the single launch head, and are particularly useful where optical access is

limited, such as for in-cylinder IC engine applications 7.8 & 91
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Each of the channels must intersect within the same measurement volume to resolve the
three-dimensional vector of a single particle. The alignment of the three beams can be
verified by projecting each of the three channels through a pinhole placed in the centre
of the measurement volume. A power meter behind the pinhole can be used to walk (a
process of translating the beam and recording the power behind the pinhole in an

iterative manner until a peak power is achieved) the beams into a common volume.

Accuracies from +1 % to +0.1 % have been claimed for prolonged acquisition periods

. . . . 1
in time-invariant flows 3

. Velocities ranging from less than 1ms™ to hypersonic
speeds have been measured with LDA P® In order to maintain a sufficient data rate
there needs to be an abundance of seeding material. Data rates inevitably suffer in
boundary layers or areas of recirculation where there may be little seed. High refractive-
index gradients, such as those found in flame fronts and boundary layers, refract the

intersecting beams, either displacing or destroying the measurement volume 843
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Figure 2.1. Fringe model. The intensity of the scattered light produced as a particle passes through a series of

interference fringes contained within a measurement volume defined by the intersection of two coherent beams.
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Figure 2.2. Laser Doppler Anemometer — backscatter configuration.
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Figure 2.3. Three component LDA system with beams launched from separate
heads. Measurement volume defined by intersection of three beam pairs.
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Doppler Global Velocimetry, DGV, is an Imaging anemometer that gives a spatially
resolved, mean velocity measurement over a plane. Velocity is determined from the
Doppler shift of light scattered by seed suspended in the flow. H. Komine ", Northrop
Research Center first invented the technique, but it was Meyers and Komine " at
NASA Langley who turned it into a practical tool for Fluid Mechanics. DGV is also
known as Planar Doppler Velocimetry, PDV, and Global Doppler Velocimetry, GDV,
but DGV was the name given by Meyers and Komine and will be used throughout the
remainder of this text. The following brief review of the method follows the approach

given by Roehle "%,

DGV is a particle-based velocity measurement system. Generally, in this technique a
laser sheet i1s used to illuminate a flow region of interest. The illuminated region is
imaged onto a video camera through a specially made absorption cell that has a sharp
cutoff near the laser line frequency. As the scattered laser light is shifted in frequency,
due to the Doppler effect, the transmission through the absorption cell will also change.
This converts the frequency change into an intensity change that can be more readily
detected. The component of velocity that is detected is dependent upon the angle formed
between the laser light sheet and the detection system. Altering the light sheet or
detector location can change the detected component of velocity. By replicating the
system three simultaneous components of velocity can be acquired over a two-
dimensional field. Since its conception DGV has been steadily developed into a credible
tool for fluid mechanics. Difficulties in laser stabilisation and detecting the Doppler

signal have hampered the packaging of the technique. However, DGV is finally coming
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of age as demonstrated by the measurements in turbo-machinery presented by Roehle et

2
al 13

The velocity is determined from the frequency shift of the scattered light from a moving

particle due to the Doppler effect ",

2.1
Av=v—-vy 1)

where vy 1s the laser frequency, v the scattered light frequency. The shift depends on the

-

particle velocity, % , the speed of light, c, the light sheet direction, /, and the direction

of observation, o, thus

iy (2.2)

~

One component of velocity is measured from each observation point. The direction of

the component of velocity is o1 , the bisector of the angle formed by the direction of

the light sheet and the direction of observation, see figure 2.4.

Laser beam direction, | >

0/2
072 Observation

—

Direction of irection, O
measured
component of

-

velocity, 0 —1

Figure 2.4. The direction of the measured component of velocity in relation
to the direction of the light sheet and the observation point.
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The frequency shift due to the Doppler effect is typically too small to be measured
directly. The shifted light is filtered from the illuminating light by capturing the
scattered light through a spectroscopic cell. The absorption line of the spectroscopic cell
is identical to the frequency of the illuminating light. If the absorption line has a slightly
larger bandwidth than the illuminating light the Doppler shift will cause a change in the
transmission through the spectroscopic cell. Frequency variations will manifest

themselves as changes in intensity when viewed through the spectroscopic cell.

Intensity variations will also be created by local variations in seeding number density.
Two cameras are used to capture the scattered light, one looking through a
spectroscopic cell, and the other looking directly at the scattered light, see figure 2.5. A
pixel-wise division of the two camera intensities, together with additional post-

processing, will reveal a map of the velocity component.

Laser Light sheet
|
Mirror __ ————  Beam splitter
|
lodine
Cell
Camera

(normalisation)

Camera
(freq. Shifted)

Figure 2.5. The Doppler Global Velocimeter
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As the absorption line filter can discriminate between increases and decreases in
frequency there is no ambiguity in the sign of the velocity. A calibration procedure is
required to establish the transmission profile of the spectroscopic cell. The laser
frequency must also be stable to coincide with the absorption line of the spectroscopic
cell. Todine vapour is commonly used in the spectroscopic cell, as it has well-known
strong absorption lines in the visible spectrum. These absorption lines interfere with the
514 and 532 lines of Argon lon and frequency-doubled Nd:YAG lasers respectively,

and so 1s used as a frequency-to-transmission converter for these lasers.

The further components of velocity can be determined in either of two ways depending
on whether a snapshot or a time-averaged measurement is required. Firstly, three
camera systems can be imaged onto a common area of a light sheet from different
directions of observation. The three cameras are triggered simultaneously to reveal a
near-instantaneous measurement of the three-dimensional flow field. Secondly, the
orientation of the light sheet can be altered and the separate components of velocity
measured in sequence. As the measurements are taken one after the other the time-
averaged velocity distribution is revealed. Since the exposure times can be longer,
continuous wave lasers can be used as a light source. A lower seeding number density

can also be used.

DGV can be used to give pseudo-continuous velocity distributions of fluids. As a
velocity vector can be encoded within a single pixel even low-resolution cameras can
give approximately 250000 vectors per image. The results are given almost online as
the processing consists of little more than a pixel-wise division of intensities. The image

intensity is generated from an ensemble of seed rather than individually resolved

18



particles. The compromise on the size of seed can therefore be relaxed in favour of its
flow-following capabilities. Measurements can also be made at standoff distances of
several metres, light levels permitting. As the particles do not need to be resolved, nor
the scattered phase information preserved, the quality of the optical access does not
need to be perfect. Test section windows can be curved and not of optical quality.

13 . . : : :
Endoscopes "*! can be used in applications where optical access is restricted.

2.2.3 Hot Wire Anemometry (HWA)

Although not an optical technique hot wire anemometry has been included in this

review due to its ability to measure time-resolved flow ¥

, and hence its extensive
application to fluid studies. No other equivalent technique offers such a high frequency
response ¥ The basis for hot wire anemometry is the heat balance equations, which
can be applied to the anemometric signal to calculate the flow velocity >\ The
anemometric probes consist of a thin wire held across the tips of two prongs that may
also be operated as thermometric sensors or fine-wire resistance thermometers. The
sensing element is a couple of mm long and typically 10 pm in diameter. Although this
is fairly large, implying a relatively poor frequency response, the probe must be strong
enough to survive particularly harsh environments such as combustion chambers. Hot
film probes are generally more robust than hot wire probes and are therefore used in

more hostile environments. The criteria for the dimensions of the probe are based on

strength, spatial resolution and the frequency response of the prong and wire

combination.
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The heat exchange between the hot wire and the fluid affects the output voltage of the
anemometric signal. For hot wire anemometry it is necessary to measure both the gas
temperature and prong tip temperature in addition to the anemometric signal. This is so
that during flow measurements the thermal capacity and thermal inertia of the hot wire
and prongs are taken into account and may be balanced by a feedback system when
processing anemometric data. The feedback system keeps the mean temperature and

resistance of the wire constant. Partially shielded probes may used to resolve any

directional ambiguity in the signal.

