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Purpose: Three-dimensional ultrasound (3DUS) vessel wall volume (VWV) provides a 3D measure-
ment of carotid artery wall remodeling and atherosclerotic plaque and is sensitive to temporal changes
of carotid plaque burden. Unfortunately, although 3DUS VWV provides many advantages compared
to measurements of arterial wall thickening or plaque alone, it is still not widely used in research or
clinical practice because of the inordinate amount of time required to train observers and to generate
3DUS VWV measurements. In this regard, semiautomated methods for segmentation of the carotid
media-adventitia boundary (MAB) and the lumen-intima boundary (LIB) would greatly improve the
time to train observers and for them to generate 3DUS VWV measurements with high reproducibility.
Methods: The authors describe a 3D algorithm based on a modified sparse field level set method
for segmenting the MAB and LIB of the common carotid artery (CCA) from 3DUS images. To
the authors’ knowledge, the proposed algorithm is the first direct 3D segmentation method, which
has been validated for segmenting both the carotid MAB and the LIB from 3DUS images for the
purpose of computing VWV. Initialization of the algorithm requires the observer to choose anchor
points on each boundary on a set of transverse slices with a user-specified interslice distance (ISD),
in which larger ISD requires fewer user interactions than smaller ISD. To address the challenges of
the MAB and LIB segmentations from 3DUS images, the authors integrated regional- and boundary-
based image statistics, expert initializations, and anatomically motivated boundary separation into
the segmentation. The MAB is segmented by incorporating local region-based image information,
image gradients, and the anchor points provided by the observer. Moreover, a local smoothness term
is utilized to maintain the smooth surface of the MAB. The LIB is segmented by constraining its
evolution using the already segmented surface of the MAB, in addition to the global region-based
information and the anchor points. The algorithm-generated surfaces were sliced and evaluated with
respect to manual segmentations on a slice-by-slice basis using 21 3DUS images.
Results: The authors used ISD of 1, 2, 3, 4, and 10 mm for algorithm initialization to generate seg-
mentation results. The algorithm-generated accuracy and intraobserver variability results are compa-
rable to the previous methods, but with fewer user interactions. For example, for the ISD of 3 mm,
the algorithm yielded an average Dice coefficient of 94.4% ± 2.2% and 90.6% ± 5.0% for the MAB
and LIB and the coefficient of variation of 6.8% for computing the VWV of the CCA, while requiring
only 1.72 min (vs 8.3 min for manual segmentation) for a 3DUS image.
Conclusions: The proposed 3D semiautomated segmentation algorithm yielded high-accuracy
and high-repeatability, while reducing the expert interaction required for initializing the algo-
rithm than the previous 2D methods. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4800797]

Key words: 3D carotid segmentation, 3DUS images, carotid atherosclerosis, sparse field level set,
vessel wall volume, intima-media thickness
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I. INTRODUCTION

Carotid atherosclerosis occurs due to the gradual accu-
mulation of fatty deposits, macrophages, and scar tissue in
the artery wall that results in the remodeling of the artery
wall and the formation of atherosclerotic plaque.1 Emboli
that may be generated from rupture of vulnerable plaques are
the major cause of transient ischemic attacks and ischemic
stroke.1 Noninvasive imaging methods such as Doppler ultra-
sound (US), two-dimensional ultrasound (2DUS), magnetic
resonance imaging (MRI), and three-dimensional ultrasound
(3DUS) have been shown to be useful for risk stratification,
evaluation of the contribution of risk factors to atheroscle-
rosis, evaluation of a patient’s response to therapy, ge-
netic research, and evaluation of efficacy of potential new
therapies.2–12 3DUS imaging provides another way to mon-
itor plaque changes and vessel remodeling and this can be
used to complement the quantification of vessel stenosis to
guide and monitor medical interventions.5–12 Quantitative
measurements for monitoring carotid plaque burden in lon-
gitudinal studies have been proposed previously, such as to-
tal plaque volume6, 7 (TPV), vessel wall volume8–11 (VWV),
and vessel-wall-plus-plaque-thickness (VWT) maps.12 TPV
is the total plaque burden in the left or right carotid arter-
ies measured over a specified distance. VWV is the vol-
ume enclosed between the media-adventitia boundary (MAB)
and lumen-intima boundary (LIB) including plaque burden,
whereas VWT is the thickness of the vessel wall, i.e., the
distance between the MAB and LIB in 3D. The delineation
of the carotid MAB and LIB [see Figs. 1(a) and 1(b)] are
required in generating VWV and VWT measurements and
are helpful in generating TPV. Although, VWV has been
shown to be more sensitive to temporal changes in carotid
atherosclerosis than the more widely used intima-media
thickness (IMT),13 3DUS VWV is not used because manual
segmentation of the carotid MAB and LIB is tedious and time-
consuming. Currently, VWV measurements are mainly gen-
erated using manual segmentation,8–10 and there have been a
few attempts11, 14, 15 to develop and use semiautomated algo-
rithms. Previously developed semiautomated algorithms14, 16

required user interactions on every individual slice. For ex-
ample, the 2D method15 required 1.6 ± 0.3 min of user in-

teraction time to initialize a 1 cm section of the common
carotid artery (CCA). Therefore, the objective of this work
is to develop and evaluate a 3D semiautomated algorithm to
segment the MAB and LIB of the CCA from 3DUS images
with minimal user interaction, while maintaining the preci-
sion, accuracy, and reproducibility of the method. Unlike the
2D methods,15, 16 the proposed 3D algorithm can be initial-
ized with ISDs greater than 1 mm. For example, for ISDs of 2
and 3 mm, initialization time would be approximately 0.8 and
0.53 min, respectively.

I.A. Previous studies

Some carotid ultrasound-based segmentation techniques
reported in the literature are two-dimensional and used to
determine the IMT measurements in longitudinal views
from carotid 2DUS images.17–20 However, for the purpose
of obtaining volumetric measurements, the entire MAB and
LIB surfaces need to be delineated in either transverse views
or in 3D combining both transverse and longitudinal views.
In this paper, we specifically focus on 2D and 3D algorithms
that have been developed for segmenting the entire surface
of carotid MAB and/or LIB from 3DUS images as shown
in Table I. The algorithms can be divided into two main
categories: Techniques21–26 that only segment the carotid
LIB and ones14–16 that segment both the carotid MAB and
LIB. For example, Gill et al.25 and Solovey26 proposed direct
3D segmentation methods only for LIB segmentation. Gill
et al.25 used a 3D dynamic balloon model that is inflated
to coarsely locate the boundary and then refined using
edge-based energies for LIB segmentation. However, edge-
based segmentation alone is not adequate to stop leaking at
low-contrast boundaries in US images.28 Solovey26 proposed
a level set-based method to segment the LIB by incorporating
a region term that minimizes the probability distribution
overlap and a weak geometric prior, which encourages
convexity of the boundary in a level set framework. However,
the carotid LIB may not have a convex shape due to the
presence of plaque, which is most prominent close to the
bifurcation, as shown in Fig. 2. Another limitation of some
of the studies21–23 for LIB segmentation is that they validated
their algorithm on only seven 2D B-mode patient images,21

(a) (b) (c)

LIB MAB

FIG. 1. (a) An example 3D carotid US image. (b) 3D carotid US image with overlaid user-drawn manual contours of the MAB and LIB. Lumen is enclosed
within the LIB and vessel wall is enclosed in between the MAB and LIB. (c) Intensity probability density functions (PDF) for lumen, wall, and background
regions for the example 3DUS image. Note that the intensity PDFs have high overlap with each other.
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TABLE I. Previous papers describing carotid LIB and/or MAB segmentations from 3DUS/B-mode images.

Paper Year Dimension LIB MAB Time (min) No. of images (type) Other information

Ukwatta
(Ref. 16)

2011 2D Coupled level
set

Coupled level
set

3.7 ± 0.4 21 (3DUS) -Anchor points on the
boundary on each slice.

Ukwatta
(Ref. 15)

2011 2D Level set Level set 2.8 ± 0.4 21 (3DUS) -Anchor points on the
boundary on each slice.

Yang (Ref. 14) 2011 2D Active shape
model

Active shape
model

4.4 ± 0.6 68 (3DUS) -Initializing a shape model
on each slice.
-Requires training data.

