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Abstract of the Dissertation 

3D Shape Analysis Approaches for Protein Docking and Similarity 

Search 

Apostolos Axenopoulos 

Doctor of Philosophy, Graduate Program in Electrical and Computer Engineering 

University of Thessaly, Volos, Greece 

Protein functions are carried out through their interactions with other biological molecules. 

Research in protein interactions has attracted special interest from the scientific community for 

decades and still remains a hot research topic. Among others, there is an increasing interest to 

develop computational methods that automatically predict the 3D structure of protein-protein 

complexes, such as protein-protein docking. In this thesis, we propose novel approaches to assist 

protein-protein docking and protein similarity search. The proposed methods are based on the 

fact that when two proteins interact, their surfaces at the binding site demonstrate geometric 

complementarity (apart from physicochemical complementarity). 

 The first docking method is based on geometric complementarity matching of the molecular 

surfaces. The basic idea of this algorithm is to use a descriptor that measures 3D shape similarity 

for computing shape complementarity, since equally-sized complementary surface patches tend 

to have similar shapes. A basic property of the proposed shape descriptor is its invariance to 

rotations of the surface patches. Complementarity matching is achieved through pairwise 

comparison of the local shape descriptors, thus, providing a fast geometric filtering and avoiding 

the exhaustive translational and rotational search of existing docking techniques. 

The second docking method extends this work in order to produce a docking algorithm that is 

robust to relatively small conformational changes of the interacting proteins. Since accurate 

surface complementarity has been proven to be inappropriate in unbound docking, the new 

method allows binding of surfaces with approximate surface complementarity. Experiments 
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proved that the improved algorithm is more robust to conformational changes. Furthermore, a 

new scoring function is presented, which combines geometric complementarity with 

physicochemical factors, such as Coulomb potentials, van der Waals forces, hydrophobicity. The 

scoring function takes as input the list of candidate poses and a new rank list is produced having 

more near-native poses in the first positions.  

The last method that is proposed in this dissertation is an approach for molecular shape 

comparison. It aims to assist the problem of virtual screening, a process that is commonly used in 

rational drug design. More specifically, a new shape descriptor is proposed that combines local, 

global and hybrid local-global shape features. It is experimentally proven that the proposed 

compound descriptor is appropriate for similarity search of flexible ligands, while at the same 

time is robust in shape comparison of rigid proteins. Due to its compactness, the new descriptor 

enables fast screening of similar ligands to a target molecule from very large compound 

databases. 
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Περίληψη της Διατριβής 

Μέθοδοι Ανάλυσης Τρισδιάστατων Σχημάτων για Αναζήτηση 

Ομοιότητας Πρωτεϊνών και Protein Docking 

Απόστολος Αξενόπουλος 

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών υπολογιστών 

Πανεπιστήμιο Θεσσαλίας, Βόλος 

Οι λειτουργίες των πρωτεϊνών πραγματοποιούνται κυρίως μέσω των αλληλεπιδράσεών τους 

με άλλα μόρια. Η έρευνα στο πεδίο των αλλλεπιδράσεων των πρωτεϊνών έχει προσελκύσει το 

ενδιαφέρον των επιστημόνων εδώ και δεκαετίες και εξακολουθεί να παραμένει ένα από τα 

σημαντικότερα προβλήματα στο χώρο της βιολογίας. Μεταξύ άλλων, το ενδιαφέρον στρέφεται 

στην ανάπτυξη υπολογιστικών μεθόδων ικανών να προβλέψουν με αυτόματο τρόπο την 

τρισδιάστατη δομή των συμπλόκων μορίων πρωτεϊνών, όπως το “Protein Docking”. Στην 

παρούσα διατριβή, προτείνονται καινοτόμες μέθοδοι για την υποβοήθηση των διαδικασιών του 

protein docking και της αναζήτησης πρωτεϊνικών δομών. Οι προτεινόμενες μέθοδοι βασίζονται 

στην ιδέα ότι όταν δυο πρωτεΐνες αλληλεπιδρούν οι επιφάνειές τους στην περιοχή σύνδεσης 

πρέπει να παρουσιάζουν γεωμετρική συμπληρωματικότητα (εκτός από τη φυσικοχημική 

συμπληρωματικότητα). 