HWA can detect perturbations as small as 0.01% of the mean velocity assuming that
velocity can be 1solated from temperature. Further errors can arise due to contaminants
on the wire, eddy shedding from wire (Re=50), and probe vibration. Neglecting
sampling frequency, the frequency response is dictated by the dimensions of the hot
wire itself. Typical dimensions of the sensing elements are approximately 2 mm long,
10 um diameter giving a frequency response of 100 kHz 141 'HW As are intrusive to the
flow and delicate. They do, however, give a time-history signal rather than a
measurement punctuated by the absence of a flow tracing seed. Their very high
frequency response and sensitivity is unsurpassed by any other measurement technique.

This, together with their relatively low cost, has attributed them to turbulence studies

(16]

2.2.4 Laser Two Focus (L2F)
An L2F anemometer creates a probe volume containing two parallel focussed beams. A

particle travelling along the focal plane of the two beams will produce two successive
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scattered light pulses as it passes through this ‘light gate.” The elapsed time between
these two pulses yields the component of velocity perpendicular to the optical axis. The
anemometer 1s sensitive to particles travelling in all directions. Spurious measurements
result when independent particles pass through only one of the beams "7 ¥ A correct
measurement will result when the beams are orientated parallel to the flow direction and
a particle passes through both beams. Prolonged acquisition times are required to
orientate the beams approximately to the mean flow direction and to statistically
determine the correct measurement. The result is a two-dimensional probability density
function containing information about the velocity components in the plane

perpendicular to the optical axis, eg: mean flow vector, turbulence intensities and

Reynolds shear stresses etc.

Three-component systems can either consist of two two-dimensional systems typically
separated by 30°. Alternatively, the 3rd component can be determined from the
measurement frequency as a function of the off-axis component 18] when the focal point
of the beams of a multi-colour system can be displaced (different colours focussed at

different axial depths owing to achromatic aberration of focussing lens).

L2F has a typical accuracy of approximately 1% or better for mean velocity depending
on the amount of data collected and 5-10% for turbulent intensity depending on beam
diameter/separation ratio 181 However, errors increase close to surfaces or in highly
fluctuating flows or velocity gradients as the probability of successful dual beam transit
decreases with high turbulent intensities. Sensitivity to turbulent intensities depends on
the ratio of beam diameter to beam separation. Typical limit on turbulent intensity is

30% for a single colour system, although systematic errors increase depending on

21



whether the particle contacts the periphery or centre of the beams — different path

lengths. L2F has been demonstrated in turbomachinery applications up to Mach 2.

The probe volume again determines the spatial resolution. Beam diameters are typically
= 10 pm, axial length 0.5 pm. Vectors can be measured in the backscatter configuration
to within 2 to 3 mm of surfaces, but the photo-multipliers can be saturated when a

mechanical surface ‘touches’ the probe volume. The distance from the light gate to the

surface can be reduced to half a millimetre if fluorescent markers are used.

The primary limitation of the technique is the time-consuming measurement procedure.
Schodl and Forster '} describe 6 to 8 probe angle settings with about 2000 particles at
each setting for accurate calculation of mean flow vector and turbulence intensities.
This equated to approximately 5 minutes for each measurement point, although they
subsequently reduced the sampling time by a factor of ten using modified mathematical
models, automated measuring procedures and modest improvements in optics and

.7
electronics ',

High-quality optics are required to focus the two beams and gather the light scattered by
the particles. Greater precision allows improved spatial filtering of the signal to give a
1 [18]

greater tolerance to surfaces adjacent to the probe volume. Schod also describes a

three-dimensional, two-colour, L2F system that has been packaged into a small
rotatable optical head connected to a laser and photo-multipliers via fibre optics,

enabling 3 components to be measured from a narrow viewing angle.
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2.2.5 Shadowgraphy

Shadowgraphy is a non-intrusive technique that is based on the refraction of light
passing through strong density gradients "%, A collimated beam of light is projected
through the flow field onto a screen to reveal an intensity distribution. Dark areas

will appear representing regions where the light has been deflected away from its

original unperturbed path.

Opaque objects in the flow will appear blurred in the shadow image. This can be
improved by decreasing the diameter of the light source. Shadowgraphy is sensitive
to changes in the second derivative of the gas density. It is therefore well suited for
visualising shock waves and turbulent compressible flow fields as well as the mixing

of gasses of differing refractive indices.

Recording
Plane

Light
source

SN DS

Lens Test Section

Figure 2.6. Shadowgraphy arrangement

2.2.6 Schlieren
Schlieren technique is also based on the deflection of light, but now the deflection
angle of the ray at the end of the test volume is measured " ™. The resolution is

higher than that of shadowgraphy, but the set-up is more complicated and more

difficult to use.
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The collimated beam is sent through the flow field, after which it is made convergent
by passing through a lens or reflecting off a concave mirror. An image of the light
source 1s formed in the focal plane of this lens or mirror. When the collimated beam
1s deflected, the deflected light is imaged slightly displaced in the focal plane. By
placing a so-called schlieren filter in the focal plane this deflection can be made
visible. E.g. knife-edge filters or coloured filters can be used to visualise the
magnitude and/or direction of the gradient in the flow field by intensity or different
colours. For this the light source should either be a point source or a slit source
parallel to the knife edge direction. A lens is used to form an image of the section,

which eliminates shadow effects.

|
Knife edge |
]
]
E Film
!
]
]
source Camera |
Lens Test Section Lens Lens

Figure 2.7. The Schlieren arrangement

In general, the intensity change is proportional to the component of the density
gradient normal to the knife-edge. The schlieren system is thus, sensitive to changes

in the first derivative of density. For high sensitivity it is advantageous for the

second lens to have a larger focal length.

Both schlieren and shadowgraphy work well for visualising 2-D flow characterised by

the large refractive index gradients. They do not work well with low refractive indexes.
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Quantitative results from shadowgraph and schlieren images suffer severely because

they

only measure the second and first derivatives respectively of the density field.

Despite these drawbacks both Schlieren and Shadowgraphs are commonly used owing

to their simplicity and readily digestible qualitative results. Their usefulness can be

improved when coupled to high-speed cameras and light sources to study the transit of

shocks within aerodynamic facilities 2%,

2.2.7 Interferometry

Interferometry can be used for non-intrusive visualisation and to give quantitative
results concerning the density distribution in a compressible flow >z & 231
Neither probes nor seed need to be introduced into the flow. The interferogram
typically consists of a series of interference fringes that portray a contour map of the
two-dimension projection of the density *%, or relative density '*!, distribution.
Interferometry is sensitive to absolute changes in density. It is based on the
retardation that a light ray experiences when crossing an inhomogenous refractive
index (density) field with respect to an undisturbed ray. When a collimated beam

crosses a field that is homogeneous in the x- and y- direction the wave front remains

plane. When it traverses an inhomogeneous field the wave front is deformed owing

to local retardations.

By using interferometry the phase delay of the light beam passing through the flow
field can be measured. This phase delay is proportional to a line integral of the

density along the light path through the flow field. Once the phase delay is known
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the average density of the flow can be determined. The density distribution can then

be used, in some cases, to derive information on velocities 2! & 221

To exclude phase-disturbing effects of dust and non-ideal optical apparatus the
interfering beams may be stored, and reconstructed, holographically. The

holographic medium also allows the three-dimensional effects of the flow to be

recorded 1.