Solovey
(Ref. 26)

2010 3D Level set – – 2 (3DUS) -Seed points inside the
lumen.

Gill (Ref. 25) 2000 3D Dynamic
balloon model

– 30 s 1 (3DUS) -Initializing the balloon
model inside the LIB.

Guerrero
(Ref. 24)

2007 2D Star Kalman
filters

– 23 ms 3 (B-mode sequence) -Seed point inside the LIB.

Abolmaesumi
(Ref. 23)

2000 2D Star algorithm
/Kalman
filtering

– – 1 (B-mode sequence) -Seed point inside the LIB.
-Quantitative Results not
reported.

Zahalka
(Ref. 22)

2001 2D Active
contours

– 25 s/ slice 2 (3DUS) -Seed point inside the LIB.
-Results not reported.

Mao (Ref. 21) 2000 2D Active
contours

– 0.8 s /slice 7 (B-mode) -Seed point inside the LIB.

few phantom images,22 or did not report on a quantitative
segmentation validation.23 There have been three previous
methods that segment both the carotid MAB and LIB from
3DUS images.14–16 Yang et al.14 used active shape models to
segment the carotid LIB and MAB slicewise, which involved
a large number of training images to generate models.
However, the shape of the LIB could be different between
subjects, which is also affected by the degree of stenosis, as
shown in Fig. 2. Ukwatta et al.15 proposed a 2D segmentation
method for delineating the carotid arteries on a slice-by-slice
basis on transverse slices extracted from 3DUS images.
Ukwatta et al.16 used a coupled level set approach to simulta-
neously segment the MAB and LIB. For both techniques, the
areas from individual segmentations are summed together to
generate the VWV. Since each slice is segmented inde-
pendently at an interslice distance (ISD) of 1 mm, the 2D
methods require user interaction on every slice. Although
the slice thickness of our 3DUS images is approximately
0.15 mm, the 2D methods15, 16 make an assumption that there

FIG. 2. Two example transverse views of the CCA with overlaid manual
segmentations of the MAB and LIB from 3DUS images of two subjects with
carotid stenosis of more than 60%. Note that although the MAB has a rela-
tively low order convex shape, the LIB has a nonconvex shape.

are no considerable changes in the vessel morphology within
an ISD of 1 mm.

I.B. Contributions

In this paper, we describe and evaluate a direct 3D
segmentation algorithm to delineate the MAB and LIB of
the carotid CCA from 3DUS images. The algorithm uses a
similar initialization approach used previously for the 2D
segmentation,15 but requires initialization only on a smaller
subset of transverse slices than used in the 2D method.15

However, the proposed method does not hold the assumption
of constant vessel morphology within an ISD of 1 mm, as it
provides a direct 3D segmentation of the entire 3DUS image
at a slice thickness of 0.15 mm. The 3D method uses nine
energy functionals in total, out of which eight were used
in the 2D method.15 However, the main contribution of this
paper is the extension of the energy functions15 to 3D. To
the best of our knowledge, the proposed algorithm is the
first direct 3D segmentation method for segmenting both the
carotid MAB and LIB from 3DUS images for the purpose
of computing the VWV. A direct 3D segmentation method
has the potential for reducing user interaction over a 2D
method, while increasing the robustness of the segmentation
by integrating out-of-plane image information.

A preliminary study of this work has been previously de-
scribed in a conference paper.27 The algorithm was briefly
described and validated only for accuracy using 15 3DUS
images in the conference paper.27 In this paper, we provide
comprehensive details of the proposed algorithm and pro-
vide a thorough analysis of the accuracy and intraobserver
variability on 21 3DUS images with five repeated algorithm
segmentations. In addition, initialization of the algorithm is

Medical Physics, Vol. 40, No. 5, May 2013
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3D LIB Segmentation Using 
 SFLS Method 

Smoothness energy (ES) (Eq. 3) 
Global region-based energy (EG) (Eq. 13) 
Anchor point-based energy (EA) (Eq. 9) 
Boundary separation-based energy (EB)
(Eq. 14) 

3D Image 
 Preprocessing 

Algorithm Initialization With a 
Predetermined ISD  

BF

3D MAB Segmentation Using  
SFLS Method 

Smoothness energy (ES) (Eq. 3) 
Local smoothness energy (ELS) (Eq. 5) 
Local region-based energy (ELR) (Eq. 8) 
Anchor point-based energy (EA) (Eq. 9) 
Edge-based energy (EE) (Eq. 10) 

*

Axis 

FIG. 3. Block diagram of the workflow of the algorithm.

investigated with respect to accuracy and variability with ISD
of 1, 2, 3, 4, and 10 mm.

II. MATERIALS AND METHODS

Our segmentation pipeline consists of four main steps as
shown in Fig. 3: Algorithm initialization, 3D image prepro-
cessing, MAB segmentation, and LIB segmentation. Each of
the steps is described below.

II.A. Algorithm initialization

A boundary-based initialization approach is used in our al-
gorithm as opposed to a region-based initialization, where the
observer chooses “anchor points” on the MAB and LIB. The
anchor points are used to generate the initial mask for the seg-
mentation and constrain the evolving surface to always pass
through them.

At the point of the bifurcation, the common carotid artery
divides into the internal and external carotid arteries [see
Fig. 1(a) of Ukwatta et al.15]. The observer first locates the
bifurcation point (BF) and defines the long axis of the artery
as shown in Fig. 3. Then, the observer chooses four anchor
points each on the MAB and LIB on a set of transverse slices,
which are orthogonal to the long axis of the artery, with a pre-
defined ISD. For example, ISD of 1, 2, 3, 4, and 10 mm are
used in this paper, where large ISDs result in fewer user in-
teractions. In comparison to the 2D method,15 which requires
user initializations on every slice at an ISD of 1 mm, our 3D

method uses fewer slices for intialization. Based on the evalu-
ation results, ISDs of 2 and 3 mm are suitable for initialization
without compromising the accuracy, thus the number of slices
for initialization is reduced by a factor of 2 or 3.

Figure 4 shows the steps for generating a 3D mask to repre-
sent the initial surface for the segmentation algorithm for the
LIB or MAB. For the set of 2D planes with user-initialized
anchor points, 2D contours are first generated by cubic spline
interpolation with approximately 0.2 mm interval between ad-
jacent points using the four anchor points on each plane. The
2D contours are then corrected for any intersections of the
MAB and LIB automatically, by correcting the LIB to have a
minimum separation of 0.5 mm from the carotid MAB.29 The
contour points between two adjacent parallel slices are then
corresponded using a symmetric correspondence algorithm.30

The symmetric correspondence algorithm provides an im-
provement to the closest point algorithm by avoiding multi-
ple points mapped to the same point.30 A triangular surface is
generated using the corresponding points, which is then con-
verted to a 3D binary mask. Any voxel inside the triangular
surface is assigned label one and any voxel outside the sur-
face is labeled zero.

II.B. 3D image preprocessing

The preprocessing steps of our algorithm are shown in
Fig. 5. Initially, a region-of-interest (ROI) is chosen by using
a 7 mm margin in all three directions from the minimum and
maximum values of x, y, and z coordinates of the initial sur-
face. Two separate preprocessing pipelines are used for the
MAB and LIB as shown in Fig. 5. The 3DUS image is first
normalized using the minimum and maximum intensity of the
image to reduce the effect of different image contrast of each
image. An edge-preserving anisotropic diffusion filtering31 is
then applied to reduce the effect of image speckle, as shown in
previous studies.28, 32, 34 This method enhances the 3DUS im-
age by diffusing image regions with low or no image gradient
while preserving image edges. In addition, it provides the fil-
tered output image within a few seconds for 3DUS images.
The output from the diffusion filtering is used as the input
3DUS image for LIB segmentation. For MAB segmentation,
filtered output from the Gaussian filter with a kernel size of
0.7 mm is used as the input 3DUS image. The rest of the pre-
processing steps are applied to obtain an edge map to aid in

User interaction 
on transverse 

slices 

Generate a 3D mask 
for algorithm 
initialization

Generate
triangulated

surface

Generate 2D 
contours using 
anchor points

*
**

*

Anchor 
 Points 

ISD 

FIG. 4. The process of creating a 3D mask from anchor points as the initial surface for the algorithm with an ISD of 2 mm.
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Canny Edge 
Detectione

Gaussian 
Filteringd

(a) (b) (c) (d) (e) (f)

3DUS
Imagea

For MAB Edge-
based Force

Morphological 
Filteringf

For MAB
Segmentation

Anisotropic 
Diffusionc

For LIB 
Segmentation

Intensity
Normalizationb

FIG. 5. 3D image preprocessing steps of the algorithm. The results here are shown for a single slice of the 3DUS image.

the MAB segmentation. We apply the Canny edge detector33

on the filtered 3DUS images to obtain an edge map, as previ-
ously used in US segmentation tasks.34 Morphological opera-
tions are then used on the edge map to remove edge segments
that are smaller than 2 mm, and edges that are more than a
distance of 10 mm from the initial surface. The resulting fil-
tered edge map is incorporated into the objective function of
MAB segmentation. In this paper, values for image prepro-
cessing parameters are determined via a systematic search of
the space of parameter values. The parameters and their opti-
mized values for preprocessing are shown in Table II.

