9 research outputs found

    Efficient Local Comparison Of Images Using Krawtchouk Descriptors

    Get PDF
    It is known that image comparison can prove cumbersome in both computational complexity and runtime, due to factors such as the rotation, scaling, and translation of the object in question. Due to the locality of Krawtchouk polynomials, relatively few descriptors are necessary to describe a given image, and this can be achieved with minimal memory usage. Using this method, not only can images be described efficiently as a whole, but specific regions of images can be described as well without cropping. Due to this property, queries can be found within a single large image, or collection of large images, which serve as a database for search. Krawtchouk descriptors can also describe collections of patches of 3D objects, which is explored in this paper, as well as a theoretical methodology of describing nD hyperobjects. Test results for an implementation of 3D Krawtchouk descriptors in GNU Octave, as well as statistics regarding effectiveness and runtime, are included, and the code used for testing will be published open source in the near future

    ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database.</p> <p>Results</p> <p>In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure <it>d<sub>ij </sub></it>by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (<it>i</it>, <it>j</it>), if their context <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1471-2105-13-S7-S2-i1"><m:mi mathvariant="script">N</m:mi><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>i</m:mi></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> and <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1471-2105-13-S7-S2-i2"><m:mi mathvariant="script">N</m:mi><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>j</m:mi></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing <it>d<sub>ij </sub></it>by a factor learned from the context <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1471-2105-13-S7-S2-i3"><m:mi mathvariant="script">N</m:mi><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>i</m:mi></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula> and <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1471-2105-13-S7-S2-i4"><m:mi mathvariant="script">N</m:mi><m:mrow><m:mo class="MathClass-open">(</m:mo><m:mrow><m:mi>j</m:mi></m:mrow><m:mo class="MathClass-close">)</m:mo></m:mrow></m:math></inline-formula>.</p> <p>Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new <b>S</b>upervised learned <b>Dis</b>similarity measure, we update the <b>Pro</b>tein <b>H</b>ierarchial <b>Cont</b>ext <b>C</b>oherently in an iterative algorithm--<b>ProDis-ContSHC</b>.</p> <p>We test the performance of ProDis-ContSHC on two benchmark sets, i.e., the ASTRAL 1.73 database and the FSSP/DALI database. Experimental results demonstrate that plugging our supervised contextual dissimilarity measures into the retrieval systems significantly outperforms the context-free dissimilarity/similarity measures and other unsupervised contextual dissimilarity measures that do not use the class label information.</p> <p>Conclusions</p> <p>Using the contextual proteins with their class labels in the database, we can improve the accuracy of the pairwise dissimilarity/similarity measures dramatically for the protein retrieval tasks. In this work, for the first time, we propose the idea of supervised contextual dissimilarity learning, resulting in the ProDis-ContSHC algorithm. Among different contextual dissimilarity learning approaches that can be used to compare a pair of proteins, ProDis-ContSHC provides the highest accuracy. Finally, ProDis-ContSHC compares favorably with other methods reported in the recent literature.</p

    Shape Retrieval Methods for Architectural 3D Models

    Get PDF
    This thesis introduces new methods for content-based retrieval of architecture-related 3D models. We thereby consider two different overall types of architectural 3D models. The first type consists of context objects that are used for detailed design and decoration of 3D building model drafts. This includes e.g. furnishing for interior design or barriers and fences for forming the exterior environment. The second type consists of actual building models. To enable efficient content-based retrieval for both model types that is tailored to the user requirements of the architectural domain, type-specific algorithms must be developed. On the one hand, context objects like furnishing that provide similar functions (e.g. seating furniture) often share a similar shape. Nevertheless they might be considered to belong to different object classes from an architectural point of view (e.g. armchair, elbow chair, swivel chair). The differentiation is due to small geometric details and is sometimes only obvious to an expert from the domain. Building models on the other hand are often distinguished according to the underlying floor- and room plans. Topological floor plan properties for example serve as a starting point for telling apart residential and commercial buildings. The first contribution of this thesis is a new meta descriptor for 3D retrieval that combines different types of local shape descriptors using a supervised learning approach. The approach enables the differentiation of object classes according to small geometric details and at the same time integrates expert knowledge from the field of architecture. We evaluate our approach using a database containing arbitrary 3D models as well as on one that only consists of models from the architectural domain. We then further extend our approach by adding a sophisticated shape descriptor localization strategy. Additionally, we exploit knowledge about the spatial relationship of object components to further enhance the retrieval performance. In the second part of the thesis we introduce attributed room connectivity graphs (RCGs) as a means to characterize a 3D building model according to the structure of its underlying floor plans. We first describe how RCGs are inferred from a given building model and discuss how substructures of this graph can be queried efficiently. We then introduce a new descriptor denoted as Bag-of-Attributed-Subgraphs that transforms attributed graphs into a vector-based representation using subgraph embeddings. We finally evaluate the retrieval performance of this new method on a database consisting of building models with different floor plan types. All methods presented in this thesis are aimed at an as automated as possible workflow for indexing and retrieval such that only minimum human interaction is required. Accordingly, only polygon soups are required as inputs which do not need to be manually repaired or structured. Human effort is only needed for offline groundtruth generation to enable supervised learning and for providing information about the orientation of building models and the unit of measurement used for modeling

    3D object retrieval and segmentation: various approaches including 2D poisson histograms and 3D electrical charge distributions.

    Get PDF
    Nowadays 3D models play an important role in many applications: viz. games, cultural heritage, medical imaging etc. Due to the fast growth in the number of available 3D models, understanding, searching and retrieving such models have become interesting fields within computer vision. In order to search and retrieve 3D models, we present two different approaches: one is based on solving the Poisson Equation over 2D silhouettes of the models. This method uses 60 different silhouettes, which are automatically extracted from different viewangles. Solving the Poisson equation for each silhouette assigns a number to each pixel as its signature. Accumulating these signatures generates a final histogram-based descriptor for each silhouette, which we call a SilPH (Silhouette Poisson Histogram). For the second approach, we propose two new robust shape descriptors based on the distribution of charge density on the surface of a 3D model. The Finite Element Method is used to calculate the charge density on each triangular face of each model as a local feature. Then we utilize the Bag-of-Features and concentric sphere frameworks to perform global matching using these local features. In addition to examining the retrieval accuracy of the descriptors in comparison to the state-of-the-art approaches, the retrieval speeds as well as robustness to noise and deformation on different datasets are investigated. On the other hand, to understand new complex models, we have also utilized distribution of electrical charge for proposing a system to decompose models into meaningful parts. Our robust, efficient and fully-automatic segmentation approach is able to specify the segments attached to the main part of a model as well as locating the boundary parts of the segments. The segmentation ability of the proposed system is examined on the standard datasets and its timing and accuracy are compared with the existing state-of-the-art approaches

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining
    corecore