Large changes in pressure and temperature can greatly affect density. If the density
change is non-orthogonal to the beam it will be deflected by refraction. This can
present problems when measuring compressible flows where large density gradients

such as shocks and boundary layers are present *! & 22,

In nominally two-dimensional wind tunnels the phase object can be assumed to be
constant in the z direction, greatly simplifying the analysis and improving accuracy.
Measurement of highly three-dimensional flows largely depends on the ability to
deconvolve the 3-D information. Interferometry requires both mechanical and laser
(SLM and TEMy, single longitudinal mode and transverse electric and magnetic

22 & 19]

modes) stability for beam splitting interferometers , although this restraint is

greatly relaxed for beam-shearing arrangements where the two beams are incident off

: 21
common components and share common optical paths 1=

Interferometry has undergone a renaissance owing to the advent of Electronic Speckle
Pattern Interferometry (ESPI) that exploits the speckle effect of light scattered from

. . . 135
diffuse surfaces, an attribute which was historically the bane of the art (1351
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2.3 TEMPERATURE

2.3.1 Coherent Anti-Stokes Raman Spectroscopy (CARS)

CARS 1is a non-linear Raman technique used to measure temperature and species
concentration in hostile particle-laden, turbulent and highly luminescent environments.
Two laser beams are utilized to stimulate Raman scattering of the molecules '**. The
signal 1s produced in a coherent "laser-like" beam that can be readily separated both
physically and spectrally from interference. The amount of scattered light is dependent
upon the number of molecules present, thereby allowing the molecular number density

d 25 &

to be measure *¢l In addition, the frequency of the signal is dependent upon the

Boltzman distribution, which is governed by the temperature. An analysis of the
frequency content gives a measurement of temperature. CARS data can be obtained in a
"broadband" mode that allows the spectra to be obtained instantaneously (10 nsec). A
100-500 mlJ, spectrally narrow, pulse pumped laser is required as is a broadband Stokes
laser (Dye) for broadband CARS. A multi-channel detector is required to receive the
CARS signal. The typical accuracy for molecular number density is 10%, whilst that of
temperature 5% for single shot for N3, 1% for continuous wave excitation. Other species

that have been investigated include H,, H,O,and CO; 231

CARS is complex to set up and the signal is difficult to analyse. The signal intensity is
non-linearly dependent on temperature, species concentration, Raman line width and
pressure. Computer models of species spectra are required before a measurement can be
extracted. The apparatus itself, pump and Stokes lasers and detector, are also expensive.

CARS remains a highly specialized technique that is neither widespread in industry or

research institutions.
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2.3.2 Degenerate Four-Wave Mixing (DFWM)

DFWM uses a resonant interaction of a frequency of light with a molecular transition
frequency to measure temperature, species or velocity. The experimental arrangement is

similar to CARS, but is potentially more sensitive owing to the use of a resonant

interaction *7!.

Typically, three laser beams cross (to define a localized sample volume) and interact to
generate a fourth laser beam that becomes the detected optical signal. An alternative
physical picture of this process is to imagine that two of the input beams interfere to
create an interference pattern and associated index of refraction grating. The third input
beam is diffracted from this index grating to become the fourth or signal beam. Versions
using one wavelength or multiple wavelengths are possible, as well as versions that use
the non-resonant susceptibility or a particular absorption resonance of a given molecule.
Non-intrusively measured flow quantities that have, so far, been demonstrated include
total density, individual species density, temperature, velocity, and the speed of sound
1271 Variations of this technique are also called, for example, Laser-Induced Gratings
Spectroscopy (LIGS) and Transient Grating Spectroscopy (TGS) 28] DFWM has shown
to be accurate to 5% for temperature over a range from 300 to 2300 K for N» 71 As
quenching problems are less compared to Laser-Induced Fluorescence (LIF), both major
and minor species are accessible. Its application requires dual-ended optical access, but
the highly directional signal requires only a small detector. Larger windows are required
if interrogation spot is to be traversed. DFWM, like CARS, is a complex and immature

technique that remains in the realm of a few specialised laboratories.
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2.3.3 Optical Pyrometers

The thermal radiation of a material or gas depends on the radiating properties of the
. 129] . .
emutter “". The radiance emitted from a black body, at any wavelength, is solely a

function of absolute temperature and is described by Planck’s law or, integrated over all

wavelengths, by the Stefan-Boltzmann law.

The spectral radiance of a non-black-body emitter depends on emissivity that varies
with temperature, wavelength and microstructure. For solids the emissivity is also a
function of the surface macrostructure, e.g. €0.95 for black carbon £€~0.02 for polished
aluminium. The reliance on the radiance intensity at a given wavelength to measure
temperature can be misleading as the emissivity can change with surface finish or if the
surface oxidises. Various comparative radiometric methods can be used to reduce the
dependence on emissivity. These methods are described in detail by Lawton and

Klingenberg %] but can be summaried thus,

Total or integrated method: Radiance integrated over spectrum — radiance temperature
Spectral Emission. Spectral radiance — brightness temperature

Colour Temperature: Based on two or more brightness temperatures

Differential Colour Temperature: Comparison of emission contour to that of a black

body over a limited range.
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Reversal Method: Comparison of the emission of an unknown source to that of a source

at a known temperature.

If the dependence of emissivity on wavelength is removed the optically measured
temperature is identical to the true temperature, but these techniques can become
inaccurate where the emissivity is much less than 1. They are therefore more suitable for
soot-laden combustion environments. The basis of this pyrometry method in
combustion applications is that some of the soot particles escape oxidisation. The
incandescent particles are at temperatures similar to the surrounding gas, emitting

electromagnetic radiation in the form of visible light and infrared energy.

The reversal method allows both the brightness temperature, emission and absorption
coefficients to equated and located using a tomographic approach. The reversal method
consists of nulling the emission and absorption of an unknown source against that of a
reference *2° ¢ 3! Either a small measurement volume or an integrated line of sight
can be measured depending on the set-up. Transient measurements can be made either
by strobing the known source or by recording the unknown source emission local to the
reversal signal. For the former a laser (Argon Ion or Nd:YAG) can be used as the known
source, if calibrated against a black-body emitter. The reversal principle can also be

exploited to determine the emission and absorption of individual spectral lines of a

flame to spatially speciate a flame.

Most commercial pyrometers use colour temperatures to reduce the dependence on
emissivity. Typical accuracy is ~1% with temperatures varying from —50 to 3000°C.

The spatial temperature distribution can be revealed by ratioing the grey-level
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intensities of two images recorded at different wavelengths P2, The signal can
attenuated by windows and emission/absorption in optical path but, gives non-intrusive

spatial temperature distribution if pre-conditions are satisfied.