II.C. Sparse field level set (SFLS) method

In this paper, we used a SFLS implementation proposed
by Whitaker et al.35 for both LIB and MAB segmentations.
The SFLS method updates only the level set evolution around
the neighborhood of zero level set rather than computing φ(x)
for the whole image domain, to speed up the evolution by
reducing the amount of computation. Let the bounded open
subset � ⊂ R3 represent the image domain, where the image
I : � → R and x ∈ � is a spatial variable. The level set is an
implicit representation of a surface defined by the Lipschitz
function φ(x) : � → R, where the zero level of φ(x) repre-
sents the segmented surface. φ(x) is represented as a signed
distance function at the beginning, where φ(x) < 0 inside the
surface. The level set evolution equation is given by

∂φ(x)

∂t
+ ∇E |∇φ(x)| = 0, (1)

where E is the objective function representing the goal of
segmentation.36, 37 φ(x) is evolved based on the objective
function, until it converges to an energy minimum. The ob-
jective function contains two types of energy terms: exter-
nal energy terms, derived from the (preprocessed) image data,
and internal energy terms, derived from high-level knowledge
about the expected shape of the boundaries as well as from
user-specified anchor points.

II.D. MAB segmentation

At first, we segment the MAB using the 3D SFLS method.
The segmentation task of the MAB from 3DUS carotid im-
ages is challenging due to the following reasons: Low image
contrast of the MAB especially on the surface that is parallel
to the US beam, presence of calcified plaque creating shad-
owing and signal dropouts, heterogeneous intensities on the
interior and exterior of the MAB (contain both hypoechoic
and hyperechoic regions), and overlapping intensity proba-
bility density functions (PDF) with each other as shown in
Fig. 1(c). To address these challenges in the segmentation, we
incorporated five types of energy criteria into the objective
functional (EMAB) for the MAB (see Fig. 3):

EMAB = αSES + αLSELS + αLRELR + αAEA + αEEE,

(2)

where weights αS, αLS, αLR, αA, αE are positive constants.
The smoothness energy37 [Eq. (3)] is the standard regu-

larization used in level sets that penalizes the length of the

TABLE II. Parameters and their optimized values for the preprocessing.

Operation Parameters Values

Diffusion filtering No. of iterations, time step, conductance 4, 0.2, 1.0
Gaussian filter Kernel size, SD 0.7, 0.3 mm
Canny edge filter High and low threshold 0.25, 0.08
Morphological opening Element size, minimum size maximum distance 2.5, 2, 10, 2 mm

Medical Physics, Vol. 40, No. 5, May 2013
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segmentation surface and is given by

ES =
∫

�

|∇H (φ(x))| dx, (3)

where

H (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x < −ε

0 if x > ε

1

2

[
1 + x

ε
+ 1

π
sin

(πx

ε

)]
if |x| ≤ ε,

(4)

is the regularized Heaviside function37, 39 representing interior
of the segmentation surface, whereas the exterior region of
the surface is defined as (1 − H(φ(x)). ε is a small positive
constant.

The local smoothness energy38 (ELS) reduces the convex-
ity and concavity of a local neighborhood region defined by
a spherical mask. Let x̂ ∈ � be another independent spatial
variable:

ELS =
∫

�

δ(φ(x)) (Av(x) − Au(x))2 dx, (5)

where

BL(x, x̂) =
{

1 if ‖x − x̂‖ < rL

0 otherwise
(6)

is used to define a spherical region with localizing ra-
dius rL. Au(x) = ∫

�
BL(x, x̂) H (φ(x̂)) dx̂ and Av(x)

= ∫
�

BL(x, x̂) (1 − H (φ(x̂))) d x̂ are the volumes of the
inside and outside regions of theBL(x, x̂):

δ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 0

0 if |x| > ε

1

2ε

[
1 + cos

(πx

ε

)]
if |x| ≤ ε

(7)

is the regularized Dirac delta function, which is the derivative
of H(x).

The local region-based energy39 (ELR) as given by Eqs. (4)
and (12) in Lankton et al.39 minimizes the intensity variance
of the local interior and exterior regions:

ELR =
∫

�

δ(φ(x))
∫

�

BL(x, x̂)[H (φ(x̂)) (I (x̂) − u(x))2

+ (1 − H (φ(x̂))) (I (x̂) − v(x))2] d x̂ dx, (8)

where u(x) and v(x) are the mean image intensities of the inte-
rior and exterior of the active contour within the local region
defined by BL(x, x̂).39 The parameter rL determines the de-
gree of blending local statistics around the boundary to global
statistics of the image. A small rL would act as an edge detec-
tor, while an increasing rL would cause convergence to global
statistics.

The anchor point-energy15 (EA) encourages the contour to
pass through each anchor point xi

A, placed by the observer
if the evolving contour is within a distance rA to the anchor
point:

EA =
NP∑
i=1

∫
�

δ(φ(x)) Bi
A(x)

(
φ(x) − φ

(
xi

A

))2
dx, (9)

where Bi
A(x) = { 1 if ‖x − xi

A‖ < rA

0 otherwise is used to define a spherical

mask around the anchor point with radius rA and NP is the
number of anchor points. When the contour points are away
from the anchor point by more than rA there is no influence
of this energy term. In our implementation, the segmentation
is started with the initial mask that already passes through the
anchor points, where EA would be already at its minimum.
With initializing the segmentation close to the MAB using
the anchor points, we reduce the possibility of the evolving
contour to be trapped in local minima due to the heterogene-
ity of the region and also reduce the computational time for
segmentation.

The edge-based level set framework was initially proposed
by Caselles et al.40 They proposed a term, which integrates a
function of the image gradient along the boundary, as given by
the second term of Eq. (3).40 We use a modified edge-based
energy15 term (EE) to complement the region-based forces,
especially at locations of the surface that are orthogonal to
the US beam:

EE = −
∫

�

δ(φ(x))
BE(x)

ε + |φ(x) − φ(XE(x))|dx, (10)

where BE(x) = { 1 if 0 < ‖x − XE (x)‖ < rE

0 otherwise is the spherical re-
gion around the point x with a radius rE and XE(x)
= arg min

x̂∈s

‖x − x̂‖, s = {x̂; M(x̂) = 1} being the nearest edge

point from point x and M(x) = { 1 if x lies on an edge
0 otherwise is the edge

map obtained from preprocessing. The edge force is nonzero
when the contour is within a distance rE to the closest edge
point and minimum when the contour is placed on the edge.

By taking the first variation of the EMAB [Eq. (2)] with re-
spect to φ, we obtain the evolving equation function for the
MAB segmentation where sgn(x) is the signum function:15

∂φ(x)

∂t
= δ(φ(x))

{
αS div

( ∇φ(x)

|∇φ(x)|
)

+αLS (Av(x) − Au(x))

+αLR

∫
�

BL(x, x̂) δ(φ(x̂))[(I (x̂) − u(x))2

− (I (x̂) − v(x))2]dx̂

+αA

NP∑
i=1

Bi
A(x)

(
φ(x) − φ

(
xi

A

))

+αE BE(x)
sgn (φ(x) − φ(XE(x)))

(ε + |φ(x) − φ(XE(x)|)2

}
. (11)

II.E. LIB segmentation

After the MAB has been segmented, LIB segmentation is
performed also using the 3D SFLS method. The challenges
in the LIB segmentation are its low contrast image boundary
and its irregular shape in some subjects due to the presence of
plaque. For LIB segmentation, we use a global region-based
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energy, high-level knowledge provided by the observer, and
previously obtained MAB segmentation to constrain the LIB.
The objective functional (ELIB) for the LIB comprises of four
energies (see Fig. 3):

ELIB = λSES + λAEA + λGEG + λBEB, (12)

where weights λS, λA, λG, λB are positive constants. ES is the
smoothness energy [Eq. (3)] and EA is the anchor point-based
energy [Eq. (9)] as defined previously.

