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Thesis Title: 3D Object Retrieval and Segmentation: Various Approaches 

Including 2D Poisson Histograms and 3D Electrical Charge Distributions. 

Author: Fattah Alizadeh 

Abstract 

Nowadays 3D models play an important role in many applications: viz. games, cultural 

heritage, medical imaging etc. Due to the fast growth in the number of available 3D 

models, understanding, searching and retrieving such models have become interesting 

fields within computer vision. 

In order to search and retrieve 3D models, we present two different approaches: one is 

based on solving the Poisson Equation over 2D silhouettes of the models. This method 

uses 60 different silhouettes, which are automatically extracted from different view-

angles. Solving the Poisson equation for each silhouette assigns a number to each pixel as 

its signature. Accumulating these signatures generates a final histogram-based 

descriptor for each silhouette, which we call a SilPH (Silhouette Poisson Histogram). 

For the second approach, we propose two new robust shape descriptors based on the 

distribution of charge density on the surface of a 3D model. The Finite Element Method 

is used to calculate the charge density on each triangular face of each model as a local 

feature. Then we utilize the Bag-of-Features and concentric sphere frameworks to 

perform global matching using these local features.  

In addition to examining the retrieval accuracy of the descriptors in comparison to the 

state-of-the-art approaches, the retrieval speeds as well as robustness to noise and 

deformation on different datasets are investigated.   

On the other hand, to understand new complex models, we have also utilized 

distribution of electrical charge for proposing a system to decompose models into 

meaningful parts. Our robust, efficient and fully-automatic segmentation approach is 

able to specify the segments attached to the main part of a model as well as locating the 

boundary parts of the segments. 

The segmentation ability of the proposed system is examined on the standard datasets 

and its timing and accuracy are compared with the existing state-of-the-art approaches.  
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1 
Introduction 

1.1. Introduction 

The world is changing and digital technology is growing rapidly to enhance the quality 

of human life. Nowadays, no one can imagine daily life without using technological 

achievements such as the internet, mobile phones, mp3 players and so on. The growth 

in technology is so fast that every day one can find a lot of new multimedia information 

using search engines such as Google, Yahoo and so on. 3D models are among the new 

types of multimedia information, which have recently opened a new door to computer 

users to enjoy the amazing world of 3D. This growth is in part due to the development of 

3D scanners, modelling software, cameras and even mobile phones with fast CPUs. 

Nowadays, 3D models play an important role in many applications namely games, 

cultural heritage, medical imaging, biochemistry, art and mechanical manufacturing.  

As the result of emerging new technologies for saving and manipulating multimedia 

information in the above-mentioned applications, the number of 3D models has 

mushroomed in recent years.  

As the number of 3D models becomes larger and larger, automatic tools for the search, 

retrieval and understanding of such models are becoming more necessary. These tools 

should be able to help users, whether from academia or business, to manage available 

models. Management of the models includes a variety of tasks for different applications: 

an engineer or designer may like to decompose a mechanical model into its components 

so as to reuse them to create new models. An archaeologist may like to search among 

existing artefacts to find similar ones to a recently-discovered valuable antique. A 

medical researcher should be able to search among available CT-Scan images to find a 
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similar pattern among related disorders. Other activities may be required to be carried 

out by the animators, chemists etc.  

Following the growth of 3D models on the internet or other specific-domain datasets, 

the question of "how do we generate 3D models?" has evolved into "how do we find 

them?" [1]. It means that the trend in research is toward proposing new efficient systems 

to search, index and retrieve a desired model in a large pool of 3D models. On the other 

hand, due to the vast amount of 3D models, the textual-based search engines are not 

applicable anymore. Accordingly, the process of finding a query model in a target dataset 

has become a problematic issue.  

An effective remedy for this problem is to design an automatic system to perform 

content-based matching and retrieval. The system should be able to interact with users 

by getting a model as query and finding and retrieving similar models from the target 

dataset. The foundation of such systems is a shape descriptor, by which the 3D models 

are represented as a set of numerical vectors or an appropriate graph. A practical 3D 

model retrieval system with an ideal shape descriptor should be able to retrieve similar 

models in a reasonable period of time. Additionally, the underlying shape descriptor is 

expected to be robust to various transformations and surface changes.  

Therefore, the first aim of the current thesis is to introduce beneficial shape descriptors 

for 3D model retrieval, which offer high discrimination quality as well as robustness to 

deformation, noise and other surface changes.   

On the other hand, decomposing 3D models into meaningful parts is of great interest to 

researchers in various domains. Reverse engineering, partial matching and model 

annotation are among the beneficial applications of decomposing 3D models into 

semantic sub-parts. Despite the presence of dozens of existing approaches to 

segmentation, proposing new, accurate and robust techniques is still a challenging issue 

in computer vision.  

The optimal segmentation approach would be able to extract components of the complex 

models, which have emerged due to recent advances in graphical software and 

hardware.  As 3D models are getting larger and larger, the need for more advanced 

segmentation tools is becoming more crucial. So, the purpose of the second part of the 

current work is to propose an accurate, robust, efficient and fully-automatic tool by 

which the available models, having more sophisticated structure, can be easily 

segmented.          
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All in all, there are several main objectives for the current work as follows: 

1) Introducing a new view-based 3D shape descriptor based on the 2D Poisson 

Equation.  

2) Proposing two new 3D based shape descriptors using a well-known fact from 

the physics of electricity about distribution of electrical charge on the surface of 

a solid. 

3) Exploring and evaluating the efficiency and effectiveness of the proposed 

descriptors using different criteria on the models in the standard datasets, and 

comparing them to the state-of-the-art approaches. 

4) Designing an automatic 3D model segmentation system using the same fact 

about distribution of electrical charge on the surface of models. 

5) Comparing the ability of the proposed segmentation system to the available 

ones, using widely accepted benchmarks. 

 

In the sequel, we give a brief description about some topics related to the 3D models viz. 

3D model definition, creation and representation.       

1.2. 3D Model 

A 3D model is simply an abstract representation of an object by showing the 

relationships among its components. It represents a 3D object using a collection of points 

in 3D space, connected by various geometric entities such as triangles, lines, curved 

surfaces etc. A 3D model can be considered as the fourth generation of multimedia 

information, which has emerged after digital sound in the 1970s, digital images in the 

1980s and digital videos in the 1990s. They have become popular in parallel with the 

development of 3D data acquisition, 3D graphics modelling and graphics hardware 

technologies. Nowadays, 3D models are widely adopted in various applications namely 

medical industry, movies, games technology, science, architecture etc.  Figure 1.1 

exemplifies some models utilized in different applications. We refer the readers to 

Chapters 3 and 5 to see more details about applications of the 3D models in different 

domains. 
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Figure 1.1, Sample 3D models from different applications. 

1.3. 3D Model Creation Techniques 

3D models can be generated using one of the following techniques:  

• 3D Model Acquisition: In this class of 3D modelling techniques, the real-world 

object is digitized to be saved and processed by computers. 3D Laser Scanners and 

Coordinate Measuring Machines (CMM) are two samples of modelling devices. In 

the former one, a real-world object is scanned, analysed and the raw data 

(typically an x,y,z point cloud) is used to generate an accurate polygonal or other 

mesh representation. Coordinate Measuring Machines, on the other hand, are 

designed to move a measuring probe to determine the coordinates of the points 

on the object. Figure 1.2 shows a 3D laser scanner and a CMM device used for 

construction of 3D models from real objects. 3D Model Acquisition techniques are 

mainly used in cultural heritage, animation and reverse engineering applications.  

 

 

Figure 1.2, sample 3D model acquisition devices. Left: laser scanner-based acquisition of Michelangelo’s 

David model from Stanford University, Right: A CMM device for generating a Cat model.  

• Manual Construction: There is a wide range of software by which designers are 

able to construct their favourite 3D models. This class of software allows users to 

alter models by adding, subtracting and/or stretching desired parts of the models. 

A typical CAD software, for instance, enables engineers to generate a 3D plan of a 

building in a short period of time.  Other 3D modellers such as Maya, 3D Max, 
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Cheetah3D, Anim8or etc. are among beneficial modelling software packages, 

which have been designed for modelling and animating characters.  

• 2D Image Combination: 3D models can be constructed from a set of 2D images, 

when time and/or budgetary limitations do not allow the producers to manually 

generate a fully realized 3D model.  In this situation, a 3D model is algorithmically 

derived from a set of static 2D images which are captured from different view 

angles. Then, an appropriate algorithm is applied to combine the images together 

to construct a 3D model.  Figure 1.3 shows two samples of 3D face models 

constructed from a set of 2D images. 

 

 

Figure 1.3, 3D face models reconstructed from a set of 2D images (image is taken from [2]). 

1.4. 3D Model Representation Format 

As the number of 3D models is becoming larger and larger, the demand for visualization 

of such data in different applications has aroused research interest. According to the 

application used, various formats of model representation have been proposed.   

As displayed in Figure 1.4, 3D models can be represented based on their surface or 

volume information. The surface of a model can be represented using a point cloud, a 

polygonal mesh or a parametric surface, while the volumetric characteristics of an object 

are shown by voxels. These formats can be simply defined as follows:  

• Point Cloud representation: Point Clouds are merely composed of a set of points 

and are often intended to represent the external surface of an object. So, the 

connectivity relations among the points are not considered in this representation 
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format. A model represented in a cloud of points can be directly constructed by 3D 

scanners and usually is converted to the other formats to be used in graphic 

applications (Figure 1.4 (a)).  

• Mesh representation (Triangular of Polygonal mesh): Polygonal meshes are 

among the most often adopted formats for object representation using a collection 

of vertices, edges and faces. They utilize connectivity (e.g. adjacency relationship 

between vertices), geometry (e.g. vertex location) and property data (e.g. normal 

vectors) to represent the objects. The boundary surface in this family of 

approaches is divided into a set of planar surfaces such as triangles or 

quadrilaterals. Figure 1.4 (b), 1.4(c) show a bunny model in two different face 

types.  

• Parametric Surface representation: this format represents the object as a set of 

surfaces in Euclidean space R3, which are defined by a parametric equation. This 

class of representation is the most efficient approach and unlike polygonal 

meshes, which only approximate the model surface, defines the exact model 

mathematically (Figure 1.4 (d)).  

• Voxel representation: Voxels are another common representation of models in 

which the object is considered as a volumetric density defined on a 3D regular grid. 

This format aims at encoding the volumetric information of objects to be used 

mainly in medical applications. One can consider a voxel as a 3D counterpart of a 

pixel. Therefore, as in the case of pixels, the voxels themselves do not include their 

positions. Instead, the coordinates of a voxel in a model is specified based on the 

relative positions of the other voxels (Figure 1.4 (e)). 

 

 

Figure 1.4, Different representation of a sample Bunny model. (a) Point clouds, (b), (c) polygonal meshes, 

(d) set of parametric surface and (e) voxel (figure is taken from [3]). 

In the current work we mainly use the triangular mesh models saved in .OFF format, as 

it precisely shows model geometry and also can be converted to the other formats easily. 

We refer the reader to the appendix A to see more details about .OFF file formats and 

sample MATLAB code to read/write them.  
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1.5. Thesis Contributions 

In this thesis we make three different contributions to the field of 3D model retrieval and 

segmentation. The first two contributions include introducing new shape descriptors, by 

which 3D models similar to a specific query from a target dataset are matched and 

retrieved. The last contribution is related to a segmentation technique for decomposing 

3D objects into semantic meaningful parts: 

• 2D-based 3D model descriptor: For the first descriptor, we utilize silhouettes 

extracted from different view-points. The 2D Poisson Equation is applied to the 

silhouettes to assign a scalar value to each pixel. The pixel values taken together 

constitute the description of the silhouettes, by which the comparison between the 

models is carried out.      

• 3D-based 3D model descriptor: A well-known fact from physics about the 

distribution of electrical charge on the surface of a solid is borrowed to describe 

the models in a discriminative manner. After simulation of the charge distribution, 

the amount/density of charge on the faces of the model is employed as a local 

descriptor. Two different implementations of the fact are utilized to introduce two 

charge-based descriptors: in the first one, charge density and the well-known Bag-

of-Feature framework describe the models, while the second one employs the 

amount of charge on the facets is combined with a term we call "Dense Patches". 

These two implementations offer considerable advantages, which are crucial in 

the retrieval domain.       

• 3D model segmentation: Charge distribution is also used to decompose 3D 

models into their meaningful parts. The simulated distributed charge will be 

utilized in both phases of segmentation: protruded parts extraction and boundary 

faces detection. Although the charge distribution has been utilized for 3D model 

segmentation previously, as will be discussed in Chapters 5 and 6, our approach 

offers great advantages over the previous method.      

 

1.6. Thesis Outline 

Following on from the above, the current thesis is organized as follows:  

• Chapter 2 discusses the related work in content-based 3D model retrieval as well 

as the state-of-the-art approaches proposed in the 3D model segmentation area.  
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• Chapter 3 is dedicated to introducing the proposed shape descriptors including 

the 2D-based and 3D-based ones. 

• Chapter 4 provides extensive experimental results for the proposed shape 

descriptors on the standard datasets. 

• Chapter 5 details the proposed approach for segmentation of 3D models using 

distribution of electrical charge density.    

• Chapter 6 uses the proposed segmentation approach to decompose models in two 

standard datasets, SHREC’07 and SHREC’12.  

• Chapter 7 summarizes the implications and contributions, and discusses the 

possibilities for future research. 

• Appendix A introduces Object File Format (.OFF) of 3D models along with a 

MATLAB code for read/write .OFF files. 

• Appendix B presents information about the models on the query set, which is 

designed for the partial matching track of the SHREC’ 07 contest.  

 

 

  



9 

 

 

2 
Literature Review 

2.1. Introduction  

The fast growth in technology during the last two decades has led to an enormous 

volume of 3D models in databases or over the internet. Following this growth, the trend 

of research is going toward designing efficient systems to find a desired model in a large 

collection of 3D models.  As a result, lots of effort has been made to propose new content-

based techniques by which the desired models may be found. To review such efforts a 

section of this chapter is dedicated to the techniques, which have been proposed in the 

3D object retrieval domain.  

On the other hand, as the 3D models are becoming larger and more complex, 

decomposing such models into smaller and simpler meaningful parts is getting 

necessary in lots of graphics applications. Consequently, 3D mesh segmentation or 

decomposition has gained enormous attention from leading researchers in graphic 

domains. Therefore, the other part of this chapter aims at surveying all of the 

approaches, which fall in the segmentation field.  

2.2. State-of-the-art in 3D Object Retrieval (3DOR) 

Search and retrieval of 3D models started two decades ago and dozens of techniques 

have been proposed during this period of time. As the number of techniques has 

increased, a number of survey papers have been written on the topic [4, 5, 6, 7, 8, 9, 10, 

11] among them [8] covers a wider range of available methods. But this later one is 

relatively old (published in 2008) and does not include the new efforts. However, due to 
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the increasing number of proposed approaches, the new survey papers only cover a 

specific class of techniques in the literature, such as the review papers, which survey 

sketch-based approaches [9], partial matching [10], view-based approaches [11].  One 

of the most important goals of this section is to provide a comprehensive overview of 

retrieval techniques from all categories, focusing on the recently published ones.  

Generally speaking, the 3D model retrieval techniques are grouped based upon the 

utilized shape descriptor by which the model matching problem is converted into 

numerical feature vector comparison or graph isomorphism. Different researchers have 

different ideas for the criterion by which the categorization is performed; local vs. global 

approaches, 2D vs. 3D approaches, spatial vs. frequency domain approaches, numerical 

vs. graph based approaches etc. For the sake of generality, we try to take into 

consideration all the available associated criteria to provide the readers with a full 

overview of the available approaches and discuss the advantages and drawbacks of each 

group. Figure 2.1 illustrates a graphical taxonomy of 3D shape descriptors utilized for 

model search and retrieval.  As can be observed in this figure, we divide the available 

approaches into two main categories: 2D and 3D approaches, each of which has been 

classified into smaller groups.   

 

 

Figure 2.1, Taxonomy of 3D object retrieval approaches 

2.2.1. 2D-Based Shape Descriptors 

The main idea behind 2D-Based methods is that "two 3D models are similar, if they look 

similar from all viewing angles" [12]. Rather than using the 3D model itself for extracting 

shape descriptors, the methods, which lie in this category, generate shape descriptors 

using image projections. The projections may be silhouettes, depth buffers, contours or 

other kinds of image presentations. Using the above idea several researchers have tried 
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to reduce 3D model-matching to a 2D image-matching process. Despite the fact that 

these techniques discard valuable information about the original 3D models, they have 

good discriminative power.   

Based upon the query-type and the domain used, this class of shape descriptor is divided 

into three main sub-categories i.e. view-based and sketch-based and 2D Transform-

based descriptors. In the sequel, we explain all of these sub-categories along with the 

proposed approaches, which fall in each group.   

2.2.1.1. View-Based Descriptors (Spatial Domain) 

The approaches of this group generally begin with extracting a desired number of 2D 

view images from each 3D model, including the query and the entire target models in the 

dataset. Then, in order to compute shape signatures, a 2D shape descriptor is applied on 

the extracted views. These signatures are finally exploited so as to measure the similarity 

between the query and target models to retrieve the best matches.   

Since some of the view-based approaches use silhouettes and depth buffers, in the sequel 

we give a simple definition of these images before discussing the relevant retrieval 

systems.   

Silhouette: A silhouette is an image represented as a solid shape of a single colour, 

usually black, its edges matching the outline of the subject. As shown in the first row of 

Figure 2.2, the interior of a silhouette is featureless, and the whole is typically presented 

on a light background, usually white, or none at all [13].  

Depth buffer (Range Image or Depth Map): The depth buffer is a useful technique for 

model representation in which the spatial distance difference of 3D surfaces are encoded 

into different grey values of their 2D projection images. It contains information relating 

to the distance of the surfaces of scene objects from a viewpoint (see second row of 

Figure 2.2).  

 
Figure 2.2, a 3D model of an airplane (leftmost) and corresponding three silhouettes (first row) and depth-

buffer images (second row) captured from three directions (figure is taken from [14]). 
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There are several retrieval systems in which depth buffers play a critical role [15, 16, 

17].  

In the work of Shih et al. [16], depth-buffer images are used to introduce the elevation 

shape descriptor. Six depth-buffer views or elevations are generated from faces of the 

3D model’s bounding box and then each view is described by a grey level image, which 

is decomposed into several concentric circular areas.  The sum of pixel values within 

areas between adjacent concentric circles generates the view descriptor.  3D models are 

compared based on the matching of the elevation descriptors. To match two groups of 

the elevation descriptors, the minimal distance is calculated to measure the distance 

between the two 3D models. 

In a different aspect, Ohbuchi et al. [17], used depth-buffers combined with a Bag-of-

Visual-Words-based retrieval framework. In this method, each 3D model is rendered 

into a group of depth images and SIFT features [18] are extracted from them. It uses the 

bag-of-features framework to integrate the local features into a feature vector for each 

model. Then the matching of these two feature vectors determines the distance between 

the two 3D models.   

Recently the depth-buffer image is used in a very interesting method by Lian et al. [15]. 

After simplification of all models they applied Principal Component Analysis (PCA) and 

Multi-Dimensional Scaling (MDS) to achieve rotation-invariant and canonical form of 

models, respectively.  Then, using different viewpoints of geodesic sphere, 66 depth-

buffer views are extracted from the canonical form which are described using a 

combination of salient SIFT descriptors and Bag-of-Feature framework. The remarkable 

part of Lian’s work lies in using a new comparison method, Clock Matching, which 

defines the similarity between each pair of models by using the minimum distance of 

their 24 matching pairs. Ignoring the matching time, their method attained achieved a 

very good ranking among the participants of SHREC’11 contest [19] 

Differently, Napoleon et al. employed silhouette views in their proposed framework [20]. 

After normalization of the 3D models they extracted a set of silhouette views for each 

model and defined the distance between any two silhouettes as the number of pixels that 

are not common between the two (Hamming Distance).  The final dissimilarity between 

each pair of models in their work is equal to the sum of the distances between their two 

sets of silhouettes. 

In a different work, Johnson and Herbert [21] used spin images to compare 3D model 

surfaces. The spin image is defined as follows:  
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Spin Image: the spin image at each point p is a 2D histogram of the surface location 

around that point. As illustrated in Figure 2.3, this histogram accumulates the number of 

points located at the coordinate (α , β), where α and β are the length of the two 

orthogonal edges of the triangle formed by the oriented basis point p, whose orientation 

is defined by the normal vector n and support point q. the final size of the spin images is 

defined by the width w and the height h of the spin plane.  

 

Figure 2.3, The demonstration of Spin Image (figure is taken from [22]) 

They applied the spin image descriptor to recognize and retrieve models among a 

cluttered scene. In spite of possessing valuable characteristics such as invariance to rigid 

transformations and flexibility, the spin image descriptor suffers from two main 

problems: firstly due to complexity, it is difficult to apply to 3D shape matching and 

secondly it is not clear how to define a dissimilarity function that satisfies the triangle 

inequality. 

In an interesting work, panoramic views are combined with the SIFT descriptor so as to 

extract and describe the salient points in order to work with range image queries [23]. 

(The panoramic views are obtained by projecting the 3D model onto the lateral surface 

of a cylinder aligned with one of the object’s three principal axes and centred at the 

centroid of the object (see Figure 2.9)). The authors extend the original PANORAMA [24] 

method to multiple axes in which each axis defines three panoramic view cylinders.  

Having panoramic views, the SIFT descriptor is calculated on the cylindrical depth 

images. Beside the retrieval quality of this method, it offers a fully unsupervised retrieval 

system. 

Very recently, panoramic views are also used in a partial matching context by the same 

authors [25]. The Dense-SIFT (DSIFT) [26] extracts the feature points to describe the 

panoramic views. In the case of the query model, the depth-buffer image is taken from 

the model with a size of 256*256 pixels and the DSIFT descriptor is directly computed 

on the images. The similarity distance between models is computed as the minimum L2 

distance of every DSIFT point of the range image to every DSIFT points of a 3D model’s 
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panoramic view. The performance of the method is only evaluated on a pottery dataset 

originating from the Hampson Archaeological Museum and no quantitative comparison 

to any other similar partial-matcher is provided.  

The idea of a Light Field Descriptor [27] is used in the recent work of Ding et al. [28] in 

which 300 projected views are extracted from uniformly distributed cameras on a view 

sphere. To reduce the computational cost of view comparison, the authors use Gaussian 

Means (G-means) adaptive clustering [29] to select the most informative views. The Bag-

of-view-word (BOVW) paradigm is used to generate model histograms in which each 

model is defined as a multi-resolution histogram that is composed of several BoVW 

descriptors with different numbers of bins. In addition to more accuracy, compared to 

the original LFD descriptor [27], the best-view selection approach of the proposed work 

leads to a faster retrieval process.  

Gao et al. proposed a Spatial Structure Circular Descriptor (SSCD) [30], which can 

preserve the global spatial structure of 3D models and is invariant to rotation and 

scaling. All the spatial information of a 3D model can be represented by an SSCD which 

includes several SSCD images. In a SSCD, a minimal bounding sphere of the 3D model is 

computed, and all points on the 3D model surface are projected onto the bounding 

sphere. Attribute values are provided at each point to represent the surface spatial 

information. The bounding sphere is further projected onto a circular region of a plane. 

It can preserve the spatial structure of the original 3D model. This circular image was 

employed by each SSCD image to describe the surface information of a 3D model. Each 

spatial part of a 3D model is represented by one part of the SSCD individually (See Figure 

2.4). Finally, histogram information is employed by the SSCD as the feature to compare 

two 3D models. 

 

Figure 2.4, A 3D cup models and the corresponding example SSCD images proposed by Gao et al. [30]  

A combination of SSCD descriptor and topological information of the models has been 

recently exploited to achieve higher retrieval performance [31]. In this method multiple 

views of 3D models are selected by topological structure. To do so, 20 topological salient 

points on the surface are extracted by using Radial Basis Functions (RBF) [32] in order 

to construct a Multiresolutional Reeb Graph (MRG) [33]. Then, unlike other view-based 
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approaches, an image is rendered for each topological point, via an orthographic 

projection of the 3D model onto the plane tangent to the sphere at each point. In order 

to extract and describe features the SIFT descriptor is used which is quantized by using 

a modified bag-of-features (BOF). In this version of BOF the spatial structure information 

are preserved via combined shell-sector with logarithmic shell radii (see Figure 2.5). 

Finally, the similarity between two 3D models is computed using the Earth Mover 

Distance (EMD) [35]. 

 

 
Figure 2.5, The illustration of the modified BOF method using SSCD proposed by Li et al. [31] 

Some of the recent view-based methods select a subset of the extracted views as salient 

ones to reduce the computational cost of similarity measures [36] [37]. Instead of 

comparing all of the available rendered images, such methods use a criterion to choose 

some views to be employed in the final stage of retrieving the best matches.  

Atmosukarto and Shapiro [36] applied a learning approach to specify the salient views 

to describe a 3D object. In this work, the initial feature points are extracted according to 

the Gaussian curvature and the Azimuth angle (angle between the positive x-z plane and 

the projection of normal vector n to the x) and elevation angle (angle between the x plane 

and vector normal vector n) for each point on the model surface [38]. Using a local 

histogram, the feature points are aggregated by taking a neighbourhood around each mesh 

point and accumulating the low-level feature values in that neighbourhood. Then, the 

histograms are fed to a Support Vector Machine (SVM) classifier to learn the salient 

points on the 3D surface mesh. Among the 100 extracted silhouette views, the top K (12 

in their work) distinct views having most salient points are chosen as salient views to 

compute the similarity factor between query and target models. In addition to higher 

retrieval accuracy, compared to the similar work of Chen et al. [27], the authors claimed 

that their method can achieve a 15-fold speedup in feature extraction time. 

In the same category, Ansary et al. [37] introduced an Adaptive Views Clustering (AVC) 

method. In AVC, there are 320 initial captured views, among which the representative 

views are optimally selected by adaptive view clustering with Bayesian information 

criteria. A probabilistic method is then employed to calculate the similarity between two 

3D models, and those objects with high probability are selected as the retrieval results. 
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There are two parameters in the method, which are used to modulate the probabilities 

of objects and views respectively. 

2.2.1.2. Sketch-Based Descriptor  

Sketch-based 3D shape descriptors are of great interest to 3D model retrieval 

researchers. So that a considerable amount of research has be done in the literature [1, 

39, 40]. The two recent contests on sketch-based 3D model retrieval in the SHREC’12 

[41] and SHREC’13 [42] benchmarking initiatives show the importance of this emerging 

field.    

This class of approaches aims at search and retrieving relevant 3D models using an input 

human-drawn 2D sketch as a query.  

Figure 2.6 shows a snapshot of the query-by-sketch retrieval system designed by Daras 

and Axenopoulos [43]. 

 

 
Figure 2.6, a sample interface of a retrieval system using the hand-drawn sketch as the query (figure is 

taken from [43]). 

Actually, the motivation for developing this class of approach stems from the 

unavailability of all sample queries for the users. That is, when users do not have access 

to a sample desired model to perform query-by-example, they prefer to draw a sketch of 

the favorite model to show the visual properties of it and ask the system to retrieve 

similar models (query-by-sketch).  

On the other hand, due to presence of a semantic gap between the sketches humans draw 

and the 3D models in the database [44], it is not a trivial task to design a retrieval 

framework in which the models are searched and retrieved according to their similarity 
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to the sketch query. Therefore, a considerable amount of research works have been 

dedicated to ease this task [1, 39, 40, 45, 46].  

Generally speaking, as demonstrated in Figure 2.7, this class of approach comprises the 

following steps: 

i. A desired number of views are extracted from available models in the target dataset.  

ii. The models are described using a shape descriptor applied on the extracted views. 

iii. User is asked to draw a sketch as a query to feed the retrieval system by its 

descriptor. 

iv. The best matches are retrieved from the target dataset according to similarity 

between the query sketch and extracted view.    

 

 
   

Figure 2.7, A typical sketch-based 3DOR system. 

To the best of our knowledge, the first content-based query-by-sketch retrieval system 

for 3D models has been proposed by Funkhouser et al. [1]. It supports textual query 

along with both 2D and 3D queries based on a general orientation-invariant version of 

spherical harmonics [47]. First, they extract thirteen orthographic projection views of 

3D models, for which the cameras are positioned on the edges and vertices of a bounding 

cube. Then, the user is asked to draw sketches from three principal view directions 

which are going to be matched against extracted views of the available models. Finally, 

by comparing the corresponding view descriptors to the boundary descriptor of the 

input sketch the best matches are found and retrieved.  

The proposed work of Yoon et al. is another approach in this category [39]. The authors 

mention that those sketch-based retrieval systems, which employ silhouette or depth 

buffer views, have crucial drawbacks such as: inability of users in sketching depth buffer 

query or losing view-dependent information of silhouettes. To overcome these 

drawbacks, they propose to automatically extract suggestive contours [48] to construct 

descriptors from fourteen captured views. As shown in Figure 2.8, the suggestive 
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contour rendering is a minimal way to convey a 3D model by a 2D image. It closely 

resembles the way most people sketch 3D objects: The silhouette as well as major ridges 

and valleys of the model are outlined. To describe the extracted views, the binary images 

are converted to their corresponding diffusion tensor field, which enables the authors to 

analyse the orientation of each pixel according to its neighbourhoods [49]. The similarity 

between models is defined via computing the minimal distance between the feature 

vectors of the query and each view image. To evaluate their approach, they built their 

own benchmark which contains 250 sketches for the 260 models of the Watertight 

Model Benchmark (WMB) dataset [50] categorized into 13 classes. The experimental 

result has shown the robustness of the proposed approach against variation of shape 

and pose of user drawn sketches.   

 

 

Figure 2.8, comparison of contour (left) and suggestive contour (right) (Figure is taken from [39]). 

Very recently, the same authors extended the idea of using suggestive contour by a 

sparse coding representation [45]. Following computing the suggestive contour of the 

fourteen views extracted from virtual cameras equally distributed on a sphere around 

the object, a topological space of diffusion tensor fields (HOG-DFT) is used to describe 

the 2D images by a feature vector. The major difference between this work and their 

previous one [39] is related to the feature optimization using sparse coding applied on 

the generated feature vectors. Sparse coding is a well-known method [51] to find the 

optimal representation of input data using a linear combination of a smaller trained 

dictionary. The authors used such a method to optimally represent the original HOG-DFT 

feature vectors. Compared to the other participants of the sketch-based retrieval 

competition in the SHREC’12 contest, the experimental results demonstrate the ability 

of the proposed approach in terms of both time and accuracy [41]. 

Two of the most efficient approaches in the literature are proposed by Furuya and 

Ohbuchi [40] and Li and John [46]. They gained the best ranks among all fifteen state-of-

the-art sketch-based approaches participated in the SHREC’13 contest [42][ 41]. 
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Compared to the other similar ones, the considerable improvement of Furuya and 

Ohbuchi’s work is related to the extra step which is inserted to the retrieval pipeline to 

fill the gap between sketches and rendered images of 3D models. That is, the user-drawn 

sketches contain stylistic variations, abstraction, inaccuracy and instability [44] which 

result in inappropriate comparisons of human-drawn 2D sketches with a set of rendered 

view images of a 3D model. To overcome this issue the authors have applied distance 

metric learning methods such as Uniform Manifold Ranking (UMR) and Cross-Domain 

Manifold Ranking (CDMR). 

The UMR method is applied on the features extracted from both sketches and the 

rendered view images to learn a graph structure or a uniform manifold that reflects a 

low-dimensional representation of the features. Then, a manifold ranking algorithm [52] 

is employed to compute the diffusion distance between features of the sketch query and 

rendered views. The CDMR, on the other hand, can be used for all possible similarity 

measures e.g. sketch-to-sketch, sketch-to-3D and 3D-to-3D. Unlike the UMR which forms 

a manifold by using a single feature, CDMR uses multiple measures of similarities 

including both feature-based and semantic-label-based measures.  

Therefore, the proposed work of Furuya and Ohbuchi can be summarized as follows: the 

42 extracted range images along with the query sketch are described using Dense-SIFT 

[26].  Two manifolds are separately formed for the both the extracted views and user-

drawn sketch. The BF-fGALIF feature [53] is then used to couple the two manifolds into 

a Cross-Domain Manifold (CDM). Once the CDM is constructed, relevance values from 

the sketch to images are computed as the similarity distances to retrieve the best 

matches to the sketch query.  