2.3.4 Thermographic Phosphors

This non-intrusive optical technique utilises the temperature-sensitive emission
properties of certain luminescent inorganic chemicals known as thermographic

(33]

phosphors When excited with ultra-violet light these phosphors produce

fluorescence whose properties are temperature dependent in terms of its emission
lifetime and in terms of the relative intensity of emission at various discrete
wavelengths. Utilising these characteristics a thin layer of the phosphor can be applied
to a surface to measure the instantaneous surface temperature distribution ' or

. . . . 4
incorporated in a static or dynamic sensor (34 & 33),

The pnimary advantage of phosphors is that they can be painted onto entire surfaces or
integrated into a point sensor such as the phosphor-tipped fibre optics with UV
excitation and recipient photodiode described by McGee %, The phosphors exhibit
high sensitivity (=0.05°C), robustness and stability, and have been demonstrated at
temperatures from —100 to almost 2000°C. Systems can be adapted to make remote
measurements of pressure, heat flux, shear stress and strain. They can exhibit frequency
responses up to a kilohertz depending on whether a radiative or lifetime mode is used.
They are non-contact and emissivity independent unlike pyrometers and thermocouples.
However, the coating thickness can affect aecrodynamic qualities of the substrate, for

example coating of turbine blades can alter their geometry and hence their efficiency

[37]
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2.3.5 Temperature Sensitive Paint (TSP)

Temperature is a cause for uncertainty with pressure-sensitive paints (PSP). However,
the sensitivity to pressure can be decoupled from that of temperature by covering the
PSP with a non-permeable coating preventing the diffusion of oxygen into the paint *¥.
The physics of the temperature-sensitive paints is similar to that of PSP in that an active
molecule is excited by a specific wavelength of light except that quenching occurs as a
result of molecular collisions giving rise to a non-radiative de-excitation rather than the
391

presence of oxygen ! Such paints have been demonstrated over ranges of

approximately 10 to 70 °C with a resolution of 1°C at pressures ranging from zero to
ambient. The magnitude of luminescence is related to Iuminophore concentration,
source 1rradiance, and paint temperature. Therefore an image ratio method is employed
to isolate the influence of temperature. An accuracy of ~+0.3°C have been demonstrated

by Cattafesta et al %

on swept cylinder and swept-wing models in a supersonic flow.
Relative motion between model and illumination source or model deformation and

deflection between wind-on and wind-off states are usually the cause of the dominant

error term.

Although images can be realigned the effect of the deformation on the illumination is
difficult to correct. However, this error can be corrected using a two-colour paint that
contains both reference and temperature luminophores. The paint can be applied using
conventional spraying equipment. The surface can be sanded or sprayed over with a
suitable lacquer to achieve an acceptable surface roughness. The TSP must have
surface properties that do not alter the aerodynamic characteristics of the substrate and

must remain attached. Surface contaminants can also degrade measurements e.g. oil

deposits may also fluoresce.
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TSPs allow the remote measurement of surface temperature distribution up to a range of
approximately 200°C with high spatial resolution, and accuracy comparable to

conventional temperature sensors. As their temperature range is limited they are only

suitable for cold applications.

2.3.6 Thermal Paints (Irreversible)

Thermal paints applied to a substrate change colour upon reaching a predetermined
threshold temperature. As the colour change is irreversible they can only be used once.
Single or multi-change paints are available over ranges of 135 to 635°C and 160 to
1270°C respectively with accuracies of +5% “!!. Single-change paints indicate whether
a single temperature threshold has been reached. Multi-change paints go through a
range of colours according to a defined temperature range. Both are colour fast in direct
sunlight, resistant to oil, steam and water, and provide a clear line colour change. No

primer is required for most surfaces.
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2.4  SPECIATION

Optical Spectroscopy (UV/Visible/IR) is employed as a non-intrusive flowfield
diagnostic for combustion research *. Techniques include absorption/emission in the
UV and IR, laser induced fluorescence (LIF) of both naturally occurring and seeded
species, and a number of scattering techniques including Rayleigh, spontaneous Raman,
and several coherent Raman spectroscopies. Temperatures can be derived from
spectroscopic measurements applying emission/absorption methods according to
Planck's or Wien's and Kirchhoff's laws, provided there is local thermal equilibrium in
the system I2%1 ' The emissivity and absorption of radiating gases vary strongly with
wavelength. Therefore spectroscopic temperature measurements are based on the
radiative quantities at specific wavelengths. The temperature of soot can be found
because it is almost a blackbody source (the emissivity ~1). The temperature can be
found using Planck's law that relates spectral radiance of a blackbody radiator to the
temperature. For flame temperature measurements the temperature of the soot is often

assumed to be equivalent to the flame temperature 1291

The evolving spectroscopic techniques are species specific and often measure the
internal state distribution of the probed molecules. These measurements require a
detailed knowledge of the collision physics and reaction dynamics as an integral part of
their interpretation, and, therefore, represent a revolution of sorts in that they are leading

to an understanding of aerodynamic phenomena from the molecular level rather than

from the traditional bulk-properties approach.
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2.4.1 Fourier Transform Infrared Spectroscopy (FTIR)

Many atmospheric species have IR activity that can be measured with high sensitivity
using FTIR Spectroscopy. FTIR allows many gases to be monitored simultaneously and
non-intrusively, a desirable quality where there is no prior knowledge of the molecular
species that may be present. Typical molecular species measured are CO,, CO, NO and
H,O. FTIR has been successfully applied to gas turbine exhaust plumes 54 &4l o
fired, power-plant plumes and in-cylinder IC engine measurements *!. Fourier
Transform Spectroscopy (FTS) can be catagorised into either active or passive systems
depending on whether the absorption of a reference source or the emission of the subject
gas itself 1s measured. Gas samples can be probed actively by passing a beam of
modulated IR radiation through the gas and measuring the spectral absorption. Using a
multi-pass system, where the reference IR radiation is reflected through the gas more
than once, can increase the sensitivity of such systems. Alternatively FTIR can be used
to measure the spectral emissions of hot gases using single-ended access where access
to the far side of the target gas is difficult. The target gas needs to be hotter than its

surroundings for it to be a net emitter rather than a net absorber.

The basis of the instrument is a Michelson interferometer. A heated ceramic that
approximates a black body is used as a reference source of IR radiation. The collimated
radiation is split into two optical paths by a beam splitter. One of the beams is incident
on a fixed corner cube reflector whilst the other is incident on a second corner cube that
can be translated along the optical axis. Comner cubes are used as they allow for
misalignment of the mirrors, always returning the light along its incident path. The
movable mirror modulates the signal on the detector by changing the optical path length

between the two beams. The amplitude modulation is proportional to the wave number
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of each spectral component. Path differences of integral wavelengths give maximum

Intensities, vice-versa for half wavelengths.

The energy throughput of an FTIR spectrometer 1s higher than that of a comparable
scanning monochromator allowing faster acquisition and better signal-to-noise ratio.

Calibration entails simply counting the interference fringes produced by projecting the

beam of a He Ne laser through the interferometer.

2.4.2 Non-Disperse Infra Red (NDIR) Analyser

Non-Disperse Infrared Spectroscopy can be used to measure carbon monoxide, carbon
dioxide and nitric oxide although the accuracy for low levels of nitric oxide is not high
46l The infrared spectra of many gases are characterised by narrow, non-overlapping
absorption bands. Thus, the measurement of absorption within a defined wavelength
band can uniquely 1dentify the presence and concentration of a particular gas. In NDIR
gas sensors, an infrared optical 'sample' filter with a narrow band of transmission is
selected to overlap with the absorption band of interest, the position of the filter
determines the gas to be measured and the amount of absorption determines the gas
concentration present. The infrared filter is chosen to ensure that the sensor is totally gas
specific and will not exhibit cross sensitivity with other gases. A reference filter at a

different pass band can be used as a datum. Concentations of CO, CO; and CH,4. from O-

2000 ppm to 0-100% can be measured with a typical accuracy of £2% of full scale.
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2.4.3 Laser Induced Fluorescence (LIF)

LIF has the capability to detect species in smaller concentrations than those required for
Raman-based approaches. Raman approaches cannot be use at concentrations less than
0.1%. Flame radicals in combustion, such as OH, CH etc., are often only present in
concentrations less than 0.01%. They are therefore inaccessible to the inherently weak

Raman-based techniques >,

Specific molecules can become electronically excited by absorbing laser light at specific
wavelengths causing them to fluoresce **. Lasers are the preferred source of excitation
as they are spectrally and spatially specific. The chemical species that can be excited is
determined by the presence of an electronic absorption band within the spectral range
covered by tunable laser (200 1500 nm approx.). The fluorescence wavelength is
usually, but not always, red shifted (Stokes shifted) from the excitation wavelength
unless resonance fluorescence occurs (same excitation fluorescence wavelength). This
allows the fluorescence signal to be sifted from spurious interference from Mie scatter,
glare etc 23] There are several preconditions that need to be satisfied to perform
fluorescence measurements on a molecule. Firstly, the molecule must have an
absorption wavelength that is accessible by laser. The molecule must also have a known
emission spectrum and rate of radiative decay. The fluorescence power is proportional
to the rate of decay. Corrections need to be made for collision quenching in the presence

of other species and temperature if accurate species number density measurements can

be made.