The global region-based energy37

EG =
∫

�

H (φ(x)) (I (x) − um)2

+ (1 − H (φ(x))) (I (x) − vm)2dx (13)

partitions the image into different regions based on their
global distinct characteristics of the image region. um and vm

are the mean intensities of interior and exterior regions of the
boundary.15, 37 The use of a combination of local region-based
and global region-based forces to segment the LIB is moti-
vated by the fact that the intensity of the interior of the lumen
is fairly homogeneous while the intensity of the exterior of
the lumen is heterogeneous.

Because the MAB and LIB are separated by the intima-
media layer, we constrained them to have a minimum distance
(dB) of 0.5 mm from each other.29 The algorithm-generated
MAB is used to reduce leaking of the LIB at a low image con-
trast location. We imposed dB as a distance-based constraint
to drive the LIB segmentation using the algorithm-generated
MAB segmentation. The boundary separation-based energy
(EB) is given by

EB =
∫

�

δ(φ(x)) BB(x) dx, (14)

where BB(x) = { 1 if min
x̂

D(x, x̂) < dB

0 otherwise
and D(x, x̂) = ‖x − x̂‖ ,

∇H (φMAB(x̂)) = 1. The term EB discourages the intersection
of the MAB and LIB. This energy is nonzero when the LIB
moves closer to the MAB than distance dB.

By taking the first variation of the ELIB [Eq. (12)] with re-
spect to φ we obtain the evolving equation for the LIB seg-

mentation:

∂φ(x)

∂t
= δ(φ(x))

{
λS div

( ∇φ(x)

|∇φ(x)|
)

+ λG((I (x) − um)2 − (I (x) − vm)2)

+ λA

NP∑
i=1

Bi
A(x)

(
φ(x) − φ

(
xi

A

)) + λBBB(x)

}
.

(15)

The stopping criteria for MAB and LIB segmentation is based
on the convergence test that terminates when the evolution
does not change within bounds of 0.4 mm3 on successive it-
erations and a maximum iteration criterion, which is set to be
250 iterations.

Initially, the parameter values were chosen empirically,
which were then optimized for the MAB and LIB segmen-
tations using Dice similarity coefficients41 (DSC). The opti-
mization was performed by changing a single parameter over
a range of possible values, while holding the other parame-
ters fixed for ten 3DUS images. We used DSC as the met-
ric for parameter optimization, as it is a region-based metric
that depends on spatial overlap, which is thus more stringent
than volume metrics. This procedure was repeated until either
convergence or a maximum of five repetitions were met. It
should be noted that we performed only a local optimum
search, thus the global optimum of the parameter values is not
guaranteed. Table III shows the parameter values for the MAB
and LIB segmentations after optimization. The parameter val-
ues were kept constant during the validation experiments.

II.F. Validation

The algorithm was evaluated for accuracy and repro-
ducibility by comparison to user-drawn contours. Manual seg-
mentations of the MAB and LIB were performed using 3D
multiplanar viewing software42 on transverse views up to a
distance of 1 cm of the artery from the bifurcation with an
ISD of 1 mm. For further information about the manual seg-
mentations the readers are referred to Egger et al.8 The im-
ages were first randomized to the observer for both repeated

TABLE III. Parameters and their optimized values for the MAB and LIB segmentations.

MAB LIB

Description Parameter Value Parameter Value

Local region radius rL 0.7 mm – –
Anchor radius rA 0.8 mm rA 0.9 mm
Edge radius rE 0.8 mm – –

ε 10−5

Smoothness (ES) weight αS 0.4 λS 0.6
Local smoothness (ELS) weight αLS 0.8 – –
Local region (ELR) weight αLR 3.1 – –
Anchor (EA) weight αA 1.9 λA 1.8
Edge (EE) weight αE 0.4 – –
Global region (EG) weight – – λG 0.7
Boundary-separation (EB) weight – – λB 1.9
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manual and algorithm segmentation rounds. An observer out-
lined the carotid MAB and LIB five times repeatedly with a
24 h period between repetitions on 21 3DUS images. The ob-
server initialized the anchor points on the same image planes
as for the manual segmentation to ensure that the algorithm
segmented the same 2D slices with an ISD of 1 mm as seg-
mented manually for direct comparison. For the five repeated
algorithm segmentations, four anchor points were chosen for
both the MAB and LIB on each slice for each 3DUS image
for each round with a 24 h period between repetitions on the
same dataset as described by Ukwatta et al.15

We also evaluated the algorithm accuracy and repro-
ducibility with different ISDs for initialization on the same
dataset. ISD of 1, 2, 3, 4, and 10 mm were used in the ex-
periments, where larger ISDs require fewer user interactions.
For example, for an ISD of 2 mm, user initializations on ev-
ery other slice are used as anchor points to generate initial
mask.

II.F.1. Evaluation metrics

The algorithm-generated surfaces were resliced at 1 mm
intervals, for a direct comparison to manual segmentation.
Similar to the 2D method,15 we used the same volume-based,
region-based, and distance-based metrics to evaluate the ac-
curacy of our segmentation method. Volume-based metrics
capture the aspect of the segmentation that is of greatest clin-
ical interest: the VWV. Region- and boundary distance-based
metrics describe in greater detail the spatial fidelity of the seg-
mentations to those generated manually by the observer.

The volumes were computed by multiplying the area en-
closed by the boundary with the ISD. We used volume error15

[Eq. (19)] of Ukwatta et al.15 (δV ) and absolute volume er-
ror (|δV |) as the volume-based metrics. We computed δV

and |δV | for the MAB (δVMAB and |δVMAB|), LIB (δVLIB and
|δVLIB|), and VWV (δVVWV and |δVVWV|). The overall mean
volume error for the 3DUS image set is obtained by averag-
ing the δV, whereas the overall absolute mean volume error
is considered as the geometric mean of the |δV | .

We used coefficient of variation (CV) to compare the re-
producibility of the algorithm and manual method for the gen-
eration of VWV. We also computed the minimal detectable
difference (MDD) (Ref. 43) of VWV for the algorithm and
manual segmentation. The MDD is used to determine the
change in values between two successive measurements of
VWV that can be detected at a given confidence level:

MDD = zα/2

√
2 SEM, (16)

where zα/2 is the z-statistic at which the difference between
the two measurements has a chance of being 5% (i.e., zα/2

= 1.96) and SEM is the standard error of measurement.43

We computed average boundaries from repeated seg-
mentations and used them for computing region-based and
distance-based metrics.15, 44 The DSC (Ref. 41) was used as a
region-based measure to compare two segmentations for ac-
curacy on slice-by-slice basis. We compute the mean abso-
lute distance error15 (MAD) and maximum absolute distance
error15 (MAXD) as boundary distance-based metrics. Bound-

ary distance-based metrics depend on the establishment of a
pointwise correspondence between the boundaries. We used
the symmetric correspondence method12, 30 to establish corre-
spondence between points on the boundaries.

II.G. Study subjects and imaging

To our knowledge, public datasets with manual segmenta-
tion as ground truth are not available for 3D carotid US im-
ages for algorithm evaluation. Therefore, we used a dataset
acquired in our laboratory. The dataset used in this study has
been previously described in Ukwatta et al.15 and is summa-
rized here. We used 21 3DUS images from 21 subjects for the
evaluations. All subjects provided written informed consent to
the study protocol, which was approved by the University of
Western Ontario Research Ethics Board. To better represent
a diverse subject group, images were blindly selected from
three subject groups; seven images from diabetes subjects,
seven images from rheumatoid arthritis subjects, and seven
images from atorvastatin subjects who have carotid stenosis
of 60% or more.15 The presence of stenosis was confirmed
using carotid Doppler US flow velocities.