The 2D-3D alignment-based approach of Li and John [46], on the other hand, comprises 

two stages of pre-computation and retrieval.  In the pre-computing stage the 3D model 

features are computed for a set of sample views of target models, which are called View 

Context Features [54]. The View Context Features are utilized to select a set of candidate 

views to align a 2D sketch with a 3D model in the retrieval stage. This alignment step 

avoids brute-force direct matching between the sketch and many sample views which 

leads to a faster retrieval process. The computationally efficient integrated image 

descriptor named ZFEC is employed to represent global features from different aspects 

for the 81 extracted views. It combines Zernike moments (Z), Fourier descriptors (F), 

eccentricity (E) and circularity (C) in a feature vector.  Finally, the sketch-to-model 

distances are obtained by comparing the sketch query with every candidate view using 

the relative shape context matching [34]. 
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This approach along with the Cross-Domain Manifold-based approach of Furuya and 

Ohbuchi [40] outperforms all other approaches for both small-scale [41] and large-scale 

[42] benchmarks in terms of accuracy and scalability.  

Generally speaking, this class of retrieval approaches suffers from the fact that the query 

and the target models are not of the same structure anymore; as mentioned before, the 

query is a free-form sketch containing stylistic variations, abstraction, inaccuracy and 

instability as sketched by the user. But the target objects, on the other hand, are graphical 

models defined according to the given file format. However, the recent advances in such 

approaches have demonstrated promising results to reach retrieval accuracy as high as 

their query-by-example counterparts.      

It is worthwhile to note that there are some 2D-based approaches which support both 

hand-drawn sketches and rendered images as query [24, 27]. But, since they describe 

the models in the frequency domain they will be discussed in the 2D Transform-Based 

section (Section 2.2.1.3).  

2.2.1.3. 2D Transform-Based Descriptor  

Unlike the previous approaches, this group of methods tries to transform the working 

space to domains, mainly the frequency domain, other than the spatial one. The 2D 

Fourier Transform is one of the most utilized methods in this category. It is used alone 

or in combination with other Transformations (Such as Zernike moments and 

Krawtchouk moments) to represent the models. 

Papakadis et al. [24] employ a set of panoramic views to capture the position and 

orientation of the model’s surface as the 3D model descriptors.  They obtain the views 

by projecting the 3D model onto the lateral surface of a cylinder aligned with one of the 

object’s three principal axes and centred at the centroid of the object (see Figure 2.9). 

The panoramic views are described by the corresponding 2D Discrete Fourier 

Transform as well as 2D Discrete Wavelet Transform. Finally the Relevance Feedback 

technique is utilized to increase the retrieval performance.  

 

Figure 2.9, sample panoramic view of a car model (figure is taken from [24]) 
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The well-know Light Field Descriptor (LFD) proposed by Chen et al. [27] is employed in 

an example-based retrieval framework that also supports query-by-sketch. In order to 

describe each model, one hundred silhouettes, excluding symmetry, are extracted from 

ten viewing angles distributed evenly on the viewing sphere (Figure 2.10). After 

applying both Zernike moments and Fourier transform on each silhouette, thirty five 

coefficients of Zernike moments along with ten coefficients of the Fourier transform are 

computed to constitute the feature vector of each silhouette. The dissimilarity of two 

objects is then defined as the minimal dissimilarity obtained by rotating the viewing 

sphere of one light-field descriptor relative to the other LFD. In order to make this 

method rotation-invariant, the authors consider ten images per viewing point obtained 

by uniformly varying all camera positions in the neighbourhood of the viewing point. 

Their experiments show that their approach has high retrieval quality and outperforms 

some other methods. Beside high computational cost of descriptor generation, the 

drawback of the proposed framework for the query-by-sketch systems is related to the 

fact that the LFD descriptor can be defined only for closed contour curves, which is not 

how humans sketch for shape retrieval [55].  

 

 

Figure 2.10, Computing the Light-Field descriptor for a chair model, by Chen et al.[27] (figure taken from 

survey Veltkamp). 

Depth-buffer views can also be seen in the descriptor proposed by Ohbuchi et al. [56]. 

They use multiple depth-buffer views of the 3D model that are viewed from 42 

viewpoints. Each depth buffer is then transformed to the . / 0 domain and the Fourier 

transform is applied. The set of 42 feature vectors comprises the shape descriptor of the 

model, which is called the Multiple Orientation Depth Fourier Descriptor (MODFD). One 

of their problems is related to the speed of matching; they had to calculate the 

dissimilarity between two models by comparing all possible pairs of feature vectors 

which increases comparison time. 

In the approach described by Vranic [14], each model is described by the coefficients of 

the Discrete Fourier transform applied on the model’s silhouettes. In his approach, a 3D-

object is first aligned using the Continuous Principal Component Analysis method 
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(CPCA) and then is projected perpendicularly onto the coordinate planes in order to 

generate three monochrome silhouettes.  

In the same work using Depth Buffer images, Vranic introduced a new image-based 

descriptor. The new feature vector is obtained by projecting a 3D object to the six faces 

of a cube that encloses the object. The Depth Buffer-based approach uses the distances 

of the object’s points from the projection planes. Each depth-buffer is then described by 

applying the respective 2D Fourier transform. 

Another 2D transform-based retrieval framework is designed by Daras and Axenopoulos 

[43] which supports both sketch-based as well as example-based retrieval. The process 

starts with a pose normalization phase by applying Principal Component Analysis (PCA) 

and Visual Contact Area (VCA). Then, the models are described via three different 

descriptors: a) Polar Fourier Transform, b) 2D Zernike moments and c) 2D Krawtchouk 

moments which are applied on the eighteen different views extracted from a 32-hedron. 

To provide the system with the 2D query, the user is allowed to take an image either by 

drawing a sketch or from a digital camera. The Authors claim that since the quality of the 

input hand-drawn sketches depends on the users’ drawing skills, even a few relevant 

hits among the retrieved results are enough. They suggest that such a retrieval 

framework should be combined with a relevance-feedback system, in which the user can 

select one of the relevant retrieved objects as a new query in order to retrieve more 

relevant results. While a qualitative evaluation demonstrates good retrieval results, the 

authors do not perform a quantitative evaluation for their sketch-based retrieval. 

2.2.2. 3D-Based Shape Descriptors   

Unlike the previous approaches, the 3D-based shape descriptors try to extract the 

distribution of 3D features to characterize the information about a 3D model. The 3D 

features can be either global or local. They can be grouped into four categories namely 

Histogram (Statistical)-based, Transform-based, Graph-based and Heat Kernel-based 

approaches. 

2.2.2.1. Histogram (statistical)-based approaches 

The methods in this category use a histogram which usually acts as an accumulator for 

collecting numerical values of specific property derived from the 3D models. Since these 

methods can be adopted as part of a machine learning framework, they hold a very 

important position in retrieval approaches [57]. 
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A key work by Osada et al. [58] focuses on a set of functions based on geometric 

measurements (e.g., angles, distances, areas, and volumes) using some random points 

on the surface of the 3D model. They define their functions as follows (Figure 2.11):  

• A3: Measures the angle between three random points on the surface of a 3D model. 

• D1: Measures the distance between a fixed point and one random point on the 

surface. We use the centroid of the boundary of the model as the fixed point. 

• D2: Measures the distance between two random points on the surface. 

• D3: Measures the square root of the area of the triangle between three random 

points on the surface. 

• D4: Measures the cube root of the volume of the tetrahedron between four random 

points on the surface. 

 

Figure 2.11, 5 simple functions based on geometric measurements by Osada et al. [58]. 

Then, the set of these functions form histograms, by which the similarity between the 

objects is specified. The accuracy of the histograms could be altered by changing the 

number of random points. Although D2 gets the best result among all of proposed 

methods, generally speaking, none of the functions have enough ability for describing 3D 

models.  

The D2 function was extended later by Ohbuchi et al. [59]   to create mD2.  The difference 

between the original D2 and mD2 is related to the way that the sample points are 

selected; that is, the mD2 function uses quasi-random sequence of numbers instead of 

pseudo-random sequences. The authors claimed that with only a small increase in 

computational cost they could achieve significant performance improvements such as 

invariance to similarity transformation and be tolerant of topological and geometrical 

errors and degeneracies.  

Another extension to the original D2 function has been recently proposed by Yuanhao et 

al. [60]. The main difference between the new D2 (Quick-D2) and the original one is 

related to the sampling phase; instead of selecting N2 sample distances to extract the 

signature, as done in the original D2, the proposed Quick-D2 first selects N sample points 

on the surface and then calculates the distances between every pair of these points. 
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Therefore, taking samples on the points instead of the distances leads to reduce the 

number of points that the algorithm needs to get. Although the extracted shape 

descriptors for the both version of D2 are the same, the quick-D2 is much faster than the 

original version of D2 so that the average time cost of the quick-D2 is 75% faster than 

the original one.  

The shape histogram proposed by Ankerst et al. [61] has been evaluated in the context 

of molecular biology and reached good accuracy and performance. They decomposed 

the 3D models using one of the following three techniques: Shell model, Bin model and 

spider-web or combined model (Figure 2.12).  

 
Figure 2.12, Three decomposition techniques (figure is taken from [61]) 

Their technique is not invariant to rigid transformations and so they had to do pose-

normalization as a pre-processing step. Also since the approach proceeds with voxel 

data, 3D objects represented by polygonal meshes need to be voxelized prior to 

descriptor extraction. 

The Extended Gaussian Image (EGI), introduced by Torn was initially proposed for 

machine vision applications [62]. The EGI is a spherical histogram in which bins 

accumulate the count of the spherical angles of the surface normal per triangle, usually 

weighted by triangle area.  

The major drawback of the EGI is related to its inability in distinguishing non-convex and 

convex objects with the same EGI (see Figure 2.13). To overcome this issue Zhang et al. 

[63] extended the original EGI to compute the volume distribution of an object without 

canonical alignment. Additionally, the new EGI, which was called Volumetric Extended 

Gaussian Image (VEGI), was also able to maintain the properties of translation, scaling 

and orientation invariance. The experimental results of the proposed VEGI show that it 

outperforms the original EGI in terms of time and accuracy. 
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Figure 2.13, two models with different volume and VEGI but the same EGI (figure is taken from [64]). 

Another extension to EGI was proposed by Wang et al. [65] so as to solve the 

aforementioned drawback of the original EGI. The proposed multi-shell Extended 

Gaussian Image (MSEGI) aims at differentiating between non-convex and convex objects 

by decomposing 3D models into multi-concentric shells, dividing the surface of each 

shell into cells and capturing the surface area distribution and surface orientation 

distribution of a 3D model in each concentric shell. Finally, the spherical harmonic 

transform of this surface area distribution function are adopted to extract shape 

descriptors. Although the retrieval ability of MSEGI was examined on the models in the 

PSB dataset, the authors did not compare their results to those of obtained by VEGI. 

Paquet et al. [66, 67] use two kinds of geometric features as well as several photometric 

properties. The geometric features are cord and angle histograms. They define a cord as 

a vector from the centre of mass of the model to the centre of mass of a bounded region 

on the surface of the object in a triangulated surface. They define a set of statistics from 

the cords such as the distribution of angles between the cords and also the distribution 

of radii. Then histograms are employed to accumulate the distributions. Photometric 

properties include colour, reflectance, and texture. For these purpose they use voxelized 

models and assign a number to each voxel. This number is calculated using information 

from the texture, material reflectivity and vertex colour. Their techniques are easy to 

implement but since they only consider the global properties of the model, their 

proposed approach is not very discriminative about object details.   

In contrast, Mademlis et al. [68] employ electrostatic fields to 3D model retrieval. They 

considered the complete voxelized 3D model as a distribution of electric charge. Their 

descriptor histograms comprise three different result fields: field potential value, field 

density Euclidean norms and the radial component of the field density. Changing the 

parameters of the descriptors enabled them to extract 24 histograms for each 3D model. 

The interesting characteristics of their descriptors are robustness with respect to object 
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degeneracies and native invariance under rotation and translation. But it is notable that 

the proposed descriptors are sensitive to non-rigid transforms. They illustrate the 

shortcomings of the widely adopted Minkowski distance to compare two shape 

histograms. So, the normalized distance [69] and the diffusion distance [70] are utilized 

in their approach.   

Akgul et al. [71] derived shape descriptor from the Probability Density Function (PDF) 

of a multivariate local feature computed on the surface of the object. Specifically, the 

vector of PDF values obtained by kernel density estimation (KDE) becomes the shape 

descriptor. They compared 3D models by the distance between their PDFs. The main 

advantages of their descriptor comprise a good accuracy rate as well as insensitivity to 

mesh resolution and small shape perturbation but since the descriptor is neither scale 

nor rotation-invariant pose normalization must be performed during the pre-processing 

step. 

The histogram-based approach of Gal et al. describes the models using a histogram 

which is a combination of the distribution of two scalar functions defined on the 

boundary surface of the 3D shape i.e. Local Diameter Function and Centricity [72]. These 

two functions are defined as follows:  

• Local Diameter Function (LDF): the function that measures the diameter of the 

3D shape in the neighbourhood of each vertex. It is formed using a robust statistics 

measure of the diameters in a cone around the direction opposite to the normal of 

the point. As shown in Figure 2.14, 50 sample rays are shot in a cone shape region 

to the opposite side of the normal vector and the LDF is defined as a weighted 

average of the lengths of the rays. 

 

 
Figure 2.14, Examples of shot rays in a Cone-shape region (figure is taken from [72]) 

• Centricity Function (CF): The centricity of each vertex is defined as the average 

geodesic distance to all other vertices. The CF is normalized via dividing the 

centricity value of each vertex by the maximum centricity value on the mesh to 

arrive at a CF function value between 0 and 1. 
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Each model is finally described by a 2-D histogram (CDF) which is formed by a 

combination of the LDF and CF functions. As shown in Figure 2.15, this histogram offers 

a pose-oblivious descriptor which also remains the same under translation, scale and 

rotation transformations. 

  

 
Figure 2.15, A sample 2D histogram CDF of different poses of (a) human model and (b) dog model (figure 

is taken from [72]).  

Most recently, the Poisson-based descriptor on voxelized 3D models was introduced by 

Pan et al. [73]. They illustrated drawbacks of the distance transform and claimed that 

the Poisson equation is more stable because it essentially places a set of particles at each 

vertex and lets them move in a random walk until they hit the boundary. It measures the 

hitting time for a symmetric random walk to reach the boundary considering the values 

of a particle’s neighbour. Then they created a histogram-based descriptor by 

accumulating the values of the Poisson equation in bins. The descriptor is robust to 

noise, simplification, smoothing and rotation transform. But similar to almost all of other 

statistical-based methods this approach has difficulty in distinguishing different models 

with similar structures.   

 The main advantage of histogram-based approaches is their simplicity of 

implementation. Almost all of the aforementioned methods are very straightforward to 

implement and understand. But their drawback is mainly related to low power of 

discrimination so that they do not have high ability in distinguishing similar models. 

They also suffer from sensitivity to rotation transformation which necessitates an extra 

pre-processing task.  These methods can be combined with other methods such as a pre-

processing step or an active filter to improve their performance.  

2.2.2.2. Graph-based approaches 

Unlike other approaches, techniques of the graph-based category utilize graphs to 

represent 3D model features. They convert the similarity matching problem among 

models into a graph isomorphism problem.  Although approaches of this class are more 

elaborate and complex, they have the ability of encoding both geometrical and 
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topological structures of models in a more natural manner. The similarity among models 

is defined using graph-matching algorithms. Reeb, Size and Skeletal graphs are among 

the techniques which are used to describe and match 3D models. 

A Reeb graph is a topological skeleton defined using a scalar continuous function on a 

3D object [74]. Three types of scalar functions have been used, namely Height function, 

Curvature function, and Geodesic distance. Since the Geodesic distance is invariant 

against rotation and noise, it has been used in many applications.  

Hilaga et al. in [33] introduced a Multi-Resolution Reeb Graph (MRG) for 3D model 

matching. In this work, each model based on the value of the scalar function (Geodesic 

distance in their case) is divided into several levels. Connected components in each 

region constitute the nodes of the MRG graph and two nodes are linked together if their 

corresponding components contact each other in the model.  Figure 2.16 shows a model 

in 3 levels of detail and their related MRG graphs. To speed up similarity measurement 

between the models they compare the graphs using a coarse-to-fine strategy while 

preserving the consistency of the graph structures. 

 

 
 

Figure 2.16, a model and the corresponding multi-resolution Reeb graph [33]. 

The MRG graph was later extended by Tung and Schmitt [75] to introduce the 

Augmented Reeb Graph (ARG) in which the topological information as well as some 

geometrical information such as volume, extent, curvature and orientation of the 

respective parts is taken into account. The retrieval accuracy of the ARG demonstrates 

reasonable improvement over the Multi-resolution Reeb Graph of Hilaga et al. [33].  

The Size graph is another graph-based approach which is utilized in 3D model retrieval. 

After extracting the Reeb graph, Biasotti et al. [76] created a size graph for models using 

the centreline of each 3D model.  Considering some mapping functions such as the 

distance from the centre of the bounding sphere and the integral geodetic distance, the 

authors extracted a centreline skeleton and measured a set of features of the 

corresponding region on the model. These features are used as a size graph to compute 
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discrete size functions. They compared the models via matching between the size 

functions. 

The Extended version of the Reeb graph (ERG) has been introduced in the work of 

Biasotti et al. [77]. The authors extracted the ERG by defining a finite set of contour levels 

which divide the model surface into distinct regions. The Reeb graph’s scalar function in 

their work is identified according to the distance from the centre of mass and the 

protrusion function.  Finally, the graph is oriented by considering the monotonicity of 

the scalar function used to construct the contour levels.  The matching phase in this work 

is fulfilled via finding the largest maximal common sub-graph that minimizes the 

geometric and the structural differences of the two objects. 

Very recently, Barra and Biasotti [78] used the Extended Reeb Graph (ERG) for the 3D 

retrieval purpose in which an adapted kernel is used to match each pair of Reeb graphs. 

They described each model by a combination of the overall shape structure (coded in a 

topological graph) with a local geometric description (the spherical harmonic indices of 

subparts). In order to check the similarity between the models a kernel is utilized which 

acts on bag of shortest paths defined from the graphs.  

In contrast, the Directed Acyclic Graph (DAG) is used in [79] and [80] for voxelized 

models from two different aspects.  

Zhang et al. from McGill University [79] utilizes the medial surface to represent 3D 

models and clusters the parts to form the DAG. The triangular form models are firstly 

voxelized before extracting the DAG via applying the topology-preserving tinning 

process.  Each node of the DAG is associated with a set of geometric features and a 

signature vector that encodes topological information. Finally, the indexing and 

matching process of a 3-D object is guided by the graph spectra [81] for which the Eigen-

decomposition of the graph's adjacency matrix is computed. The evaluation of the 

algorithm is done on a selection of models from the PSB dataset containing 320 models 

categorized into 13 classes. The retrial results demonstrate the superiority of the 

proposed approach compared to other approaches such as shape distribution [58] and 

harmonic sphere [47], especially for objects with articulating parts.   

In a slightly different work, Sundar et al. [80] use the distance transform for thinning the 

models and extracting the DAG graph (Figure 2.17). Furthermore, they encode both 

geometrical and topological information of the models in terms of the graph and local 

shape descriptors which are held at each node in the graph. The proposed graph-based 
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matching approach supports part-in-whole matching, that is, the object to be matched 

can be found as part of a larger object. 

 

  
Figure 2.17, The DAG graph of a sample dog model extracted by Sundar et al. [80]. 

Another graph-based approach in the literature is a curve-skeleton which was proposed 

in the work of Cornea et al. [82]. For each voxel-based model, they use a generalized 

potential field [83] generated by charges placed on the surface of the model. The 

generalized potential at a point of the object, due to a nearby point charge, is defined as 

a repulsive force, pushing the point away from the charge with a strength that is 

inversely proportional to the distance between the point and the charge. The skeleton of 

the object is extracted from a vector field created by the potential field. Finally, the Earth 

Mover Distance (EMD) [35] is utilized to compute the dissimilarity between the models.    

Although Graph-Based methods are generally very difficult to implement and graph-

matching algorithms are needed to compare the models, they can represent both 

geometric and topological properties and are applicable for partial matching purpose. 

Another issue of graph-based approaches is related to their inability in supporting 

learning-based methods.  

2.2.2.3. 3D Transform-based approaches 

Similar to the 2D Transform-Based category, the goal of these methods is to work on the 

models in a new domain other than the spatial one. A mathematical transformation is 

applied on either the surface or volume of the model in order to switch to a new domain 

and then use the transformation coefficients as shape descriptors. The Spherical 

Harmonic, Fourier, Cosine and the Radial transform are the most well-known methods 

of this class of descriptors. 

The Spherical Harmonics transform (SHT) is one of the most popular approaches in 3D 

model retrieval. Without losing too much shape information, SHT can reduce the 

descriptor size considerably. The ray-based or extent (EXT) descriptor proposed by 

Saupe and Vranic [84] gives the SH-transformed version of the maximal distance from 



31 

 

the centre of mass as a function of the spherical angle. In this work, the authors try to 

describe each model by a function of rays on a sphere. To that end, they cast rays from 

the centre of mass of the model and then, for each ray, the distance from origin to the 

last point of intersection with the object surface is estimated. The extracted distances 

form a function that is called a spherical extent function. The shape descriptor is formed 

by a spherical harmonic transform on the extent function. Finally, the models are 

matched via comparing the desired number of the transform coefficients. 

The idea of describing models by the spherical harmonic transform on the extent 

function was gradually improved by the same authors via taking samples of the spherical 

function at many points [85], taking in account the orientation of the surface, along with 

the extent vector [86] and considering a set of concentric spheres with different radii 

[86]. In all of the above-mentioned improvements, the accuracy of the descriptor can be 

managed by changing the parameters of sampling size and number of used spherical 

harmonic coefficients. 

Kazhdan et al. [1, 47] proposed a rotation-invariant SHT on the voxelized model. They 

first voxelized the 3D model in a binary manner and then the intersections of the model 

with a set of concentric spheres are exploited to construct the spherical function from 

voxel values of each sphere.  Collection of the spherical functions is employed to compute 

a rotation invariant descriptor by decomposing the function into its spherical harmonics 

and summing the harmonics within each frequency, and computing the L2-norm for each 

frequency component. (Figure 2.18)  

 

Figure 2.18, Computing the spherical harmonics shape descriptor by Kazhdan et al. (figure is taken from 

[1]). 

Another approach which lies in this category is the 3D Fourier Transform (3DFT). After 

pose normalization by PCA, Vranic and Soupe [85] voxelized 3D models using a bounding 
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cube (BC1). Then, they applied the 3DFT on voxel values to switch to the frequency 

domain and used the coefficients as shape descriptors.  

The 3DTF is also employed by Dutagaci et al. [87] on voxelized models along with the 3D 

Radial Cosine Transform (3DRCT) by using two different voxel representations of 3D 

objects, namely, binary and continuous. At the expense of some information, they 

bypassed the PCA for pose alignment by considering the sum of magnitudes of 3DFT 

coefficients at the same frequency shell. Using the 3DRCT as an alternative to 3DFT 

enabled them to represent a 3D model with a small number of features. This led to it 

being easy and fast to calculate but with less power of discrimination. 

The Extended 3D angular radial transform (ART) shape descriptor is another descriptor 

which is used for retrieving 2D colour images and 3D models. The original ART, 

recommended by the MPEG-7 standard [5], is only limited to binary images but Ricard 

et al. [90] extended and generalized it to work on 2D colour images as well as 3D models. 

Using 3D ART each 3D model is presented in spherical coordinates as the product of a 

radial basis function along the angular and two radial basis functions along the radial 

directions. The authors claimed that the 3D ART keeps properties of the original ART 

such as robustness to rotation, translation, noise and scaling. Furthermore, the 3D ART 

provides compact descriptor size which leads to short retrieval times. 

Generally speaking, the transform-based approaches in 3D model retrieval have a more 

compact size of shape descriptor by keeping only the first few coefficients of the 

transformation. Also they have good power of discrimination. But the main drawback of 

them is that they usually have to discard the phase part of the transformation for pose 

normalization which leads to sacrificing some useful information of the 3D model. 

2.2.2.4. Heat Kernel-based approaches 

During last few years, the heat kernel-based descriptor has drawn considerable 

attention from leading researchers. Due to the importance of this class of descriptors, we 

dedicate the following section to give a brief discussion on the related retrieval 

approaches.   

                                                           
1 The bounding cube (BC) of a 3D-model is defined to be the tightest cube in the canonical coordinate frame that 
encloses the model, with the centre in the origin and the edges parallel to the coordinate axes. 
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Suppose ℳ	be a compact Riemannian manifold possibly with boundary. The heat 

diffusion process 2 over ℳ is governed by the heat equation in the following form:  

 
 3∆ℳ + 66782(:, 7) = 0 (2.1) 

 
Where ∆ℳ  denotes the Laplace-Beltrami operator, a Riemannian equivalent of the 

Laplacian, of	ℳ. The fundamental solution of the heat equation is called the heat kernel 

and represented in the form of ;ℳ,<(=, >)	with a point heat source at x.  It describes the 

amount of heat on the surface ℳ at point x in time t.  

On compact manifolds, the heat kernel can be presented as Equation 2.2 [91]: 

 
 ;ℳ,<(=, >) = 	?@ABCDEF(=)EF(>)G

FHI 	 
(2.2) 

 
Here, JI, JK, JL, … > 0		are eigenvalues and EI,EK,EL, … are the corresponding 

eigenfunctions of the Laplace-Beltrami operator satisfying	∆ℳEF = JFEF. 
Sun et al. [92] proposed the HKS descriptor using the diagonal of the heat kernel as the 

local shape descriptor. In their work, the HKS captures information about the 

neighbourhood of a point on a shape by recording the dissipation of heat from the point 

onto the rest of the shape over time (see Figure 2.19). The authors prove that a 

homeomorphism between two compact manifolds that preserves the diagonal of the 

heat kernel at each point must be an isometry. According to this later characteristic, the 

matching between the models is fulfilled via the local feature vectors formulated by the 

HKS. The proposed HKS has favourable advantages namely intrinsic (isometry-

invariance), informative and multi scale which make it a popular approach compared 

with other approaches.   

 

 
Figure 2.19, the scaled HKS at four sample points of a dragon model proposed by Sun et al. [92]   

Ovsjanikov et al. [93] combine the HKS descriptor with the Bag-of-feature to construct a 

global shape descriptor. After computation of HKS at every point of the shape, the 
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authors utilize the vector quantization approach to replace the HKS of every point with 

the index of the most similar entry in a geometric vocabulary consisting of 

representative heat kernel signatures or “geometric words”. Finally, the Bag of Feature 

paradigm counts the frequency of appearance of each geometric word to compare to the 

other models.  

Despite all of the aforesaid valuable features, the HKS suffers from a challenging 

drawback of sensitivity to scale transformation. That is, when a model is globally scaled 

by O the corresponding HKS will be scaled by	OAL[94].  

Bronstein and Kokkinos discuss this issue and mention that model global pre-

normalization (using unit bounding sphere) or the Laplace-Beltrami eigenvalues 

normalization are not able to solve the scale-sensitivity problem as they are not 

applicable to models having missing parts. They overcome this problem by local 

normalization of the heat kernel signature based on logarithmic scale space and 

magnitude of the Fourier transform. The new scale-invariant HKS (SI-HKS) is based on 

a logarithmically sampled scale-space in which shape scaling corresponds to a 

translation. This translation is undone using the magnitude of the Fourier transform. The 

experimental results of the SI-HKS in the Bag-of-Feature framework on the model in the 

ShapeGoogle database [93], consisting of 1061 models, show significant performance 

improvement over the original HKS. It also demonstrates high retrieval ability in the 

presence of transformations such as isometric deformations, missing data, topological 

noise, and global and local scaling. 

Bronstein et al. [95] later enhanced the SI-HKS descriptor to overcome the major 

problem of the Bag-of-Feature (BOF) framework; it does not take into consideration the 

spatial information about the features. Instead of using a histogram of the features, 

models are described as histograms of pairs of features and the spatial relations between 

them (visual expressions). As shown in Figure 2.20, their Spatially-Sensitive BOF (SS-

BOF) is a two-dimensional histogram in which cell H(i,j) counts the frequency of co-

occurrences of features i and j in the model. They also use the Term Frequency-Inverse 

Document Frequency (TF-IDF) weighing scheme [96] to improve the retrieval efficiency 

[95].  
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Figure 2.20, the SI-BOF histogram samples proposed by Bronstein et al. [95]  

In a slightly different work, the closed curves along with the BOF framework is utilized 

for partial 3D model retrieval [97]. The process starts with extracting feature vectors 

using the diffusion distance in the spectral embedding space using heat kernels. Then, 

using the commute time distances which takes into account all paths connecting every 

pair of vertices on the mesh, a mapping function is defined. The function is computed 

using eigen-functions and eigenvalues of the Laplace-Beltrami operator and is employed 

to detect small regions which are encoded in the form of the closed curves. After defining 

25 levels of closed curves for each model, the collection of all curves of all models are 

grouped to define the BOF framework. In the retrieval stage, the query model is 

described using a histogram based on the extracted closed curves. As can be observed in 

Figure 2.21, one of the notable advantages of the proposed closed curve over the indexed 

closed curves (ICC) [98] is related to robustness to the missing part degeneracy.       

 
Figure 2.21, similar computed closed curves of [97] for different poses of human model, even models 

having missing parts.  

To summarize, although this class of approach has only recently emerged in the 

literature, they have shown a superior retrieval quality among all other approaches. The 

transformation-invariance of such approaches is a valuable characteristic which guides 

the new trends of research toward such approaches. Furthermore, most of the 

techniques which lie in this category are able to be applied in the partial-matching 

purpose.   
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2.2.3. Discussion on the Shape Descriptors 

As mentioned above, there are a considerable number of shape descriptors proposed in 

the area of model retrieval. All of them try to represent models in a good discriminative 

manner (Table 2.1 shows a summary of them). Although depending on the scope of the 

retrieval system, some shape descriptors can show better quality than the others, there 

is no shape descriptor that is clearly better than all of the other ones. High discriminative 

power, supporting partial matching, retrieving non-rigid objects, affine transformation 

invariance and robustness to noise distortion and simplification are among the main 

objectives that researchers are trying to achieve. Each class of descriptor tries to reach 

some of the mentioned goals. Thus, still most attention is drawn to proposing new shape 

descriptors with high quality of both efficiency and effectiveness. As will be detailed in 

Chapter 3, we propose three shape descriptors as follows: one is the SilPH descriptor 

which is a view-based approach (see Figure 2.1) and extracts the model descriptors 

using the 2D Poisson Equation. The other two descriptors, BoF-CDD and DP-CS-ECD, are 

fit to the histogram-based approaches of Figure 2.1 and utilizing distribution of electrical 

charge on the surface of the models. The proposed descriptors try to show high 

discriminative ability as well as robustness to various surface changes.          
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Table 2.1, Taxonomy of shape descriptors. 

Segmentation 

Technique 
References Comment Advantages Disadvantages 

View-based 

(Spatial 

domain) 

15, 16, 17, 20, 21, 

23, 25, 26, 28, 30, 

31 

A desired number of 

views are extracted 

and described via 

spatial-based 

descriptors. 

-Easy to 

understand. 

-2D Image 

matching 

techniques are 

applicable.  

-Time-consuming 

process of multi-

view matching. 

 

Sketch-based 1, 39, 40, 43, 45, 46 User sketches the 

query to be matched 

to the views of the 

target dataset. 

-Easy to specify 

query as sometime 

the query model is 

not already 

available. 

 

-Query and the 

target models are 

not of the same 

structure. 

-Retrieved models 

depend on the 

user’s drawing 

skill. 

2D 

Transform-

based 

14, 24, 43, 55, 56 The extracted views 

are described via 2D 

transform-based 

descriptors. 

-2D Image 

matching 

techniques are 

applicable. 

-May require pose-

normalization 

process. 

 

Histogram-

based 

58, 59, 60, 61, 62, 

63, 65, 66, 67, 68, 

71, 72, 73  

Occurrences of 

extracted features 

are counted and 

shown in a 

histogram-based 

descriptor.  

-Easy to 

understand. 

-Easy to 

implement. 

 

-Mostly require 

pose-normalization 

phase.  

Graph-based 33, 75, 76, 77, 78, 

79, 80, 82,  

An appropriate 

graph is extracted 

and graph-

isomorphism is 

performed to match 

the models.  

-Represent both 

geometric and 

topological 

properties 

-Applicable for 

partial matching. 

-Difficult to 

implement. 

