933 research outputs found

    Three-dimensional Ultrasound Measurements of Carotid Atherosclerosis in Vulnerable Patient Populations

    Get PDF
    Atherosclerosis is a progressive disease that leads to plaque development and is associated with cardiovascular events such as myocardial infarction and stroke. Several biomarkers have been established as surrogates of plaque development yet none can provide direct, noninvasive, rapid measurements of atherosclerotic disease. Three-dimensional Ultrasound (3DUS) image acquisition is safe, inexpensive and fast, however 3DUS image measurements are limited due to time consuming manual image analyses. In addition, the true clinical meaning of 3DUS carotid imaging measurements has not yet been established. A semi-automated approach for the estimation of 3DUS Total Plaque Volume (TPV) was developed with similar variability and high agreement with manual measurements. 3DUS measurements such as Vessel Wall Volume (VWV) and TPV were shown to have similar associations of plaque and Intima-media Thickness (IMT) with age in males however this relationship did not exist in females. 3DUS measurements of carotid atherosclerosis can provide a more sensitive estimation of disease burden in vulnerable patient populations than traditional measures

    Vascular Segmentation Algorithms for Generating 3D Atherosclerotic Measurements

    Get PDF
    Atherosclerosis manifests as plaques within large arteries of the body and remains as a leading cause of mortality and morbidity in the world. Major cardiovascular events may occur in patients without known preexisting symptoms, thus it is important to monitor progression and regression of the plaque burden in the arteries for evaluating patient\u27s response to therapy. In this dissertation, our main focus is quantification of plaque burden from the carotid and femoral arteries, which are major sites for plaque formation, and are straight forward to image noninvasively due to their superficial location. Recently, 3D measurements of plaque burden have shown to be more sensitive to the changes of plaque burden than one-/two-dimensional measurements. However, despite the advancements of 3D noninvasive imaging technology with rapid acquisition capabilities, and the high sensitivity of the 3D plaque measurements of plaque burden, they are still not widely used due to the inordinate amount of time and effort required to delineate artery walls plus plaque boundaries to obtain 3D measurements from the images. Therefore, the objective of this dissertation is developing novel semi-automated segmentation methods to alleviate measurement burden from the observer for segmentation of the outer wall and lumen boundaries from: (1) 3D carotid ultrasound (US) images, (2) 3D carotid black-blood magnetic resonance (MR) images, and (3) 3D femoral black-blood MR images. Segmentation of the carotid lumen and outer wall from 3DUS images is a challenging task due to low image contrast, for which no method has been previously reported. Initially, we developed a 2D slice-wise segmentation algorithm based on the level set method, which was then extended to 3D. The 3D algorithm required fewer user interactions than manual delineation and the 2D method. The algorithm reduced user time by ≈79% (1.72 vs. 8.3 min) compared to manual segmentation for generating 3D-based measurements with high accuracy (Dice similarity coefficient (DSC)\u3e90%). Secondly, we developed a novel 3D multi-region segmentation algorithm, which simultaneously delineates both the carotid lumen and outer wall surfaces from MR images by evolving two coupled surfaces using a convex max-flow-based technique. The algorithm required user interaction only on a single transverse slice of the 3D image for generating 3D surfaces of the lumen and outer wall. The algorithm was parallelized using graphics processing units (GPU) to increase computational speed, thus reducing user time by 93% (0.78 vs. 12 min) compared to manual segmentation. Moreover, the algorithm yielded high accuracy (DSC \u3e 90%) and high precision (intra-observer CV \u3c 5.6% and inter-observer CV \u3c 6.6%). Finally, we developed and validated an algorithm based on convex max-flow formulation to segment the femoral arteries that enforces a tubular shape prior and an inter-surface consistency of the outer wall and lumen to maintain a minimum separation distance between the two surfaces. The algorithm required the observer to choose only about 11 points on its medial axis of the artery to yield the 3D surfaces of the lumen and outer wall, which reduced the operator time by 97% (1.8 vs. 70-80 min) compared to manual segmentation. Furthermore, the proposed algorithm reported DSC greater than 85% and small intra-observer variability (CV ≈ 6.69%). In conclusion, the development of robust semi-automated algorithms for generating 3D measurements of plaque burden may accelerate translation of 3D measurements to clinical trials and subsequently to clinical care

    Bimodal automated carotid ultrasound segmentation using geometrically constrained deep neural networks