The mechanical 3DUS acquisition system developed in
our laboratory has been described previously7, 42 and is sum-
marized here. The 3DUS images (voxel size ≈ 0.1 × 0.1
× 0.15 mm3) were acquired using a L12-5 linear US trans-
ducer (Philips, Bothell, WA, USA) with a central frequency of
8.5 MHz attached to an ATL HDI 5000 US machine (Philips,
Bothell, WA, USA). The transducer was translated along the
patient’s neck using a motorized mechanism at a uniform
speed of 3 mm/s for about 4 cm, without cardiac gating. 3DUS
images were reconstructed in real time from the digitized 2D
frames acquired at 30 Hz and displayed using multiplanar
reformatting.42

III. RESULTS

The algorithm was evaluated for accuracy and intraob-
server variability using 21 3DUS images with a fixed set of
parameters as shown in Table III. All of the results in this sec-
tion were computed using four anchor points per slice. We
report the results in terms of computational time, accuracy,
and repeatability as follows.

III.A. Computational time and user interaction

The reported times were calculated as a mean of the 21
3DUS images, which have been segmented five times. A
mean observer time of 8.3 ± 1.5 min was required to man-
ually delineate the MAB and LIB from a 3DUS image on 11
transverse 2D slices. The algorithm required mean observer
time of 1.6 ± 0.3 min for choosing four anchor points on the
MAB and LIB with an ISD of 1 mm for a 3DUS image with
11 2D slices for segmentation. For the proposed 3D algorithm
with an ISD of 1 mm for initialization, the observer is required
to choose 88 points in total to segment the MAB and LIB
from a 1 cm portion of the CCA similar to the 2D method.15
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However, the number of points required to initialize the algo-
rithm is reduced to 48, 32, 24, and 16 points for ISDs of 2, 3,
4, and 10 mm for initialization, respectively.

In addition to the observer time for initialization, the algo-
rithm required a mean computational time of 1.14 ± 0.83 min
to segment a 3DUS image using a nonoptimized MATLAB

(Natick, MA, USA) implementation on a PC with Intel core
i7 processor (Intel corporation, Santa Clara, CA) with a speed
of 3.0 GHz. From the total computational time, mean compu-
tational time of 0.91 ± 0.8 min is used for computing local
region-based image force for the MAB segmentation.

III.B. Accuracy

The slice-by-slice comparison of algorithm to manual seg-
mentations for two 3DUS images is shown in Figs. 6 and
7, one with mild stenosis and one with moderate stenosis.
Each column corresponds to the algorithm segmentation re-
sults generated with the corresponding ISD. The mean man-
ual segmentations are shown as yellow continuous contours
and the mean algorithm segmentations are shown as purple

dashed contours. A single round of algorithm segmentations,
along with the anchor points used for initialization, is shown
as cyan dashed contours. For example, for an ISD of 2 mm,
every other slice is initialized, whereas for an ISD of 10 mm
only the first and the last slices are initialized. For the 3DUS
image with a mild stenosis (see Fig. 6), even for an ISD of
10 mm, the algorithm contours for both the MAB and LIB are
in good agreement with the manual contours. However, for
the 3DUS image with a moderate stenosis (see Fig. 7), the ac-
curacy in terms of DSC for the entire slice set decreased with
the increase of ISD, where the lowest DSC was reported for
the ISD of 10 mm for both the MAB and LIB.

The comparison of the algorithm-generated MAB and LIB
surfaces with an ISD of 3 mm to the manually generated
surfaces for the same two 3DUS images used in Figs. 6
and 7 are shown in Fig. 8. The algorithm-generated surfaces
(shown in purple) are overlaid with the manually generated
surfaces (shown in yellow), where the algorithm surfaces ap-
pear smoother than the manual segmentations. This is due to
the fact that the algorithm incorporated the smoothness energy
and generated the MAB and LIB surfaces at a slice thickness
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FIG. 6. 2D slice-by-slice comparisons of algorithm segmentations to manual segmentations for a subject with a mild stenosis. Results for ISD from 1 to 4 mm,
and 10 mm are shown. The contours are as follows: Continuous yellow contour-–mean manual MAB and LIB, dashed purple contour-–mean algorithm MAB
and LIB, and cyan dashed contour-–one round of algorithm MAB and LIB. Each row corresponds to the distance from the bifurcation (BF) and each column
corresponds to the ISD used for initialization.
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FIG. 7. 2D slice-by-slice comparisons of algorithm segmentations to manual segmentations for a subject with a moderate stenosis (stenosis is between 30%
and 70%). Results for ISD from 1 to 4 mm and 10 mm are shown. The accuracy dropped at 4 and 10 mm. The contours are as follows: Continuous yellow
contour-–mean manual MAB and LIB, dashed purple contour—mean algorithm MAB and LIB, and cyan dashed contour-–one round of algorithm MAB and
LIB. Each row corresponds to the distance from the BF and each column corresponds to the ISD used for initialization.

of 0.15 mm, while the manual segmentations were generated
at an ISD of 1 mm.

The corresponding flattened VWT maps45 for the algo-
rithm and the manual segmentations for the same two 3DUS
images are shown in Fig. 9. In the flattened VWT map, the
color encodes the thickness between the MAB and LIB. Vi-
sually, the algorithm-generated flattened VWT map closely
resembles the manual flattened VWT map.

The region-based and distance-based metrics results for
the MAB and LIB for the 21 3DUS images are shown in
Table IV. The results of the 2D segmentation method15 are
also included in Table IV for a direct comparison with the pro-
posed 3D algorithm. We evaluated the accuracy of the algo-
rithm with varying ISDs from 1 to 4 and 10 mm. The metrics
were computed by comparing the mean algorithm boundary
with the mean manual boundary obtained from five repeated
segmentations. The highest mean DSC for the MAB and LIB
for the proposed 3D algorithm was reported for the ISD of
1 mm. As expected, the DSC gradually decreased with the in-
creasing ISD for both the carotid MAB and LIB. At all ISDs,
the MAB yielded a higher DSC than the LIB. The standard
deviations (SD) of DSC were small and gradually increased

with the ISD for both the MAB and LIB, except at ISD of
4 mm for the LIB. Paired t-tests have been performed to
evaluate the statistical significance of the DSC measurements
of the 2D method15 and the proposed 3D method. The 3D
algorithm is statistically significantly different from the 2D
method at all the ISDs tested.

Similar to the trend in DSC results, both MAD and MAXD
errors increased with increasing ISD for both the MAB and
LIB. Similar to the 2D method,15 the 3D algorithm yielded
submillimeter errors for MAD and its SDs for all ISDs. Ex-
cept for MAD at ISD of 1 mm, the MAD errors of the 3D
algorithm were statistically significantly different from the
MAD errors of the 2D method.15 The MAXD errors ranged
from 0.75 to 1.19 mm for the MAB and 0.3 to 1.49 mm for
the LIB, where the highest MAXD was reported for ISD of
10 mm. Except for the MAXD errors for the MAB at the ISD
of 1 mm, the MAXD errors of the 3D algorithm were signifi-
cantly different from the MAXD errors of the 2D method.15

Table V shows the volume-based evaluation results for
the 3D algorithm for ISDs from 1 to 4 and 10 mm. The re-
sults of the 2D segmentation method15 are also included in
Table V for direct comparison. For the VWV measurements,
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FIG. 8. Comparison of the MAB and LIB algorithm segmentations to man-
ual segmentations for an ISD of 3 mm for two example 3DUS images that
were used for Figs. 6 and 7. The algorithm-generated surfaces are denoted by
the letter ‘A’ and manually generated surfaces are denoted by the letter ‘M’.
(a) LIB surface comparison with manual segmentation for a subject with a
mild stenosis. (b) MAB surface comparison with manual segmentation of the
same subject. (c) LIB surface comparison with manual segmentation for a
subject with a moderate stenosis. (d) MAB surface comparison with manual
segmentation of the same subject.

the algorithm underestimated the volumes for ISD of 1, 4, and
10 mm and slightly overestimated for ISD of 2 and 3 mm.
Similar to the trend in the region-based and distance-based
evaluation results, the absolute VWV error |δVVWV| gradually
increased from 4.32% to 13.28% with the increase of ISD.
The absolute volumes errors (|δVVWV|, |δVMAB|, and |δVLIB|)
for the proposed 3D algorithm were not statistically signifi-
cantly different from the results of the 2D segmentation for
the ISDs of 1 to 3 mm. However, the |δVVWV| results for the
ISDs of 4 and 10 mm were significantly different.