3D 

Transform- 

based  

1, 47, 84, 85, 86, 87, 

90,  

A 3D 

transformation is 

applied on the 

models and the 

coefficients are 

utilized to describe 

the 3D models. 

-Offer more 

compact- size 

descriptors. 

-Good 

discriminative 

ability 

-Losing some 

information as they 

discard phase part. 

Heat kernel- 

based 

92, 93, , 95, 97 The heat diffusion 

process is used to 

extract local 

descriptor of the 

models.  

-High retrieval 

quality. 

-Can be applied for 

partial matching. 

-May be sensitive 

to affine 

transformations 

(e.g. Original HKS).  
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2.3. State-of-the-art in 3D model segmentation 

3D segmentation has a wide range of applications in different fields of computer science 

from compression [99], texture mapping [100] and model simplification [101] to content 

based retrieval [102]. Consequently, there are so many publications on segmentation 

algorithms in the literature. Thus, there is a need for grouping different ideas related to 

segmentation to help new researchers find their ways in this everyday growing field. 

This is exactly the purpose of this survey. There are a few other publications in the 

literature [103, 104, 105] surveying different types of mesh partitioning techniques 

among which [103] and [105] provide a better understanding of different types of 

segmentation algorithms, their different steps, and their pros and cons. However, they 

are quite old and don‘t cover the emerging group of segmentation algorithms discussed 

in this thesis. Furthermore, they do not include the latest achievements in the classical 

segmentation algorithms. Therefore, we devote this section to a survey on segmentation 

techniques in the literature.   

The rest of this chapter is organized as follows: the next section introduces a new 

grouping schema for the segmentation algorithms. Based on this grouping the 

segmentation algorithms are divided into two classes. Therefore, the next following 

sections describe each of these classes.  

It should be mentioned that this classification is not exhaustive; we try to give an 

overview of the most popular techniques and briefly discuss their advantages and 

drawbacks.  

2.3.1. Grouping Segmentation Algorithms 

Segmentation algorithms can be classified in many different ways using different factors. 

For example based on the number of the models to be segmented simultaneously 

(individual model segmentation vs. class segmentation or consistent segmentation ), 

role of users in the process (interactive vs automatic approaches), the domains in which 

the features are extracted (surface-based vs volume-based approaches), segmentation 

goal (surface type vs part type) and etc.  

The schema that is used in this chapter for grouping different segmentation algorithms 

is shown in Figure 2.22. This schema divides the segmentation algorithms into two 

different classes viz.  Individual and Consistent segmentation approaches. The former 

one is [in turn] classified into ten sub-groups including Region growing, Watershed, 
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Interactive, Skeleton based, Feature point based, Spectral, Learning based, Volume 

based, Primitive fitting based and others.  

It should be noted that the aforementioned categories mainly belong to the part-type 

segmentation approaches. Later on in this chapter a brief discussion on surface-type 

approaches will be presented.  

The previous surveys on mesh decomposition algorithms mainly cover the individual 

segmentation approaches [103, 104] and do not consider the consistent-based ones. The 

reason for this omission is perhaps that at the time of preparing these surveys there 

were not enough papers on the consistent-based methods. Nowadays, especially in the 

last few years, this class of segmentation algorithms has received a great interest among 

researchers. These methods are not covered in any previously published surveys on 

segmentation and are the main difference between this chapter of the thesis and those 

distinguished surveys [103, 104]. Furthermore, we try to mostly emphasise the recently-

published papers in the literature as well as well-known older approaches. The following 

sections describe each of these groups of algorithms. 

It is worthwhile to point out that, as some of the proposed approaches use more than 

one technique to perform segmentation, overlaps can be observed between different 

categories; that is one approach can fall into more than one category. 

For the sake of clarity, from now on we interchangeably use terms "model 

segmentation", "model partitioning", "model decomposition" and "mesh partitioning" to 

refer to the same process.   

 
 

 
 

Figure 2.22, Taxonomy of 3D model segmentation approaches. 
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2.3.2. Individual Segmentation 

The majority of mesh segmentation approaches fall into this category. This class of 

approach tries to find and extract semantically meaningful parts of every single model 

using local and/or global features of the model. Generally speaking, compared to the 

consistent-based methods, the individual segmentation approaches are older and 

comprise more mature approaches. In the following sections we present different sub-

classes within this group and discuss their advantages and drawbacks. 

2.3.2.1. Region Growing 

The algorithms of this group are among the simplest and oldest approaches introduced 

in the literature. The philosophy behind all region growing algorithms is that all 

elements belonging to one segment are connected and similar according to some criteria. 

The techniques in this category try to decompose mesh elements (vertices and faces) via 

expansion of some pre-determined initial seeds. As illustrated in Figure 2.23, the 

elements are added to a segment only if a specific criterion is met. The main issues in 

these approaches are related to selecting the initial seeds as well as defining a criterion 

by which an element is assigned to a segment.   

 

Figure 2.23, sample steps of region growing scheme applied on a hand model. 

The proposed approach of Zhang et al. [106] consists of three major steps: curvature 

estimation, boundary detection and region growing. They firstly compute the Gaussian 

curvature for each vertex on the mesh. All of the vertices with highly negative curvature 

are classified as boundaries using a pre-defined threshold and the remaining vertices are 

considered as the seeds belonging to the potential object parts. Depending on the mesh 

resolution, the threshold is defined in a heuristic manner. Then, the region growing 

algorithm is applied on a random selection of the seed vertices to grow iteratively until 

they reach the boundaries. Finally, a post-processing step is applied to assign 

undetermined vertices to the closest regions. Also the regions possessing a few faces are 

merged with the adjacent ones. Despite the simplicity of the algorithm, the two pre-

defined threshold parameters (high negative curvature value and minimum number of 
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vertices of a segment) lead to a high dependency of the output quality on the choice of 

these parameters.         

The curvedness signature used by Jagannathan and Miller is a rotation and translation 

invariant curvature-based shape descriptor and is computed at every vertex of the input 

mesh [107]. Their segmentation process begins with curvedness calculation followed by 

characterizing the input mesh as an attribute graph. Then, the adaptive threshold 

selection is utilized to determine the curvedness thresholds by which the authors define 

a new sub-graph extraction criterion. The introduced sub-graph is called a maximally 

connected attributed sub-graph (MCASG) and consists of a connected set of vertices 

whose curvedness values are in a desired interval, as specified by a pair of curvedness 

thresholds. The sub-graph extraction is done be iteratively applying a morphological 

process involving graph dilation and morphological filtering of outlier vertices.  

The main advantage of the proposed algorithm is that the selection of curvedness 

thresholds is done without any user intervention, and the algorithm does not require the 

specification of the desired number of segments. 

A random walk-guided segmentation algorithm proposed by Lai et al. [108] is another 

region growing approach in which the initial seeds are selected in accordance with user’s 

agreement. The main ideas of the algorithm are as follows: a set of seed elements is first 

specified by the user. For all other faces, using an efficient process, the probability that a 

random walk starting at that face first reaches each particular seed is determined. The 

segmentation is performed by assigning the label of the seed first reached to the non-

seed faces.  

Instead of manually selecting the seeds, the authors generalize their segmentation 

approach by automatically placing the initial seeds using feature sensitive isotropic 

point sampling. In such a case, the number of seeds is usually more than the required 

number of regions and thus, following the region growing step a post-processing step of 

region merging based on similarities of neighbouring regions should be applied. The 

region-merging phase is done hierarchically based on the relative lengths of the 

intersections and total perimeters of adjacent segments. It will be repeated while the 

number of segments is greater than a user-specified number. 

 The main drawback of this approach, as with other seed-based approaches, relates to 

dependency on the initial position of the seeds so that, as shown in the Figure 2.24, 

different inputs always result in different cutting contours.  
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Figure 2.24, two cutting contours generated by random walk algorithm for the same model [108] (figure is 
taken from [109]). 

Vieira and Shimada present an algorithm to segment dense, noisy meshes created from 

range scans of industrial objects [110]. Unlike the previous approaches, the emphasis of 

their work is on the criterion by which the seeds are selected. To do so, they follow a 

reverse paradigm. That is, after estimating noise and curvature of each vertex, the 

curvatures are filtered and the mesh is partitioned into regions with different shape 

characteristics. Instead of selecting the seeds arbitrarily, the regions are contracted to 

select the seed regions. They claim that this results in dealing with fewer seeds compared 

to the similar approaches and consequently, will result in achieving a faster 

segmentation process. By approximating a small neighbourhood around each vertex 

with a polynomial surface, they iteratively employ region growing and surface fitting to 

maximize the number of connected vertices approximated by a single underlying surface. 

Finally, the post-processing is applied so as to fill the holes emerging because of outlier noise.  

The curvature tensor-based algorithm of Lavoue´ et al. [111] is another approach in this 

category. Like other approaches in this group it consists of two major steps of: 

1) Curvature based region segmentationCurvature based region segmentationCurvature based region segmentationCurvature based region segmentation: after a pre-processing step of sharp edges 

and vertices identification, the curvature tensor is calculated for each vertex 

[112]. Then, depending on the principal curvature values the vertices are 

classified into clusters. These labelled vertices are used to assemble triangles 

into connected labelled regions by applying a region growing algorithm. Finally, 

based on size and curvature similarity, the similar regions are merged so as to 

specify final partitions.  

 

2) Boundary rectificationBoundary rectificationBoundary rectificationBoundary rectification: in this step, the extracted boundaries are scored 

according to the curvature tensors and their relation to the principal curvature 

directions. The scores, which specify degree of correctness, are then used along 

with a fixed threshold to rectify the boundaries via a contour tracking algorithm.  

Although this approach is specifically dedicated to segmentation of CAD models, the 

results on natural objects, show satisfactory results. The main drawback of this approach 
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is related to a fixed threshold they exploit in the boundary rectification step. It may not 

work properly for models other than CAD ones.   

It should be noted that the region growing scheme is sometimes combined with other 

approaches to create simpler, efficient and more accurate hybrid segmentation 

algorithms [110, 113, 114, 115]. 

2.3.2.2. Watershed  

The watershed segmentation techniques have been originally exploited in 2D image 

segmentation [116]. The philosophy behind such approaches comes from the way water 

fills a geographic surface. That is, as water floods basins in a topological surface, there 

will be points where the flooded regions meet. These points are the watersheds and 

divide the surface into adjacent regions, 

The analogy to this process in the model segmentation domain can be simply interpreted 

as follows:  

Based on a pre-defined height function (e.g. surface curvature, dihedral angle ...), a scalar 

value is assigned to every element on the model surface. Then, the elements possessing 

the lowest values of the height function (local minima) are marked as “Catchment 

Basins”.  Finally, the adjacent basins are progressively grown until the neighbour basins 

touch each other. The dams separating the adjacent basins are called watersheds, which 

specify the segment boundaries. Therefore, a watershed can be described by the 

following definition:   

Watershed: intuitively, the watershed of a function (seen as a topological surface) is 

composed of the locations from which a drop of water could flow towards different 

minima [117] (see Figure 2.25). 

 

Figure 2.25, the watershed and basins in a topological surface. 
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The watershed segmentation technique has been extended to exploit in the 3D domain 

by Mangan and Whitaker [118] for the first time, where they used the total curvature for 

the height function as an indications of the region boundaries. Although the algorithm 

was only tested on a set of simple-structure models, the experiments on these models 

could illustrate the sensitivity of the algorithm to the exploited thresholds. To overcome 

the over-segmentation problem, they proposed an approach that merges the shallow 

region with minimum depth to one of its surrounding regions with the lowest boundary 

point. 

The same height function to extract the boundaries has been employed by Chen et al. 

[119]. Since the curvature information is not suitable for detecting concave or convex 

corner vertices, the authors propose a concaveness detection algorithm based on 

enlargement of 1-ring neighbourhood to an eXtended Multi-Ring (XMR) neighbourhood. 

It will get more accurate geometric features for high-resolution meshes. The XMR 

concept consists of considering only the ith level of neighbourhood vertices of a given 

vertex and ignoring all of the other adjacent vertices. After a feature extraction step, the 

watershed algorithm is applied to perform model partitioning into meaningful segments. 

The post-processing step of region-merging is finally employed to merge non-significant 

segments with the adjacent ones according to segment size and boundary length.  

In contrast, dihedral angles (the angle between the normal vectors of the two adjacent 

facets) are used as the height function to perform watershed-based segmentation in the 

work of Zuckerberger et al. [115].  

They investigated the ability of their approach in different applications viz. content-

based retrieval, simplification and metamorphosis. Compared to the other approaches 

in this category, due to the small local support of dihedral angle, the probability of over-

segmentation happening in the segmentation results of this approach is very low.  

Another cure to avoid over-segmentation of such approaches was introduced by Page et 

al. [120] in which the normal curvature of the surface defines the height function. 

Following calculation of the height function and filling the basins until a certain point a 

3D morphological operator [121] is applied on the minimum curvature. This leads to 

diminish the over-segmentation issue as shown in Figure 2.26.     
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Figure 2.26, segmentation result of Page et al. [120] on a sample mug model. (a) is the initial threshold of 

curvature, (b) shows the result after applying the morphological operator and (c) is the final segmentation 

result. 

An analogy to watershed approaches has been proposed in the spectral-based work of 

Benjamin et al. [122]. From the watershed point of view, the flow of water is analogous 

to heat flow in which the heat tends to accumulates in the heat walk-based accumulator 

basins. The authors claim that the available algorithms based on heat diffusion do not 

use the entire information that can be inferred from heat diffusion and therefore, they 

are sensitive to noise and perturbations.  To overcome this problem and exploit the full 

information gained from the heat diffusion, they proposed a two-stage algorithm as 

follows:  

1) Heat Flow mapping: using Laplace Beltrami Operation (LBO) this step generates 

a heat distribution function on the mesh surface (Figure 2.27 (b)). 

 

2) Region identification:  in this stage firstly, based on the distribution of heat, the 

accumulators (points which are very slow at dissipating heat compared to the 

rate at which they receive it) are classified and then using relative entropy the 

dissipaters (points in the flatter regions which tend to dissipate heat faster than 

they receive it) are identified. This is done depending on how close each point is 

to the uniform distribution of heat (Figure 2.27 (c) and (d)). 

  
The experimental results support the author’s claim about resistance of the proposed 

approach to any kind of perturbations such as: random noise, shot noise, short circuit, 

tessellation, scale and missing parts.         

 

Figure 2.27, the segmentation steps of Benjamin et al. [122]. (b) is the heat kernel of the model using LBO, 

(c) and (d) are accumulator and dissipater regions identification, respectively.  



46 

 

In fact, the watershed approaches can be seen as a region growing algorithm with 

multiple initial seeds [103]. The initial seeds are the catchment basins which are defined 

according to a height function. Consequently, the ability of such approaches is highly 

dependent to the definition of the height function. That is, the improper height function 

may lead to an over-segmentation issue especially for the high-resolution complex 

models. Additionally, since this class of approach uses local features, they usually suffer 

from lack of tolerance to surface noises.     

2.3.2.3. Interactive  

The motivation for developing this class of approach stems from the fact that: due to 

complexity of available 3D models, automatic segmentation of such models remains a 

challenging issue in the computer graphic domain. Therefore, the user is asked to 

intervene in segmentation process to achieve more satisfactory results. These kinds of 

approaches usually provide users with an interface to communicate with the 

segmentation system via drawing some sketches or points on the desired parts of 

meshes so as to specify the rough approximation of boundary part location.  

 

Figure 2.28 (a-e), samples for different interactive segmentation algorithms. 

The interactive segmentation approaches can be roughly categorized into two main 

groups: sketch-based and point-based interactive approaches.  

2.3.2.3.1. Sketch-based interactive segmentations   

Recently, several works have been introduced for sketch-based mesh segmentation 

[118, 124, 125, 126]. Zhang et al. [125] introduced an interface called cross-boundary 

brush by which users are able to draw a sketch across the desired cutting boundaries 

(see Figure 2.28(c)). In most cases their segmentation system tries to minimize the user 

inputs by requiring only a single stroke to execute a cut. The strokes are drawn via a tool 

called part-brush or patch-brush. It uses a harmonic which is generated by the Poisson 

equation with constraints defined by the end points of the brush across the cutting 
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boundary. Then, a multi-scale iso-line selection scheme is designed to select the best iso-

line automatically as the final cutting boundary. It is notable that, if necessary, the user 

is asked to sketch additional strokes to refine a cut locally.  

Conversely, the segmentation systems devised by [126] and [127] communicate with 

users by asking them to provide initial labels for some vertices as belonging to the 

desired part to be segmented (foreground) or to the rest of the model (background) 

(Figure 2.28(a)).  

The first foreground/background sketch-based user interface for mesh segmentation 

was introduced by Ji et al. [126]. Their Easy Mesh Cutting (EMC) is based on a feature-

aware isophotic metric, which employs a simple region-growing scheme to grow both 

background and foreground region seeds incrementally.  All of the unlabelled vertices 

are iteratively assigned to the foreground or background regions based on the minimum 

distance to the regions, using the isophotic metric. 

Similarly, Meng et al. [127] proposed a harmonic field-based method (HFM) for 

foreground/background interactive mesh segmentation. It starts with the user’s strokes, 

specifying a foreground and a background seed set via solving a Poisson equation. The 

harmonic field is smooth and can be viewed as a smooth interpolation between the 

equation’s constraints. The method then modifies the harmonic field to reflect the 

geometric features of the mesh. The graph-cut technique is then applied to produce the 

segmentation results that are consistent with the user’s intention and the surface 

features. 

A slightly different approach is considered as foreground sketch-based segmentation. As 

shown in Figure 2.28(b), unlike previous approaches, the users are only allowed to draw 

strokes on the foreground region and no need to paint over the background part or the 

boundary. A well-known Paint Mesh Cutting (PMC) approach proposed by Fan et al. 

[128] is a progressive painting-based tool provides an intuitive user interface where 

users cut out parts by directly painting the region of interest with a brush. Using the PMC 

system, users are able to continuously drag the mouse to expand the region of interest, 

until they are satisfied.  Then, based on a Gaussian mixture models (GMM) on the shape 

diameter function (SDF) [129] metric of the shape, they align the cutting results with the 

part boundary.  

The last group of sketch-based segmentation approaches are considered as close-

boundary approaches. In these kinds of approaches the segmentation system asks the 

user to draw rough strokes close to the cutting boundary as shown in Figure 2.28(d). 



48 

 

[130, 131]. After rough cut selection by the users Funkhouser et al. [130] firstly assigned 

the edges a concavity weight based on the dihedral angle of edges to locate the precise 

boundaries. The concavity weight is equal to 1 for convex and is a low positive number 

for concave edges. Finally, the graph cut algorithm is applied on the dual graph of the 

model to locate the boundaries.       

It is worthwhile to note that the generated boundary may not respect to the user’s 

attention if the stroke is too short or if the back of model is too complex [132].  

2.3.2.3.2. Point-based interactive segmentations   

In a different aspect, during the early works on interactive segmentation, the users 

interact with the segmentation interface via specifying a few points on the desired 

cutting contour. These points are later employed so as to locating the cutting area by 

finding the shortest path between them [133, 134].   

Wong et al. [133] introduced a tool which uses the concept of Intelligent Scissors for 

volume cutting along with interactive definitions of a cut contour onto the object’s 

surface. After selecting some points on the surface, the system aims at computing the 

cutting surface by a dynamic algorithm of Dijkstra. 

The point-based approach also has been utilized by Zockler et al. [134] to perform 

metamorphosis, which is a complex transformation between shapes via reduction to 

transformations between sub-patches.  

Very recently, Zheng et al. [135] introduced an interactive segmentation framework 

using only one user-clicked point. The region near the clicked point is considered as a 

search space to locate the accurate boundary. The search space is determined by 

defining a set of harmonic fields that propagate in different directions and sample the 

isolines that pass through the clicked point as candidate cuts. Rather than superior 

segmentation quality, the simplicity of use is the great advantage of this approach 

compared to the other interactive ones.    

The well-known benchmark proposed by Chen et al. [136] follows the point-based 

approaches in order to interact with users during their manual segmentation process.      

There are some other interactive approaches in which users have trivial contribution 

such as selecting number of segments [137, 138], selecting representative points of each 

segment [139, 140] and etc.   
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2.3.2.4. Skeleton-based approaches 

The segmentation methods in this category try to convert the mesh segmentation 

problem into a skeleton graph partitioning one. These approaches mainly comprise two 

main phases: skeleton graph extraction and graph partitioning.  Depending on the graph 

types these approaches construct, they can be divided into two main groups: skeleton 

graph and Reeb graph-based approaches. 

2.3.2.4.1. Skeleton graph-based approaches  

The interactive segmentation approach proposed by Li et al. [141] uses a skeletal tree to 

extract mesh segments. They firstly extract the skeleton of the mesh via performing 

simplification of the surface using the edge contraction method. If the simplification 

process generates a disjoint tree, the skeletal tree is completed by inserting some virtual 

edges. Then, a set of critical points are identified from which the branches are cut. The 

critical points are extracted by sweeping a plane perpendicular to the skeleton branches. 

Using this scheme, the segmentation is defined implicitly by the creation of cuts. As the 

author investigated, the proposed approach showed good ability on collision detection 

problems.  

The Medial surface which is a 3D counterpart of Medial Axis Transform (MAT) is used in 

the skeleton-based segmentation approach of Mademlis et al. [142]. After voxelizing the 

input mesh model the medial surface is extracted via thinning the model according to 

the Hamilton-Jacobbi equations presented in [143].  Next, the medial surface is 

segmented based on the connectivity of the neighbouring medial surface and 

background voxels. Then, the medial surface segments are readjusted based on the 

segment size and’ degree of the node so that the resulting segments correspond to larger 

but more meaningful parts of the 3-D object. Figure 2.29 shows these steps for a simple 

dog model. The authors employ the segmentation results for content-based matching of 

3D models in both partial and global retrieval.  

  
Figure 2.29, segmentation steps of segmentation approach of [142]. (a) is the segmented medial surface, 

(b) is the readjusted segments and (c) is the resulted segments. 
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The interesting work of Au et al. [144] uses a mesh contraction approach to construct 

the skeleton graph of the model. In their work the mesh contraction process is 

formulated as an energy minimization problem which aims at smoothing the object 

surface iteratively into an approximate zero-volume degenerate mesh via an implicit 

Laplacian with global positional constraints. As shown in Figure 2.30, the contraction 

leads to removal of the details of the mesh model so that a zero-volume mesh remains, 

that is convertible to the skeleton graph of the models. The converting step is done via a 

process they called "connectivity surgery" to remove all the collapsed faces from the 

degenerate mesh through a sequence of edge collapse operations. The authors employed 

the induced skeleton graph for mesh segmentation and skinning animation. To perform 

mesh segmentation the skeleton graph is combined with the thickness information of 

the models. The algorithm identifies a cutting node in each branch of the skeleton 

starting from the thickest branch. For each cutting node we search for segmentation 

boundary in a near boundary search region using the minimum-cut algorithm [145].        

 

 
 

Figure 2.30, three smoothing iterations of skeleton extraction along with segmentation result of Au et al. 

[144] 

A voxelized model segmentation approach of Reniers and A. Telea [140] is another 

approach which exploits skeletons of models to achieve meaningful partitions of the 

models. This hierarchical approach begins by computing the curve skeleton for the input 

model using a geodesic-based paradigm. The skeleton comprises branches which are 

associated with the components and the junctions which reflect the relationship among 

components. Then, a curve skeleton is constructed from the extracted skeleton by 

considering the shortest geodesic curves between automatically or manually-selected 

feature points. Using the junction points, a skeleton-to-boundary mapping is defined to 

divide the object surface into a set of components. This component set is finally utilized 

to perform hierarchical segmentation by defining a set of all components, which are 

generated by the junction points and their size is greater than a pre-defined threshold. 

The authors show that their approach is quite robust to noise and pose deformation.    
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2.3.2.4.2. Reeb Graph-based approaches 

 A Reeb graph is a topology-driven graph which was introduced in 1946 by Georges Reeb 

[74]. It describes the topological structure of the models using a scalar continuous 

function on a 3D object such as curvature function, geodesic function etc.  

For a 3D mesh	ℳ, the Reeb graph is constructed with respect to a continuous real 

function ℱ on	ℳ. The graph is a quotient space of ℱ in ℳ ∗ℛ generated by the 

equivalence relation. According to this relation, the equivalence relation for two points _1 and _2 holds if and only if both of the following conditions are fulfilled:  

1) ℱ(_1) = 	ℱ	(_2) 2) _1	and		_2	belong	to	the	same	connected	component	of		ℱAK(`(_1))			
Figure 2.31 depicts a sample model and its associated Reeb graph. 

 
 

 
Figure 2.31, a sample model in left and its related Reeb graph in right (figure is taken from [33]).  

The Reeb graph was exploited in the 3D retrieval domain as a pose- invariant shape 

descriptor for the first time. [33]. Hilaga et al. defined function ℱ based on the Protrusion 

function or average geodesic distance between vertices of the model surface.  

This idea has been used in mesh partitioning by Velette et al. [146] where they introduce 

an evolution process called "Protrusion Conquest". The process considers both the 

computed protrusion and the connectivity of the models. In order to extract the 

protruded parts of the mesh and separate them from the main body, they use the 

evolution of the protrusion function from its high towards its low values.  

The Reeb graph-based approach of Tierny et al. [147] is based on the key idea that the 

topology of a feature is a more important decomposition criterion than its geometry. 

Their hierarchical algorithm which uses an enhanced topological skeleton [148] to 

delimit the object core and to identify the junction surfaces can be summarized as 

follows: the feature points on the mesh are firstly extracted according to two geodesic 

functions. Then, based on the geodesic distance to the closest feature point, a mapping 

function is defined for each vertex.  This mapping function is used to construct a Reeb 
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graph in which the nodes are classified into three main groups of Extremity (green 

nodes), tubular (blue nodes) and junction (red nodes), based on their degree of 

connection (see Figure 2.32(b)). Finally, by modelling components of the Reeb graph 

with an ordered collection of closed curves as well as estimating the curvatures of the 

curves the models are partitioned to its meaningful parts. Merging the adjacent 

components leads to achieve a hierarchical segmentation as shown in Figure 2.32 (c) 

and 2.32 (d). The experimental results verify the robustness of the algorithm against 

simplification, noise and deformation.          

 

 
Figure 2.32, the segmentation results of Tierny et al. [147]; (a) input model, (b) extracted graph, (c) initial 

segmentation, (d) fine segmentation and (e) Coarse segmentation. 

The protrusion function along with Reeb graph has been also exploited by Berretti et al. 

to perform mesh partitioning [149]. The proposed approach involves two steps as 

follows: 

i. Reeb graph Construction: in this step, the topological and metric properties of 

the model are used to construct the graph.  

ii. Refinement: in this step, the curvature information is exploited to refine object 

decomposition and adjust region boundaries so as to match deep surface 

concavities and to yield perceptually salient decomposition of objects.  

 

It is important to note that the quantized values of the protrusion function lead to an 

over-segmentation problem of the models. To overcome this issue, the authors managed 

to merge regions by simplifying the Reeb Graph, i.e. Graph nodes are merged together 

based on their topological and mean curvature information. (See Figure 2.33).    

This approach was later used for computing the similarity among 3D models based on 

their part resemblance. [150].   
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Figure 2.33, segmentation result of [149], (a) is the initial constructed Reeb graph and associated 

segmentation result and (b) shows the result after graph simplification.  

2.3.2.5. Feature Point-based approaches 

Katz et al. [151] proposed a hierarchical algorithm based on feature points extraction 

which comprises the following steps: 

a) Transforming the target model into pose-invariant representation via computing 

the canonical form of the model using Multi-Dimensional Scaling [152] (Figure 

2.34(b)). 

b) Extracting a few feature points on the canonical form representation of the 

model and mapping them back into their corresponding points on the original 

model (Figure 2.34(c)). These feature points are located using a geodesic-based 

criterion. 

c) Extracting the core part of the model using a new spherical mirroring operation 

as shown in Figure 2.34(d) and 2.34(e). 

d) Computing and extracting the components attached to the core part, each 

representing at least one feature point (Figure 2.34(f)).     

 
Finally, the segment boundaries are enhanced by applying a post-processing step of 

boundary refinement. The algorithm partitions segments hierarchically, stopping 

automatically when the current segment has no feature points or the number of vertices 

in the current segment is lower than a threshold. 

 

 
Figure 2.34, the segmentation steps of the proposed algorithm of Katz et al. [151] 
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A protrusion-oriented segmentation approach introduced by Agathos et al. [153] 

exploits geodesic distance-based method to extract the feature points. They try to 

decompose models into a core and protruded parts attached to the core. Given a mesh, 

each vertex v is assigned a number computed by a protrusion function ab(_) which is 

defined by the following equation. 

 ab(_) = c d(_, a)ef	
g∈i  (2.3) 

Where, d(_, a) is a geodesic distance between face v and all of the vertices p on the mesh 

surface S. 

The protrusion function can be interpreted as the sum of the geodesic distances of the 

vertex to all of the vertices on the mesh. If the protrusion function related to a vertex is 

greater than a specific threshold, the vertex is marked as a feature point (the threshold 

is defined as the average of geodesic distances between each pair of vertices). The extracted 

feature points are merged together based on their geodesic distance to avoid over-

segmentation. To extract the core part of the model, they use the minimum cost paths 

between the feature points. They utilize the fact that the minimum cost paths cover a 

significant area of each protruded part. So, expanding a set of vertices by this fact 

guarantees that it will reach the protruded parts and the region between them (the core 

part).   

Since the core extraction scenario they follow does not guarantee that the core overlaps 

exactly the partition boundaries, similar to Katz et al. [151], they apply a post-processing 

step on the extracted parts to detect and refine the boundaries via the minimum-cut 

algorithm [145].  

It is worthwhile to note that the proposed algorithm is not applicable in a recursive 

manner. Therefore, it has considerable limitations in decomposing models with mixed 

core parts2. That is, the algorithm is only able to decompose models with a star-like 

topology of connected components. Although, the authors investigate the effect of 

different parameters on their segmentation results, they have not shown any 

quantitative comparison to evaluate their work.     

The feature point-guided algorithm proposed by Lin et al. [154] utilizes geodesic zones 

which are called locales. These locales are created by the extracted salient feature points 

and are used to define a border function which identifies those locales containing the 

                                                           
2 A mixed core (multipart core) is a detected core part of the model (by segmentation 

algorithm) which can be decomposed into simpler parts by human perception system.     
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boundary of the protrusion. In their work, the faces of the core part are defined as the 

points of the mesh whose protrusion function values are lower than a fixed pre-defined 

threshold. Using a fixed threshold is one of the main drawbacks of their work, which may 

lead to over/under segmentation of the main body. On the other hand, strength of the 

current work is the ability to decompose noisy models into meaningful semantic parts. 

As with all of aforementioned approaches in this category, the cut refinement approach 

has been applied on their extracted boundaries to generate segments having smoother 

borders. 

2.3.2.6. Spectral approaches 

The philosophy behind this class of approach is to convert the mesh segmentation 

problem into graph partitioning based on spectral graph theory [155]. Since the 

optimization graph partition problem is NP hard [99], the spectral methods are able to 

solve a relaxation of this problem by computing a few leading eigenvectors of an affinity 

or weighted graph Laplacian matrix. Those eigenvectors provide a new low dimensional 

embedding for which the clustering problem is more easily solved. 

Most spectral-based approaches follow the following pattern: 

• A square matrix ℳ to represent a discrete operation on the input mesh is defined. 

This matrix can be interpreted as pairwise relation between mesh elements such 

as vertices or faces.   

• The eigenvalues and eigenvectors of the matrix  ℳ are computed via an eigen-

decomposition approach.   

• The extracted eigenvalues and eigenvectors are utilized to solving the related 

problem. 

The main effort on spectral mesh segmentation approach has been made by Liu and 

Zheng [156]. The authors employed the probability that two facets can be grouped in the 

same segment as the discrete function so as to generate the matrix	ℳ. The spectral 

analysis of the matrix is later utilized to perform mesh segmentation by using some of 

its largest eigenvalues and eigenvectors.  

This work has been expanded by the same authors to enhance the segmentation result 

[157]. Contour analysis along with spectral embedding has provided a tool to extract 

accurate boundaries (Figure 2.35). They firstly projected the 3D mesh models into a 2D 

plane using two spectral embeddings, e.g. Laplacian matrix to enhance the structural 

characteristics of the mesh (protruded parts) and the minimum curvature embedding of 
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the vertices to enhance the geometrical characteristics of the mesh (concavities). 