    Get PDF
    For asymptomatic patients suffering from carotid stenosis, the assessment of plaque morphology is an important clinical task which allows monitoring of the risk of plaque rupture and future incidents of stroke. Ultrasound Imaging provides a safe and non-invasive modality for this, and the segmentation of media-adventitia boundaries and lumen-intima boundaries of the Carotid artery form an essential part in this monitoring process. In this paper, we propose a novel Deep Neural Network as a fully automated segmentation tool, and its application in delineating both the media-adventitia boundary and the lumen-intima boundary. We develop a new geometrically constrained objective function as part of the Network's Stochastic Gradient Descent optimisation, thus tuning it to the problem at hand. Furthermore, we also apply a bimodal fusion of amplitude and phase congruency data proposed by us in previous work, as an input to the network, as the latter provides an intensity-invariant data source to the network. We finally report the segmentation performance of the network on transverse sections of the carotid. Tests are carried out on an augmented dataset of 81,000 images, and the results are compared to other studies by reporting the DICE coefficient of similarity, modified Hausdorff Distance, sensitivity and specificity. Our proposed modification is shown to yield improved results on the standard network over this larger dataset, with the advantage of it being fully automated. We conclude that Deep Neural Networks provide a reliable trained manner in which carotid ultrasound images may be automatically segmented, using amplitude data and intensity invariant phase congruency maps as a data source

    Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

    Get PDF
    Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most

    Three-dimensional ultrasound scanning

    Get PDF
    The past two decades have witnessed developments of new imaging techniques that provide three-dimensional images about the interior of the human body in a manner never before available. Ultrasound (US) imaging is an important cost-effective technique used routinely in the management of a number of diseases. However, two-dimensional viewing of three-dimensional anatomy, using conventional two-dimensional US, limits our ability to quantify and visualize the anatomy and guide therapy, because multiple two-dimensional images must be integrated mentally. This practice is inefficient, and may lead to variability and incorrect diagnoses. Investigators and companies have addressed these limitations by developing three-dimensional US techniques. Thus, in this paper, we review the various techniques that are in current use in three-dimensional US imaging systems, with a particular emphasis placed on the geometric accuracy of the generation of three-dimensional images. The principles involved in three-dimensional US imaging are then illustrated with a diagnostic and an interventional application: (i) three-dimensional carotid US imaging for quantification and monitoring of carotid atherosclerosis and (ii) three-dimensional US-guided prostate biopsy

    Localizing Region-Based Level-set Contouring for Common Carotid Artery in Ultrasonography

    Get PDF
     This work developed a fully-automated and efficient method for detecting contour of common carotid artery in the cross section view of two-dimensional B-mode sonography. First, we applied a preprocessing filter to the ultrasound image for the sake of reducing speckle. An adaptive initial contouring method was then performed to obtain the initial contour for level set segmentation. Finally, the localizing region-based level set segmentation automatically extracted the precise contours of common carotid artery. The proposed method evaluated 130 ultrasound images from three healthy volunteers and the segmentation results were compared to the boundaries outlined by an expert. Preliminary results showed that the method described here could identify the contour of common carotid artery with satisfactory accuracy in this dataset

    Deep learning-based carotid media-adventitia and lumen-intima boundary segmentation from three-dimensional ultrasound images

    Get PDF
    Purpose: Quantification of carotid plaques has been shown to be important for assessing as well as monitoring the progression and regression of carotid atherosclerosis. Various metrics have been proposed and methods of measurements ranging from manual tracing to automated segmentations have also been investigated. Of those metrics, quantification of carotid plaques by measuring vessel-wall-volume (VWV) using the segmented media-adventitia (MAB) and lumen-intima (LIB) boundaries has been shown to be sensitive to temporal changes in carotid plaque burden. Thus, semi-automatic MAB and LIB segmentation methods are required to help generate VWV measurements with high accuracy and less user interaction. Methods: In this paper, we propose a semiautomatic segmentation method based on deep learning to segment the MAB and LIB from carotid three-dimensional ultrasound (3DUS) images. For the MAB segmentation, we convert the segmentation problem to a pixel-by-pixel classification problem. A dynamic convolutional neural network (Dynamic CNN) is proposed to classify the patches generated by sliding a window along the norm line of the initial contour where the CNN model is fine-tuned dynamically in each test task. The LIB is segmented by applying a region-of-interest of carotid images to a U-Net model, which allows the network to be trained end-to-end for pixel-wise classification. Results: A total of 144 3DUS images were used in this development, and a threefold cross-validation technique was used for evaluation of the proposed algorithm. The proposed algorithm-generated accuracy was significantly higher than the previous methods but with less user interactions. Comparing the algorithm segmentation results with manual segmentations by an expert showed that the average Dice similarity coefficients (DSC) were 96.46 ± 2.22% and 92.84 ± 4.46% for the MAB and LIB, respectively, while only an average of 34 s (vs 1.13, 2.8 and 4.4 min in previous methods) was required to segment a 3DUS image. The interobserver experiment indicated that the DSC was 96.14 ± 1.87% between algorithm-generated MAB contours of two observers\u27 initialization. Conclusions: Our results showed that the proposed carotid plaque segmentation method obtains high accuracy and repeatability with less user interactions, suggesting that the method could be used in clinical practice to measure VWV and monitor the progression and regression of carotid plaques