The p-values for the hypothesis test that compares the
mean VWV of the algorithm and manual segmentation us-
ing a two-way repeated measures ANOVA are shown in
Table VI, along with the mean difference and the confidence
interval (CI) of the mean difference of the algorithm- and
manually generated VWV. As indicated by the p-values in
Table VI, the algorithm failed to show a statistically signif-
icant difference for ISDs of 1, 2, 3, and 4 mm, with re-
spect to the manually generated VWV. However, manually
and algorithm-generated VWVs at ISD of 10 mm are signif-
icantly different. In comparison to the 2D method,15 the 3D
algorithm also failed to show a significant difference for ISDs
of 1, 2, and 3 mm, while there was significant difference for
ISDs of 4 and 10 mm. Figure 10 shows the Bland-Altman
plot46 for the comparison of algorithm- and manually gener-
ated VWV for an ISD of 3 mm. The algorithm has a bias of
0.64 mm3 and a CI of −23.5 to 22.7 mm3, which is relatively
small compared to the 244–926 mm3 range of the VWV. An
example correlation plot for algorithm- and manually gener-
ated VWV is shown for ISD of 3 mm in Fig. 11. The black
dashed line indicates the 95% CI of Pearson correlation coef-
ficient (r). The Pearson correlation coefficient is also shown in
Table VI, along with their p-values and 95% CI. The correla-
tion coefficient of algorithm- and manually generated VWVs
were in the range of 0.95 to 0.97 for ISDs of 1 to 4 mm and
0.89 for ISD of 10 mm. They were also significantly corre-
lated (p < 0.0001) with manually generated VWVs for all
tested ISDs.

III.C. Reproducibility

The intraobserver variability results of generating MAB,
LIB volumes, and VWV are shown in Table VII. The results
of the previous 2D method15 are also shown in Table VII
for direct comparison. The manual segmentation yielded the
smallest CVVWV and CVMAB, although the proposed 3D al-
gorithm reported the smallest CVLIB at 2 mm. The CVVWV,
CVMAB, and MDD gradually increased with the increase in
ISD for the proposed algorithm. The CVLIB has a similar
trend, except at 2 mm. The CVs for the 3D algorithm, es-
pecially for ISDs of 1 and 2 mm, are comparable to the CVs
of the 2D algorithm. The MDDs of the proposed 3D algo-
rithm were in the range of 57.8 to 112.9 mm3, and the MDD

FIG. 9. Algorithm and manually generated flattened VWT maps of the surfaces shown in Fig. 8 for the same two example 3DUS images. The first row
corresponds to algorithm-generated flattened VWT maps, whereas second row corresponds to manually generated flattened VWT maps. (a) Subject with a mild
stenosis. (b) Subject with a moderate stenosis.
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TABLE IV. Results for the MAB and LIB segmentation using region-based and distance-based metrics for the 21 3DUS images using the average boundaries.
The results of the 3D algorithm are given for ISD of 1, 2, 3, 4, and 10 mm.

3D method (ISD varied from 1 to 4, and 10 mm)

Metric 2D method (Ref. 15) 1 mm 2 mm 3 mm 4 mm 10 mm

DSCMAB (%) 95.4 ± 1.6 95.03 ± 1.77 94.57 ± 2.01 94.4 ± 2.24 93.53 ± 3.83 90.4 ± 4.3
DSCLIB (%) 93.1 ± 3.1 92.09 ± 4.23 91.08 ± 4.46 90.64 ± 4.97 89.24 ± 5.87 84.85 ± 5.6
MADMAB (mm) 0.2 ± 0.1 0.24 ± 0.08 0.27 ± 0.10 0.28 ± 0.18 0.31 ± 0.19 0.46 ± 0.23
MADLIB (mm) 0.2 ± 0.1 0.22 ± 0.10 0.34 ± 0.16 0.35 ± 0.16 0.40 ± 0.19 0.54 ± 0.26
MAXDMAB (mm) 0.6 ± 0.3 0.75 ± 0.69 0.83 ± 0.85 0.89 ± 0.82 0.92 ± 1.00 1.19 ± 0.87
MAXDLIB (mm) 0.7 ± 0.6 0.3 ± 1.05 0.91 ± 0.51 0.97 ± 0.62 1.13 ± 0.82 1.49 ± 0.97

TABLE V. Results for the VWV, MAB, and LIB using volume-based metrics for the 21 3DUS images. The results of the 3D algorithm are given for ISD of 1,
2, 3, 4, and 10 mm.

3D method (ISD from 1 to 4, and 10 mm)

Metric 2D method (Ref. 15) 1 mm 2 mm 3 mm 4 mm 10 mm

δVVWV (%) −0.9 ± 6.6 −3.22 ± 9.65 1.02 ± 12.32 0.56 ± 12.42 −5.5 ± 13.1 −12.7 ± 17.65
δVVWV (mm3) −5.08 ± 26.5 −15.45 ± 38.9 2.28 ± 47.44 0.64 ± 49.54 −23.60 ± 52.47 −59.8 ± 73.5
δVMAB (%) −1.3 ± 2.8 −0.03 ± 3.08 2.28 ± 3.1 0.85 ± 9.25 −2.97 ± 4.12 −9.91 ± 7.11
δVLIB (%) −1.0 ± 6.4 3.60 ± 8.60 3.10 ± 4.0 −0.37 ± 49.5 −0.75 ± 12.42 −6.65 ± 17.16
|δVVWV| (%) 5.0 ± 4.3 4.32 ± 7.20 5.6 ± 8.5 5.64 ± 8.1 6.29 ± 9.78 13.28 ± 12.30
|δVMAB| (%) 2.5 ± 1.8 1.92 ± 1.69 2.53 ± 2.17 1.55 ± 2.45 2.79 ± 2.93 8.12 ± 6.50
|δVLIB| (%) 5.6 ± 3.0 2.8 ± 7.18 3.79 ± 7.54 4.43 ± 6.26 6.10 ± 8.56 10.63 ± 10.46

TABLE VI. Comparison of algorithm- and manually generated VWV for 21 3DUS images using statistical testing and Pearson r. The results of the 3D algorithm
are given for ISD of 1, 2, 3, 4, and 10 mm.

3D method (ISD from 1 to 4 and 10 mm)

Metric 2D method (Ref. 15) 1 mm 2 mm 3 mm 4 mm 10 mm

p-value 0.41 0.09 0.82 0.97 0.058 0.002
Mean (mm3) −5.1 −15.45 2.28 0.64 −23.6 −59.8
95% CI (mm3) −17.4–7.2 −33.6–2.7 −19.8–24.4 −23.5–22.7 −48.1–0.86 −94.1–−25.5

Pearson r 0.97 0.97 0.96 0.95 0.95 0.89
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
95% CI for r 0.94–0.99 0.93–0.99 0.91–0.98 0.89–0.98 0.88–0.98 0.75–0.95

increased with the increasing ISD. The MDD of the 3D algo-
rithm at ISD of 1 mm is smaller than the 2D method, although
the 3D algorithm reported slightly higher MDDs for ISD of 2
and 3 mm.

IV. DISCUSSION

In this paper, we developed and evaluated a 3D semiau-
tomated segmentation algorithm based on SFLS method to
delineate the MAB and LIB of the CCA for the measurement
of the VWV, which is a previously developed 3DUS-based
measurement8 of carotid atherosclerosis. As such, the pur-
pose of the algorithm is to generate VWV measurements for
monitoring patients being managed for risk of stroke using
nonsurgical methods.9–11 In addition, the proposed algorithm
may also be used for generation of VWT change maps12 and
analysis of vessel wall region for plaque characterization.47, 48

Here, we discuss the technical details of our 3DUS VWV seg-
mentation algorithm, computational time, measurement accu-
racy, measurement reproducibility, and comparison to previ-
ous methods.