Fuel flow and dispersion measurements can be made by adding a tracer to the fuel or

intake of a combustion engine that is not affected the combustion process. The
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molecules of the tracer fluoresce when exposed to laser light at certain wavelengths,
revealing the fuel distribution 47 & 551 Dopants are selected according to their
fluorescent properties for visualisation purposes these are good absorption of the laser
wavelength, quantum vyield, low quenching by oxygen, sufficient red shift (Stokes-
shift), similar boiling point and solubility in fuel ¥, The large Stokes shift is required
to separate the fluorescent signal from the elastically scattered stray light. Dopant with a

similar boiling point to fuel is used to ensure that the dopant vaporises with the fuel and

1s a good tracer in both liquid and gas phases.

Velocity can be determined either by measuring the Doppler shift on the fluorescence
signal or by adopting a similar approach to PIV by strobing the excitation light source.
Temperature can be measured using a variety of approaches **!. Firstly, excitation or
fluorescence scans can be used to reveal vibration/rotation energy level of the ground
electronic state. Secondly, the relative populations of two states can be measured and
the temperature calculated from the Boltzmann expressions 2! & 52 Lastly, a single-
excitation, thermally assisted approach can be used in instances where collisions rapidly
distribute the population throughout the upper state manifold. The fluorescence reflects
the population distribution from which the temperature can be calculated. Temperatures
are typically inferred from rotational population ratios.The typical accuracy in number
density measurements is 5 to 10%, and 10% for temperature (based on simultaneous
imaging of NO (seeded) and OH at combustion temperatures ranging from 1000 to 2200
K) P! The use of fluorescent flow tracing markers in a PIV application would not

necessarily improve the accuracy, but would allows the measurements in the presence

of glare from surfaces, windows etc.
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LIF can be implemented in a variety of configurations. Reeves and Musculus excited
and imaged a small measurement volume from common optical access °®!. Alternatively
planar arrangement can be used to measure 2-D spatial information. Ninety-degree, dual
optical access would be required together with a high-energy laser system and ICCD.
Tunable (dye) lasers are desirable to allow the excitation of specific bands or the choice
of a laser line with a lower absorption when absorption is a problem. However, high-
power XeCl excimer lasers (typically higher energy than dye lasers) can be used to
produce low-noise images in larger flow fields. Saturation can be achieved, removing

the laser energy and quenching dependence of the signal, at the cost of a non-linear

relation between fluorescence and population fraction 3,

2.4.4 Laser Induced Incandescence (LII) & Planar Laser Induced

Incandescence (PLII)

Planar LII can be used to provide a planar measurement of soot volume fractions and
soot particle size %% & ¢!l 111 jnvolves heating soot particles with a laser beam so
that they achieve a much higher temperature than the gas within which they are
suspended. The laser heating produces a considerable increase in the black-body
radiation, or incandescence of the soot. Soot vapourisation/fragmentation occurs at laser
fluences above 0.45+0.05 J/cm® at 1064 nm ”\. Laser intensities need to be greater than
10 MW cm™, otheﬁvise signal will not be independent of intensity. Above this threshold
the particle temperature will not increase significantly but at high laser fluences the
particle will loose mass rapidly. The net result is a signal that is largely proportional to
the soot volume fraction and slightly dependent on particle diameter, yet nearly

independent of laser fluence assuming certain preconditions are met ¥l The primary
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limitation is that it can be difficult to distinguish the signal from high luminescent

backgrounds. Broadband incandescents can be far more intense than Raman signatures

of other species.

Particle size is determined either from ratio of the LII signals produced by a single

pulse. but recorded at separate wavelengths, or from the signal ratios at different time
5 : : :

gates 71 The measurement of particle size relies on an energy conservation model to

describe the heating of the soot particle from the laser pulse and its subsequent cooling

due to radiation, conduction and vapourisation.

Typical accuracy is 10% for volume fraction for moderate ranges of particle sizes and
flame temperatures. Errors can be reduced by careful selection of wavelength, detector

gating (duration and delay to coincide when vaporisation is dominant) and laser
intensity /). For particle sizing the accuracy is 2 nm over a 10 to 40 nm range over a
temperature difference of 1000 K using the two-colour method. The time gate method is
sensitive to temperature and is only applicable where the temperature distribution is
known to +50 K. The spatial resolution is determined by resolution of the camera, as

individual particles do not need to be resolved.
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2.5 PARTICLE & DROP SIZING

2.5.1 Phase Doppler Anemometry (PDA)

A seed’s ability to follow a fluid flow is a function of its size. Combining the
measurement of size with that of velocity reduces the uncertainty in the data. A large
particle will scatter more light than a small particle. The result is either a skewed
spectrum from an LDA measurement or a bright particle in a PIV image that misguides
correlation algorithms "*”!. PDA allows both the size and velocity of a spherical particle
to be determined simultaneously. The process has also been extended to irregularly
shaped particles . Both PDA and LDA share a common principle for determining
velocity in that it is calculated from the Doppler shift in the frequency of the light
scattered by a particle as it passes through a small measurement volume. PDA extends
this principle by also considering the phase difference between the scattered light at

different detectors to determine the particle diameter.

PDA can be used to measure particle diameters from 0.5 um to several millimeters
where there is sufficient optical access, usually from two directions '®®. The refractive
index of the particle and of the medium within which it is suspended are also required
as the optimum scatter angle is a function of refraction 163,64 & 651 This calculation relies
on the assumption that the particle medium is homogeneous, although slight
inhomogeneities can be tolerated where the diameter of the inhomogeneous seed is
approximately equal or less than the wavelength of the illuminating light. The number

concentration of the particles is also limited, as only one particle must be present in the

measurement volume at any one time.
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Despite these preconditions PDA has seen successful application to spray and liquid
atomisation processes, powder production and bubble dynamics such as cavitation,
aeration and multiphase mass transfer ®. The technique is commonly used to
characterise fuel sprays where both the drop size and velocity of the fuel is required.
The drop size is a function of the shear within the liquid, which can be determined from
the velocity. As larger droplets have greater momentum they can be propelled further.

Smaller droplets evaporate quicker. Knowledge of the drop size and velocity allows the

fuel distribution 1n the combustion environment to be studied.

Figure 2.8 shows the layout of a typical PDA system °® that is essentially the same as
that for an LDA system, except that two detectors are used so that the phase difference
between the two can be calculated. The detectors are often positioned off the axis of the
transmitting components so that diffracted light is largely responsible for the scattered
signal. If only one scattering mode dominates, a linear phase difference/curvature
relationship exists and no calibration is required. If additional scattering modes of

comparable intensity are simultaneously recorded this linear relationship will be lost.