Followed by contour extraction from the 2D projected image a decision about the 

possibility of cutting the image into two sections is made (based on the concavity 

criterion). Then, a sequence of facets is computed on each side of decomposable parts 

and finally, a one dimensional embedding is computed to perform a linear search over 

the sequence of facets to cut out the model into two sections.  

 

 
Figure 2.35: the pipeline used in segmentation work of Liu and Zheng [157] 

The weighted Laplacian matrix constructed in the work of Lei et al. [158] uses the Shape 

Diameter Function [129] along with dihedral angles to formulate geometrical 

information of the shapes. After creating the matrix, they embed it in the spectral domain 

via eigendecomposition and finally, a multi-way normalized cut is employed to perform 

mesh segmentation by optimal partitioning of the Laplacian matrix. A min-cut 

methodology [145] is later on used to smooth the extracted boundaries. Although, they 

evaluate their results on Princeton Shape Benchmark [159] they show no evidence to 

support their claim about consistent segmentation ability of the proposed approach (see 

Section 2.3.3 of this chapter).  

To the best of our knowledge, the very recent work of Chahhou et al. [160] is the last 

proposed approach in this category. Their hierarchical approach exploits both the 

minima rule and spectral clustering. The general form of spectral clustering (p-spectral) 

used in their work, is based on the non-linear operator of graph-Laplacian. Due to 

inability of spectral clustering and the standard adjacency matrix in cutting the parts 

placed on the regions of minima curvature, the authors defined new adjacency matrices 

to encode the concavity of the mesh using the minima rule and examined their capability 

in segmentation. The experimental experiments on the SHREC 2007 dataset have shown 

the higher segmentation quality of the proposed approach compared to other available 

ones.       

The main drawback of spectral-based approaches is related to their high dependency on 

the definition of the Laplacian matrix, so that the inappropriate definition of the matrix 

can result in inaccurate extracted segments.     
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2.3.2.7. Learning based approaches 

Most of the available segmentation approaches exploit geometrical or topological 

information about the models. This suffers from sensitivity to local features and/or 

poses changes. Furthermore, these approaches only use a single rule to perform 

segmentation and are not able to combine different criteria to achieve higher 

segmentation accuracy.    

The aforementioned limitations along with the availability of ground-truth datasets for 

segmentation [36, 161, 162] have led to the emergence of a new class of segmentation 

algorithms based on learning criteria. This kind of approach employs a set of prior 

manually-segmented models to obtain more accurate results. Such algorithms generally 

comprise two main steps: an off-line step in which an objective function is learnt from a 

set of manually-segmented mesh models and an on-line step that uses the learnt function 

to decompose the input mesh models. 

The supervised learning-based method proposed by Kalogerakis et al. [163] 

simultaneously segments and labels the models using a set of pre-analyzed training 

models. In their work, an objective function is formulated as optimization of Conditional 

Random Field (CRF) model with terms assessing the consistency of faces with labels and 

terms between labels of neighbouring faces.  

Although, their approach outperforms other existing segmentation algorithms, it is 

worth mentioning that the requirement of training data and several features utilized in 

this approach leads to a slowdown of the segmentation process, a couple of minutes for 

a medium size model of about 5K faces. 

Recently, Lv et al. have used a similar CRF objective function in a semi-supervised 

learning framework [164]. Since the CRF optimization is not applicable in a semi-

supervised framework, the authors tried to introduce a new CRF model whose whole 

objective function is learned from function templates and can be optimized in a semi-

supervised manner. Their proposed approach incorporates knowledge imparted by both 

segmented, labelled meshes, and un-segmented, un-labelled meshes. By adding an un-

labelled conditional entropy into the objective function their framework is able to 

capture the information from the un-labelled meshes. The experimental results obtained 

on the Princeton Shape Benchmark [159] have shown almost 90% of segmentation 

accuracy, which is slightly better than the supervised approach of Kalogerakis et al. [164]    

Similarly, an unsupervised, fully automatic 3D mesh segmentation algorithm based on 

boundary edge learning has been introduced by Benhabiles et al. [165]. The AdaBoost 
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classifier [166] is utilized as a machine learning algorithm to automatically select the 

most relevant geometric features to detect candidate boundary edges. And, in addition 

to the AdaBoost classifier, several geometric features such as Dihedral angle, Gaussian 

Curvature, Global Curvature and Shape Diameter Function are utilized to create a 33-

dimensional feature vector to characterize edges. The main difference between their 

proposed algorithm [165] and Kalogerakis’s work [164] is related to the way that the 

boundaries are defined. That is, instead of determining the proper label for each face and 

then implicitly defining the segmentation result from these labels, we explicitly 

determine the boundary edges that allow obtaining smooth closed contours for defining 

the segments. Comparing the segmentation results generated by both approaches 

reveals that the proposed algorithm of Benhabiles et al. has shown a big enhancement in 

the segmentation quality than that of Kalogerakis et al. [164], so that the Rand Index 

error obtained by Kalogerakis et al. is 9.5% while this factor is 8.8% for the Benhabiles 

algorithm over the Princeton Shape Benchmark dataset.    

2.3.2.8. Volume-based Approaches 

Instead of using surface or skeleton features to perform model segmentation, the volume 

attributes are utilized for surface partitioning [67, 129].  

Shapira et al. [129] claim that the surface attributes are often pose and topology-

dependent and therefore, the resulting segments may vary as the model poses change. 

So, they propose a different volumetric feature called Shape Diameter Function (SDF) to 

fulfil segmentation. They believe that the only feature that remains invariant against 

pose and even topology changes is the volume of the shape.  

 As shown in Figure 2.36, their hierarchical approach exploits a volume-based scalar 

function (SDF), which can be interpreted as a volumetric counterpart of the Medial Axis 

Transform [168]. It measures the local diameter of the object at the surface points by 

sampling the rays fired from the surface point inward to the other side of the mesh in a 

cone-shaped region and averaging the length of those rays sampled. Finally, fitting k 

Gaussian function to the histograms of SDF values allows a hierarchical strategy for 

extracting mesh parts. The SDF signature is eventually employed in skeleton extraction 

as well as matching and retrieval purposes in [102].   
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Figure 2.36, Volume-based segmentation approach using SDF (Image is taken from [129])  

Another volume-based partitioning approach on voxelized models was proposed by Kim 

et al. [167]. In order to extract the convex parts of the models, they applied the opening 

morphological operations using a ball-shaped structuring element. Their recursive 

approach starts with extracting body and branch classes of model parts via applying the 

opening operation. This process is recursively applied on the extracted parts while the 

extracted parts can be segmented into meaningful parts. Finally, the adjacent parts 

possessing the same convexity are merged together to avoid over-segmentation.    

Despite generating acceptable segmentation results, they have not compared their 

results to the other available approaches quantitatively. The main drawback of this 

approach is related to its limitation in supported model types, i.e. it only is able to 

decompose models presented by voxel cubes.          

2.3.2.9. Primitive Fitting-Based Approaches 

The approaches falling into this category are aimed at selecting primitives from a user-

defined set to extract the best matches which minimize the fitting error.     

Another set of segmentation approaches is based on fitting primitives on the surface of 

models. Attene et al. [169] proposed a hierarchical algorithm, in which some pre-defined 

primitives such as sphere, cylinder and plane are fitted to the model to extract model 

segments. Firstly, they assign every face to a separate segment. Then, the faces in every 

pair of adjacent segments are utilized to approximate a best fitting geometric primitive. 

The algorithm is repeated recursively until a user-specified number of segments has 

been reached. 
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They employ the L2 distance function to compute the fitting error between extracted 

segments and the fitted primitives. Figure 2.37 shows some examples of fitting cylinders 

into three sample models, Horse, Human and Hand. For the Horse model, two levels of 

resolution have been shown in their hierarchical approach.      

 

 
 

Figure 2.37, some examples of fitting primitive approach proposed by Attene et al. [169]. 

The very recent iterative work of Fayolle and Pasko [170] is applicable to point cloud 

meshes and employs a wide range of primitives such as sphere, cylinder, plane, cone, 

torus, and super-ellipsoid to extract high quality segments. The proposed algorithm 

comprises two main steps which are repeated after a de-noising step in the pre-

processing phase:  

• Step 1: the parameters of the primitives are optimized to fit a sub-part of the input 

point-set model. Then the best primitive is selected by comparing the fitted 

primitives and their related sub-part. The selected primitive is classified as a 

potential primitive candidate. 

• Step 2: the points of the model located within a band around the surface of the 

corresponding potential primitive candidate are extracted.   

These two steps are iterated until the size of the point-set is sufficiently small or the 

maximum number of iterations has been reached. As a post-processing step of the 

proposed approach, the unidentified points from the original point-set are assigned a 

primitive type and a label by iterating through the list of best primitives identified in the 

first step of the loop.  
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The authors claim that their algorithm is relatively general and can work with any type 

of parameterized primitives combined with transformations like tapering or twisting.  

2.3.2.10. Other approaches 

There are some other approaches proposed for 3D model segmentation which cannot be 

meaningfully assigned to the aforesaid categories. In the sequel, we discuss some of 

these approaches and expose their pros and cons.  

2.3.2.10.1 Model-based approaches 

Wu and Levine [171] employ the charge density distribution to perform mesh 

decomposition. In their work, based on the minima rule, the boundary parts of models 

are located at the concave areas having local minimum charge density. They defined a 

concave face as a face possessing charge density lower than a predefined threshold as 

well as lower than all of its neighbours (the threshold in their work was: 1.5*lowest 

charge density on the model surface). To specify boundary parts they tried to locate a 

ring region of faces with the lowest charge density compared to their neighbours. 

Although their approach is applicable for some parts of specific models, it suffers from 

two main challenging issues; firstly, the entire boundary must lie in a concavity to be 

detected accurately, which is not the case for a lot of models. And secondly, for some 

boundary parts, there is no face meeting their requirement to be considered as a concave 

face. 

Our proposed segmentation algorithm is based on the distribution of charge density on 

the surface of models too. But, our method differs from Wu and Levine’s work in various 

aspects; unlike their algorithm, our approach is able to detect boundary parts not fully 

located in concave regions. Moreover, our approach can handle mesh models having a 

more complex arrangement. The pose-insensitive attribute of the proposed work allows 

the algorithm to generate similar segments for models in different poses. Finally, an 

extra post-processing step attached to our segmentation pipeline enables us to 

decompose those models having a mixed (multi-part) core structure.  

2.3.2.10.2 Fuzzy-based approaches 

To the best of our knowledge, the only hierarchical fuzzy approach for model 

segmentation was proposed by Katz et al. [172]. The key idea of the algorithm is to find 

key components via both geodesic distance and convexity using angular distance. To find 

fuzzy components, the authors relax the condition that every face should belong to 

exactly one patch for allowing fuzzy membership. Their algorithm proceeds from coarse-
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to-fine thanks to a binary tree of which each node corresponds to a segment.  The binary 

tree is constructed by classification of the faces into two clusters. The likelihood of a face 

to belong in one of the two clusters will determine the membership of the face to each 

cluster.  As shown in Figure 2.38, to perform hard clustering, the authors construct three 

parts from which two parts contain the faces belonging to only one cluster and the third 

part is a fuzzy part which contains the faces that are not certain to belong in a specific 

cluster. Finally, to compute the proper parts of faces in the fuzzy part, a minimum graph 

cut algorithm [145] is applied on the dual graph of that part. Based on the concavity, the 

fuzzy faces are assigned to one of the either sides (Green or Blue parts in Figure 2.38). 

The above procedure on each segment is recursively repeated until a desired condition 

is not satisfied anymore.       

 

 

Figure 2.38, the segmentation steps for Fuzzy-based approach proposed by Katz et al. [172] 

2.3.2.10.3 Randomized Cut 

The basic idea of the random-walk approach proposed by Golovinskiy and Funkhouser 

[138] is to characterize how and where a surface mesh is most likely to be cut by a 

segmentation approach into parts.  

This approach uses a vast amount of previous work on randomized cuts for graph 

partitioning theory to find a minimum cut of a graph. It tries to generate a large set of 

randomized cut by combining several existing segmentation methods (K-Means, 

Hierarchical and Min-Cut) to define a "partitioning function" which measures the 

likelihood of each edge lying on a segmentation boundary in the randomized set. Using 

the function, the most consistent boundary cuts obtained by different automatic 

segmentation methods are identified and applied for some of their desired applications 

such as deformation, surface correspondence, visualization and segmentation. The 

experimental results on different models demonstrate the robustness of the partitioning 

function to the large set of transformations viz. noise, tessellation, pose and intra-class 

variation. Figure 2.39 shows the segmentation result on a sample Bunny model.   
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Figure 2.39, segmentation steps of the randomized cut algorithm of [138], (a) shows sample random 

segmentations, (c) is the segmentation result for the Bunny model generated by the related partitioning 

function (c).  

The main disadvantage of the proposed framework is related to the time-consuming 

process of combining different approaches which has quite a large amount of 

implementation overhead. 

2.3.3. Consistent Segmentation 

Recently researchers have proposed a different approach for segmenting the same 

family of models, which is called co-segmentation [163, 173, 174]. It refers to 

decomposition of a set of shapes from the same family into consistent semantic parts 

with correspondence. The rationale behind co-segmentation comes from the fact that 

more knowledge can be inferred from multiple similar shapes rather than an individual 

shape [174]. The pipeline of such approaches comprises an initial over-segmentation of 

all models into primitive patches. Then, an initial co-segmentation of primitive patches 

is created using a clustering algorithm and finally the result of co-segmentation is 

achieved via improving the initial segment guesses by an optimization algorithm (see 

Figure 2.40).    

Glovinsky and Funkhouser considered co-segmentation as a graph clustering problem 

[175].  They built reliable correspondences across segments of shapes using rigid shape 

alignment. However, due to a lack of shape semantics, their approach cannot correctly 

deal with models with large variations. To overcome this challenge, Xu et al. [176] firstly 

clustered the shapes based on their style depending on the scale of parts and then 

applied part correspondence in each group. Nonetheless, their approach still suffers 

from two main challenges; firstly, it is limited to models that can be properly aligned. 

And secondly, the expensive computational cost of their approach does not allow 

applying it on high resolution meshes.  
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  Figure 2.40, co-segmentation approach proposed by Meng et al. [173]. 

Very recently, Meng et al. proposed an unsupervised approach for consistent 

segmentation of similar models by clustering the predefined over-segmented patches 

using a multi-label optimization [173]. The main drawback of their approach lies in 

exploiting only two shape descriptors, which may result in a disability to generate 

proper segments in the case of dissimilar objects. In contrast, Hu et al. [174] and Wu et 

al. [163] use five shape descriptors to generate and match initial patches more 

accurately. Hu et al. fuse these five features using an optimization formulation with a 

consistent multi-feature penalty. Finally, a subspace clustering approach is employed in 

order to co-segment of models from the same class simultaneously. On the other hand, 

Wu et al. [163] generate a consistent segmentation by performing spectral clustering in 

a fused space of the five shape descriptors. They try to find an optimal combination of 

affinity matrices of different descriptors so as to alleviate the impact of unreliable and 

irrelevant features.  

2.3.4. Discussion on the Segmentation Approaches 

Mesh segmentation is a quite mature field of research for which dozens of approaches 

have been proposed. Table 2.2 summarizes discussed segmentation approaches from 

different classes. Each class of the approaches has its own pros and cons. For instance, 

the interactive approaches offer high quality segmentation at the expense of losing user-

independence characteristics. Region growing approaches on the other hand are quite 

simple and easy to understand. But their extracted components are not as satisfactory 

as the human perception’s ones.  

As will be stated in Chapter 5, our approach presents a fully automatic algorithm using 

distribution of electrical charge on the surface of models. The proposed approach can be 

considered as a combination of model-based and region-growing sub-categories (see 
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Figure 2.22) which offers a robust algorithm for generating high quality segmentation of 

the models. 

Generally speaking, since the segmentation results are quite application-dependent, no 

one can pick an approach as the best one for all applications. Therefore, despite the 

presence of various segmentation techniques, proposing a new approach, by which high 

quality segments are achieved in a fully-automatic manner, is of the great interest to 

researchers.     
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Table 2.2, Taxonomy of segmentation approaches. 

Segmentation 

Technique 
References Comment Advantages Disadvantages 

Region 

growing 

106, 107, 108, 

110, 111, 113, 

114, 115 

Choose set of seeds 

and grow them until 

reach the boundaries 

- Simple approach 

- Easy to 

understand and 

implementation 

-Fast 

-Highly dependent 

to the initial seed’s 

location and 

selection criteria. 

- Over-

segmentation 

problem 

Watershed 115, 116, 118, 

119, 120, 122 

Select seed points 

using height function  

and then apply region 

growing 

- Simple approach 

- Easy to 

implement 

- Not time 

consuming 

-Very low 

tolerance to noise 

as they use local 

features. 

-Dependency to 

the defined height 

function 

Interactive 118, 124, 125, 

126, 127, 128, 

130, 131, 133, 

134, 135, 137, 

138, 139, 140 

Ask users to sketch 

boundary/protruded 

parts and then 

perform automatic 

segmentation 

-More similar to 

the human 

perception 

 

-Not fully 

automatic 

approach 

Skeleton- 

based 

33, 140, 141, 

142, 144, 146, 

147, 149 

Extract skeleton graph 

and apply graph 

partitioning 

- Hierarchical 

segmentation 

- Able to consider 

geometrical and 

topological 

features 

- Skeleton 

extraction is not 

trivial task. 

- Quite skeleton-

dependent results. 

Feature 

Point- Based 

151, 154 Select set of feature 

points using some 

criteria to extract 

segments 

-Easy to 

understand. 

- Relatively high 

quality 

segmentation 

- Highly 

dependent to the 

extracted feature 

points 

- Over- 

segmentation 

Spectral-

based  

156, 157, 160 Extract spectral 

embedding of the 

mesh model for 

applying clustering 

algorithms. 

-Convert 

segmentation to 

easier process of 

geometric space 

problem. 

-highly dependent 

on definition of the 

Laplacian matrix 

Learning- 

based 

163, 164, 165 Train the 

segmentation 

algorithm using the 

ground-truth models. 

-High accurate 

segmentation 

(similar to manual 

decomposition) 

- Time consuming 

training process 

- Segment quality 

is dependent to 

the size of training 

data set. 

-Result are 

category-

dependant. 

Volume- 

based 

102, 129, 167 Use volume features 

to apply segmentation 

- Robust to noise - Mainly working 

on voxelized 

models 

Primitive 

fitting- based 

169, 170 Fit a set of pre-defined 

geometrical primitive 

to find best segments 

- Easy to 

understand 

- Highly 

dependent on the 

pre-defined 

primitives 

Consistent 163, 173, 174, 

175, 176 

Consistently segment 

models from the same 

class 

- More accurate 

segmentation 

results 

-Similar 

segmentation for 

same class of 

models 

- Require training 

phase 

- Over-

segmentation 

problem 

- Time consuming 
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3 
Proposed 3D Model Descriptors 

3.1. Introduction 

In this chapter the problem of 3D model retrieval is discussed. Firstly the motivations 

for working in this field are presented. Then, the challenges in this domain are described. 

Then the applications of 3D model retrieval and the proposed shape descriptors are 

discussed thoroughly. The experimental results associated with the proposed 

descriptors will be investigated in Chapter 4.     

It should be mentioned that from now on, the expressions "3D model", "3D object" and 

"3D shape" are utilized interchangeably as they refer to the same term.     

3.2. Motivation 

The number of 3D models in databases is increasing exponentially as the growth in 

technology allows companies and researchers to create their own models easily. This 

growth is so fast that one can see a plethora of 3D models on the internet or in other 

specific databases such as those for Computer Aided Design (CAD), Molecular Biology 

(3D Protein Models), Computer Graphics, Medicine and Archaeology.  

Nowadays, the advances in generating 3D models, such as modelling software, laser 

scanners and digital cameras have led to the emergence of lots of new models to be 

utilized in a variety of scientific domains. For instance, 3D laser scanners have enabled 

users to construct precise models from real objects. The Stanford University Digital 

Michelangelo [177] and Digital Formae Urbis Romae [178] projects are examples of such 

attempts to create archives of cultural heritage. Such models have other applications in 
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the film industry and animation. Other kinds of domain-specific archives are also 

available. For example, the National Design Repository is an online database of CAD 

models [179] and the Protein Data Bank [180] is an online database of 3D biological 

macromolecule structures. 

As the size of 3D model databases becomes larger and larger, the need for software tools 

to help people to navigate through these databases has drawn much attention. Such 

software should provide facilities by which the user is able to specify his/her desired 

model as a query and search and retrieve similar models in the target database.     

On the other hand, the traditional text-based retrieval systems are not helpful anymore 

as the manual annotation of available models is almost impossible due to the daily 

mushrooming of such models. Furthermore, most of the time the file name or other 

textual data associated with the 3D models will not be enough to fully describe what the 

model actually is. Aware of this, during the last decade, researchers have proposed 

several approaches based on the content similarity of shapes to retrieve the sought 3D 

models. Although some of the available approaches perform content-based similarities 

checking quite successfully, their results are not yet as satisfactory as query results 

obtained by their textual counterparts. Consequently, a great deal of research should still 

be conducted to propose new content-based techniques, by which the desired models 

may be found.   

The formal definition of 3D model/object retrieval can be simply presented as follows:  

Suppose � be a query model and ℛ is target repository from which the desired models 

(models similar to the query	�) are going to be searched and retrieved. If j is the 

distance function for measuring the dissimilarity between the query model � and other 

models in  ℛ, the retrieved objects kF	are listed according to their distance from the 

query so that:  

 
l@7(ℛ, �) = mkK, kL, kn, . . o	|	j(�, kK) ≤ 	j(�, kL)≤ j(�, kn ≤ ⋯) (3.1) 

The efficiency of the retrieval system depends on whether the starting elements of the 

retrieved list belong to the same class of the query model. Later in Chapter 4 we will 

briefly introduce several evaluation criteria for assessing the proposed retrieval 

algorithms. 

The main step and foundation of any typical 3D retrieval system is to describe the query 

and other available models in a useful and discriminative way. Thus the major focus in 
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this field is to find a descriptor by which all of the characteristics of the models can be 

represented. As presented in Chapter 2, many techniques have been proposed to 

represent the models using a numerical feature vector or an appropriate graph. In order 

to tackle the challenges of the 3D model retrieval domain (see Section 3.3) we will 

propose three different shape descriptors in this chapter: one is based on solving the 

Poisson Equation over 2D silhouettes of the objects and the two other 

approaches are based on computing an electrical charge distribution over the 3D 

surface of each object. These three descriptors are separately assessed in the next 

chapter by applying them to various standard datasets.    

3.3. Scientific Challenges 

A typical 3D retrieval system, as shown in Figure 3.1, consists of two main phases: the 

off-line and the on-line phase. In both of these phases, in order to represent the models 

in a discriminative manner, a numerical feature vector or a structural/topological graph 

is utilized to describe the models. Representation of models using a shape descriptor 

(numerical vector or graph) instead of the models themselves, results in an easier 

process of matching the query model to all the models in the target dataset.  

Actually, one can consider a shape descriptor as a cornerstone of any retrieval system, 

by which the shape matching problem can be converted to a numerical vector and/or 

graph isomorphism comparison. Therefore, most of the challenges in this field are 

related to the utilized descriptors so that the performance of the retrieval system 

critically depends on its shape descriptor. In the sequel we list the current challenges in 

the literature concisely: 

• Accuracy: In fact, accuracy is the major challenge of any retrieval system so that a 

significant proportion of research in the literature is dedicated to proposing new 

effective descriptors with the aim of finding and retrieving information more 

precisely. Like any other retrieval system, the 3D retrieval system and the 

underlying descriptor should be informative enough to offer high discrimination 

ability among the models. Despite the presence of numerous 3D model descriptors, 

proposing a more accurate one is still one of the greatest challenges faced by the 

leading researchers of this domain. 
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Figure 3.1, A typical 3D model retrieval system. 

• Speed: another critical issue of any retrieval system is its efficiency; it is 

necessary that the employed shape descriptor be reasonable in size to allow fast 

extraction in practical systems. Although one may consider the accuracy and 

speed (effectiveness and efficiency) as conflicting terms, so that an increase in 

one of them results in a decrease in the other, the retrieval system should be able 

to make a trade-off between the two. 

• Robustness: the utilized shape descriptor should be robust to small variations 

and defects in the model. This property becomes more valuable if we know that 

some of the 3D models are defective from the start as they have been constructed 

from damaged real objects (e.g. objects and sculptures discovered in archaeology 

or noisy sensors). Therefore, the underlying descriptor should be insensitive to 

a variety of distortions such as noise and small perturbations.      

• Pose Normalization Issue (Invariance): the proposed shape descriptor and 

the matching scheme should be invariant to transformations (e.g. rotation, scale 
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and translation) as much as possible. Although invariance characteristics can be 

obtained by applying a pose-normalization step in the pre-processing phase, it 

reduces the efficiency of the retrieval system by slowing down the total time of 

the retrieving process.  Consequently, the ideal shape descriptor is invariant to 

geometrical transformations without losing any part of the shape information.     

• Supporting Partial Matching: Most of the available systems for searching 3D 

models accept the whole model as a query and fulfil the matching process based 

on a similarity measure between the complete query and the models in the 

dataset. But, in the case of the availability of a part of a desired model as a query 

(e.g. a 3D arm of an antique throne), how do such systems perform the matching 

process among the available parts of the query model and the models in the 

dataset? This issue occurs in the interesting case of the Centaur; a Greek 

mythological race of half-human and half-horse creatures (Figure 3.2). Bronstein 

et al. say that "Arguing whether a Centaur is similar to a horse or to a man is as 

useless as asking whether a zebra is white or black!" [181]. In order to find the 

similarity between a Centaur and a human or a horse, the new mechanism of 

partial matching should be applied rather than whole-shape matching. Generally 

speaking, partially similar objects, despite having some similar parts, are 

dissimilar globally. As a result, proposing a new retrieval system supporting 

partial-matching is of great interest to the retrieval domain experts.   

 

 

Figure 3.2, Centaur; A mythological Greek creature; half-horse and half-human. 

Although there is no shape descriptor which overcomes all of the mentioned challenges in 

a high level of quality at once, in this chapter we try to tackle these challenges, as much as 

possible, by introducing three new shape descriptors from both the 2D and 3D domains.      
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3.4. Applications  

The large collections of 3D models on the Internet and other sources have stimulated 

interest in the development of 3D model search/retrieval techniques in a variety of 

applications ranging from academia to the business domains. In the sequel we 

summarize the applications of the 3D model search/retrieval briefly: 

a) Engineering: Computer Aided Design (CAD) components are widely used in the 

(re)-construction of objects in different domains viz. automobile, aircrafts, 

mechanical parts etc. When many CAD models are available, it is inefficient to 

manually search for required ones. So, designing suitable software to search such 

models is quite beneficial in the engineering field to reduce the cost of creating a 

new component by replacing it with the available similar ones. The Purdue 

Engineering Shape Benchmark (ESB) offers a collection of engineering 

components described as triangulated 3D meshes  [182]    

b) Medicine: The available 3D images obtained by CT and MRI scans are broadly 

used for diagnosis of organ deformations by matching actual images with 

medical databases of known deformations. A retrieval system for non-rigid 

models can help physicians to detect and diagnose organ disorders. This is one 

example of the application of 3D retrieval systems in the medical domain.    

c) Chemistry and Biology: in order to design drugs and classify their structure, 

molecules and proteins are modelled as 3D objects. So, a deformable and/or 

partial object matching system is required to classify various types of proteins.  

On the other hand, in drug design, it is crucial to search and compare deformable 

3D models of the query molecule to the others in the target molecular databases, 

so that appropriate drug molecular structures can be designed to cure specific 

diseases. The two special tracks in the SHREC’07 [183] and SHREC’10 [184] 

contests using a protein dataset, which includes more than 30000 protein 

structures, show the importance of model retrieval in these branches of science.     

d) Cultural Heritage: another famous application of 3D model retrieval is related 

to digitized objects such as old buildings, statues, pottery etc. Performing global 

or partial matching among similar artifacts can reveal the relationships among 

historical cultures of ancient civilizations. The SCULPTEUR project [185] is a 

well-known example of such an application. It aims to develop a system to store, 

search and retrieve multimedia content and associated metadata that form the 

digital collection of a museum or art gallery.  
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e) Entertainment: Games and animation movies are utilizing 3D models for the 

purpose of holding considerable influence on the players and audiences. Using a 

database containing lots of animation components, a suitable search engine can 

save both time and cost in re-constructing animation characters.    

f) Face Recognition: To combat the challenges in 2D face recognition (such as 

effects of lighting conditions, facial expressions, facial orientations etc.) 3D face 

recognition has become one of the popular biometric techniques in many 

security gateways namely airports, nuclear plants, hotels and so on. Despite the 

significant variations in the approaches taken by researchers in relation to this 

field, achieving the ideal 3D face recognition system is still of enormous interest 

to companies and research groups.       

g) Others: Robotics, 3D spatial terrain etc. are among major applications in which 

3D model retrieval plays a critical role in enhancing their performance and 

efficiency.    

   

In the next following sections we will completely introduce our proposed shape 

descriptors along with the detailed description of their beneficial characteristics.  

3.5. Proposed Approaches 

In this thesis we have proposed three different shape descriptor; one 2D Poisson-based 

and two different 3D charge distribution-based descriptors. In this section we present 

these descriptors separately. 

3.5.1. 2D Poisson-Based Shape Descriptor  

The 2D-based shape descriptors usually extract the 2D projections of the 3D model such 

as silhouettes, depth buffers, contours or other kinds of image presentations and define 

each image by a set of numerical values in a beneficial feature vector. 

Our motivation for proposing the 2D Poisson-based descriptor for 3D shapes is as 

follows:  very recently Pan et al. [73] used the 3D Poisson equation for retrieving 

voxelized models and got significant results such as high retrieval quality and robustness 

to noise, smoothing and simplification. On the other hand, as mentioned in Chapter 2, 

the view-based approaches have shown relatively high retrieval quality in the 3D 

retrieval domain. Consequently, we decided to use the 2D Poisson Equation to boost the 

retrieval accuracy as well as exploit the advantages of the Poisson Equation. 
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A typical 2D-view-based retrieval system consists of the following steps: 

1) Pose NormalizationPose NormalizationPose NormalizationPose Normalization: The 3D models are aligned in the pre-processing phase. 

2) View ExView ExView ExView Extractiontractiontractiontraction: A desired number of 2D view images are extracted from each 

3D model. 

3) Descriptor ExtractionDescriptor ExtractionDescriptor ExtractionDescriptor Extraction: Each view is described using an applicable shape 

descriptor. 

4) MatchingMatchingMatchingMatching: The matching process is performed based on the comparison of 

corresponding views of the models. 

5) Query Query Query Query ResultsResultsResultsResults: The best matches are retrieved as a result of retrieving process. 

 

Most of the view-based methods need a pose normalization process before extracting 

the 2D views. In order to perform pose normalization, each 3D model should be 

normalized for Scale, Translation and Rotation. One possible approach for the 

translation is to translate the model so that the centre of mass of the model is at the 

origin. Usually scale invariance is accomplished by scaling the model so that it lies within 

the unit bounding sphere. Securing rotation invariance is usually more difficult than the 

others. Few methods have been introduced for achieving rotation invariance [43, 186, 

187, 188]. The most prominent one is Principal Component Analysis (PCA) (which is also 

called as the Karhunen-Loeve transform or Hotelling Transform), or some variation of it 

such as Normal PCA (NPCA) [187], or ContinuousPCA [186]. 

In the coming section, prior to presenting the Poisson-based descriptor, a brief introduction 

to the Poisson Equation will be given. It makes this document more understandable and 

easy-to-follow.  

3.5.2. Background  

In mathematics the Poisson Equation is a second-order partial differential equation of 

elliptic type with broad utility in electrostatics, mechanical engineering and theoretical 

physics [189]. The Poisson Equation is defined by following formula: 

 ∇L0 = x (3.2) 

Where ∇L is the Laplace operator, and x and 0 are real or complex-valued functions on 

a manifold, (for example 0 can represent electric potential and x is electric charge).  

Application of the Poisson Equation in our approach is defined as follows:  
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Consider an extracted silhouette view y, which is surrounded by a simple contour. We 

would like to assign a number to each internal point of y based on its location in the 

silhouette. One way is to solve the Poisson Equation in form of: 

 ∇Lz = z== +	z{{ = /1 (3.3) 

Where z== and z{{ are the second derivatives of z in = and { directions, respectively 

and (=, {) ∈ y with the boundary condition	z(=, {) = 0.  