IV.A. Methodology

The proposed algorithm is an extension of the 2D slicewise
segmentation method15 that we have described previously. We
chose SFLS method over other level set methods for two main
reasons. The SFLS method is an improvement to the narrow-
band level set methods,49 which is relatively less computa-
tionally expensive than classical level set methods,36, 39 which
compute the level set function for the entire image at each
iteration. Moreover, the SFLS method does not split the seg-
mentation into multiple regions away from the zero level, thus
disjoint regions are not generated in the segmentation.
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FIG. 10. Bland-Altman plot (Ref. 46) for comparing algorithm- and man-
ually generated 3DUS VWV, where ISD of 3 mm is used for the algorithm
initialization. The red continuous line labeled as mean indicates the bias, the
blue dotted lines labeled as 1.96 SD indicate the level of agreement, and the
red dashed lines indicate the 95% CI.

In our paper, we used the minimum and maximum inten-
sity values of the 3DUS image for normalization of the entire
image at once, due to both its simplicity and the ability to
perform the normalization without any additional user inter-
actions to identify bright intensities around adventitia. How-
ever, for a subsequent analysis of the segmented vessel wall
region, which is very sensitive to variations in image intensity,
such as texture analysis to differentiate plaque components,47

a more sophisticated normalization would be required to nor-
malize the images.50, 51

In the experiments, the observer chose four anchor points
on initialization boundaries for any chosen ISD. However, in
practice, the observer can choose more anchor points on each
initialization boundary. The observer can also vary the ISD
for each 3DUS image depending on the amount of plaque and
the complexity of the plaque surface. We speculate that the ac-
curacy and reproducibility of the segmentation may increase
with the increasing number of anchor points, as indicated by
Fig. 9 in the 2D segmentation paper.15

The 3D algorithm has been validated on 3DUS images
from a single ultrasound device. However, different scanners
could generate 3DUS images with different voxel sizes. The
differences in voxel size across images do not affect the seg-
mentation, because the thresholds and parameters of the algo-
rithm are defined in millimeters. Such millimeter values are
converted to voxel values of the current 3DUS image during
the segmentation procedure.

FIG. 11. Correlation plot for algorithm- and manually generated 3DUS
VWV, where ISD of 3 mm is used for the algorithm initialization. The dashed
lines indicate the 95% CI of the best fit line.

The proposed 3D algorithm has some limitations. Al-
though, the 3D algorithm reduces user interactions required
for segmentation with an ISD greater than 1 mm in contrast
to the 2D method,15 the 3D algorithm is still far from full
automation due to the challenges in the segmentation of very
low-contrast boundaries. In addition, the initial surface for the
MAB is required to be close to the actual MAB for obtaining
accurate segmentations, because the effect of the local region-
based term is limited by its local radius rL.

IV.B. Computational time

The algorithm required lesser user time and fewer inter-
actions to generate segmentations than manual delineations.
The algorithm required a mean time of 1.6 min to initialize the
MAB and LIB of the CCA from a 3DUS image for a portion
of 1 cm with an ISD of 1 mm. In our experiments, the observer
provided anchor points with an ISD of 1 mm. For ISDs more
than or equal to 2 mm, the anchor points corresponding to the
given ISD are chosen from the anchor point set generated with
the ISD of 1 mm. If we assume that number of points used for
initialization is linearly proportional to the time taken for the
observer to actually choose anchor points, an observer would
take approximately 0.58 min to initialize a 1 cm portion of
the CCA with an ISD of 3 mm. In this case, the algorithm
would require only 1.72 min of total time, which comprises
of user interaction time of 0.58 min and SFLS algorithm
computational time of 1.14 min. This is approximately 79%

TABLE VII. Standard deviation (SD), coefficient of variation (CV), and minimum detectable difference (MDD) of volume measurements for 21 3DUS images
computed using the repeated measurements of algorithm and manual segmentations. The results of the 3D algorithm are given for ISD of 1, 2, 3, 4, and 10 mm.

3D method (ISD from 1 to 4 and 10 mm)

Metric Manual 2D method (Ref. 15) 1 mm 2 mm 3 mm 4 mm 10 mm

SDVWV (mm3) 18.1 23.2 20.85 24.35 27.13 34.0 40.7
CVVWV (%) 3.89 5.1 4.97 5.57 6.8 8.23 10.82
CVMAB (%) 1.53 2.36 2.47 2.78 3.4 3.6 5.25
CVLIB (%) 3.30 3.5 3.12 2.34 3.7 4.88 6.18
MDDVWV (mm3) 50.3 64.2 57.8 67.5 75.2 94.2 112.9
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reduction in time (1.72 vs 8.3 min) in comparison to manual
segmentation.

In comparison to the previous 2D method,15 the 3D al-
gorithm was able to reduce user interaction further, when
ISD of more than or equal to 2 mm is used for the initial-
ization. For example, with an ISD of 3 mm, the observer is
required to initialize only 32 points in total on four slices
for both the MAB and LIB as opposed to 88 points in 11
slices for segmenting the MAB and LIB from a 1 cm section
of the CCA from a given 3DUS image. However, with the
current nonoptimized MATLAB implementation of the SFLS
method, the proposed 3D algorithm required approximately
similar computational time to the 2D method15 (1.14 ± 0.83
vs 1.2 ± 0.2 min). The main time-consuming task for the
3D algorithm is the local region-based force computation for
the MAB segmentation, which requires about 80% (0.92 out
of 1.14 min) of the computational time. However, the lo-
cal region-based force calculation can be performed indepen-
dently for each point on the zero level set, thus the com-
putation can be parallelized in a graphics processing unit
(GPU), which may be able to substantially speed up the
segmentation.

IV.C. Accuracy

For 3DUS images with mild stenosis (see Fig. 6 for an ex-
ample), accurate segmentations could be obtained even at ISD
of 10 mm, because the CCA is more regular from one slice to
the next over a 1 cm distance of the CCA. However, when
the subject has moderate (see Fig. 7) or severe stenosis, the
morphology of the artery could differ from one slice to its ad-
jacent slice. Therefore, when an ISD, such as 10 mm is used,
the generated initial surface for the 3D segmentation could be
too far from the desired boundary for the algorithm to con-
verge to the desired boundary.

The accuracy of the algorithm was evaluated with respect
to distance-based, region-based, and volume-based metrics.
The algorithm yielded DSCs in the range of 90.4–95.0 mm3

for the MAB and 84.8–92.1 mm3 for the LIB, where the DSC
was highest for the ISD of 1 mm, for both the MAB and LIB,
and then gradually decreased with the increase of ISD (see
Table IV). Moreover, the 3D algorithm is statistically signifi-
cantly different from the 2D method15 at all the ISDs tested.

Similar to the trend in DSC results, both the MAD and
MAXD errors were small and increased with increasing ISD
for both the MAB and LIB (see Table IV). This may be due to
the fact that the initial surface could be further away from de-
sired segmentation with an increasing ISD, thus the algorithm
could be trapped in local minima providing suboptimal re-
sults. To investigate the reduction in accuracy with increasing
ISD, we computed the MAD error between the initial con-
tours and the manual segmentation. The results show an in-
crease in the MAD error with the ISD, with the highest being
at an ISD of 10 mm. Except for the MAD at ISD of 1 mm,
the MAD errors of the 3D algorithm were statistically sig-
nificantly different from the MAD errors of 2D method.15

The MAXD errors of the 3D algorithm were statistically sig-
nificantly different from the MAXD errors of 2D method,15

except for the MAB at the ISD of 1 mm. The MAB always
yielded a higher DSC than the LIB, because the observer may
be able to locate anchor points for the MAB more robustly
than for the LIB due to its regular shape. This is further sup-
ported by the fact that manual CVMAB was smaller than man-
ual CVLIB (1.53% vs 3.30% as shown in Table VII).

The main purpose of the 3D algorithm is for generating
VWV measurements for monitoring plaque burden. There-
fore, we extensively validated the accuracy and reproducibil-
ity of the algorithm for generating the VWV. The algorithm-
generated VWV was significantly correlated (p < 0.0001)
with the manually generated VWV (r > 0.95 for ISDs of 1
to 4 mm, and r = 0.89 for ISD of 10 mm) with small 95%
CI for Pearson r (see Table VI). We failed to detect a sta-
tistically significant difference (p > 0.05) between algorithm-
and manually generated VWV for ISD of 1 to 4 mm, although
they were statistically significant for ISD of 10 mm. The val-
ues within the 95% CIs (i.e., CI of −23.5−22.7 mm3 for ISD
of 3 mm) of the VWV difference were small for ISDs of 1 to
4 mm, in comparison to their VWV range of 244–926 mm3.