    International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of mortality and disability in developed countries. According to WHO, an estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to major adverse cardiac and cerebral events. Early detection and care for individuals at high risk could save lives, alleviate suffering, and diminish economic burden associated with these diseases. Carotid artery disease is not only a well-established risk factor for ischemic stroke, contributing to 10%–20% of strokes or transient ischemic attacks (TIAs), but it is also a surrogate marker of generalized atherosclerosis and a predictor of cardiovascular events. In addition to diligent history, physical examination, and laboratory detection of metabolic abnormalities leading to vascular changes, imaging of carotid arteries adds very important information in assessing stroke and overall cardiovascular risk. Spanning from carotid intima-media thickness (IMT) measurements in arteriopathy to plaque burden, morphology and biology in more advanced disease, imaging of carotid arteries could help not only in stroke prevention but also in ameliorating cardiovascular events in other territories (e.g. in the coronary arteries). While ultrasound is the most widely available and affordable imaging methods, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), their combination and other more sophisticated methods have introduced novel concepts in detection of carotid plaque characteristics and risk assessment of stroke and other cardiovascular events. However, in addition to robust progress in usage of these methods, all of them have limitations which should be taken into account. The main purpose of this consensus document is to discuss pros but also cons in clinical, epidemiological and research use of all these techniques

    Three-dimensional segmentation of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets.

    Get PDF
    PURPOSE: Three-dimensional ultrasound (3DUS) vessel wall volume (VWV) provides a 3D measurement of carotid artery wall remodeling and atherosclerotic plaque and is sensitive to temporal changes of carotid plaque burden. Unfortunately, although 3DUS VWV provides many advantages compared to measurements of arterial wall thickening or plaque alone, it is still not widely used in research or clinical practice because of the inordinate amount of time required to train observers and to generate 3DUS VWV measurements. In this regard, semiautomated methods for segmentation of the carotid media-adventitia boundary (MAB) and the lumen-intima boundary (LIB) would greatly improve the time to train observers and for them to generate 3DUS VWV measurements with high reproducibility. METHODS: The authors describe a 3D algorithm based on a modified sparse field level set method for segmenting the MAB and LIB of the common carotid artery (CCA) from 3DUS images. To the authors\u27 knowledge, the proposed algorithm is the first direct 3D segmentation method, which has been validated for segmenting both the carotid MAB and the LIB from 3DUS images for the purpose of computing VWV. Initialization of the algorithm requires the observer to choose anchor points on each boundary on a set of transverse slices with a user-specified interslice distance (ISD), in which larger ISD requires fewer user interactions than smaller ISD. To address the challenges of the MAB and LIB segmentations from 3DUS images, the authors integrated regional- and boundary-based image statistics, expert initializations, and anatomically motivated boundary separation into the segmentation. The MAB is segmented by incorporating local region-based image information, image gradients, and the anchor points provided by the observer. Moreover, a local smoothness term is utilized to maintain the smooth surface of the MAB. The LIB is segmented by constraining its evolution using the already segmented surface of the MAB, in addition to the global region-based information and the anchor points. The algorithm-generated surfaces were sliced and evaluated with respect to manual segmentations on a slice-by-slice basis using 21 3DUS images. RESULTS: The authors used ISD of 1, 2, 3, 4, and 10 mm for algorithm initialization to generate segmentation results. The algorithm-generated accuracy and intraobserver variability results are comparable to the previous methods, but with fewer user interactions. For example, for the ISD of 3 mm, the algorithm yielded an average Dice coefficient of 94.4% ± 2.2% and 90.6% ± 5.0% for the MAB and LIB and the coefficient of variation of 6.8% for computing the VWV of the CCA, while requiring only 1.72 min (vs 8.3 min for manual segmentation) for a 3DUS image. CONCLUSIONS: The proposed 3D semiautomated segmentation algorithm yielded high-accuracy and high-repeatability, while reducing the expert interaction required for initializing the algorithm than the previous 2D methods
    • …
    corecore