One can simply describe the Poisson Equation as placing a set of particles at each internal 

pixel point of the silhouettes and letting them move in a random walk until they hit the 

boundary. In this context U represents the mean time taken to reach the boundary.  

3.5.2.1. Silhouette Poisson-Histogram Descriptor (SilPH)  

As shown in Figure 3.3, our method includes two phases as follows:  

• Offline phase: The desired number of views is extracted for all of the normalized 

3D models in the dataset and then a Poisson equation solver is utilized to define 

their descriptors. 

• Online phase: The system gets a 3D model as query and following the pose 

normalization step, the silhouette views are extracted. After calculating the 

shape descriptor for each view via the Poisson equation, the matching process is 

performed so as to find the similarity measurement between the query model 

and the other models. Then the results are retrieved based on the degree of 

similarity. 

 

In the sequel, we present detailed descriptions of these two phases.   
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Figure 3.3, the proposed model retrieval Framework; left part shows the Offline phase and right part is the 

Online phase 

As with any other view-based approach, the process is started with pose normalization; 

first all of the models are scaled by placing them into the bounding unit sphere while 

rotation invariance is accomplished by applying the NPCA approach to the scaled 

models. Because of the area weighted defect3, the accuracy of PCA in 3D model 

normalization is reduced [190]. To solve this problem NPCA is proposed by Papadakis 

et al. [187] to extract the principal axes more precisely. With the aim of finding principal 

axes in NPCA, the collections of normal vectors for all of the triangular meshes are 

utilized in which the weight of each normal is equal to area of the triangle. It is important 

to note that since our descriptor is defined regardless of coordinate system, it is 

implicitly invariant to translation. 

The next step consists of 2D view images extraction. To do this, we employ the 60 

vertices of a truncated icosahedron. By placing the camera on the 60 vertices of the 

truncated icosahedron, 60 silhouettes with resolution of 128*128 pixels are extracted. 

The results show that the selected resolution is a good trade-off in terms of speed and 

accuracy. Now each silhouette view is described by a feature vector which consists of a 

histogram generated from the solution of the Poisson Equation.  

                                                           
3 The area weighted defect is a phenomenon, in which a lot of small area meshes which 

create the fine parts of a surface, get larger weights than the other parts and thus greatly 

bias the accuracy of PCA.     
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Finally, in order to describe the silhouettes using the Poisson Equation, we utilized the 

average time required for a particle to hit the boundaries as a descriptor for each pixel. 

Based on the Poisson Equation, the value at each pixel is a constant plus the average 

value of its neighbours. It is quite similar to the distance transform [191] but unlike the 

distance transform, which only considers the nearest boundary point, the Poisson 

equation is affected by several internal points and then reflects more global structure of 

the silhouette. These global effects lead to more robustness to noise distortion. The 

experimental results in Chapter 4 support our idea about this class of robustness.    

To solve the Poisson Equation we utilized the Poisson solver proposed by Gorelick et al. 

[192]. Figure 3.4 shows some silhouettes from the McGill dataset and their solutions to 

the Poisson Equation. These solutions become the descriptor for each shape. 

 

Figure 3.4, Some sample silhouettes and their solution to the Poisson equation. 

In order to compute the similarity measure between two models, a view-to-view 

comparison among the entire 60 silhouettes is utilized. To do so, the pixel values are 

accumulated into a histogram called the Silhouette Poisson Histogram (SilPH). The 

histogram is constructed via clustering pixel values into 10 bins using a K-Means 

clustering approach.  

The Dissimilarity jℳ,O between two corresponding view histograms ℋℳ and ℋO  is 

defined by Equation 3.4: 

 jℳ,O = }?~ℋℳ,F /ℋO,F~�KI
FHK �K �	�

 (3.4) 

Where � = 1  for ℒK  and � = 2  for ℒL distance function. 

Finally, the dissimilarity ��f(�,ℬ)	 between two different 3D models � and ℬ based on 

their histograms is calculated by the sum of the dissimilarities between all of their 

corresponding views. Note that the comparison is only performed between 
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corresponding views (;D� view of model � with ;D� view of model	ℬ) and does not 

perform brute-force matching which includes comparing each view of model � with all 

views of model	ℬ. 

3.5.2.2. Discussion of the SilPH Descriptor  

The SilPH descriptor is a view-based approach, so it is expected to offer high retrieval 

capability compared to its 3D-based counterpart. Furthermore, it is easy to calculate and 

understand and also since the SilPH descriptor is defined regardless of coordinate 

system, it is robust to translation. Moreover, as mentioned above, the number assigned 

to each pixel as its signature in the SilPH, is the average time for particles to hit all of the 

boundaries. So, the effect of noise can be easily minimised by the contribution of all 

boundary points and accordingly the SilPH descriptor becomes less sensitive to noise. 

By the same reason it is expected to provide high matching ability for deformable 

models.  

On the other hand, the SilPH descriptor suffers from some disadvantages: it is sensitive 

to scale and rotation transformations. Additionally, like other view-based approaches, 

due to multiple comparisons between the views of each pair of models, the matching 

speed is considerably reduced. Finally, since it describes each pixel via the effect of all 

boundary points, it considers the global structure of the shape and so it cannot be 

utilized for the purpose of partial matching. 

The ability of the proposed SilPH descriptor will be experimentally tested in Chapter 4, 

by applying it to the models available in the various standard datasets. Furthermore, its 

robustness against noise along with the effects of utilized parameters will be 

investigated thoroughly.  

3.5.3. 3D Charge Density-Based Shape Descriptor 

Unlike the SilPH descriptor, the second and third proposed descriptors belong to the 3D-

based class of shape descriptors. The underlying rationale for selecting this class of 

descriptor is simply as follows:  

As stated in Chapter 2, the retrieval efficiency of 2D-based descriptors is primarily 

affected by pose normalization in the pre-processing phase. A good alignment technique 

can provide better potential for enhancing the discrimination ability. On the other hand, 

in addition to consuming extra time, proposing a reliable technique for aligning the 

models is a non-trivial task. Therefore, we tried to introduce our new descriptors from 

the 3D-based category, which is robust against affine transformation especially rotation.  
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There is a famous fact in the physics of electricity which describes a natural phenomenon 

and says: "the electric charges on the surface of a conductor tend to accumulate at the 

sharp convex areas and disappear at the sharp concave areas" [193]. Since natural 

physical phenomena are dependent on the nature of the objects, we think they work for 

any kind of surface and can describe the models in a distinguishable manner. 

Consequently, we aim at employing the density/amount of distributed electrical charge 

on the surface of models as the surface descriptors, and utilize them in the model 

retrieval framework.    

In the next sections, first we briefly introduce the background of charge-distribution, 

which is the cornerstone of the proposed descriptor, and then its application in 3D model 

description will be presented.  

3.5.3.1. Background  

As stated before, when a pre-defined electrical charge � is placed on the surface of a 3D 

model, which is viewed as a perfect conductor, the electrical charge tends to accumulate 

at sharp convexities and vanish at sharp concavities. In order to use this fact as the 

foundation of the proposed descriptor, the 3D models are treated as conductors which 

are placed in a free space (a space with no electric charge) and the electrical charge � is 

distributed on their surface. Since the 3D models have arbitrary surfaces, it is not 

possible to calculate the charge density on the surface using an analytical approach. 

Thus, a Finite-Element-Method (FEM) is utilized to this end. We used the technique 

proposed by Wu and Levine to calculate the charge density [171].  Their approach can be 

briefly expressed as follows: 

Each facet of the triangular mesh models is considered as a planar triangle �� which 

possesses a constant charge density �� that should be calculated. To do so, firstly the 

reciprocal electrical potential of every pair of faces is identified by Equation 3.5:   

�(�) = �4��I 1|� / �′| (3.5) 

Where �I is known as permittivity of free space and � is the vector position of 

observation point and �′ is the position of charge	�, as shown in Figure 3.5.  

 

 

 



80 

 

 

 

 

 

Figure 3.5, the configuration for a charge point q placed at the point �′ which is observed from the point	�. 

Since, all of the triangular faces contribute to the potential	�(�), it can be re-written as 

follows: 

�(�) = 14��Ic �(�′)|� / �′|	
y e�′ (3.6) 

Where y is the total surface area,	�(�′) is the charge density at �′ and �′ is the area over	y. 

In order to calculate �(�′) using FEM, the model surface y is considered as O�  

triangles	�K, 	�L, 	�n, … , �O� 	. Therefore, the Equation 3.6 can be expressed as: 

�(�) = 14��I?��� c 1|�� / ��|
	

�� e�			�� , � = 1,2,… ,O�
O�
�HK  (3.7) 

On the other hand, the total charge � is equal to the sum of charges on each triangle. 

Thus:  

� = ? ��	��O�
�HK  (3.8) 

Here �� and	�� are charge density and surface area of triangle	� respectively. Using 

Equations (3.7) and (3.8), a set of linear equations with O�+1 unknown 	�K, �L, … , �O�  

and �(�) in the form of � ∗ 	� = � are obtained which � and � are known terms and � is 

unknown variable. This set of equations can be easily solved using a method such as the 

conjugate gradient squared method [194]. As discussed in [171], the Matrix A contains 

the following variables which are extracted from equations 3.7 and 3.8.   

 

Where: 
  

Solving this set of equations results in obtaining the density of distributed electrical 

charge � on any individual triangular face �F of model ℳ. Figure 3.6 depicts simulated 

distributions of electrical charge on the surface of some 3D models.   

q    Charge Point  

Observation Point  

r’ 
r 
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Figure 3.6. Example coloured models from the McGill dataset; the redder parts specify the denser faces. 

We employed the simulated distribution of electrical charge so as to retrieve 3D models 

in two different approaches, namely the Bag-of-Feature Charge Density Descriptor (BoF-

CDD) and the combination of Concentric Sphere-Electrical Charge Descriptor (CS-ECD) 

and Dense Patches (DP_CS-ECD). 

3.5.3.2. Discussion on Electrical Charge Distribution as a 

Descriptor  

The simulated charge density on the surface of models holds interesting properties 

which are very beneficial in the 3D retrieval domain. In the following we will briefly 

explain some of them. 

• Invariance to transformations: the charge density distributed on the surface 

of a model only depends on the total amount of distributed charge (�) and size 

of the model. (The charge amount of each triangular element is even 

independent from the model size). Since the density is calculated regardless of 

the coordinate system, it is completely robust to linear translations such as 

translation and rotation. 

• Gathering local and global information: as Wu and Levine mention [171], the 

distributed charge on each surface is affected by all of the points on the model 

surface. On the other hand, the effects of all triangular elements in generating the 

potential are not equal: that is, their contributions depend on the distance 

between the source and observation points (see Figure 3.5).   Therefore, the 

charge density holds both local and global information about the structure of the 

model. Wu and Levine considered these characteristics as "quasi-local" and 

"quasi-global" properties.   

• Insensitivity to noise and simplification: the quasi-global property of charge 

density leads to less sensitivity to noise and simplification. As the charge density 

on each face is contributed to by all other faces, the small boundary changes 

which are caused by noise and simplification have almost no meaningful effects 
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on the density. This is a great advantage compared to the curvature-based 

approaches (e.g. mean-curvature and curvature-index); they are considerably 

affected by any surface perturbations (See Section 4.5 of Chapter 4). The charge 

density is robust to simplification as well; although during the simplification 

process, the sizes of triangular faces are increased, the amounts of distributed 

charges are changed by the same ratio. So, the charge density of the simplified 

faces remains the same.   

• Supporting partial matching: the quasi-local property of charge density will 

result in defining each part in a finer manner. It enables us to use the local 

information around each part to describe it and hence is expected to support 

partial matching.  

 

The aforementioned features are tested experimentally in Chapter 4.  

3.5.3.3. Bag-of-Feature Charge Density Descriptor (BoF-CDD) 

The Bag-of-Features (Words) was originally devised for use in text-based information 

retrieval systems. In the BoF framework, a text (such as document or sentence) is 

considered as an unordered collection of words disregarding grammar or even word 

order. Despite the simplicity of such a representation, the retrieval methods that use the 

BoF framework often have shown a high retrieval performance, so a great deal of 

research has been conducted to employ BoF in both 2D and 3D Image Retrieval [195, 

196]. 

A typical content-based image retrieval system using the BoF framework has 3 major 

steps; (1): feature point selection, (2): visual dictionary building and (3): histogram 

generation. Figure 3.7 illustrates the simple BoF framework for three different objects. 

Thanks to the BoF framework, the local 3D shape descriptors can be utilized for global 

shape matching. Several works have described models using the BoF framework.  

In the first proposed charge-based descriptor we utilize the density of distributed charge 

on each face in the BoF framework. It starts by selecting interest points on the surface of 

the models. So, for each model j we choose O� surface triangles (for all of ℳ models in 

the dataset). Various criteria are employed to select the interest points, viz. random 

selection, local maxima points and the higher-than-mid. density points. These criteria 

are detailed and tested in Chapter 4. The densities of the surface triangles become the 

descriptors of each face. 
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Figure 3.7, A typical BoF framework in a 3DOR system 

The next step is to build a dictionary of visual words. To do so, the entire set of  	∑ OFℳFHK 	 
feature point descriptors are clustered into j clusters by the K-Means algorithm using 

the VLFeat source code, which is publicly available on the internet [197]. The cluster 

centres are considered as the visual words. Then, for any model	��, a feature vector is 

constructed by selecting OF sample points for which the charge density acts as the local 

descriptor. Finally, each model is described by a histogram in which any individual bin 

counts the number of occurrences of the visual words in the model. 

3.5.3.4. Concentric Sphere-Electrical Charge Descriptor (CS-

ECD) 

In the second electrical charge-based descriptor, instead of using density of charge, we 

utilize the amount of distributed charge on the triangular faces as the local descriptor. 

The conversion between amount and density of the simulated distribution of charge for 

any face �� can be easily carried out using Equation 3.9: 

 �(��	) = �(��	)Λ(��	) (3.9) 

Where �, �	��e	Λ denote charge density, charge amount and the surface area of face	��, 
respectively.   
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In order to describe each model using the Concentric-Sphere Electrical Charge 

Descriptor more precisely, a beneficial two-phase description scenario, including 

concentric spheres and dense patches, is employed. In the sequel these two phases are 

thoroughly presented. 

3.5.3.4.1. First Phase of DP_CS-ECD construction  

During the first phase, the model is enclosed by a set of concentric spheres with their 

centre at the centre of mass of the model. The radii of the spheres monotonically increase 

to enclose the model entirely. Assume that O� is the number of concentric spheres. So, 

we plan to use the total amount of charge in each layer between two adjacent spheres as 

an element of the feature vector to describe the models. Finally, the whole model is 

described using the O�	dimensional feature vector, which is constructed by the O� numbers 

assigned to the layers. Figure 3.8 depicts a human model in various poses along with the 

related feature vectors shown as histograms (here	� = 100	and	O� = 5). As illustrated in 

this figure, the deformation of the human model results in creating different descriptors 

which is a challenging issue in retrieving deformable models using the proposed 

descriptor.  

 

Figure 3.8, Various poses of a human model enclosed in 5 concentric spheres along with the associated 

histogram descriptors.  

To overcome this problem, the canonical form representations of the models are utilized 

to construct the O� dimensional descriptor. The canonical form is a bending-invariant 

representation in which geodesic distances are approximated by Euclidian ones. Since 

bending has only a minor influence on the geodesic distance [198], different poses of 
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similar objects have a similar canonical form representation. This idea was originally 

introduced by Elad and Kimmel [198]. They also compared three different MDS 

techniques to calculate the canonical form. In our work, we employ the Least-Square 

technique with the SAMCOF algorithm to compute the canonical representation of the 

models [198]. The SAMCOF is an iterative algorithm which starts with an initial 

approximation of possible solutions and then tries to update the results so that the final 

stress function becomes less than a threshold. Figure 3.9 displays the results for four 

different poses of an ant model. Although the poses are different their canonical form 

presentations are quite similar. 

 

 

Figure 3.9, Four different poses of an ant model and their corresponding canonical forms.  

Since both the SAMCOF algorithm and the geodesic distance extraction are time 

consuming tasks, we first simplify all of the models using MeshLab [199] so that they 

have 5000 faces. Later in Chapter 4 the robustness of the charge distribution against 

simplification is examined.  As displayed in Figure 3.10, corresponding layers between 

adjacent spheres in the canonical form representations of various poses of a human model 

possess quite similar amounts of electrical charge.  Therefore, the proposed descriptor is 

expected to offer a high quality of retrieval among deformable models. 
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Figure 3.10, Various poses of a human model represented in the canonical form enclosed in 5 concentric 

spheres along with the associated histogram descriptors.  

3.5.3.4.2. Second Phase of CS-ECD construction (DP_CS_ECD)  

In the second phase of construction the DP_CS-ECD descriptor, we aim at boosting the 

discrimination ability of the descriptor by considering the number of Dense Patches (DP) 

on the surface of each charged model and combining it with the feature vector extracted in 

the first phase.  

To do so, each DP is defined as follows: 

"A Dense Patch (DP) is a local maximum point (a surface with higher electrical charge 

than its neighbours) along with a set of adjacent faces on the model surface which have 

a charge density more than a pre-defined threshold	 "     

The threshold ¡ is experimentally defined as Equation 3.10: 

 ¡ = 0.3 ∗ max(�F) ,				� = 1,2, … ,Ox (3.10) 

Where �F	 is the charge density of face � and Ox is the number of faces on the model. 

Figure 3.11 shows some extracted dense patches on the models based on the density 

distribution 
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Figure 3.11, extracted dense patches on the surface of three different models. 

The motivation for using the number of DPs is as follows: the models from the same class, 

regardless of their poses, have the same number of protruded parts. On the other hand, 

DPs are emerging at the very end sections of the protruded parts (see Figure 3.11). So, it 

is reasonable to expect models from the same class to possess the same number of DPs. 

Consequently, combining the number of DPs with the original CS-ECD to construct a 

hybrid descriptor is able to boost its discrimination ability.    

Now, the dissimilarity between two models ℳ�	and ℳ� is defined based on the 

combination of the two factors: the  O� dimensional descriptor extracted in the first phase 

and the number of DPs identified in the second phase. Equation 3.11 formulates the 

matching criteria using the two factors:  

 jℐy£ℳ�,ℳ�¤ = faℎj�¦(�, §) + j¨_��bb(�, §) (3.11) 

Here, faℎj�¦(. , . ) denotes the ℒKdistance between O� dimensional descriptors of the two 

models and	j¨_��bb(�, §) is the difference in the DP counts of two models	�	��e	§.  
It is important to note that since the values of the two factors are not in the same range 

(e.g. for the models in the McGill dataset: 0 ≤ faℎj�¦(�, §) ≤ 126	and	0 ≤j¨_��bb(�, §) ≤ 10), their linear combinations does not lead to achieve the desired goal. 

That is, the effect of one factor overcomes the other one. Therefore, the two factors 

should be transformed so that they get values in the same range. To do so, we use a kind 

of min-max normalization function which transforms the values of j¨_��bb(�, §) to the 

range of  faℎj�¦(�, §): 
 «@¬_j¨_��bb(�, §) = J ∗ j¨_��bb(�, §) 	+ ­��(faℎjis(i, j))	 (3.12) 

Here, J is the scale factor and is defined as Equation 3.13. 
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 J = ­�:£faℎj�¦(�, §)¤ / ­��(faℎj�¦(�, §))­�:(j¨_��bb(�, §)) / ­��(j¨_��bb(�, §)) (3.13) 

So, the Equation 3.11 can be re-written as follows to measure the dissimilarity between 

two models	�	��e	§: 
 jℐy£ℳ�,ℳ�¤ = faℎj�¦(�, §)+ «@¬_j¨_��bb(�, §) (3.14) 

3.6. Chapter Summary 

This chapter was completely dedicated to the 3D model retrieval field. After giving an 

overview to the research challenges of 3D model retrieval and its application in various 

fields of computer vision, our proposed shape descriptors have been presented entirely. 

These descriptors include a 2D Poisson-based and two 3D electrical charge distribution-

based descriptors.  

The proposed descriptors possess beneficial characteristics and so they are expected to 

offer a high retrieval quality. In order to test their discrimination ability a complete 

investigation on the standard datasets will be held in the next chapter along with the 

effect of utilized parameters in a more in-depth analysis.   
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4 
Experimental Results of the 

Proposed Shape Descriptors  

4.1. Introduction 

The previous chapter discussed our proposed shape descriptors from both the 2D and 

3D categories of available model descriptors. In the current chapter, we present 

complete evaluations of the proposed descriptors on the various standard benchmarks.     

The organization of the chapter is as follows: Section 4.2 introduces the underlying 

datasets to which the proposed descriptors will be applied. Then, the evaluation metrics 

to measure the efficiency of the descriptors are presented in Section 4.3.  Before applying 

our descriptors to the datasets in Sections 4.5, 4.6 and 4.7, the utilized parameters will 

be set in Section 4.4. Then the robustness of descriptors is tested against different 

changes and transformations in Section 4.8. Finally, the complexity of the proposed 

descriptors will be discussed in Section 4.9.   

4.2. Description of Datasets 

Three different datasets have been utilized so as to evaluate the proposed shape 

descriptors more precisely. These datasets include:  

a) McGill 3D Shape Benchmark (MSB): The McGill dataset [79] mainly includes 

models with articulated parts such as Human, Hand, Spider etc. (255 models in 

10 classes). It also offers various classes of models having moderate or no part 

articulations viz. Table, Chair, Airplane etc. (202 models in 9 classes). Some of 
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the models are adapted from the PSB dataset [159] and others have been 

downloaded from different web repositories. Figure 4.1 displays sample models 

from each of the 19 classes of the benchmark.  

 

 

Figure 4.1, sample models from the McGill dataset. 

b) Watertight Models of the SHREC’07 dataset: The 400 seamless models of the 

watertight4 track of the SHREC’07 contest [162] are evenly categorized into 20 

classes with 20 models in each class. The dataset offers a set of queries 

containing 30 models, which have been constructed via sub-part combinations 

of models from different classes. The query set has been designed with the aim 

of evaluating partial-matching algorithms. Appendix B displays the query set 

along with the information about the sub-parts. 

  

c) Non-Rigid 3D Watertight Meshes of SHREC’11 dataset: This large-scale 

dataset includes 600 non-rigid models commonly seen in our surroundings. As 

shown in Figure 4.2, the dataset contains 30 classes in which 20 different poses 

of similar models are available. The reason for selecting this benchmark is 

related to the presence of challenging classes of models. That is, quite similar 

models have been classified into different groups. For instance, various poses of 

                                                           
4 A watertight model is a mesh model which has no whole, cracks or missing features on 

the surface.     
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two kinds of bird (and dog) model are placed into different groups. Furthermore, 

the centaur class, which is partially similar to the man and horse classes, makes 

the dataset more interesting to examine.    

Additionally, since some of the models in the SHREC’11 dataset have been 

borrowed from other well-known datasets (e.g. TOSCA [200] and PSB [159]), one 

can consider the dataset as a general benchmark, which covers a broad range of 

available models in the literature.       

 

Figure 4.2, 30 classes of the SHREC’11 non-rigid watertight dataset along with 5 samples for each class. 

4.3. Evaluation Metrics 

The efficiency of a 3D model retrieval system can be evaluated by several factors namely 

Nearest Neighbour (NN), First Tier (FT), Second Tier (ST), E-Measure, Discounted 

Cumulative Gain (DCG) and the Precision-Recall Curve. In the paragraphs that follow, we 

briefly introduce these metrics: 

• Precision-Recall Curve (P-R): The P-R cure is the most common metric for the 

efficiency evaluation of the retrieval systems. The ̄ .@°�¦�±� and l@°�²² factors are 

defined as follows: 

 ¯.@°�¦�±� = O�  , l@°�²² = O�  (4.1) 

 

Where, O is the number of relevant models retrieved, � is the number of 

retrieved models and � is the number of relevant models in the target dataset. An 
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ideal ¯.@°�¦�±�-	l@°�²² curve has ¯.@°�¦�±� equal to 1 for all values of l@°�²² (all 

relevant models are retrieved before any irrelevant ones).  

It is worthwhile to mention that the parameters ¯.@°�¦�±� and l@°�²² can also be 

used separately, so as to evaluate the retrieval system (e.g., the graph of ̄ .@°�¦�±� 

or l@°�²² vs. the number of retrieved models). 

• Discounted Cumulative Gain (³´µ): The  j¶· measure weights correct results 

returned earlier higher than those returned later within a ranked list. This is due 

to the assumption that the end user does not consider that the correct results 

appear at the lower positions of the ranked list of the retrieved models.  If · is a 

vector and ·F corresponds to the �D� 	element in the ranked list of the retrieved 

models (·F has a value of 1 if the result is of the query class and 0, otherwise), j¶· 

is defined recursively by Equation (4.2).  

 

 j¶·K = ·K , 
j¶·F = j¶·FAK + ·FlogL(�) 						�> 1 

(4.2) 

 

Then, the final measure of j¶· is obtained be dividing the above result by the 

maximum possible	j¶·. The maximum value of j¶· is obtained, if all of the first |¶| ranked models are correctly retrieved (|¶| is the cardinality of the query class 

in the dataset) [3]:   

  

 
j¶· = j¶·�1 + ∑ 1logL(§)|¶|¸HL  

(4.3) 

Here, � is the number of models in the database. 

• Nearest Neighbour (¹¹): OO is a scalar measure to identify whether the first 

retrieved object belongs to the same class as the query object or not. It is computed 

as the mean percentage of the closest matches, which belong to the same class as 

the query model; an ideal score is 100%. It is obvious that the higher the	OO, the 

better the performance.   

• First Tier (º»): Similar to the OOmetric, the ℱ� aims at appraising whether the 

higher ranked retrieved models are the correctly-matched ones or not. Therefore, 

it is defined as the average percentage of the top ; retrieved models that are of 
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the same class as the query. Where ; = |¶| − 1 and |¶| is the number of models 

in the target dataset which belongs to the query class. 

• Second Tier (¼»): The y�(also is known as the Bull-Eye percentage) is quite 

similar to the ℱ� factor but it examines the ; = 2 ∗ |¶| − 1 top retrieved models. 

• E-Measure: This is a composite measure based on the ¯.@°�¦�±� and l@°�²² 

factors which is defined  by the following formula: 

 

 ½ =
2

1�̈ + 1
ℛ�

 (4.4) 

 

Where ¨ and ℛ are ¯.@°�¦�±� and l@°�²² factors for top ; = 32 matched objects 

(first page of retrieved objects), respectively. The rationale behind the E-Measure 

is the fact that the user is more interested in the high ranking positions of the 

retrieved objects.   

Using the evaluation metrics, first we aim at setting the required parameters by which 

the best results can be achieved. Then, the proposed descriptors will be assessed using 

the above-mentioned factors.   

4.4. Parameter Analysis 

In the following sub-sections, we will investigate the effects of the available parameters 

in the proposed descriptors to find their fixed values by which the best performance can 

be achieved. It should be pointed out that the articulated models in the McGill benchmark 

have been utilized so as to examine the parameter effects. The reason for selecting the 

McGill dataset for setting the parameter is as follows: as will be discussed later in 

Sections 4.5 and 4.6, the models in the McGill dataset are more complex and challenging 

to retrieve. Therefore, setting the utilized parameters for the McGill dataset will 

guarantee to get the best results for the other datasets.  

4.4.1. Parameter of the SilPH Descriptor   

There is only one parameter to be set in the definition of SilPH descriptor, which is 

number of bins in the SilPH histogram.  

We have examined four different values as the number of histogram bins including 5, 10, 

20 and 50. As reported in Table 4.1, increasing the number of bins results in a higher 

retrieval quality. But it is obvious that the greater the number of bins, the greater the 
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computational cost of computing the similarity measure. Therefore, we have set the bin 

number equal to 10 as there is no meaningful enhancement in the evaluation metrics for 

the values of 20 and 50.     

 

Table 4.1, The evaluation metrics for different bin numbers of the SilPH Descriptor. 

Bin Number NN FT ST E DCG 

5 0.5114 0.3136 0.3906 0.3218 0.4261 

10 0.7345 0.4619 0.5512 0.4420 0.6177 

20 0.7392 0.4853 0.5574 04817 0.6345 

50 0.7516 0.4932 0.5741 0.4940 0.6671 

   

4.4.2. Parameters of the BOF-CDD Descriptor 

We tested the three parameters of the BOF-CDD descriptor namely the dictionary size, 

feature-point selection criteria and the number of feature points, so as to determine their 

best values. In order to quantify the effect of each parameter, the evaluation factors are 

listed in the appropriate tables.   

4.4.2.1. Size of the Dictionary  

Several different numbers are chosen for the size of the dictionary during the clustering 

algorithm of the BOF framework. As shown in Table 4.2, when the size of dictionary is 

equal to 20 the best retrieval quality is obtained. The smaller size of the dictionary is 

another powerful point of our approach and leads to a lower number of comparisons 

and a higher speed of the retrieval process.  

Table 4.2, Evaluation factors for different size of dictionary in BOF-CDD (With 1000 random points) 

Dictionary Size NN FT ST E DCG 

5 0.7188 0.4962 0.6393 0.4784 0.8186 

10 0.8250 0.5349 0.6778 0.5049 0.8304 

20 0.8563 0.5455 0.6610 0.5301 0.8649 

50 0.8112 0.5147 0.6101 0.5441 0.8012 

200 0.5125 0.4095 0.5641 0.4312 0.7465 

4.4.2.2. Feature Point Selection Criteria 

Three different approaches are utilized as the feature point selection criteria as follows: 

1) Random: Random: Random: Random: The feature points are randomly selected on the surface of the models.    

2) Local Maxima: Local Maxima: Local Maxima: Local Maxima: All of the surface points holding the local maxima of charge 

density are chosen as the feature points. 
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3) HigherHigherHigherHigher----ThanThanThanThan----MidMidMidMid    Density: Density: Density: Density: The surface points � which possess the charge 

density satisfying the following criterion are selected:    

    

    �� ≥ 1
2� [¿�:(�F) − ¿��(�F)] , � = 1,2, … , �  (4.5) 

    

Where, �F denotes the charge density of face � and � is the number of faces on the model 

surface. As displayed in Table 4.3, the randomly selected points show the better ability 

than the others. 

 

Table 4.3, Evaluation metrics for different feature points selection criteria in BOF-CDD (Dic_Size=20). 

Selection Criterion NN FT ST E DCG 

             Random  0.8563 0.5455 0.6610 0.5301 0.8649 

             Local Maxima 0.6415 0.3198 0.4602 0.3177 0.6505 

             Higher-Than-Mid. 0.3581 0.2700 0.4333 0.3176 0.5414 

 

4.4.2.3. Feature Point Number 

Different numbers of randomly selected feature points are employed for matching the 

models. As depicted in Figure 4.3, a choice of 1000 seems to be the best one for the 

feature point count per model.  

 
Figure 4.3, The relation between the DCG measure and number of feature points in BOF-CDD (Dic_Size=20) 

4.4.3. Parameters of the DP-CS-ECD Descriptor 

As detailed in Chapter 3, the number of concentric spheres is the only parameter to be 

set in the DP-CS-ECD descriptor. Therefore, we enclosed each model in different 
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numbers of concentric spheres to describe the models. The resulted feature vectors are 

investigated to examine the retrieval abilities (see Table 4.4).  

 

 

Table 4.4, Evaluation metrics for different numbers of concentric spheres in the DP-CS-ECD Descriptor. 

Sphere Count NN FT ST E DCG 

5 0.7212 0.3414 0.4710 0.4012 0.6337 

10 0.8563 0.4940 0.6359 0.4719 0.8172 

20 0.8812 0.6352 0.8012 0.5319 0.8961 

50 0.7375 0.4803 0.6433 0.4735 0.7968 

200 0.4063 0.2641 0.3805 0.2879 0.5868 

The data reported in the above table illustrate that value 20 is the best choice for 

concentric sphere count. So, we set O� = 20 for the entire retrieval process.  