We computed both absolute and signed volume errors (see
Table V) as volume-based metrics to evaluate the algorithm.
The signed volume error provides an indication of the bias of
the algorithm, whereas the absolute volume error is a more
stringent measure of the discrepancy between algorithm and
manual measurements. The absolute VWV errors (|δVVWV|)
of the proposed 3D algorithm were in the range of 4.32%–
13.28%. However, |δVVWV| of the 3D algorithm were not sig-
nificantly different from |δVVWV| of the 2D method for the
ISDs of 1–3 mm. However, the |δVVWV| results for the ISDs
of 4 and 10 mm were significantly different. For the ISD of
1, 4, and 10 mm, the algorithm underestimated the VWV. The
underestimation of VWV could be mainly due to either the
MAB volume is underestimated and/or the LIB volume is
overestimated, except for ISD of 10 mm, where both the MAB
and LIB volumes were underestimated (see Table V). For ISD
of 1 mm, the underestimation of VWV occurred mainly due
to the overestimation of the LIB. For ISD of 4 and 10 mm,
the underestimation occurred due to the underestimation of
the MAB (see Table V). We observed that for ISDs more than
2 mm, the initial surface is mostly enclosed within the desired
surface. When the initial surface is further away from the de-
sired boundary, the MAB segmentation could be trapped in
local minima because its region-based energy is dependent
only on local statistics, which finally leads to underestimat-
ing the MAB volume. Although global-region based energy
is used for LIB segmentation to avoid this issue, it is not used
for the MAB segmentation, because of inhomogeneity of the
inside and outside intensities for the MAB. However, since
LIB is constrained by the MAB segmentation, when the MAB
volume is underestimated, the LIB volume may also be under-
estimated.

IV.D. Reproducibility

We used CV and the MDD (see Table VII) to evaluate the
intraobserver variability of the algorithm for computing VWV
from repeated measurements. The algorithm yielded small
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CVVWV (e.g., 5.57% for ISD of 3 mm) that are comparable
with the CVs for manual segmentation and the 2D method.15

The CVVWV also increased with the increase of ISD, which
may be due to larger differences in initial surfaces between
repetitions for large ISD than for small ISD. Two sample F-
tests were carried out to determine the statistical significant
difference of the variance of the proposed method with man-
ual segmentation and the 2D method.15 The F-tests failed to
show that the variances of the proposed methods are signifi-
cantly different from the variances of the manual segmenta-
tion and the 2D method15 for all the ISDs.

Manual CVVWV (3.89%) was comparable with the previ-
ously reported manual intraobserver CVVWV values of 4.6%
by Egger et al.8 and 4.7% by Egger et al.52 Apart from the ef-
fect caused by different datasets, the reason for slightly lower
manual CVVWV of ours could be due to two main reasons. In
our study, the observer sets the BF and axis for each 3DUS
image only once and used them for other repetitions, as op-
posed to setting different BF and axis for each repetition. In
addition, our study used only VWV of the CCA, whereas
their study used VWV of internal carotid (ICA) and external
carotid arteries (ECA) in addition to VWV of CCA.

Manual CVVWV was also smaller than the algorithm
CVVWV (3.9% vs 4.97%−10.82%). Although, manual
CVMAB was smaller than algorithm CVMAB, manual CVLIB

is larger than the algorithm CVLIB for ISD of 1 and 2 mm. In
addition, CVMAB was smaller than the corresponding CVLIB

in most cases except for the ISD of 2 mm (see Table VII). This
could be due to the fact that the observer can more accurately
locate the MAB for choosing anchor points, because of its
smooth and low order shape. The MDD values (see Table VII)
of the proposed algorithm increased with increased ISD. Al-
though algorithm MDDs were larger than the manual MDD,
the MDD results of the proposed algorithm was smaller than
a previously reported VWV change of ≈120 mm3/yr,10 which
suggests that a follow up period of 1 yr could be used for any
ISD, although, for ISD of 1 and 2 mm, even 6 month period
may be suitable as follow up.

IV.E. Comparison to previous methods

There are three previous 2D segmentation methods14–16 re-
ported in the literature that segment both the MAB and LIB
from 3DUS images as shown in Table I. Out of these two
methods, the one proposed by Ukwatta et al.15 is currently
used in clinical trials.11 Therefore, in this paper, we com-
pared the accuracy, intraobserver variability, user interaction,
and the computational time of the proposed method to the
2D segmentation method.15 Although the accuracy, intraob-
server variability, and computational time of the proposed 3D
algorithm is comparable to the 2D method,15 there are two
main advantages of the proposed 3D algorithm over previous
methods.14, 15 One advantage is the reduction of number of
anchor points for initialization, which translates into overall
reduction of total segmentation time. For example, for ISD of
3 mm, the number of anchor points required for segmenting
1 cm section of the CCA from a 3DUS image is 32, as op-
posed to 88 with an ISD of 1 mm. The other advantage is

the ability to generate the segmentation at each voxel interval
(typically 0.15 mm) along the long axis direction in a much
less time than in a 2D segmentation method. For example, for
segmentation of a 1 cm section of the CCA at ISD of 0.15 mm,
the 2D method15 would require 17 min (67 slices where
11 slices require 2.8 min). However, the proposed algorithm
would require about 1.72 min to segment the image at ISD of
0.15 mm with an initialization ISD of 3 mm.

The 2D segmentation method proposed by Ukwatta
et al.15 requires a total segmentation time of 2.8 min and
the one proposed by Yang et al.14 reported 4.4 min to
segment the CCA from a 3DUS image. The total segmenta-
tion time for the proposed algorithm with an ISD of 3 mm is
approximately 1.72 min, which is less than the previous meth-
ods. However, note that the algorithm computational times of
the proposed 3D method are not directly comparable to the
computational times proposed by Yang et al.,14 due to differ-
ences in hardware and datasets used in the papers.

IV.F. Selection of proper ISD

Based on the evaluation results, more suitable ISDs for ini-
tialization are 2 and 3 mm, which use fewer user interactions
for initialization than the 2D method,15 while maintaining a
DSC of more than 90%, CVVWV less than or equal to 6.8%,
|δVVWV| less than or equal to 5.64%, and a bias as small as
2.28 and 0.64 mm3, in comparison to VVWs in the range of
244–926 mm3 for VWV computation. After selecting an ISD
for a study computing VWV, our results can also be used to
estimate the number of subjects that must be monitored in a
clinical trial to detect a desired average regression in VWV at
a desired power and significance:53, 54

n ≥ 2(Zα + Zβ)2SD2
VWV

M2
d

, (17)

where n is the number of subjects, Md is the desired mean
difference in VWV, Zα is the standard normal deviate ex-
ceeded in either direction with probability α, and Zβ is the
standard normal deviate exceeded in one direction with prob-
ability β, where 1 − β is the desired power.53 SDVWV is the
standard deviation of the repeated measurements of VWV
as shown in Table VII. For example, for an ISD of 3 mm,
SDVWV = 27.13 mm3, α = 0.05, and β = 0.2 (hence, Zα

= 1.96 and Zβ = 0.842) to measure a mean VWV regression
of 30 mm3 with a 95% confidence interval, which was in fact
the mean VWV regression of a patient group in a statin drug
trial10 of 3 months, the minimum number of patients required
is 13.

IV.G. Conclusion

In conclusion, the 3D segmentation algorithm based on
SFLS method provided high accuracy (e.g., DSC greater than
90% for ISDs of 1, 2, and 3 mm) in terms of volume-, region-,
and distance-based metrics and low intraobserver variabil-
ity [MDD smaller than previously reported VWV change
of ≈120 mm3/yr (Ref. 10)] in generating the VWV. To our
knowledge, this paper is the first attempt to segment both the
MAB and LIB of the CCA in 3D from 3DUS images for
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the purpose of generating the VWV for monitoring carotid
atherosclerosis plaque burden in clinical trials. The method
provided comparable accuracy and intraobserver variability
results to previous 2D segmentation method,15 with fewer
user interactions and shorter segmentation time, when ISD of
2 mm or more is used for the initialization.
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