As the phase difference between two detectors is encapsulated within a modulo 2 there
remains a phase ambiguity between particle sizes that generate a phase difference
exceeding 2m. This ambiguity is often overcome by employing a third detector to
identify the integer multipliers of 27. Increasing the separation between the detectors
can also extend the measurement range. The intersection of two or more focussed beams
and the projection of a slit-shaped spatial filter mounted in front of the receiving fibres
define the measurement point. A single particle passes through the measurement

volume and scatters light from each of the individual beams with a Doppler frequency
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shift. The multiple sources of scattered light interfere to produce a beat frequency. The
beat signal at each of the detectors is converted into a Doppler burst with a frequency
that is linearly dependent on the particle’s velocity. The phase delay between the

Doppler signals of the detectors is a direct measure of the particle diameter.

>

Flow Detector 1

Detector 2

Figure 2.8. Orientation of launch head and detectors of a PDA system.

There are several sources of uncertainty that can degrade the quality of the data.
Erroneous phase information can result from oscillations in the spatial coherence of the
illuminating light, irregular particle shapes, inhomogeneous particles and multiple
scattering effects. The signal to noise ratio can vary owing to variations in intensity and
extinction. The former can be generated by a particle trajectory across the Gaussian
profile of the illuminating light, which can vary the ratio of reflected and refracted light
incident on the detector 1. This effect becomes noticeable for transparent particles

with a diameter exceeding half the measurement volume diameter. Further anomalies
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arise where the slit aperture ahead of receiving fibers can filter out the required mode of
scattering, leaving a different scattering mode dominant. Both the Gaussian and slit-
effect problems can be addressed using a dual PDA system. A dual PDA system uses
the phase information given by an additional pair of intersecting beams and detectors in

the y-z plane for verification. Non-spherical particles can also be detected and rejected.

PDA offers an absolute measurement of velocity and size at a point determined by the
location of the measurement volume. Although only a single point measurement is
made, the spatial resolution is very high, as the actual size of the volume interrogated is
only a fraction of that occupied by the intersection of the beams. As with all seeding
techniques the temporal resolution ultimately depends on the presence of a particle
within the measurement volume, as well as the sampling rate of the system. Only one
particle must be present in the interrogation volume at any one time. PDA therefore fails
to give reliable results where the number density of particles is high. As with all point-
measurement techniques its spatial resolution can be compromised by the need to map

an area over a realistic acquisition period.

2.5.2 Laser Sheet Drop Sizing (LSD)

Laser sheet drop sizing, or planar drop sizing as it is also known, is a relatively new
technique and there are few references for it. This review follows the description given
by Le Gal et al "l Laser sheet drop sizing uses the ratio of the laser induced

fluorescence and Mie signals to calculate the Sauter Mean Diameter, SMD, information

from sprays.
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The SMD represents the ratio of volume to surfaces area. It is of consequence to the
study of sprays as it is a measure of the ease with which it will vaporise. Large SMD

implies that the spray will vaporise poorly, a small SMD implies it will vaporise readily.

LSD is a planar technique that gives a two-dimensional SMD map of a spray and has

been successfully applied to a pressure swirl atomiser !®

I Tt is a complementary
technique to PDA in that it can be used to measure dense sprays where PDA fails to
give reliable results. As it is a planar technique it gives a two-dimensional
representation of the spray rather than the point-wise measurement. LSD relies on two
assumptions that act as a precondition to the technique. Firstly, it is assumed that the

Mie scattering signal obeys a D’ relationship and secondly, that the fluorescence signal

obevs a D’ relationship, where D is the diameter of the droplet.

The first assumption can be encapsulated in equation 2.3 where C is a constant
representing the scattering angle, solid angle of collection optics, droplet refractive
index, polarisation etc. and Sn. is the scattered intensity. This relationship has been
shown to be accurate for spherical absorbing droplets greater than 1 pm in diameter

although the D’ dependence deteriorates above 80 um 168]

Suie = CrieD” (2.3)

Fluorescence occurs when the liquid spray contains a fluorophore that absorbs part of
the illuminating laser light, which is commonly emitted with a strong red shift that can
be spectrally filtered from the Mie signal. The fluorophore can either be naturally

occurring or added to the liquid in low concentrations. For transparent droplets the
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fluorescence signal, Sp,, is largely proportional to the concentration of the fluorescing

molecules and thus can be described by the D’ relation, equation 2.4.

SFIuo = CFluoD ’ (2.4)

However, the index of the dependence can vary when strongly absorbing dyes are used
and thus a careful characterisation of both the elastic and inelastic scattering of the

droplets as a function of their diameter is required.

Le Gal et al. '*"! characterised the Mie and fluorescence signal by illumination of the fog
of mineral spirit (kerosene) doped with p-Terphenyl (PTP) from a droplet generator
using the second and fourth harmonics of an Nd:YAG laser respectively (532 and 266
nm). The droplet diameters were measured using a two-component PDA system. A
good correlation with the D’ dependence of the Mie scattering signal was found,
although the dye concentration was found to have a profound influence on the
absorption and hence also the fluorescence signal. Only ‘highly dilute’ dye

concentrations were found to follow the D’ dependence.

If the preconditions are correctly adhered to, and more than one droplet is sampled per

pixel, the intensity ratio of the fluorescence and Mie signals at a pixel gives the Sauter
Mean Diameter,
S CFlquNiDi3 ZDi3
Fluo ]

= ! i = SMD 2.5
SMie CMiezNiDiz . ZDiZ 22
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where N; is the number of droplets per pixel with diameter D;. LSD gives a two-
dimensional map of the relative Sauter Mean Diameter of sprays. The measurements
can be made absolute using a single point measurement of droplet diameter that can be
provided using a PDA system. LSD can be applied to dense sprays and gives a high

spatial resolution determined the number of picture elements and magnification of the

Imaging system.

A calibration procedure is required to determine the correct dye-liquid combination and
dye concentration in order to establish a D’ dependent fluorescence signal. This is most
easily achieved in water-based sprays where many dyes are available that can be excited
using visible light. Even in the absence of a calibration the technique can be used to
give qualitative patternation data as a precursor to mapping the SMD. The technique has
the potential to be extended into high-temperature combustion environments where a

dye of similar boiling point and evaporation rate to the liquid fuel would be required.

2.5.3 Light Obscuration

It is possible to measure particle cross-section from the shadow cast by an individual
particle. A simple system would consist of a photo-detector and a laser diode. Particles
passing through the beam obscure some of the light incident on the photo-detector. High
number densities can present a problem, as only one particle must be in the beam at any
one time ®”!. Alternatively particle sizes can be established using a process called Back-
Lit Imaging where, as the name suggests, the particle diameters are established by

[70]

interrogating an image of the particles . The images can reveal irregular particle

shapes, inclusions in droplets etc. A sequence of frames can reveal velocity and
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qualitative information such as jet break-up and ligament growth. Back-Lit imaging can
be limited in its application owing to the confusion generated by out-of-focus particles

outside the image plane This problem becomes worse in sprays of high number

densities.

2.5.4 Diffraction Methods

The angular distribution of the light diffracted by an ensemble of particles can be used
to determine their mean diameter. The majority of the diffracted light is concentrated
towards the forward direction of the incident laser beam and is collected using a Fourier
transform lens, see figure 2.9. Smaller particles diffract a larger portion of their incident

light away from the forward direction than larger particles.
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Figure 2.9. Particle sizing by diffraction

The angular distribution can be interrogated by traversing a photo-multiplier in the back

focal plane of the transform lens.
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This principle forms the basis of the commercially available Malvern particle sizer that
can be used to measure particle diameters ranging from 0.02-3500 um in wet or dry
suspension "' & "2 The spatial resolution is defined by the thickness of beam and
working distance of the Fourier Transform lens (1.5 times focal length of Fourier
Transform lens to give a suitable capture angle). The measurement is an integration of
the mean diameter along the optical path of the beam. The results therefore need to be
de-convolved to give spatial size distributions. As particles diffract at a given angle
regardless of velocity, the technique can be applied to high-speed flows. The particle, in

effect. gives a signal all the time it is in the measurement volume.