4.5. Results on the McGill Dataset 

After setting the parameters, the proposed descriptors have been applied to all the 

models in the McGill dataset with the aim of verifying their performance and comparing 

it to the well-known approaches. We compare our descriptors to the famous approaches 

for which the comparison data on the McGill dataset are available. These approaches are: 

Shape Distribution (D2) [58], Spherical Harmonic Descriptor (SHD) [47], Curvature-

Based (Mean Curvature) [201], Light Field Descriptor (LFD) [27], 3D Poisson-Based (PH) 

[73] and the Clock Matching-Based Approach (MDDS-CM-BF) of Lian et al. [15]. The LFD 

had the best retrieval ability compared with the other 12 descriptors in [159]. In 

addition, the MDS-CM-BOF descriptor is one of the state-of-the-art approaches which, 

owing to a beneficial matching scheme (clock matching), achieved a very good ranking 

among the participants of SHREC’11 contest [19]. A detailed description of these 

approaches can be found in Chapter 2.  Figure 4.4, depicts the ¯.@°�¦�±�-l@°�²² curve 

for these methods along with those obtained by our descriptors.  
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Figure 4.4, the P-R curve for our and six other well-known approaches. 

As depicted in Figure 4.4, our methods distinctly outperform four other methods, but the 

MDS-CM-BOF descriptor is still the best by far especially for the higher values of Recall. It is 

important to note that although the MDS-CM-BOF shows the highest quality it cannot be 

utilized for partial matching, since it is a view-based approach. Furthermore, because of its 

special kind of matching scheme, it is not fast enough to retrieve similar models efficiently 

(its matching scheme is quite time-consuming). The curvature-based approach, on the other 

hand, is a histogram-based approach which performs better than our approaches. Since it 

only uses the local information to extract the signature for each point, it is noticeably 

sensitive to noise. Figure 4.5 depicts the effect of noise on the mean-curvature descriptors of 

a sample model. It shows that any change on the surface of model considerably affects its 

curvature which in turn affects the model descriptor. Additionally, the SilPH descriptor 

proposed in this work shows more discriminative ability than its 3D counterpart (descriptor 

PH in the above diagram). But, the SilPH descriptor is slower than the 3D PH one as the SilPH 

employs a time-consuming process of multi-view matching while the 3D PH computes the 

similarity measure between two models via a one-stage histogram comparison.  
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Figure 4.5, Mean Curvature descriptor, left:  normal model, right:  noisy model 

Among descriptors proposed in this thesis, the charge distribution-based approaches 

(CD-BOF and DP-CS-ECD) show better retrieval quality than the Poisson-based one 

(SilPH). This superiority is reasonable as the charge-based descriptors take into account 

both local and global characteristics of the model surface, while the SilPH descriptor only 

encodes the global features of the models. On the other hand, the DP_CS-ECD descriptor 

outperforms the CD-BOF one. The reason for that may be related to the fact that the DP-

CS-ECD is constructed on the canonical form of the models which makes it more 

applicable to deformable models in the dataset.       

4.6. Results on SHREC’11 Dataset 

In order to evaluate more precisely, we have applied the proposed descriptors to the 600 

models of the SHREC’11 models and compared their performance to those of all the 

participants of the non-rigid watertight track of the SHREC’11 contest [19]. The 

contestants contain a variety of state-of-the-art approaches viz. Laplace Spectra 

approach of Reuter (Shape DNA) [202], Clock-Matching approach of Lian and Godil 

(MDS-CM-BOF) [15], Heat Kernel Signature utilized by Sipiran and Bustos (HKS) [203], 

fused approach of Geodesic Distance Matrix and MeshSIFT of Smeets et al. (GDM-

MeshSIFT) [204], Densely-Sampled Local Visual Feature approach of Tabia and Daoudi 

(Patch-BOF) [205] etc.  More descriptions about these approaches can be found in 

Chapter 2 and the report paper published on the SHREC’11 contest [19]. It should be 

noted that six among nine participants of SHREC’11 contest have utilized the BoF 

framework which confirms the ability and popularity of BoF in 3D retrieval domain. The 

result of the comparison is shown via the ¯.@°�¦�±�-l@°�²² curve in Figure 4.6. 

Furthermore, five other related standards metrics are shown in the Table 4.5.  
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Figure 4.6, Precision-Recall curve of the proposed descriptors and the approaches participated in 
SHREC’11 contest. 

The data reported in Figure 4.6 and Table 4.5 illustrate that the hybrid approach of SD-

GDM-MeshSIFT outshines other approaches by far. The particular forte of SD-GDM-

MeshSIFT, which gives it the best rank among all of the competitors, relates to its 

combined nature. That is, the approach considers both local and global characteristics of 

the models by fusing a global feature method (SD-GDM) with a local feature method 

(meshSIFT) to describe the models. Our electrical charge-oriented descriptors, BOF-CDD 

and DP-CS-ECD, are among the best approaches and their performances are quite 

comparable to the state-of-the-art ones. The SilPH descriptor on the other hand, gained 

lower rank among our approaches since it only considers the global features of the 

models.         

It is worthwhile to point out that in general, the proposed descriptors show better 

discriminative ability for the SHREC’11 dataset than the McGill benchmark. It is also the 

case for other approaches such as the MDS-CM-BOF approach of Lian and Godil. This 

difference is due to the variation of the models in the two datasets and can be justified 

by the following reasons:  

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

SD-GDM-

MeshSIFT [204]

HKS [203]

Shape DNA [202]

FOG [19]

BOF Local Spectral

[207]

MDS_CM_BOF [15]

BOGH [19]

LSF [19]

Patch-BOF [205]

BOF_CDD

DP-CS-ECD

SilPH



100 

 

Table 4.5, Evaluation metrics of the proposed descriptors and the approaches participated in SHREC’11 
contest. 

            Method Name NN FT ST E DCG 

            FOG 0.968 0.881 0.946 0.696 0.959 

            BOF-Local Spectral 0.965 0.672 0.803 0.579 0.889 

            MDS-CM-BOF 0.995 0.913 0.969 0.717 0.982 

            BOGH 0.993 0.811 0.884 0.647 0.949 

            LSF 0.995 0.809 0.879 0.643 0.948 

            Shape DNA 0.997 0.915 0.957 0.705 0.978 

            HKS 0.837 0.406 0.497 0.353 0.730 

            GDM-MeshSIFT 1.000 0.972 0.990 0.736 0.996 

            Patch-BOF 0.748 0.642 0.833 0.588 0.837 

            SilPH 0.935 0.655 0.785 0.582 0.884 

            DP-CS-ECD 0.982 0.887 0.914 0.702 0.952 

            CD-BOF 0.965 0.833 0.896 0.668 0.944 

 

• Intra-Class Dissimilarity: The models of each class in the McGill dataset have 

more diversity than the SHREC’11 ones. The Four-Limb class of the McGill for 

instance, includes 30 various poses of different animals ranging from Cat, Dog and 

Horse to wild animals such as Tiger and Boar. Each of these models has its own 

class in the SHREC’11 dataset. Generally speaking, each class of the SHREC’11 

dataset includes an identical model in different poses, which are quite similar, 

while the models of the same class in the McGill dataset are not necessarily alike.   

• Inter-class Similarity: Some distinct classes of the McGill dataset (e.g. Crab and 

Octopus classes) include models quite similar in structure and topology. This 

similarity is also present in two classes of Fish and Dolphin models.        

 

Although the SHREC’11 dataset contains a set of various categories (e.g. Men and Women 

or Dog1 and Dog2 in Figure 4.2) which possess similar overall appearances and different 

details and/or topological structures, the above mentioned reasons make the models in 

the McGill dataset more challenging to match and retrieve.   

We have shown in Figure 4.7, the ¯.@°�¦�±�-l@°�²² curve for six sample classes using 

the DP-CS-ECD descriptor as it has shown best retrieval ability among the three 

proposed descriptors. These classes include challenging groups of models such as 

similar classes of Men and Women.  

The Men and women are the problematic classes for which the retrieval quality is not 

satisfactory enough. The reason for this issue is related to the similarity of both local and 

global features of the models in these two classes. Moreover, the similar models in other 
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classes (viz. Gorilla and Santa) deteriorate the results so that the retrieved models for 

different Man queries include several incorrect models from these similar classes.  

The Plier and Paper models on the other hand, are the classes for which the DP-CS-ECD 

has shown the highest discriminative quality. These two classes have quite different 

structure so that the DP-CS-ECD is able to differentiate them easily.       

4.7. Partial Matching Ability on SHREC’07 Dataset 

Partial matching is a quite challenging field in 3D model retrieval domain, in which the 

aim is to find and retrieve the models from a target dataset that share similar subparts 

with a sample query. 

Among the three proposed descriptors, the BOF-CDD is expected to be able to support 

partial matching as it considers the local characteristics of the model surface. The other 

proposed electrical charge-oriented descriptor, DP-CS-ECD, utilizes the same 

information to describe the models, but it is obvious that the amount of electrical charge 

on the layers between the spheres for two partial-similar models is quite different. 

Figure 4.8 displays the different DP-CS-ECD descriptors of a mixed query model (query 

number=28 in the query set of Appendix B) and two of its partial-similar models (Plier 

and Octopus).  
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      Figure 4.7, Precision-Recall curve for six sample classes of SHREC’11 dataset using DP-CS-ECD 

descriptor   

 

 

Figure 4.8, the DP-CS-ECD descriptors for partial similar models (�=100 and O�=5) 
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The SilPH descriptor, on the other hand, is an inappropriate descriptor of partial 

matching as it uses global features of the silhouettes for describing the models. As 

depicted in Figure 4.9, in a sample set of partial-similar models, the extracted silhouettes 

from similar viewpoints have quite different SilPH descriptors, which lead to an inability 

of the SilPH descriptor in partial matching.  

In the following section we first give a concise overview of some available approaches 

for the partial matching of 3D models and then the ability of the BOF-CDD descriptor to 

support partial matching is tested on the models in the SHREC’07 dataset.   

 

Figure 4.9, First row:  the silhouette extracted from identical viewpoints for the partial-similar models. 

Second row: solution of the views to the Poisson equation and Third row: SilPH Descriptor of the views.       
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4.7.1. Related works 

Despite the existence of dozens of approaches for global matching of 3D models, there 

are only a few methods proposed in the literature, which tackle the challenging issue of 

partial matching. In the sequel a brief discussion on some of these approaches will be 

presented.  

Toldo et al. [206] proposed a multi-level BOF framework so as to describe the models. 

Their process starts by segmenting the models using the Shape Index (SI) descriptor. 

Then, four different shape descriptors namely Shape Index, Radial Geodesic Distance, 

Normal Direction and Geodesic context are employed to describe the extracted semantic 

segments. Based upon the type of descriptor and bin numbers in the BOF framework, 

several histograms are built to describe the models. The authors claim that their 

approach implicitly encodes partial matching since corresponding segments are likely 

to belong to the same bin of the signature histogram.    

Recently, Guillaume employed a spectral oriented descriptor to deal with the partial 

matching problem [207]. His approach starts by selecting a set of random seed points on 

the surface of models. Then the Lloyd relaxation algorithm [208] is applied to the seeds 

to distribute them uniformly. These seeds are used to define patches centred on each 

seed. The method computes the Fourier spectra of the patch by projecting the geometry 

on the eigenvectors of the Laplace-Beltrami operator (LBO) and uses it as the local 

descriptor of the patches. Finally, a BoF framework augmented with the visual 

expression technique [95] is employed to support partial matching in a spatial-sensitive 

manner.  

Differently, Tierny et al. [209] proposed a structural approach for partial matching using 

Reeb graphs. In their approach, Reeb Pattern Unfolding (RPU), the graph is constructed 

using the Geodesic distance and is augmented with the geometrical information of each 

node which is obtained by analysing the Gaussian curvature in each vertex of the mesh. 

The method first segments the models based on the graph and then the extracted parts 

are described based on a parameterization technique so as to be utilized in a partial 

matching framework (See Figure 4.10).    

Another Reeb graph-based approach for partial matching has been proposed by Biasotti 

et al. [77]. It uses the Extended Reeb Graph (ERG) which is a combination of the multi-

resolution Reeb graph (for structural information) and the Spherical harmonics of the 

nodes (geometrical information). In order to perform partial matching, the authors have 
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adopted a directed attributed graph matching method to find the maximum common 

sub-parts between two ERGs.    

 

 

Figure 4.10, RPU approach of Tierny et al. [209]. The First row shows the segmentation process of a hand 

model into its Reeb charts and the Second row displays the Reeb chart unfolding process of its thumb.  

Finally, Cornea et al. [82] introduced a skeleton graph-based approach for partial 

matching of 3D models. Their approach, as detailed in Chapter 2, is the extended version 

of skeleton extraction approach of Sundar et al. [80]. The skeleton graph is extracted 

using a generalized potential field [83]. The graph matching step is then carried out by 

the Earth Mover Distance (EMD) which naturally supports partial matching.   

In the following section we compare the BOF-CDD descriptor to the above-mentioned 

approaches using the models of SHREC’07 dataset.   

4.7.2. Partial Matching Results 

All the models available in the query set of the partial matching track of SHREC’07 have 

been fed to the proposed retrieval system using the BOF-CDD descriptor. The query set 

contains 30 models which are obtained by merging or removing several subparts of 

models belonging to the SHREC’07 watertight dataset. Appendix B shows the models in 

the query set. In order to evaluate the performance of the BOF-CDD descriptor in terms 

of supporting partial matching, the results are compared to those of the approaches 

stated in the previous section. Figure 4.11 depicts the top ten retrieved models for three 

sample queries using the BOF-CDD descriptor. As displayed in this figure, the retrieved 
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models contain relevant, marginally-relevant and even irrelevant models. The presence 

of irrelevant models among the top ten results reveals the weakness of the underlying 

descriptor in matching of partial-similar objects.  

 

Figure 4.11, Three sample queries and associated ten retrieved models. 

In order to evaluate the ability of the proposed approach quantitatively, we utilized the Oj¶· metric to compare it to the state-of-the-art 3D partial matchers. So, in order to 

compute	Oj¶· the values of 2, 1 and 0 are assigned to the parameter ·F for the models 

which are highly-relevant, marginally-relevant and non-relevant, respectively (see 

Equation 4.2).        

As illustrated in Figure 4.12, the BOF-CDD is not able to produce pleasing results in 

comparison to the other approaches for retrieving partial similar models. The weakness 

of BOF-CDD in terms of supporting partial matching can be explained as follows: 

When a major change occurs in the structure of a model (e.g. attaching more sub-parts 

to the model or merging two models so as to generate a new mixed model), the altered 

parts accumulate some portions of distributed charge which will affect the 

amount/density of charge on the unchanged parts. Due to local property of BOF-CDD, 

one may expect to see similar charge distribution on the faces of identical sub-parts of 

partial-similar models. But since the total amounts of charge on these sub-parts are not 

the same, their faces on different models do not possess the exact similar amount of 

charge. 
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Figure 4.12, NDCG plot for BOF-CDD and five other approaches. 

Note that the distribution of charge on the similar sub-parts follows the same pattern of 

distribution. Consider a finger model for instance, no matter whether the finger is 

connected to only a hand model or to a whole human, the amount/density of charge 

gradually declines as the faces get further from the fingertip. But the charge 

amount/density on the similar faces of the finger is not necessarily the same. As a result, 

a finger in various contexts cannot be correctly matched via the BOF-CDD descriptors.           

Aware of this, we can conclude that the global features have a predominant role in the 

forming of BOF-CDD descriptor which results in inadequate ability of the BOF-CDD 

descriptor to match the models having similar sub-parts.  

4.8. Robustness 

In this section we examine the robustness of the proposed descriptors against a variety 

of surface changes such as noise, mesh tessellation and deformation.      
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4.8.1. Robustness to Noise 

 A variety of distortions such as noise and small perturbations may be seen on the surface 

of the models. So, the ideal descriptor should be insensitive to this class of distortions. 

Here we try to find how well the proposed descriptors are robust to noise.    

SilPH Descriptor: As stated in Chapter 3, the SilPH signature is a global descriptor and 

is computed using the average time for particles to hit all of the boundaries of the 

extracted silhouette views. Therefore, it is expected to be insensitive to noise as each 

pixel signature is generated by the contribution of all boundary points.   

Figure 4.13 depicts the SilPH descriptor for the normal and noisy versions of a Teddy 

model. As expected, the SilPH histograms of the same views of the two models are quite 

similar. It supports our claim about the robustness of the SilPH descriptor against noise.    

 

Figure 4.13, The SilPH histogram for identical view of the original and noisy versions of a Teddy model 

Electrical Charge Distribution: since the foundation of both BOF-CDD and DP-CS-ECD 

descriptors is charge distribution, we examine how well the Electrical Charge 

Distribution is robust to noise so as to investigate the robustness of these descriptors. 

To do so, we distribute a certain amount of charge on the surface of a human model with 

different levels of noise (Noise Level or NL is the ratio of largest displacement to the 

longest edge of the object’s bounding box). Figure 4.14 illustrates that the charge 

distribution on the surfaces of the noisy human models are quite similar to the normal 

one. This similarity is due to the fact that distribution of charge on each face is 

contributed by all the faces of the model. Consequently, noise and other small surface 

defects do not have considerable effects on the charge distribution. It is obvious that the 

higher the noise level, the greater the change in the distribution so that For NL=1.0 the 

distribution of charge (yellow bars of histogram in Figure 4.14) is not as satisfactory as 

for the lower levels of noise.   
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This class of robustness reveals the fact that the global features, which are encoded by 

the charge distribution-based descriptors, play a more critical role than the local 

features.      

    

 

Figure 4.14, Distribution of electrical charge on the surface of a model with different levels of noise 

4.8.2. Robustness to deformation 

The ideal shape descriptors should be independent of the model pose to be able to 

effectively match and retrieve different models of the same class. In the paragraphs that 

follow, we examine experimentally the robustness of the proposed descriptors to pose 

deformations.       
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SilPH: the SilPH descriptor is expected to be relatively insensitive to mesh deformations 

as it utilizes the entire boundaries of the silhouettes. To examine it practically, two 

silhouette views of three different poses of a human model have been captured from 

similar viewpoints. The SilPH histograms of these silhouettes in Figure 4.15 illustrate 

that, although the histograms associated to view#1 of the models are comparable, it is 

not the case for those captured from view#15. Generally speaking, the robustness of the 

SilPH descriptor against mesh deformation depends on the amount of deformation of 

the model. That is, the more deformation in the model poses, the less robust the 

descriptor.  

 

Figure 4.15, the SilPH histogram of human model in deferent poses.  

Electrical Charge Distribution: It is obvious that the DP-CS-ECD is insensitive to pose 

deformations as it utilizes the canonical form representation of the models. In order to 

check this class of robustness for BOF-CDD descriptor we have shown the BOF-CDD 

descriptors of a human model in four different poses. The resemblance of descriptors for 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

M1_View#1

M2_View#1

M3_View#1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

M1 _View#15

M2 _View#15

M3 _View#15



111 

 

the human models reveals the insensitivity of the BOF-CDD against pose deformations 

(see Figure 4.16).  

 

Figure 4.16, BOF-CDD for various poses of a human model. 

4.8.3. Sensitivity to Mesh Tessellation   

Working with lower resolution models (models with a lower number of faces) can result 

in achieving higher efficiency of the retrieval system. On the other hand, if the underlying 

shape descriptor is robust to the mesh tessellation, this efficiency is obtained without 

losing the effectiveness of the system. In the following sub-sections, In order to 

investigate the characteristics of the proposed descriptors more precisely, we examine 

their insensitivity to the mesh tessellation.     

SilPH Descriptor: As detailed in Chapter 3, the SilPH descriptor is defined on the 

extracted silhouettes which are not affected by the mesh tessellation process. Therefore, 

the solution of these silhouettes to the Poisson equation is expected to be similar. One 

can see in Figure 4.17 that the extracted SilPH descriptors from similar viewpoints of a 

model in various resolutions are almost identical. Consequently, it is reasonable to 
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conclude that the SilPH descriptor offers a resolution-independent signature which 

results in a faster retrieval process.     

 

Figure 4.17, The SilPH descriptors along with the solution of their similar views of a human model in 

various resolutions to the Poisson equation  

Electrical Charge Distribution: We have theoretically claimed in Chapter 3, that the 

distribution of electrical charge is not sensitive to the mesh resolution. In order to 

support our claim practically, we distribute electrical charge on the surface of an 

identical human model at four different levels of resolution, viz. 10K, 5K, 3K and 1K faces. 

As shown in Figure 4.18 the charge distribution on the surface of the models is 

completely independent of the mesh tessellation. As mentioned in Chapter 3, this is 

because of the fact that when the area of a triangular face gets larger (due to 

simplification), the amount of accumulated charge increases by the same ratio. 

Therefore, the charge density of the face remains the same. This makes the proposed 

electrical-charge-oriented descriptors tessellation-insensitive.      
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Figure 4.18, distribution of electrical charge on the surface of a human model in various resolutions.  

4.9. Complexity 

In this section, the computation costs of the proposed descriptors along with the 

required time for retrieving similar models from the target datasets are discussed.   

SilPH: Numerical solution to the Poisson Equation requires		k(Og		L) for a silhouette 

view having 	Og pixels [192]. Additionally, the histogram construction for each view 

takes		k(Og		L)	. So, the total time complexity of SilPH computation is		k(		Og		L + 	Og		L) =k(2 ∗Og		L) = 	 		k(Og		L). On the other hand, assuming that OÀ projected views are 

extracted to represent a 3D model, comparing two 3D models would cost		k(OÀ). If a 

database contains ; models, then matching a 3D model query with the database would 

cost	k(;OÀ). 
BOF-CDD: For a model having O faces, computation of simulated distribution of 

electrical charge costs 		k(O	 L	) [171]. Additionally, the dictionary construction of the 

BOF process via K-Means clustering takes k (OÁ ∗ OÂÃD ∗  �±_�7@.);	OÂÃD is the total 

number of selected faces on the surface of all the models, OÁ is the number of clusters 

(20 in our implementation) and �±_�7@. in our work is 20. Finally, the histogram 

construction for describing each model requires OÁ ∗ OÂÃD operations.  

It is worthwhile pointing out that, since the dictionary is created in the offline-phase, its 

time complexity does not affect the descriptor construction in the online-phase. 
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Therefore, the time complexity of descriptor generation for each model consists of the 

complexity of the charge distribution simulation and the histogram construction, which 

will be	k(OL +OÁ ∗ OÂÃD). 
DP-CS-ECD:  The canonical form calculation and the charge density distribution of the 

models take k(OL ∗ �±_�7@.) and k(OL)	respectively, where O is the number of faces 

and �±_�7@. is 10 in our implementation. Extraction of dense patches on the surface of 

models costs	k(O). So, the overall complexity of DP-BOF-ECD descriptor computation 

is	k(10OL +OL +O) = k(11OL +O) = k(OL). 
Table 4.6 reports the computation and retrieving times for the proposed descriptors on 

the target datasets running on a HP laptop with Intel 2.2GHz CPU. As illustrated in this 

table, the SilPH descriptor is the slowest one as it should generate and compare 60 

silhouettes per model. Among the charge distribution-oriented descriptors, the 

computation time of DP-CD-ECD is slightly more than that of BOF-CDD. This is due to 

extra pre-processing phase of canonical form extraction which takes around four 

seconds for a 5000-face model. Although the dictionary creation of BOF-CDD is quite a 

time-consuming task (about 200 seconds), it is performed in the off-line phase and does 

not slow down the matching and retrieval tasks in the on-line phase. So, the retrieving 

times of DP-CD-ECD and BOF-CDD are almost similar on the both McGill and SHREC’11 

datasets.  

Table  4.6, Complexity of the proposed descriptors 

Descriptor 

Name 

Computation 

Complexity  

Computation 

Time(Sec.) 

Retrieving Time 

on McGill(Sec.) 

Retrieving Time 

on SHREC’11(Sec.) 

SilPH 		k(Og		L) 7.1 21.1 26.4 

BOF-CDD k(OL +OÁ ∗ OÂÃD) 4.2 6.1 8.4 

DP-CD-ECD k(OL) 7.4 7.9 10.2 

4.10. Conclusion 

In this chapter, we have experimentally investigated the capability of the proposed 

shape descriptors. After introducing the target datasets along with the utilized 

evaluation metrics to assess the descriptors, we first set the available parameters for all 

of the three descriptors. Then, the effectiveness of the proposed descriptors on two 

standard datasets namely, The McGill Shape Benchmark and SHREC’11 non-rigid 

watertight datasets has been examined. The results show that the electrical charge-

based descriptors offer higher retrieval ability than the SilPH one.  
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Furthermore, the ability of the proposed approaches in terms of the challenging issue of 

supporting partial matching has been thoroughly investigated. Although the BOF-CDD 

descriptor was expected to provide good ability in matching similar sub-parts of the 

models, the encoded global features by the descriptors did not allow the similar parts to 

be correctly matched.  

Additionally, we examined the robustness of the descriptors to different surface changes 

such as mesh deformations, tessellations and noise. As expected, the descriptors offer 

high robustness against these classes of changes.              

Finally, the last part of the chapter was dedicated to the examination of time-complexity 

of the proposed descriptors. The required time for retrieving similar models shows that 

the view-based descriptor is quite slower than the other two electrical charged-based 

ones.         
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5 
3D Model Segmentation 

5.1. Introduction 

 As 3D models are becoming larger and more complex, decomposing such models into 

smaller and simpler meaningful parts is getting necessary in lots of graphic applications 

viz. compression [99], texture mapping [100], 3D shape retrieval [102],  shape 

simplification [101] etc. Consequently, as also shown in Chapter 2, 3D mesh 

segmentation or decomposition has gained enormous attention from leading 

researchers in graphic domains. 

 

The process of segmenting the model surface can be mathematically defined as follows:  

Let ℳ be a 3D mesh model. A set y = mÄK, ÄL, Än, … , ÄO 	o	is considered as a valid 

segmentation on ℳ	if: 
Ä1 ∪	Ä2 ∪	Ä3 ∪ …∪	ÄO = 	ℳ	 and 

Ä� ∩	Ä§ = 	∅,  1 ≤ 	�, §	 ≤ O , � ≠ §  , O is number of segments. 

In this chapter we introduce our robust, efficient and fully automatic approach for 

decomposing 3D models using a well-known fact from electrical physics about the 

tendency of charge to accumulate at sharp convex areas and to diminish at sharp 

concavities on the surface of a solid. That is, the 3D models are considered as perfect 

conductors which are placed in free space (a space with no electric charge). Then, we 

distribute a predefined electrical charge É on the surface of the models. Guided by 

distribution of the charge, our algorithm will be able to specify the segments attached to 
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the main parts of the models as well as locating the boundaries of the segments. Our un-

supervised approach needs no prior knowledge about the models and thus, the entire 

information should be extracted from meshes themselves. As will be presented in 

Section 5.6, it solely exploits charge density distribution in both protruded part 

extraction and boundary detection. Figure 5.1 shows the pipeline detail of our proposed 

segmentation method. It is worthwhile to point out that the charge density distribution 

takes into account both the local and the global structure of the models, which is quite 

beneficial in segmentation applications. These valuable features are referred to as the 

"Quasi-Local" and "Quasi-Global" properties in [171]. The quasi-local property of charge 

density results in robustness to deformation, which has no effect on the local and fine 

features of the model surface such as face concavity and boundary detection. The quasi-

global property, on the other hand, results in robustness of the proposed approach 

against noise and other surface perturbations.    

The cornerstone of the proposed algorithm is based on two main concepts: 

• The premise that a 3D model can be considered as a core body and some 

protruding parts connected to the core [153]. 

• A particular regularity in nature known as "transversality5" combined with a rule 

from cognitive science known as the "minima rule", which states that humans 

perceive boundaries at contours of minimum principal curvature. 

These two premises will guide the segmentation process to locate the boundaries along 

concave regions in the direction of minimum principal curvature. 

The organization of the rest of this chapter is as follows: in the next section we first 

discuss the scientific challenges available in the segmentation area. Next, we briefly 

explain the applications of 3D model segmentation in other fields of computer vision. 

Later in Section 5.4, similar related work will be presented. Section 5.5 provides a simple 

background on the facts, which we utilize in our approach, and finally we will offer a full 

detailed description of our approach in Section 5.6.    

 

                                                           
5 It states that, "when two arbitrarily shaped surfaces are made to interpenetrate; they 

always meet at a contour of concave discontinuity of their tangent planes" [214]. 



118 

 

 

Figure 5.1, Detailed steps of our segmentation framework. 

5.2. Scientific Challenges 

As discussed in Chapter 2, 3D model segmentation is a relatively mature field so that, 

during the last decade, a considerable amount of research for decomposing models into 

meaningful parts has been conducted. Although a large portion of these approaches 

generate acceptable results, the emergence of new complex models (see Figure 5.2 (a)) 

due to the daily growth in digital technology and applications, justifies the need for new 

segmentation approaches. The new approach should be able to answer the challenges of 

the segmentation domain. These challenges can be listed as follows: 

• Accuracy: accuracy of the extracted segments, including both boundaries and 

extracted parts, is the most considerable challenge to be dealt with.  The 

segmentation algorithm should be able to decompose models into meaningful 

parts similar to the human perceptions as much as possible. Although some of the 

available approaches can generate acceptable and nice-looking segments 

(comparing to the manual ones), proposing new accurate techniques still remains 

a challenging issue.    

• Hierarchical Segmentation: Hierarchical decomposition is a valuable 

characteristic which is only supported by a small portion of existing approaches. 

Based upon the application used, hierarchical segmentation algorithms can 

proceed until a desired level of detail has been extracted. Considering the fact that 

the segmentation level is highly application-dependent, the hierarchical 

segmentation methods are applicable in a wide range of graphic applications.  

(Figure 5.2 (b))   
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• Robustness: Robustness can be considered as an umbrella term that 

encompasses a wide range of transformations; the insensitivity to noise and 

perturbations is a desired feature for the approaches dealing with low resolution 

models. Also, pose deformation-insensitivity is another constructive aspect of 

robustness, which is quite beneficial for content-based model retrieval and partial 

matching. Therefore, designing robust segmentation algorithms will be of 

enormous value to anyone interested in the computer graphics domain. (Figure 

5.2 (c), (d))          

• Speed: The new emerging complex and high resolution models need time-

consuming approaches to be segmented correctly. On the other hand, as with all 

other computer algorithms: the faster, the better. Despite the emerging fast 

processors with high speed GPUs, proposing faster algorithms is still of great 

interest to researchers and graphics companies (Figure 5.2 (a)).  

 

 

Figure 5.2, sample 3D models (a) models having complex structure, (b) Hierarchically segmented, (c) noisy 

models and (d) Human model in different poses.  
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5.3. Applications  

Segmentation of a 3D model into semantically meaningful parts has various beneficial 

applications in the computer graphics domain. In the sequel we briefly list some of the 

applications.    

a) Reverse Engineering: Reverse engineering of segmentation is mostly seen in 

CAD models. By extracting the parts of a mechanical model, one can re-use the 

components to construct new, different models. As is possible in the real word, 

pre-constructed components empower users to create free-form models faster 

and easier. A modelling-by-example framework proposed by Funkhouser et al. 

[130] is a sample of such applications, in which a desired part of the segmented 

models can be replaced by any of the similar parts in the dataset. Figure 5.3 

displays a new chair constructed by assembling different parts of available 

models.   

 

Figure 5.3, construction of a new chair model from other chairs’ components. (Figure is taken from [130])  

b) Partial Matching: Comparing models based on the resemblance of their parts, 

as well as finding shapes that contain a specific part, can be enhanced by 

decomposing the models prior to performing a search algorithm. Agathos et al. 

[210] employed a graph-isomorphism methodology to perform partial matching. 

They extracted the attribute relational graph using extracted segments of the 
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models. Shapira et al. [102] on the other hand, use Shape Diameter Function 

(SDF) as the shape descriptor and allow the user to load a model and select a 

desired part to retrieve models having similar parts. Figure 5.4 exemplifies some 

queries and the retrieved models in their work. 

 

Figure 5.4, Partial matching samples from [102]; the highlighted part of the models in the left-

hand column is the query and the models in the other columns are the retrieved results. 

 

c) Skeleton Extraction: the skeleton is a one-dimensional graph representing the 

structure of the model at hand. Due to their simplicity compared to the original 

models, skeletons can speed up some applications such as deforming the pose of 

models in producing animated movies. Although the skeletons are usually used 

to perform segmentation (see Chapter 2), the reverse direction of extracting the 

skeleton of models from extracted segments has been seen in some works 

[129][211]. Lien et al. [211] follow a hierarchical paradigm to decompose models 

and extract its skeleton, while Shapira et al. [129] extract a consistent skeleton 

curves, which remain the same for different poses using the SDF descriptor (see 

Figure 5.5).          
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Figure 5.5, Different poses of a horse model and consistent skeleton curves extracted by the approach of 

Shapira et al. [129]. 

d) Model Automatic Annotation: Annotating the model sub-parts can easily 

convert content-based search to the simpler and possibly faster task of text-

based search. In the work of Shapira et al. [102], the user is allowed to select a 

desired part of a segmented model, which is going to be annotated automatically. 