In dense sprays the result can also be skewed owing to smaller particles falling within
the shadow of larger particles. Low concentrations right up to 95% beam obscuration
can be measured, but multiple scattering may become apparent. Refraction effects from
density gradients, flame fronts etc, limit the optical path length although commercial

systems typically measure remote sample.

2.5.5 Time of Flight Particle Sizing

Time-of-flight particle sizing consists of accelerating a particle or aerosol through the
path of two laser beams 69 & 73] The transit time of the particle across the two beams is
correlated against the particle’s aerodynamic diameter. Larger, heavier particles are
slower to respond to the accelerating flow field, vice-versa for smaller, lighter particles.
A second size distribution can be established from the side scatter of the two

illuminating beams. Concentration can be determined from the signal counts. This kind
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or particle sizer is typically used for particle diameters in excess of 0.5 pm in

concentrations up to 10 000 particles per cm’.

2.5.6 Intensity Methods

Particles sizes can be calculated from the amplitude of the light scattered by a particle as
it passes through an illuminating beam ™ * 1. The absolute intensity is compared
against either Mie or Rayleigh theory to ascertain the particle diameter. Typical particle
sizes range from a fraction to tens of microns. Light scattering intensity is dependent on
particle shape, complex index of refraction, lens geometry, and photo-detector spectral
characteristics as well as particle size. A calibration is required, usually with ideal, non-
absorbing, spherical aerosols, although they may not be representative of non-ideal,
light absorbing, irregular particles, eg: soot. Errors occur where intensity variations are
present at either the source or in the optical path and owing to the particle trajectory
through a Gaussian beam profile. Either defining the measurement volume as the
intersection of two separate colour beams or by sampling intrusively at a known
location can solve these problems. The Knollenberg probe ! is an example of a

commercial system that uses this principle, see figure 2.10.
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Figure 2.10. Intensity method of particle sizing
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2.6 SUMMARY OF OPTICAL INSTRUMENTATION FOR FLUID
FLOW IN GAS TURBINES
2.6.1 Compressors & Turbines

As compressor and turbine performances converge to an asymptote an ever-improving
knowledge of the detailed flow-field is required to improve them. Detailed numerical

predictions rely on accurate diagnostic instrumentation to validate them.

If the compressor or turbine blades are considered to be two-dimensional a simple
transmitted-light technique such as interferometry can be used to provide quantitative
flow data such as density and the location of shocks. Such data are obviously
insufficiently accurate where three-dimensional profiles, and predictions, are

considered.

LDA and L2F have been successfully applied to both compressors and turbines to

116 & 1381 Both are intrinsically point-wise

ascertain velocity and its fluctuations
techniques where a volume or plane is traversed over a period of time. The vectors can
be established from an ensemble or a single particle passing through the measurement
volume. Sampling periods can be extended in sparsely seeded areas to record vectors
that would be missed by discrete sampling techniques. The measurement points can
therefore coincide with the nodes of a CFD mesh. LDA and L2F can be phase locked to
a passing rotor or a coherent aspect of the flow. Neither gives a time history of the flow,
unless the stream of seed through the measurement volume is continuous, necessitating

a very high seeding number density that, if achievable, could leave deposits on the

blades. In each case the spatially irregular, incoherent aspect of the flow would be lost.
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The compressors and turbines are made up of stages of stationary and rotating blades.
The rotors are mounted on typically two or three shafts that rotate at different angular
velocities. The flow between the stators and rotors is inherently unsteady due to the
relative motion between them. The rotors either side of a stator may not be rotating at
the same angular velocity nor have the same number of blades. In the strictest sense
successive measurements would need to coincide with the correct phase of both of the
rotors, not just the phase of a single rotor to spatially map a plane or volume. If spatial
and time accurate predictions of this unsteady flow are to be verified, a plane or volume
needs to be measured in an instant. The acquisition of simultaneous vectors is obviously
desirable where a facility is transient, the cost of running high, or where it is difficult to

maintain a constant run condition over a period of time.

Both DGV and PIV allow the acquisition of simultaneous vectors in high-speed flows.
DGV 1s obviously the more elegant of the two but is also at a less advanced stage than
PIV. It is doubtful whether a sufficient seeding number density could be achieved in
turbomachinery to realize the potential spatial resolution of DGV, one vector per pixel,
if it were to be used in single shot mode, unless the seeding was injected locally. In
addition to this, two cameras are required for each component of velocity to be
measured. In the application of PIV to the turbine cascade, described in part 2, the
optical access and the space available to accommodate the camera arrangement is
minimal. This, combined with complexity and expense of hardware required, stabilized
and spectrally narrow lasers, temperature controlled iodine cells etc, bode against the

use of DGV, especially in the presence of a more mature, simpler alternative such as

PIV.
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2.6.2 Combustion

Non-laminar flows are typically modeled using the time-averaged Navier-Stokes
equation or by direct numerical simulation. The former makes the assumption that the
instantaneous velocity is made up of a mean and a fluctuating term that generates the
Rewnolds or turbulent stresses "*”. This premise generates six more unknowns than
there are equations, so an approximation model is used to solve the closure problem.
The predictions can be highly accurate where a suitable turbulence model is used, but
can also bear no relation to the flow where the model is unsuitable. Experimental

verification is required to assess both the quantitative accuracy and the qualitative

resemblance to the measured flow.

A direct numerical simulation represents the flow at a resolution that includes all the
scales of instantaneous velocity. Such an approach is obviously very computationally
intensive owing to the temporal and spatial resolution required. The problem is
exacerbated where a reacting flow is considered as the reactions occur at a molecular
scale over very short reaction times. The problem is further compounded due to the
transport of different phases and particles within the fluid. Combustion modeling 1s
therefore at a far less advanced state than that of non-reacting flows. Direct numerical

simulation will not be feasible for most flows of engineering interest for the foreseeable

future.

The combustion chamber is largely considered to be a black box where the general
relationship between the inputs and outputs of the combustion chamber are known, but
little is understood about its internal behaviour. Still less 1s known when the combustor

is taken to the limits of, and beyond, its stability loop. Combustion can become unstable
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if the AFR is increased. Further problems can ensue if the combustion instability
couples with the acoustic mode of the combustion chamber or other mechanical
components. Such a phenomenon would be difficult to model owing to interaction
(energy transfer) between the fluid and a mechanical surface. Likewise the interaction,

and acoustic signal, of the exhaust jet mixing with its ambient surroundings is also

problematic.

Part 3 describes the development and application of a shearing interferometer. It has
intially been applied to a compressor representative transonic flow in a 2-D wind
tunnel. The shearing interferometer has also been used to visualise a compressible
exhaust jet mixing with its ambient surroundings, a flow that would be difficult to
model due to the interaction between the mixing fluids. This visualization was
secondary to acoustic measurements of the exhaust jet so was to be inexpensive and not

interfere with these primary measurements.

The application of the shearing interferometer also includes a tomographic
reconstruction of a natural gas flame. This reconstruction is to be used in a separate
project, not described in this thesis, as a comparison against emission/absorption
measurements of the flame made using the reversal principal described in section 2.3.3.
The reversal principle will be used to spatially map the emission and absorption

coefficients of a single spectral line, (308 nm, bright OH in a CHs flame) within a

natural gas flame.