The part is fed into the retrieval system as a query and a set of results is retrieved. 

Then, the tags attached to the top 20 retrieved parts are considered as assigning 

a set of weighted tags to the query part. In a different aspect, Attene et al. [193] 

designed a "shape annotator" system by which the extracted parts of a 

segmented model are annotated using ontology-based concepts.     

5.4. Related Work 

According to our knowledge, the only work for 3D model decomposition similar to ours has 

been proposed in 1997 [171]. Wu and Levine employed a charge density distribution to 

perform mesh decomposition. In their work, based on the minima rule, the boundary 

parts of models are located at concave areas having local minimum charge density. They 

defined a concave face as a face possessing charge density lower than a predefined 

threshold as well as lower than all of its neighbours (the threshold in their work was: 1.5 

* lowest charge density on the model surface). To specify boundaries they tried to locate 

a ring-like region of faces with the lowest charge density compared to their neighbours. 

Although their approach is applicable for some parts of specific models, it suffers from 

two main challenging issues: firstly, the entire boundary must lie in a concavity to be 

detected accurately, which is not the case for a lot of models. And secondly, for some 
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boundaries, there is no face meeting their requirement to be considered as a concave 

face. In the next chapter, we will experimentally demonstrate these issues by testing 

their approach on the available models. 

Our method differs from Wu and Levine’s work in various aspects. Unlike their 

algorithm, our approach is able to detect boundary parts not fully located in concave 

regions. Moreover, our approach can handle mesh models having a more complex 

arrangement. The pose-insensitive attribute of the proposed work allows the algorithm 

to generate similar segments for models in different poses. Finally, an extra post-

processing step attached to our segmentation pipeline enables us to decompose those 

models having a mixed (multi-part) core structure. 

    

5.5. Background 

Electrical charge density at sharp corners has been studied completely by Jackson [212]. 

He showed that the charge density at a sample point Ρ	on the surface has a direct relation 

with two factors: i): the distance between point Ρ and the closest sharp edge or corner (ℓ) and ii): the angle of two adjacent planes creating the edge or corner	(Ì). So that, the 

larger the angle  Ì and the smaller the distance  ℓ , the greater the charge density at 

point	Ρ. Theoretically, at ℓ =0 the charge density is infinite and zero when the angle 

defined at the corners is convex and concave respectively.  Figure 5.6 illustrates the 

relationship between charge density  � , angle Ì and distance	ℓ. It is worth to note that, 

for a corner with angle Ì, the density � declines monotonically, when ℓ	 increases 

gradually.  It supports a well-known fact in the physics of electricity which says: "the 

electric charges on the surface of a conductor tend to accumulate at the sharp convex 

areas and diminish at the sharp concave areas". 
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Figure 5.6, The relationship between ρ,	Í and γ. (The image is taken from [212]) 

Inspired by this fact, each triangular face has its own scalar charge density value which 

will be used in the segmentation process.  As detailed in Chapter 3, the Finite Element 

Method (FEM) is utilized to calculate the charge density on each triangular face of the 

models. Figure 5.7 shows some different coloured model samples based on their charge 

density distribution. As depicted in this figure, convex faces located in the sharp corners 

possess higher electrical charge than those of placed in the concave corners.  

 

Figure 5.7, Coloured models based on the distribution of charge density on the surface; the redder parts 

specify the denser faces. 

Having computed the simulated charge density for each triangular surface of the models, 

in the next section we will discuss the details of the proposed segmentation algorithm.     

5.6. Proposed Approach 

As depicted in Figure 5.1, the entire segmentation process is divided into three main 

phases; the Pre-processing, Segmentation and Post-processing phases. In the pages that 

follow, we offer a detailed description of each phase and its position in the proposed 

framework. 
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5.6.1. Pre-processing Phase 

This section is devoted to the first block of the proposed framework and fulfils the initial 

functions, which are necessary in the subsequent phases. It comprises the simplification, 

canonical form presentation and charge density distribution steps. 

5.6.1.1. Simplification 

In order to speed up the segmentation process and also to remove some of irregularities 

on the model surfaces, we simplify the models so that they have 5000 faces. Figure 5.8 

depicts an Armadillo model at four levels of resolution. As shown in this figure, the model 

with 5000 faces details the descriptions of the model surface precisely. It is worth 

mentioning that simplifying to the lower number of faces has also been utilized in this 

field [15, 151]. Meshlab is an advanced mesh processing software, which is able to 

simplify each model in a fraction of a second [199].  

 

Figure 5.8, An Armadillo model at different levels of resolution based on the number of faces.     

5.6.1.2. Canonical Form Representation 

In order to achieve a pose-invariant representation, the Multi-Dimensional Scaling 

(MDS) paradigm is utilized to calculate the canonical form of the models. MDS aims at 

representing the geodesic distances (i.e. distance along the surface on which the points 

reside) between points in an m-dimensional Euclidean space.  

As will be discussed later in Section 5.6.2.2, straightening bended parts of the models, 

accomplished by MDS, has a crucial effect on our segmentation results. It helps to locate 

the representative point of each segment at the very end of segments, at points 

possessing the most convexity. 

To accomplish this goal, we employ the Least-Squares technique and the SAMCOF 

algorithm to compute the canonical representation of the models [198]. The models 

shown in the middle row of Figure 5.9 are the canonical form representations of the ones 

in the first row.  
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5.6.1.3. Simulation of Charge Density distribution 

As stated before, the proposed protrusion-oriented segmentation approach focuses on 

the nature of charge density distribution. So, after simplification and computation of 

canonical form representation of the models, the Finite Element Method is used to 

simulate the distribution of electrical charge on the surface of the models. The last row 

in Figure 5.9 depicts this distribution on the three different poses of human model. 

 

 
Figure 5.9, top row: Human model in various poses, middle row: the related canonical form representation 

and Last row: simulated charge density distribution over the models surfaces      

5.6.2. Segmentation Phase 

This phase is, in fact, the heart of our proposed segmentation framework. This phase 

tries to locate the boundaries and extract the protruded parts connected to the core part 

of model. The protruded parts are treated as initial segments. This section discusses the 

second block of the framework shown in Figure 5.1.      

Before proceeding to the detail of the proposed boundary detection technique, first we 

describe the terms used in the following. 

5.6.2.1. Terminology 

a) Region: a set of connected faces of  ℳ which share similar properties. 

 
b) Ring_Neighbourhood of face Î, RN(Î): is a subset Ⅎ of faces on ℳ such that:  Ⅎ = mÐK, ÐL, … o	|	GeoDist9Î,ÐF� q AvgEdgLen, ∀	faces		ÐF ∈ Ⅎ. 
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Where, GeoDist(.,.) is the Geodesic distance between two faces and AvgEdgLen is 

the average length of edges on the surface ℳ. (See Figure 5.10 (a)). It can be 

simply considered as a set of connected faces around face Î which have common 

vertices with the face Î.  
 

c) Ring_Neighbourhood of region ℧, RN(℧): is region Ω if: 

i. ℧ ∩ Ω = 	∅ 

ii. ∀	faces	Î ∈ ℧, ∃	face	Ð ∈ Ω		so	that		GeoDist(ÎÖ×DØ , ÐÖ×DØ) ≤ AvgEdgLen 

Here, ÎÖ×DØ , ÐÖ×DØ are centres of faces	Î	��e	Ð. (See Figure 5.10 (b)). It simply 

means a set of faces around region ℧ that have common vertices with the faces 

in the region ℧.	 

 
Figure 5.10, (a) three sample faces (red colour) and the associated ring neighbourhood (blue faces), (b) 

three sample regions (blue region) and their associated ring neighbourhood (green region).   

d) Concave Face: face Î is concave if	Ùℎ.d��¦(Î) ≤ Ùℎ.d��¦(Ð), ∀	Ð ∈ l«(Î). In 

other words, face Î is concave if its charge density is lower than the density of all 

faces in its Ring_Neighbourhood.  

 
e) Semi-concave Face: face Î is semi-concave if there is a region Ω so that: 

i. Ω	 ⊂ RN	(Î) ii. ChrgDns(Î) ≤ ChrgDns(Ð)	, ∀	Ð	 ∈ 	Ω		iii. |Ω| ≥ N	 ∗ |RN9Î�|		,	|. |	denotes	the	number	of	faces	in	the	region.	
 

It means: face Î is semi-concave if its charge density is lower than density of N	percent of faces in its Ring_Neighbourhood. (N will be set to a suitable value 

experimentally.) 
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f) Concave Region: region ℧		is concave if Û_dÙℎ.d��¦(℧) ≤ Ùℎ.d��¦(Î), ∀	Î ∈	l«(℧)	 where Û_dÙℎ.d��¦(. ) is the average of charge densities of faces in the 

region. In other words, a region is concave, if the average of the charge densities 

of its faces is lower than density of all of faces placed in the Ring_neighbourhood 

of the region. 

 
g) Semi-concave Region: region ℧	is semi-concave if there is a region Ω such that: i. Ω	 ⊂ RN	(℧)	ii. AvgChrgDns(℧) ≤ ChrgDns(Ð)	, ∀	Ð	 ∈ 	Ω		

iii. |Ω| ≥ N ∗ |RN9℧�|		, |. | denotes the number of faces in the region 

That means: a region is semi-concave if the average of the charge densities of its 

faces is lower than density of N	percent of faces in the Ring_neighbourhood of 

the region (N will be set to a suitable value experimentally). 

5.6.2.2. Protrusion Parts (Initial Segments) Extraction 

Based on a premise in [153], segments can be considered as protruding areas connected 

to the main part of the model. So, we need to extract the protruding parts as the first step 

of the segmentation phase. We identify Ψ connected faces having charge density higher 

than the other faces on the model surface so as to extract these parts (Parameter	Ψ will 

be set to an appropriate value in the next Chapter). Each disjoint set of identified faces 

creates a protruding part, which is an initial extracted segment. Then, among the faces 

of each protruding part	Ü, a face possessing the highest charge density is identified as the 

representative face of the segment. Figure 5.11 shows some examples of protruding 

parts connected to the main body in different colours along with their representative 

faces. Note that, we will ignore the extracted parts having a low number of faces. These 

parts appear due to noise or the presence of some bumps on the surface of the models.  

We expect to see the representative faces at the very end of segments, at the points which 

have the most convexity. But for some of the segments having bending regions, it is 

possible to locate some faces, which have the most charge density at the bending region. 

Two representative faces of the ant model identified by rectangles in Figure 5.11 (left), 

are examples of representative faces which are not located on the very end of the 

protruding parts. To avoid this discrepancy we utilize the canonical form representation 

of models in which the geodesic distances are mapped into Euclidean ones. As presented 

in Figure 5.11 (right), in the canonical form presentation all of the representative faces 

are located at the very ends of each segment.  
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Figure 5.11. Examples of protruding parts along with the corresponding representative faces indicated by 

red points. 

5.6.2.3. Boundary Faces Detection 

Based on the minima-rule, concave faces are good candidates to locate the boundaries. 

On the other hand, as stated above in Section 5.5 (Background), concave faces have 

minimum charge density on the surface of a solid. Thus, the local minima of charge 

density on the surface of the models can be a helpful tool to locate the boundary faces.  

With the aim of detecting boundaries, based on the distribution of electrical charge, we 

define two types of boundary faces. 

• Strong Boundary face: face Ð	is a strong boundary face, if it is a concave face and 

its Ring_neighbourhood creates a concave region. Being located in a concave 

region for a detected boundary guarantees that the boundary face is a real one and 

is not due to noise or presence of bumps.   

• Weak Boundary face: face Ð	is weak boundary face, if it is a semi-concave face 

and its Ring_neighbourhood creates a semi-concave region. The reason for using 

weak boundary faces is to find candidate boundary faces of the segments, for 

which no strong boundary has been detected. 

 

Our examinations on dozens of models about distribution of electrical charge on the 

surface of models revealed the fact that Strong Boundary Faces only emerge on the 

extreme concave corners of the models located in the real boundaries (see Figure 5.13). 

Weak Boundary Faces on the other hand, may be detected on places other than the real 

surface boundaries. Therefore, the Weak ones are only boundary candidates and so an 

examination process should be applied to verify them. Figure 5.12 shows detected 

strong and weak boundary faces on an Ant model. 
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Figure 5.12, Detected Strong Boundary Face (Blue colour) and Weak Boundary Faces (Red) colour on ANT 

model. 

 

 
 

Figure 5.13, The strong boundary faces located in boundaries of protruded parts of Octopus and Human 

models. 

5.6.2.3.1. Merging Strong Boundary Faces 

It is worth mentioning that, depending on model shape and geometry, the proposed 

algorithm may detect more than one boundary face for a protruded part. To overcome 

this problem, after finding the strong boundary faces, an enhancement process is 

required to merge related strong boundary faces. This leads to a speed-up of the 

remaining process of segmentation. For this reason, if there are several strong boundary 

faces having almost the same distance from the representative face of a segment, we 

filter all of them except the one that possesses the lowest charge density (See Figure 

5.14). 
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Figure  5.14, Strong boundary faces enhancement. 

5.6.2.3.2. Weak boundary enhancement 

After merging the strong boundary faces, we try to detect boundary faces for the 

segments whose strong boundaries are not determined yet. Therefore, the weak 

boundary faces are detected with the intention of locating the candidate boundary faces. 

Depending on the surface geometry and also noise and un-smoothness of the model 

surface, some spurious weak boundary faces may be found located in different places 

other than boundary parts (see Figure  5.15). In order to remove these outliers, we 

employ some simple and efficient heuristics as follows: 

 
 

 
Figure 5.15, Weak boundary faces detected on a hand model with spurious boundaries. 

• All the weak boundary faces, whose geodesic distances from each other are less 

than a threshold, will be ignored except the one having the lowest charge density. 

We experimentally set the threshold as 3*(AvgEdgeLen). 
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• If a weak boundary face is placed in a protruded part (segment) for which the 

strong boundary face has been already defined, the weak boundary face will be 

removed.   

• For the remaining weak boundary faces, we utilize the relationship available 

between distance ℓ from the sharp corner, the angle Ì defined at the corner and 

the rate of change of charge density � (see Section 5.5 and Figure 5.6). As stated 

before, for target points around a sample corner, the charge density has marginal 

and monotonic change, so that the density gradually decreases as the distance of 

the target point from the corner grows. Figure 5.16 shows changes in the amount 

of charge in successive annular regions in a sample segment of the middle finger 

of a Hand model. As shown in this figure, the amount of electrical charge in 

successive annular regions of a desired protruded part is only slightly different. 

On the other hand, for two successive annular regions (regions 19 and 20) having 

constant width on both sides of the boundary, the change in electrical charge has 

a significantly larger difference, compared to changes in the protruding area.  

Accordingly, in order to remove all the remaining spurious weak boundary faces, 

we define and assign the parameter StepDiff( k ) for any protruded part ÜÝ  using 

the following terms. This parameter, as will be detailed in the sequel, is utilized to 

assess the weak boundaries and remove the outliers.  

 

a) AR( i , k ): The ith annular region in protruded part χß having representative 

face .aÝ:  

AR(i,k) = { faces Î	 ∈ model ℳ | GeoDist (	Î, .aÝ  ) is in range [ i,i+1 ) * 

AvgEdgeLen } 

 

b) ChDiff ( i , k): Difference in the amount of charge in ith and (i+1)th successive 

annular regions of  part χß:  

ChDiff (i,k)=Abs( Ch( AR(i,k) ) – Ch( AR(i+1,k) ) ) 

Here Ch (.) denotes the amount of electrical charge in a desired annular region. 
c) DiffSet ( k ): set of charge differences in successive annular regions in the 

protruded part χß :  

DiffSet( k ) = { ChDiff ( i,k ) ,  i=1,2,3,...,5} 

It is worthwhile to note that 5 successive annular regions are examined to 

calculate the DiffSet parameter.  
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d) StepDiff ( k ): The distinctive factor of charge difference per step for 

protruded part χß is: 

StepDiff( k )=StdDiv( DiffSet ( k ) ) 

Where, StdDiv(.) is the standard deviation of the desired set.  

 

 

 
Figure 5.16, Different annular regions in the middle finger of a Hand model (segment number=3) and the 

charge difference in successive regions. 

Now, on either side of any detected weak boundary face in protruding part ÜÝ , two 

annular equal-width regions are extracted and the charge amount at each region 

is observed (the width of the annular regions is set equal to the average of edge 

lengths on the current model). If the change in electrical charge of these two 

regions is not significantly different from the parameter StepDiff of the desired 

protruding part (less than T	* StepDiff	), the current boundary face is ignored and 

the process is repeated with the next weak boundary face. Otherwise, the current 

weak boundary face is considered as a real boundary for the current segment and 

the process is restarted with the representative face of another initial segment. 

Parameter	à will be set to an appropriate value in the next Chapter. This process 

is repeated until the boundary faces for all initial segments have been found.    

To speed up the aforementioned process and to avoid checking detected spurious faces 

located in the core part of model, before starting the enhancement process, the detected 

weak boundary faces are sorted in ascending order of their geodesic distance to the 

representative face of the protruded segment. And the process of checking the boundary 

faces is started from the top of the list. 

i=1 

i=2 

i=3 
.       
.      
.      
.      
.     
. i=20 
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5.6.2.4. Convert to the Original models 

Since all of the aforesaid procedures have been applied on the simplified canonical form 

of the models, a reverse mapping is required to convert the model to its original format. 

To do so, all of the extracted critical faces (boundary and representative faces) are 

mapped to the original representation of the models. Mapping from the canonical form 

into the simplified original representation can be easily accomplished by finding the 

faces of the original model associated to the critical ones on the canonical form model. 

On the other hand, in order to perform a mapping from the simplified into the high-

resolution original model, the faces on the high-resolution original model having 

identical coordinates to those of the critical faces on the simplified one, are simply 

considered as the final boundary and representative faces of the segments, which are 

employed in a region growing scheme to finalize the process.  

5.6.2.5. Region Growing 

Having the start points (representative faces) and the boundary faces for all segments, 

the region growing scheme can be easily applied on the faces to construct the complete 

segments. To do so, for each extracted segment, the geodesic distance ℊ between its 

representative and boundary faces is computed. Then, all of the faces on the model, 

whose geodesic distances from the representative face are less than or equal to ℊ, will 

be assigned to that segment. 

5.6.3. Post-Processing Phase 

The outcomes of the segmentation process so far, can be considered as raw results, 

which need to be boosted by applying some extensions to the segmentation pipeline 

such as re-segmenting the extracted mixed cores as well as locating more accurate 

boundary faces. These extensions are discussed in the following sections.     

5.6.3.1. Re-segmenting the mixed cores  

Similar to other protrusion-based approaches, the proposed algorithm suffers from a 

lack of ability in detaching mixed segments connected to the main part. We refer to this 

kind of segment as a ‘mixed core’ and it is defined as follows: 

 "A mixed core (multipart core) is a detected core part of the model (by segmentation 

algorithm) which can be decomposed into simpler parts by human perception 

system."  
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Consider the head and body parts of the Ant model in the first row of Figure 5.17 (b), 

which have been detected as a mixed core of the model by our proposed approach. But, 

the human perception system identifies the head as a separate segment attached to the 

antenna and main body segments. The same issue occurs in spectacle models, where 

both eye frames are considered as only one segment.  

To solve this problem, the extracted mixed core of such models can be dealt with as a full 

model and the same segmentation algorithm is recursively applied on it. In order to 

accomplish this goal, electrical charge Q is distributed over the surface of the extracted 

core parts and using the proposed algorithm, the representative and boundary (Strong 

or Weak) faces are detected to decompose the model into the core and attached segment. 

Repeating this process leads to detaching the mixed core parts into a main core part and 

some segments attached to it (See Figure 5.17 (d and e)).  

  

 
Figure 5.17, Steps for segmenting models having mixed core: First and second rows show the process for 

an Ant and Spectacle models, respectively.  (The colours are arbitrary) 

5.6.3.2. Boundary Cut Refinement 

The last step of the segmentation phase in our approach (region growing in Section 

5.6.2.5) uses geodesic distance to find the boundary parts. Therefore, it only extracts a 

soft and raw segmentation, which is a rough approximation of the real boundaries. Thus, 

the extracted boundaries are not fully located in the real boundary areas for some 

models. Figure 5.18 depicts the inaccurate detected boundaries for Bird, Vase and Bust 

models. This problem may happen because not all of the boundary faces necessarily have 

the same distance from the representative face of the segment.  

(a) 

Original Model 

(b) 

Segmentation of 
Protruded Parts 

(c) 

Extracted Mixed 
Core Part 

(d) 

Re-segmented 
Core Part  

(e) 

Final Result  
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Figure 5.18, inaccurate detected boundaries for three sample models identified by a rectangle. 

In some segmentation approaches, a post processing cut-refinement step is performed 

to overcome this issue. The snake and min-cut algorithms are two of most common 

approaches in the literature [154, 172, 213]. Similar to [172], due to its simplicity in 

implementation and its guarantee in finding the solution, we employ the min-cut 

methodology on the dual graph of the models. To do so, the search region and capacity 

function should be defined on the extracted dual graph as follows:  

For creating the search region, firstly three disjoint regions are extracted on the mesh 

namely:  

• Region A: Includes the faces of the protruded area. (Green part of Figure 5.19(b))  

• Region B: is going to contain the boundary faces. This region can be defined by 

selecting all of the faces having a geodesic distance in the interval Q0.9 ∗
Û_dã@±��¦7, 1.1 ∗ Û_dã@±��¦7R where, Û_dã@±��¦7 is the average geodesic 

distance of a segment boundary face to the related representative face. (Red part 

of Figure 5.19(b)) 

• Region C: contains all of the faces on the rest of the model. (Blue part of Figure 

5.19(b)) 

 

Next, the dual graph of region B is extracted to define the search region. The search 

region is constructed via adding two extra nodes, start S and target T, to either side of 

the dual graph. This graph is a flow graph for which the least cost path should be 

computed. The capacity function that we use is similar to that of Katz and Tal [172]: 
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Figure 5.19, (a) raw segmentation of Bird model and (b) three disjoint regions extracted for refining 

boundary of the left wing. 

 

Ù�a9�, §) = ä 11 + Û�d_��¦7(å�,§)Û_d(Û�d_��¦7) 										�b	�, §	 ≠ ¦, 7	
∞																																																			±7ℎ@.¬�¦@ 

Here, åF,¸ is the dihedral angle of two faces which share the edge (i, j),  Û�d_��¦7(åF,¸) is 

angular distance and defined as:  Û�dçFèD£éC,ê¤ = ℬ(� / cos	(åF,¸)) and Û_d(Û�dçFèD) is 

the average angular distance. Note that for ℬ = 1, both concave and convex angles are 

treated equally. But, since we are looking for concave angles, a small positive number is 

assigned to ℬ for convex angles and ℬ = 1 is for the concave ones. Figure 5.21 illustrates 

the boundary refinement process.  

Applying the min-cut_max-flow algorithm on the extracted flow graph leads to extracting 

better locations for the boundary parts (see Figure 5.20). 

 

 
Figure 5.20, Detected boundaries (a) before and (b) after applying Cut Refinement. 
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5.7. Chapter Summary 

This chapter was devoted to a detailed discussion of the proposed algorithm for 

segmenting 3D models into meaningful parts. A well-known fact from electrical physics 

about the distribution of electrical charge on the surface of a solid, which was also used 

as a shape descriptor in Chapter 3, guided our search to locate boundaries of segments 

of 3D models. The result of the proposed approach has been boosted via a boundary cut 

refinement algorithm as well as re-segmenting the extracted core parts having complex 

structure. Finally, a similar approach of Wu and Levine for 3D model segmentation using 

distribution of electrical charge was debated and its drawbacks in comparison to our 

approach were considered.      

In the next chapter we will perform a thorough analysis of the ability of the proposed 

approach along with its limitations on the models available in different standard 

datasets.  
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Figure 5.21, Cut-refinement process, S and T denote Source and Target nodes of the extracted flow graph. 
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6 
Experimental Results of the 

Proposed Segmentation 

Approach 

6.1. Introduction 

The previous chapter discussed the proposed segmentation framework using electrical 

charge distribution. As mentioned there, the proposed system consists of three main 

phases viz. the Pre-Processing phase (for simplification and canonical form 

representation of models), the Segmentation phase (for extracting the protruded parts 

and boundary faces) and the Post-Processing phase (for refining the extracted 

boundaries and re-segmenting the extracted multi-part cores).  

In this chapter, we concentrate on our charge density-based segmentation framework in 

experimental terms. We apply our algorithm to the various models available in the 

watertight track of the 2007 Shape-based Retrieval Contest (SHREC’07) [162] datasets 

and 28 models, which have been exploited in the 3D mesh segmentation track of the 

SHREC’12 contest [115].  

After discussing the parameters, which were used, and introducing some standard 3D 

model segmentation evaluation factors, we will give a comprehensive quantitative 

comparison with the state-of-the-art approaches. We also compare our approach to the 

similar approach introduced by Wu and Levine [171]. Furthermore, the robustness of 

the proposed framework against different transformation will be discussed. The timing 

and complexity of the entire segmentation process is another crucial factor that will be 
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discussed in this chapter. Finally, we will consider the limitations of the proposed 

approach in decomposing models with certain special structures.   

6.2. Description of Datasets 

In order to evaluate the proposed approach, we utilized two widely used standard 

benchmarks from the SHREC’07 and SHREC’12 contests. The datasets contain a large 

variety of models from rigid objects (Chair and Table classes) to deformable models (Ant 

and Human categories). Besides the different number of models in each benchmark, the 

SHREC’07 set contains facet-based segmentations, whereas the SHREC’12 set contains 

vertex-based segmentations: 

a) SHREC’07 Benchmark: The watertight track of SHREC’07 contest comprises 

400 high resolution models evenly categorized into 20 classes including Ant, 

Chair, Glasses, Hand, Human, Octopus etc. We have excluded the Spring class 

from the corpus as it is almost impossible to be segmented meaningfully. So, the 

experiments have been done on the remaining 380 models. The SHREC’07 

dataset comes with 4300 manually generated segmentations (an average of 

eleven segmentations for each model) to provide a rich distribution over "How 

humans decompose each model into functional parts" [136].  Figure 6.1 depicts 

sample models from each class of the SHREC’07 dataset. 

 

 

              Figure 6.1, Sample models of watertight track of SHREC’07 dataset  
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b) SHREC’12 Benchmark: This dataset comprises 28 models (as triangular 

meshes) categorized in five groups namely Hand, Furniture, Animal, Human and 

Bust. The dataset is accompanied by 112 ground-truth segmentations done by 

36 human volunteers (four manual segmentations for each model). Figure 6.2 

shows the entire 28 models of this dataset. Among the models of the dataset, 

three classes contain objects which are fairly easy to segment (Hand, Human and 

Animal), while the models of the other two groups (Bust and Furniture) are very 

challenging. As the authors claim, the relatively small size of this dataset allows 

us to rapidly evaluate segmentation algorithms without running on 380 objects, 

as is done in SHREC’07 benchmark.   

 

 

                   Figure 6.2, 28 models of  the segmentation track of SHREC’12. 

6.3. Evaluation Metrics 

Chen et al. [136] have proposed four different metrics to evaluate segmentation 

algorithms quantitatively. Actually, these metrics had been used previously for 

evaluating 2D image segmentation approaches and then adapted for 3D purposes. These 

widely accepted factors are Cut Discrepancy (CD), Hamming Distance (HD), Rand Index 

(RI), and Consistency Error (CE) which are defined as follows:  

a) Cut Discrepancy (CD): Among all of the four metrics the CD is the only 

boundary-based one that provides a simple and intuitive measure of how well 

boundaries align. As Chen et al. [136] mentioned: "It sums the distances from 

points along the cuts in the computed segmentation to the closest cuts in the 
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ground truth segmentation, and vice-versa". It actually measures the distances 

between cuts [216] which can be formulated as follows: 

Let yK	and yL	be two segmentations of a given 3D model and two sets, ¶K	and	¶L, 

are sets of all points located on the segments boundaries. The geodesic distance 

from a point ëK ∈ 	¶Kto a set of boundary faces ¶L is defined as: 

 ìℊ	9ëK	, ¶L) = min	m	ìℊ	(ëK	, ëL)	, ∀ëL ∈ 	¶Lo (6.1) 

Now the Cut Discrepancy between yK	and yL is defined as Equation 6.2: 

 Ù�		(yK	, yL) = �Ù�(yK ⇒	yL) + �Ù�(yL ⇒	yK)	Û_d��¦  (6.2) 

Where Û_d��¦ is the average Euclidean distance from a surface point to the 

centroid of the mesh and DCD is a directional function defined as �Ù�(yK ⇒	yL) = ­@��	m	ìℊ	(ëK	, ¶L)		, ∀ëK ∈ 	¶Ko	. A value of 0 for the CD metric indicates 

a complete matching between the two segmentations and greater values indicate 

imperfect ones. It is worthwhile to mention that despite its simplicity, the CD 

factor suffers from sensitivity to granularity. The CD decreases to zero when 

more cuts are added to the ground-truth segmentation and also it is undefined 

when the model has zero cuts.           

b) Hamming Distance (HD): this region-based factor tries to measure the overall 

difference between two segmentation results by comparing the average of two 

parameters, missing rate (	ℛx) and false alarm rate (	ℛ�), of the segmentation 

to the ground truth. These two rates are defined using a parameter, Directional 

Hamming distance (	jℋ), on the given two segmentations	yK =m	yKK, yKL, … , yKîo	��e	yL = m	yLK, yLL, … , yL×o.  Directional Hamming distance (	jℋ) 

is defined as:  

 

 	jℋ		(yK ⇒ 	yL) = 	?||yLF\yKFð||F  (6.3) 

Where operator \ is the set difference operator and ||.|| is the cardinality of a set 

and 	�D = �.d¿�:	 ñ~yLF ∩ yKÝ~ñ is the closest segment in 	yK to the segment yLF  
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in	yL.  Suppose yL is the ground-truth segmentation. Then, the parameters, 

missing rate (	ℛ�) and false alarm rate (	ℛx), are defined as follows: 

 	ℛ�	
	9yK, yL) = 	 	jℋ		(yK ⇒ 	yL)||y||  (6.4) 

 	ℛx		(yK, yL) = 	 	jℋ		(yL ⇒ 	yK)||y||  
(6.5) 

Here ~|y|~ is the total surface area of the model. Finally, the Hamming Distance 

(HD) is simply defined as the average of 	ℛ� and 	ℛx as Equation 6.6: 

 HD	(yK, yL) = 	12	(	ℛ�		(yK, yL) +	 	ℛx		(yK, yL)) (6.6) 

As with Cut Discrepancy, the value of 0 for the HD metric indicates perfect 

matching between the two segmentations.   

c) Rand Index (RI): this factor is the most important evaluation factor and 

attempts to convert the problem of comparing two segmentations into the 

problem of pair-wise likelihood checking of face labels in two segmentations 

[217].  Suppose we denote the number of faces on the model by O	and the two 

segmentations by yK	and	yL. If yFK		and yFL are the segment IDs of face �	in 

segmentations yK	and	yL respectively, then the two parameters ¶F¸  and F̈¸ are 

defined as:  ¶F¸ = 1	iff	yFK = y̧K, and F̈¸ = 1	iff	yFL = y̧L.  The region-based 

measure based on the Rand Index (RI) is defined as the following equation:  

 

 RI	(yK, yL) = 3«28AL ? ò¶F¸ F̈¸ + £1 / ¶F¸¤£1 / F̈¸¤óF,¸,Fô¸  (6.7) 

¶F¸ F̈¸ = 1 means that the faces � and õ have the same ID in both segmentations, yK	and	yL, and £1 / ¶F¸¤£1 / F̈¸¤ = 1 indicates that they have different IDs in yK	and	yL. And the denominator is the number of possible unique pairs among O 

faces. The RI factor ranges from 0 to 1 where value of 1 shows complete 

matching. To be similar to the other metrics,  1 / l�		(yK, yL)  is usually 

considered as the evaluation metric so that the lower number of RI the better the 

segmentation matching results.   
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d) Consistency Error (CE): based on a theory about human perceptual 

organization, the CE factor is responsible for nested hierarchical similarities and 

differences in segmentations [218]. This measure is based on the computation of 

Local Refinement Error (LRE) of a face xF between two segmentations yK	and	yL. 