Many optical methods for combustion already exist but their application is severely

hampered by the harsh, multi-phase, particle-laden, often optically dense, and highly
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luminous environment. These methods will undoubtedly become more accurate as
spectral sources and detectors become more precise and as spectral models of

combustion improve, but until then a void remains in the understanding of combustion

within the gas turbine.
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Chapter 3

APPLICATION OF PIV TO A SPINNING
TURBINE CASCADE

INTRODUCTION & BACKGROUND

Description of Chapter

The rationale for applying particle image velocimetry, rather than
other velocimetry techniques, to the stator-rotor gap in a short
duration turbine cascade is described. The novel requirements of the
PIV measurements undertaken here are highlighted.

A previous PIV measurement made in this cascade, prior to the fitting
of the rotor, is discussed, since it defines the fundamental parameters
to this experiment, such as the choice of seed and general approach.
Improvements regarding the recording of the data, data reduction and

vector yield per image are identified.

Finally, the turbine cascade and turbine stage are described.
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3.1 INTRODUCTION
3.1.1 Background

Turbomachines are typically technically mature products and are used in a variety of
engineering applications from power generation to marine and aero-propulsion.
Improving their efficiency, and reducing their operation and acquisition costs, relies on

either calculating or measuring the flow regimes within them.

Detailed investigations in turbomachinery have been performed using LDV for over two
decades. Moore et al 4! (1981) and Edmunds et al "% (1998) give an account of the
development of LDV with regard to high-speed turbomachinery applications over this
period. LDV is a point measurement technique that can be used to reveal stationary
spatial flow structures by time and ensemble averaged over all the blades passages. As
numerical predictions are typically time-averaged the results are well suited for
comparison. Further to this, the LDV measurement points can coincide with the CFD

mesh nodes for a direct, non-reconstructed, comparison.

CFD is a science in its infancy. As fluid models improve and more processing power
becomes commercially available it will become a credible design tool independent of

experimental validation. As the numerical solutions improve so must the experimental

results used to validate them.

PIV gives a series of instantaneous spatial velocity measurements. It can reveal the
unsteady, incoherent aspects of a flow as well as the time-mean flow by combining
771 Ag each frame can yield many velocity vectors the data acquisition times are

frames

much shorter than with traditional LDV techniques. Where the cost of producing a
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turbomachinery representative flow is high, or if the flow is transient, the use of point
measurement techniques can become undesirable. This problem can be exacerbated
where the working conditions of facility, temperature variations, seeding concentrations

etc., have to be kept constant over the acquisition period.

The stator-rotor gap region of a turbine stage is a challenging application both to
measure and to model owing to the complex interaction of a series of stationary and
rotating blades. The region contains both coherent and unsteady components generated
as the stator wake impinges on the passing rotor. The measurements are further

complicated due to the transient nature of the facility.

Many of the 1ssues encountered during the application of LDV to turbomachinery apply
to PIV. As with a backscatter LDV system, only one window is required for PIV. A
clear line of sight similar to that used for transmitted light methods is not necessary.
The light sheet must also be introduced without significantly perturbing the flow.
Gaining optical access is not trivial where the viscous or thermal flow is not to be
perturbed by a window. An ideal window would not compromise the casing annulus
shape nor aberrate the field-of-view through it. Its heat transfer properties would also be
identical to the rest of the casing in order to maintain a correct gas and wall

temperatures ratio. It must also withstand the mechanical and thermal loadings imposed

upon it.

Typically, sub-micron seeding particles are needed to follow the high frequency

perturbations and abrupt changes in velocity found in high-speed flows 7 € 71 Ag the
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amount of backscatter from such particles is small, either high-powered pulsed light

sources (= 100 mJ/pulse) or image-intensified cameras are required to see them.

3.1.2 Novel Requirements of the Measurements

The novel contribution of the work undertaken here is the instantaneous measurement
of the 2-D velocity distribution of the flow through the stator-rotor region of a short
duration turbine cascade operating at engine representative conditions. The feasibility of
a novel method for recording 3-D vectors has also to be explored and demonstrated on a
free air jet but not applied to the turbine. The 2-D PIV data have been recorded digitally
and the necessary algorithms implemented to facilitate the data reduction required for
the automatic extraction of the velocity vectors. This work represents a logical
progression from the previous measurements made on this facility described by

] 1¥& “3], in that a rotor has since been fitted to the

Bryanston-Cross and Towers et a
facility. It is the interaction of the stator wake with the passing rotor that has been
measured rather than flow between the nozzle guide vanes in the absence of a rotor. The
flow through the nozzle guide vanes has also been measured here, except with the
presence of the rotor. The vector yield per image of the data presented here is an order
of magnitude higher than the previous work despite the lower resolution of digital
cameras in comparison to photographic film. The requirement for manual pairing of the
particle exposures during the analysis stage and need for wet processing of

photographic films has also been obviated. The measurements are to be used to validate

time accurate numerical predictions and to demonstrate a velocity measurement

capability on this facility.
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The choice of instrumentation, and the early direction of the project, had largely been
defined by the previous work by Bryanston-Cross & Towers et al 13 & 18I They
describe the velocity measurement in the nozzle guide vane passage made using PIV.
The results were recorded photographically, scanned and processed by manual
identification of the particle pairs. Each photograph yielded approximately 100 vectors
and took three hours to process. The accuracy of the measurements was estimated to be
6% after cosine errors, aberrations and analysis tolerances etc. had been considered.
However, as Bryanston-Cross and Towers had already defined the correct seeding and

general approach, the benefits of their work for the current project should not be

underestimated.
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3.2 THE ISENTROPIC LIGHT PISTON FACILITY (ILPF) & MTI

TURBINE STAGE

The ILPF is a short duration wind tunnel for testing full size, high pressure turbine

[140, 1

stages P& s capable of matching all the non-dimensional parameters

relevant to turbine fluid mechanics and heat transfer. This is achieved by exhausting a
nearly isentropically compressed, and hence heated, volume of air through a spinning
rotor. The rotor speed is kept constant throughout the valid run-time by an aerodynamic
turbobrake operating on a common shaft to the rotor. The ILPF can simulate full engine
representative conditions for run times ranging from a few hundred milliseconds to a

couple of seconds, depending on the conditions required.

The ILPF consists of three sections. In the centre of the facility is the working section
containing the MT1 unshrouded, high-pressure turbine stage. The stage consists of 32
nozzle guide vanes and 60 rotor blades. The rotor operates on a common hollow shaft to
an aerodynamic turbobrake downstream of the rotor. The hollow shaft houses signal
conditioning circuitry for instrumented blades and is supported on two sets of oil-

lubricated bearings.

Upstream of the working section is a pump tube containing a lightweight piston. The
pump tube is separated from the working section by a fast acting plug valve.

Downstream of the working section is an exhaust tank separated from the movement of

the rest of the facility by a sliding joint.

Prior to the run the lightweight piston is positioned at the upstream end of the pump

tube and the volume ahead of the piston is filled to a predetermined pressure. The
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exhaust tanks and working section are evacuated and the rotor assembly is spun up to

speed.

The run is initiated by introducing high-pressure air behind the lightweight piston to
nearly isentropically compress the volume ahead of it. When the desired pressure and
temperature have been reached the plug valve is opened, releasing a steady flow of air
through the working section. A second throat at the stage's exit determines the pressure
ratio across it. It is an annular variable device that maintains axisymmetry in the exhaust
flow. The throat acts as a choke and isolates the stage from disturbances originating
downstream. The flow through the turbobrake can be reduced by fitting blockage rings
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