If R9y, xF) is a segment in segmentation y, which contains the face xF, then the 

LRE is defined as Equation 6.8:  

 

 LRE	(yK, yL, xF) = ||R(yK, xF)\R(yL, xF)||||R(yK, xF)||  (6.8) 

Similar to Equation 6.3, \ is the set difference operator and ||x|| is the cardinality 

of set x.  The LRE measure can be combined for all the faces on the mesh in two 

different manners to create the Global Consistency Error (GCE) and the Local 

Consistency Error (LCE) as follows: 

 

GCE	(yK, yL)
= 1Omin	m?LRE	(yK, yL, xF)	,?LRE	(yL, yK, xF)FF o (6.9) 

 LCE	(yK, yL) = 1O 	?¿��mLRE	(yK, yL, xF)	,F LRE	(yL, yK, xF)o (6.10) 

The main difference between these two symmetric measures is related to the 

direction of matching, i.e. the GCE forces all local refinements to be in the same 

direction, while the LCE allows refinements in different directions. The 

generated values of GCE and LCE range from 0 to 1 where 0 indicates perfect 

segmentation matching and 1 indicates no similarity between segmentations. 

Although these two factors take into account the nested, hierarchical differences 

in segmentations, they suffer from a challenging issue of incorrectly generating 

a zero value as the result for two specific scenarios: all faces belonging to one 

segment or each segment containing only one face.    

e) 3D Probabilistic Rand Index (3DPRI):  As can be understood from its name, 

this factor has been derived from the Rand Index measure by Benhabiles et al. 

[219] and is introduced to perform a quantitative comparison between a mesh 

segmentation algorithm and a set of ground-truth segmentations (instead of only 

one ground-truth).   Suppose yö be an automatic segmentation to be compared 
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with the set of ground-truths	y� .  If y÷
F 		and y�

F 	are the segments IDs of face �	in 

segmentations y÷ and ground-truth	y� respectively then, the 3DPRI is defined as 

follows:  

 

 

3DPRI	9yö, my�o)
= 3O2 8AL ? ò¶F¸ F̈¸ + £1 / ¶F¸¤£1 / F̈¸¤óF,¸,Fô¸  

(6.11) 

 Where O	is the number of faces on the mesh model and  ¶F¸  is defined (as above 

in the definition of Rand Index factor) as	¶F¸ = ø(y÷F 		 = y÷̧ 	). But the definition of 	 F̈¸ is quite different from that presented in definition of RI factor. It is defined 

as the probability of the faces � and õ  belonging to the same segments of the set 

of ground-truth segmentations 	my�o: 
 

 	 F̈¸ = 1�?ø(y�F 		 =	y�̧	ù ) (6.12) 

Unlike all other metrics, the 3DPRI metric generates values between 0 and 1 

where a value of 0 specifies no matching and 1 is for the perfect matching. It is 

worthwhile to point out that, Benhabiles et al. [219] also provided a normalized 

version of 3DPRI (3DNPRI), which is widely utilized and defined for each 

segmentation yö	as Equation 6.13: 

 3DNPRI	(yö)	 = 3DPRI	(yö, my�o) / EQ3DPRI	(yö, my�o)]1 / EQ3DPRI	(yö, my�o)]  (6.13) 

Where EQ3DPRI	(yö, my�o)] is the expected probabilistic Rand Index and is 

defined using a random segmentation y�as: 

 EQ3DPRI	(yö, my�o)] = 	 1ℳ?3DPRI	(y� , my��o)ℳ
ØHK  (6.14) 

Here ℳis the number of models in the dataset and my��o is the set of ground-

truths of the model concerned by	y�. The 3DNPRI generates values in range [-1, 

1] where -1 indicates no similarity and +1 shows the perfect match between the 

automatic segmentation and the ground-truth of the model. Note that, as with 
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Benhabiles et al. mentioned in [219], the values of 3DNPRI are usually sorted in 

ascending order for each algorithm. So, the jth model may not be the same across 

the algorithms being examined.   

Since each of the above metrics may provide different information about the 

segmentation quality, we present evaluation results for our approach based on all of 

these metrics.   

6.4. Parameter Analysis 

In this section, we investigate the effects of the utilized parameters on the segmentation 

results of the proposed algorithm. Examining different values for the parameters, we try 

to find the optimum values by which the best segmentation results are obtained. The 

main effective parameters used in our algorithm relate to the following concepts: Semi-

concave face, Protruded parts and Weak boundary enhancement. In the following 

sections we analyse the effect of each parameter and select a fixed value for them in 

order to achieve consistent segmentation results. 

a) Semi-concave face: Based on our definition, we consider a face as semi-concave, 

if its charge density is lower than density of N	percent of faces in its 

Ring_neighbourhood (see Section 5.6.2.3 of Chapter 5). We attempt to find the 

best value for parameter N. Investigating different values for parameter N 

revealed, that the value of N has no meaningful effect on the segmentation 

results. However, the smaller values for N will lead to more semi-concave faces, 

which leads in turn to a greater post-processing task in the enhancement step. 

Therefore, the lower the value for	N, the more weak boundary faces and thus the 

slower the segmentation process. It is obvious that selecting values close to 1 for N can cause the algorithm to miss a large number of boundary faces, which may 

result in the inability to detect proper boundaries for some boundary parts. So, N=0.7 seems to be the best choice in our segmentation algorithm.   

b) Protruded parts: By definition, so as to detect initial segments (protruded 

parts), we extracted Ψ connected faces having charge density higher than the 

other faces on the model surface. The smaller values for Ψ will lead to the 

detection of smaller parts on the model. Figure 6.3 shows the horn, teats and 

talons detected on the surfaces of Cow and Dinopet models, respectively (	Ψ =0.125).  On the other hand, selecting a very small value for Ψ results in over-



148 

 

segmentation, i.e. every small protrusion will be extracted as a distinct segment. 

So, we experimentally selected 0.33 for this parameter.   

 

 

Figure 6.3, Cow and Dinopet small part extraction by selecting small values for parameter	Ψ 	 0.125.  

c) Weak boundary enhancement: As discussed in Chapter 5, weak boundary 

faces are considered as acceptable boundaries, if a significant difference occurs 

in the amount of electrical charge on the annular regions located on the either 

side of the face. Several values of T have been examined so as to quantify the 

meaning of "significant difference" in Section 5.6.2.3.2 of Chapter 5. Figure 6.4 

shows the 3DPRIs for different values of T on the SHREC 2012 dataset. As 

depicted in the figure, T=3 seems to be the choice for gaining the best result.   

 

Figure 6.4. The relationship between parameter T and 3DPRI measure. 

In the following sections, we will examine the evaluation metrics on the models available 

in two standard benchmarks (SHREC’07 and SHREC’ 12) using the obtained fixed 

parameters.   
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6.5. Results on the SHREC’07 Dataset 

In order to evaluate the segmentation results, we employ our proposed approach for 

segmenting the 380 models of SHREC’07 dataset. Figure 6.5 depicts the segmentation 

results on a wide variety of models from this dataset (Appendix C shows the ground truth 

segmentation for these models). Five other well-known approaches including 

Randomized Cut [138], Shape Diameter Function [129], Normalized Cut [138], Core 

Extraction [151] and Random Walk [108] along with the human-generated 

segmentations are compared to our approaches via the five evaluation factors. A 

complete description of these approaches can be found in Chapter 2.   

 

6.5.1. Comparison to the Well-known Approaches 

The five charts in Figure 6.6 depict the average value of the evaluation metrics for 

different approaches.  Generally speaking, as shown in Figure 6.6, our approach 

performs slightly worse than the best approach reported in [136]. Although one of the 

metrics (CD) computes a boundary-based error and the others focus on region 

dissimilarity, our approach shows a consistent behaviour for all of the metrics and gains 

the third rank among the examined algorithms (after the Human-generated and Rank 

Cut approaches). However, it is notable that the Rank Cut algorithm, which outperforms 

Figure 6.5, segmentation results for sample models from the SHREC’07 dataset. 
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all other approaches, is not a fully automatic algorithm and the user is asked to enter the 

number of desired segments as an input parameter. Furthermore, as mentioned in [136], 

this latter approach leverages a quite time-consuming process of checking both 

boundary and region properties, so that more than 83 seconds on average is required to 

segment each model on a 2GHz PC. In comparison to this approach, our algorithm 

partitions the models in a quite reasonable manner in terms of both time and accuracy 

(as will be discussed later in this chapter, ours takes an average of 24 seconds on a 

2.2GHz Laptop).  
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Figure 6.6, Evaluation metrics for the proposed approach and some state-of-the-art methods applied to the 

SHREC’07 dataset. 

To perform a more accurate evaluation of the proposed approach, we have investigated 

the Rand Index metric for all 19 model categories separately. The data provided in Table 

6.1 show a comparison of the performance of all six algorithms for each category. This 

table reveals that, like the other approaches, our method does not perform equally for 

all of the classes. That is, our approach outperforms almost all other approaches in the 

classes, for which the protruding parts are clearly distinguishable, e.g. Human, Octopus, 

Bird and Plier. In contrast, for the Bust and Vase classes, due to lack of clear boundaries 

between core and protruding parts, the results are not quite satisfactory. As will be 

discussed in Section 6.9, the main drawback of the proposed approach is related to the 

models having planar surfaces such as CAD and Mechanical models. The Rand Index 

metric of our approach for the Mechanical class illustrates this drawback, as our 

approach underperformed almost all other approaches for models in this class.   
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Table 6.1, Per-class Rand Index (%) for segmented models on SHREC’07 dataset 
 

Rand Cut 
Shape 

Diam. 
Norm Cut Core Ext. Rand.Walk Ours 

Human 
RI 13.1 17.9 15.8 22.5 29.5 16.7 

Rank 1 3 4 5 6 2 

Cup 
RI 21.9 35.8 23.6 30.7 33.4 33.2 

Rank 1 6 2 3 5 4 

Glasses 
RI 10.1 20.4 14.2 30.1 31.6 13.4 

Rank 1 4 3 5 6 2 

Airplane 
RI 12.2 9.2 18.6 25.6 26.1 16.6 

Rank 2 1 4 5 6 3 

Ant 
RI 2.5 2.2 4.7 6.5 6.8 2.8 

Rank 2 1 4 5 6 3 

Chair 
RI 18.4 11.1 9.3 18.7 16.7 17.8 

Rank 6 2 1 5 3 4 

Octopus 
RI 6.3 4.5 6.3 5.1 6.9 4.9 

Rank 5 1 4 3 6 2 

Table 
RI 38.3 18.4 9.8 24.4 13.9 17.2 

Rank 6 4 1 5 2 3 

Teddy 
RI 4.5 5.7 12.1 11.4 12.7 4.6 

Rank 1 3 5 4 6 2 

Hand 
RI 9.0 20.2 15.6 15.5 22.2 15.1 

Rank 1 5 4 3 6 2 

Plier 
RI 10.9 37.5 18.3 9.3 23 8.6 

Rank 3 6 4 2 5 1 

Fish 
RI 29.7 24.8 39.9 27.3 40.6 26.6 

Rank 4 1 5 3 6 2 

Bird 
RI 10.7 11.5 20.2 12.4 28 10.5 

Rank 2 3 5 4 6 1 

Armadil 
RI 9.2 9.0 12.0 14.1 10.7 11.2 

Rank 2 1 5 6 3 4 

Bust 
RI 23.2 29.9 33.2 31.5 33.5 32.4 

Rank 1 2 5 3 6 4 

Mech. 
RI 27.7 23.8 17.5 38.7 24.4 35.9 

Rank 3 2 1 6 4 5 

Bearing 
RI 12.4 11.9 18.3 39.8 27.1 16.8 

Rank 2 1 4 6 5 3 

Vase 
RI 13.3 23.8 23.6 22.6 28.7 26.4 

Rank 1 3 5 2 6 4 

Four leg 
RI 17.4 16.1 21.3 19.1 20.8 16.7 

Rank 3 1 4 5 6 2 

Average RI  15.3 17.6 17.5 21.1 22.9 17.2 

 Total Rank 1 4 3 5 6 2 

6.6. Results on SHREC’12 Dataset 

To evaluate our approach more precisely, we have applied our approach to the models 

in the 3D mesh segmentation track of the SHREC’12 contest. Figure 6.7 displays the 

segmentation results on all the models of this dataset (Appendix C shows the ground 

truth segmentation for these models).  

Category 
Algorithm 
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Figure 6.7, segmentation results for the models of the SHREC’12 dataset. 

6.6.1. Comparison to the State-of-the-Art Approaches 

The 3DNPRI metric is utilized to compare the ability of our approach to the seven state-

of-the-art approaches participated in the segmentation track of SHREC’12 contest [215]. 

These approaches include the recently introduced approach of Box Approximation and 

Decomposition proposed by Huebner [220], the Plumber approach from CNRI-MATI of 

Genova [221], the Boundary Learning-based approach of Benhabiles et al. [165], 

Curvature Classification of Lavoué et al. [111], Fitting Primitive-based [169], the Reeb 

graph- based method of the Topology Driven approach proposed by Tierny et al. [147] 

and the famous approach of Shape Diameter Function introduced by Shapira et al. [129]. 

The detailed descriptions of these approaches are available in Chapter 2.   

Table 6.2 reports the 3DNPRI factor of all of the 8 approaches participating in the contest 

for each category. As illustrated in this table, none of the approaches works best for all 

of the categories. In other words, the performance of the methods is highly class-

dependent and no method has the same quality for all classes [215]. The data in the table 

also reveals that our approach outperforms most of the contestants of SHREC’12 and is 

quite comparable to the best approach, the Boundary Learning approach [165]. But it is 

worthwhile to point out that the Boundary Learning approach needs an off-line step, in 

which an objective boundary function should be learned using a set of manually 
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segmented models. This learning step involves a time-consuming pre-processing phase, 

which results in slowing down the total process. The learning step takes around 10 

minutes and the running time for the online step is between 1 and 9 minutes [165].  Also, 

it is notable that for the Human class our approach gains the first rank among all of the 

other approaches as its core and protruded parts are easily distinguishable. On the other 

hand, the segmentation results of our approach for the Bust class clarify that the 

proposed method cannot generate perfect results for the same reasons stated for Vase 

and Bust classes in the SHREC’07 dataset. 

Table 6.2, 3DNPRI results for segmented models on SHREC’12, Segmentation Track. 

Method Name Animal Bust Furniture Hand Human 
Global 
Mean 

Rank 

Box Approx. and 
Decomposition 

0.52 -0.08 0.08 -0.09 0.37 0.16 8 

Plumber 0.36 0 0.54 0.27 0.33 0.30 7 
Boundary Learning 0.68 0.41 0.79 0.68 0.69 0.65 1 
Curvature Classification 0.43 0.1 0.38 0.45 0.29 0.33 6 
Fitting Primitives 0.45 0.09 0.56 0.52 0.61 0.45 4 
Topology Driven 0.51 -0.07 0.36 0.78 0.5 0.41 5 
Shape Diameter Function 0.62 0.24 0.85 0.19 0.66 0.51 3 
Ours 0.66 0.08 0.72 0.57 0.70 0.55 2 

6.6.2. Cut-Refinement Effect 

As detailed in the Section 5.6.3 of the previous chapter, after locating the boundary faces 

in the segmentation phase, we utilize a post-processing phase of Cut-Refinement to 

locate boundaries more precisely. We have reported the 3DNPRI measure of segmented 

models before and after applying the Cut-refinement so as to examine the effect of this 

process.  One can see the enhancement of the segmentations after the refinement 

process in the Figure 6.8. As illustrated in this figure, the refinement process has a more 

meaningful effect at the lower values of the 3DNPRI. This phenomenon can be explained 

as follows: for the models having easily distinguishable parts, such as Human and Hand 

classes (higher values of 3DNPRI), the algorithm has already generated high quality 

segments and so the refinement process did not have much effect on the detected 

boundaries. But for the challenging models, for which the 3DNPRI metric is low (such as 

models in the Bust class), on the other hand, the refinement process is able to increase 

the 3DNPRI measure by locating the boundaries more accurately.           
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Figure 6.8, 3D-NPRI indices of the 28 models of SHREC’12 dataset sorted in increasing order before and 

after applying Cut-Refinement process. 

6.7. Robustness 

In this section we will investigate the robustness of the proposed approach to different 

changes and transformations namely noise, deformation and tessellation.   

6.7.1. Robustness to Noise 

Since the main core of our approach is based on the charge density distribution over the 

model surface, our segmentation approach can benefit from all of the characteristics of 

charge density, especially its robustness to noise (See Chapter 3). To test this, noisy 

models were created by randomized displacement of the vertex coordinates determined 

by noise level úℓ (úℓ is the ratio of largest displacement to the longest edge of the 

object’s bounding box) and we applied our segmentation approach to them. One can see 

in Figure 6.9 the segmentation results of our approach on a human model having 

different levels of noise. The generated segments show the ability of the applied 

approach in decomposing noisy models into meaningful parts in comparison to the 

original models.   
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Figure 6.9. Segmentation of (leftmost) an original human model and (other three models) noisy human 

model at different noise levels. 

Also, the 3DNPRI measures for various levels of noisy models of SHREC’12 dataset, as 

reported in Figure 6.10, supports our claim that the proposed algorithm is largely 

insensitive to noise. 

 

Figure 6.10, 3D-NPRI indices of the 28 models of SHREC’12 dataset sorted in increasing order for different 

levels of noise 

6.7.2. Robustness to deformation  

One of the major applications of part decomposition algorithms, as stated in Chapter 5, 

is to utilize the extracted segments in comparing the models based on resemblance of 

their parts [210, 102].  Therefore, it is crucial for the segmentation algorithm to be 

insensitive to model deformations. The charge density distribution, which has been 

utilized in this work, conveys both local and global structures of the models [171].  On 

the other hand, the local features have usually no meaningful effect on the coarse 
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characteristics of the model surface, such as face concavity and boundary detection. As 

a result, the proposed algorithm is expected to be quite insensitive to different 

deformations.  The similarity of the extracted parts of a human model in different poses, 

as shown in Figure 6.11, confirms the robustness of the proposed approach to model 

deformations. As a result, it is reasonable to expect the associated part-based retrieval 

system to offer high matching ability among similar models in different poses. 

 

Figure 6.11, Similar segments extracted for a human model in different poses.  

6.7.3. Sensitivity to Mesh Tessellation   

Since our segmentation approach works based upon both local and global features of the 

model surface, it is very interesting to see that the combination of these features results 

in insensitivity to the mesh tessellations. As depicted in Figure 6.12, the simplified 

models possessing different numbers of faces have been segmented quite similarly. 

Although the higher the face number, the more accurate the segmentation, the 

segmentation result for a very coarse model (the right-most model in Figure 6.12 having 

1000 faces) is still acceptable. However, the jagged boundaries present in the neck part 

of the very coarse models (models with 1000 and 2000 faces) result from the effect of 

the simplification process on concave faces. These irregularities can be easily smoothed 

by the cut-refinement process to enhance the boundaries. As the result, the proposed 

method can be considered as a tessellation-insensitive approach, which leads to segment 

the simplified models in a fast and efficient manner.           
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Figure 6.12, Similar extracted segments for a human model at various levels of tessellation.  

6.8. Comparison With the Other Charge Density-Based 

Approach 

As discussed before in Chapter 5, the charge density distribution has been previously 

leveraged for model decomposition in the work of Wu and Levine [171]. Their approach 

focuses only on the concavity of the mesh for detecting the boundary parts, i.e. the 

boundary parts must fully contain concavities to be detected accurately, which is not the 

case for lots of models. We have implemented and applied their algorithm on a variety 

of models in recently published datasets. Figure 6.13 shows the detected boundaries by 

their algorithm on two simple models. As expected, due to the unavailability of 

concavities in the boundary part, the algorithm cannot extract the boundary parts 

properly. Comparing these results to those of ours shown in the second row of Figures 

6.13, reveals the superiority of our approach in boundary detection and then in model 

decomposition.  
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Figure 6.13, First row: examples of detected boundaries (green parts) by Wu and Levine [171] for concave 

faces located in small rectangles. Second row: Segmentation results of our approach for the same models.  

We have also applied their approach on the 28 models of the SHREC’12 dataset. The 

3DNPRI factor depicted in Figure 6.14, illustrates the huge difference in performance of 

our and their approaches. 

 

Figure 6.14, 3D-NPRI indices of the 28 models of SHREC’12 dataset sorted in increasing order for Our 

Method and a similar method of Wu and Levine [171]. 
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6.9. Limitations 

Despite the strong ability of the proposed algorithm in decomposing complex mesh 

models into meaningful parts, it suffers from some limitations:  

• Like other protrusion-oriented approaches [154], our approach has been 

designed for decomposing models having relatively strong protrusions attached 

to the core part of model. As a result, the current work has limitations in 

decomposing models containing small protrusions such as the Bust and Vase 

classes of the SHREC’07 dataset as well as the Bunny model in SHREC’12 dataset. 

(See Figures 6.5 and 6.7 as well as Tables 6.1 and 6.2).  

• Furthermore, since the region growing step of our algorithm exploits geodesic 

distance between  the representative and boundary faces of each segment, for 

models possessing very planar surfaces (or non- cylindrical parts), such as CAD 

models, the detected boundary areas may not be perfectly fine (see Figure 6.15). 

The Rand Index factor of the Mechanical class in Table 6.1 exposes the weakness 

of our approach in such a class of models.    

 

 

Figure 6.15, Inappropriately detected segment in a Mechanical model.  

6.10. Complexity 

The robustness of the proposed approach has been shown against tessellation of the 

model surface in Section 6.7.3. So, we simplified models by reducing the number of faces 

to 5000. It enables us to do all of the process in a faster and more efficient way. We 

implemented our algorithm in MATLAB and some of its critical parts were written in 

C++, connected to MATLAB using the MEX interface.  

Representative Face 

Boundary 
Face 
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The total time for the whole segmentation process for each simplified model, including 

charge density distribution simulation, canonical form calculation, protruded part 

extraction, boundary detection and boundary refinement, takes an average of 24 

seconds, out of which the canonical form calculation took 7.2 seconds and the boundary 

refinement about 11 seconds running on a HP laptop with Intel 2.2GHz CPU.  

Let N be the number of faces in the simplified models (5000 in our case). So the 

complexity of the proposed approach contains the following steps: the canonical form 

calculation of the models takes O (N2*no_iter) where no_iter is 10 in our implementation. 

The charge density distribution costs O(N2) [171]. The protrusion area extraction takes 

O (N) for initial protruded area detection and O(N) for the representative faces 

identification. The boundary detection phase comprises two steps: semi-concave face 

detection, which is bounded by O(N), and the boundary refinement step for finding the 

final boundary faces, which takes O(M*R), where M is the number of detected semi-

concave faces and R is the number of representative faces identified on the surface of 

models (or the number of initial disjoint segments).  Finally, the complexity of boundary 

refinement is O(Nng
2 log(Nng)), where Nng is the number of nodes in the network graph 

[153]. Thus, the overall time complexity for the current approach is O(N2*no_iter + N2 +N 

+ N + N + M*R+ N 
ng

2 log (Nng)) = O(11 N2 + 3N + M*R+ N 
ng

2  log (Nng)) = O(N2 + M*R+ N 
ng

2  

log (Nng)) = O(N2). 

Table 6.3 reports the average required time for segmentation of models available in the 

SHREC’07 dataset along with the Rand Index measure of the examined algorithms. One 

can conclude from this table that the proposed approach can perform segmentation in a 

quite reasonable time. The fastest approach, Random Walk, is not fully-automatic and 

the user should provide the system with the number of desired segments. It also suffers 

from inaccurate parts extraction as identified by the Rand Index metric. The Randomized 

Cut approach, on the other hand, is the slowest approach for which the segmentation 

quality is significantly higher than the others. Our approach provides an acceptable 

result in terms of both speed and quality.  

It is worthwhile to point out that by considering both time and accuracy the Shape 

Diameter Function is the best approach among all of the examined algorithms.     
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Table 6.3, the average required time and Rand Index metric for various approaches on the SHREC’07 

dataset 

Method Name 
Average Time (Sec.)          
Run on 2 GHz PC 

Rand Index (%) 

Randomized Cut 83.8 15.3 

Shape Diameter Function 8.9 17.6 

Normalized Cut 49.4 17.5 

Core Extraction 19.5 21.1 

Random Walk 1.4 22.9 

Ours (Run on 2.2 GHz Laptop) 24.0 17.2 

6.11. Conclusion 

In this chapter, several experiments were conducted to assess the performance of the 

proposed segmentation algorithm. Various evaluation metrics were utilized so as to 

evaluate the generated segments on the models available in two standard benchmarks 

of theSHREC’07 and SHREC’12 contests.    

After setting the required parameters experimentally, we have performed a thorough 

investigation on the results in order to tackle the challenging problems in the 

segmentation field (e.g. accuracy, speed, robustness and hierarchy).  

We have utilized five metrics with the intention of assessing the accuracy of the extracted 

segments. Our approach achieved quite acceptable results in comparison to the existing 

approaches as well as to a similar approach proposed by Wu and Levine [171]. 

Furthermore, the robustness against noise, deformation and mesh tessellation is 

another remarkable characteristic of our method, which makes it applicable in a variety 

of domains such as partial matching and others. In terms of offering hierarchical 

segmentation, although our approach does not provide a complete hierarchy of 

segments, for the models having mixed cores, it can be applied hierarchically to 

decompose the extracted cores into their components.     

Generally speaking, the experimental results presented in this chapter indicate that the 

proposed approach outperforms most of the state-of-the-art methods and is quite 

comparable to the best ones.   

The drawbacks of the proposed approach have also been examined, which include 

inadequate ability in decomposing models having planar surfaces (such as CAD and 

Mechanical models) and the models containing small protrusions such as the Bust and 

Vase models.  
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7 
Conclusions and Future Work 

7.1. Introduction 

In this dissertation, we have proposed new approaches for processing 3D models. We 

have introduced three different shape descriptors by which 3D models can be effectively 

and efficiently searched and retrieved from standard datasets. Additionally, a robust, 

efficient and fully automatic approach for decomposing 3D models into their meaningful 

components has been presented.   

In the pages that follow, for the last time, we simply discuss the proposed approaches 

for retrieval and segmentation, as well as other contributions we have made. Finally, we 

will describe the possibilities for future research. 

7.2. Summary of contributions 

The content of the current thesis can be divided into two main parts:  

• Part I:  3D Model retrieval (Chapters 3 and 4): in this part three shape descriptors 

have been introduced and their performances on the models in standard datasets 

have been investigated. 

• Part II: 3D Model Segmentation (Chapters 5 and 6): the second part of the current 

work was dedicated to introducing a new technique for decomposing 3D models 

into semantically meaningful parts. The proposed approach can be considered as 

an improvement on the simple approach proposed by Wu and Levine [171].    
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The proposed techniques for both retrieval and segmentation of 3D models can be 

detailed as follows:    

7.2.1. SilPH Descriptor (Chapter 3) 

This first contribution is the Silhouette Poisson Histogram (SilPH) descriptor which 

belongs to the view-based category of descriptors (See Chapter 2 for classification of 

available descriptors). It extracts a set of 2D silhouettes from pre-defined view angles. 

The solutions to the 2D Poisson Equation over the silhouettes assign to each pixel a 

number, which acts as a local descriptor. A histogram accumulates the assigned numbers 

and describes the views efficiently. As practically investigated in Chapter 4, the SilPH 

descriptor offers valuable characteristics viz. higher retrieval accuracy than its 3D 

counterpart, robustness to noise and mesh tessellation.     

7.2.2. BoF-CDD Descriptor (Chapter 3) 

For the second and third descriptors, a well-known fact from electrical physics has been 

utilized: "when electrical charge is distributed on the surface of a solid, it tends to 

accumulate on the sharp convexities and diminish in sharp concavities". To simulate this 

fact, the Finite Element Method (FEM) was employed to specify charge distribution on 

the facets of the models. 

The second contribution employs density of distributed charge on each facet of a mesh 

model and considers it as a local descriptor. The Bag-of-Feature framework enabled us 

to compare and match the models globally, using the local features. The proposed Bag-

of-Feature Charge Density Descriptor (BoF-CDD) presents high retrieval ability as well 

as insensitivity to Noise, Deformation and Tessellations. It can also be extended, by some 

post-processing phases, to support partial matching.       

7.2.3. DP-CS-ECD Descriptor (Chapter 3) 

This contribution is a hybrid shape descriptor which uses the above fact of charge 

distribution to formulate 3D model features. Unlike the BoF-CDD, the Dense Patch-

Concentric Sphere-Electrical Charge Distribution (DP-CS-ECD) descriptor exploits the 

amount of charge in each facet. After the amount of charge has been computed, the 

models are enclosed in a set of concentric spheres and the total amount of charge 

between adjacent spheres creates a numerical shape descriptor. Finally, the 

discrimination ability of the descriptor is improved by considering the number of Dense 

Patches on the surface of models (See Chapter 3 to more detail about the Dense Patches). 
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The descriptor presented higher discrimination ability then the BoF-CDD. But, as shown 

in Chapter 4, it cannot be employed to support partial matching.         

7.2.4. Charge Density-Based Segmentation (Chapter 5) 

Unlike the previous contributions, this is related to decomposing 3D models into their 

semantic components. It employs the same fact of charge distribution on the surface of 

models, which has been used in contributions 2 and 3.  By using this fact, the convex and 

concave parts of the models are detected, which are able to locate the start and end parts 

of each segment, respectively. The ability of the technique has been boosted using some 

extensions added to the algorithm’s pipeline. The proposed approach has quite 

beneficial advantages over similar approaches in the literature [171]. Additionally, since 

the charge distribution acts as a fundamental cornerstone of the approach, it inherits all 

of its characteristics such as insensitivity to Noise and Pose deformations.       

7.2.5. Surveys of Available Descriptors and Segmentation 

Approaches (Chapter 2) 

In Chapter 2, we have presented complete and quite up-to-date surveys on both 3D 

shape descriptors and segmentation techniques. The available approaches have been 

classified into various groups for which sample works try to clarify the idea behind each 

class. Furthermore, the advantages and shortcomings of each class give a clear guide to 

the researcher to find their proper way of work.         

Additionally, later in Chapter 4, a literature review on available Partial Matching 

algorithms has been discussed. The aforementioned surveys are able to help new 

researchers to find their proper ways in these fields.   

7.3. Directions for Future Research  

The ideas and concepts in this research offer interesting avenues for future research. In 

the sequel, we identify some of these possibilities as the most important ones: 

7.3.1. Toward Partial Matching 

The practical test in Chapter 3 showed that among the proposed shape descriptors, only 

the BoF-CDD has the potential of supporting partial matching. But, since the charge 

density of each face has contributions from all of the other faces, altering a part of a 

model can affect the amount/density of charge on the whole model. This led to achieving 
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results which were not as satisfactory as expected. One possibility for supporting partial 

matching is using a proper statistical pattern recognition approach to discover available 

patterns in the charge distribution among similar subparts. Statistical pattern 

recognition could be expected to provide users with a high quality partial matcher, as 

the similar subparts in dissimilar models follow the same patterns of charge distribution. 

In a finger, for example, the amount/density of charge increase as faces get closer to the 

finger tip.  

Another possible technique for matching partial similar models could be measuring the 

global similarity using the similarity of their subparts. That is, the models are firstly 

segmented into their components and then each component is treated as an individual 

model for which the charge distribution is simulated. Finally, the similarity between two 

models is scored based on the number of common components they share. The more 

common subparts, the higher the similarity between models.  Although problems such 

as the spatial relationship among the components should be considered in the retrieval 

process, weighting schemes such as TF-IDF [96] are able to boost the retrieval ability. 

The TF-IDF is shown to be superior to simple, non-weighted approaches [88].     

7.3.2. Extending the Retrieval Algorithm to Support 

Relevance Feedback  

Relevance Feedback (RF) is a valuable feature of some retrieval systems such as CBIR 

and 3DOR to enhance the discriminative ability in such systems. The idea behind it is to 

bridge the semantic gap between the abstract, high level user intention and the low level 

data representation and processing. It has shown its ability in retrieving more accurate 

results compared to similar original retrieval systems [24, 123, 89]. Consequently, the 

other possible improvement to the proposed retrieval techniques is to propose a system 

to utilize RF in order to include the user’s needs in a beneficial way. 

7.3.3. Extending Segmentation Approach  

As discussed in Chapter 6, the major limitation of the proposed segmentation approach 

is related to the models possessing very planar surfaces, such as CAD and Mechanical 

models. Fitting primitives (such as cube, cylinder and sphere) to the components of such 

models could be expected to overcome this shortcoming. Therefore a hybrid approach, 

in which a primitive-fitting approach acts as a post-processing phase, seems to be a very 

promising approach.     
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