Η πρώτη μέθοδος για protein docking βασίζεται στο ταίριασμα γεωμετρικά 

συμπληρωματικών επιφανειών. Η βασική ιδέα του αλγορίθμου είναι η χρήση ενός περιγραφέα 

(descriptor) που υπολογίζει ομοιότητα τρισδιάστατων σχημάτων (3D shape similarity) για τον 

υπολογισμό γεωμετρικής συμπληρωματικότητας, δεδομένου ότι ισομεγέθη συμπληρωματικά 

τμήματα επιφανειών τείνουν να έχουν παρόμοιο σχήμα. Μια σημαντική ιδιότητα του 

προτεινόμενου περιγραφέα είναι η αμεταβλητότητά του κατά την περιστροφή των 

επιφανειακών τμημάτων. Το ταίριασμα των συμπληρωματικών τμημάτων πραγματοποιείται με 

σύγκριση κατά ζεύγη των αντίστοιχων περιγραφέων, παρέχοντας έτσι ένα γρήγορο γεωμετρικό 
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φιλτράρισμα. Με τον τρόπο αυτό, αποφεύγονται οι εξαντλητικές μετατοπίσεις και περιστροφές 

και επιταχύνεται η διαδικασία του docking. 

Η δεύτερη μέθοδος αποτελεί επέκταση της προηγούμενης με στόχο τη δημιουργία 

αλγορίθμου για docking που παρέχει μεγαλύτερη σταθερότητα όταν οι πρωτεΐνες παρουσιάζουν 

σχετική ευκαμψία (flexibility). Η περίπτωση του “unbound docking”, όπως αλλιώς λέγεται, 

απαιτεί οι δυο επιφάνειες να παρουσιάζουν “κατά προσέγγιση” συμπληρωματικότητα, παρά 

“ακριβή” συμπληρωματικότητα όπως συμβαίνει στην περίπτωση του “bound docking”. 

Πειραματικά αποτελέσματα απέδειξαν ότι ο βελτιωμένος αλγόριθμος είναι πιο εύρωστος στα 

θέματα ευκαμψίας των πρωτεϊνών. Επιπλέον, παρουσιάζεται μια νέα συνάρτηση βαθμολόγησης 

(scoring function), η οποία συνδυάζει γεωμετρική συμπληρωματικότητα με φυσικοχημικούς 

παράγοντες, όπως δυναμικά Coulomb, δυνάμεις van der Waals, υδροφοβικότητα. Η συνάρτηση 

δέχεται ως είσοδο τη λίστα με τις υποψήφιες θέσεις (πιθανά σύμπλοκα) και παράγει μια νέα 

κατάταξη όπου τα σωστά σύμπλοκα εμφανίζονται συχνότερα στις πρώτες θέσεις. 

Η τελευταία μέθοδος είναι μια προσέγγιση για σύγκριση ομοιότητας τρισδιάστατων 

πρωτεϊνικών δομών. Μια από τις πιθανές εφαρμογές της είναι στο πρόβλημα του “virtual 

screening”, της αναζήτησης όμοιων προσδετών (ligands) μέσα από βάσεις μορίων, με στόχο το 

σχεδιασμό φαρμάκων. Πιο συγκεκριμένα, προτείνεται ένας νέος περιγραφέας σχήματος, ο 

οποίος συνδυάζει τοπικά (local), καθολικά (global) και υβριδικά (local-global) χαρακτηριστικά 

σχήματος. Πειραματικά αποτελέσματα αποδεικνύουν ότι ο προτεινόμενος περιγραφέας είναι 

κατάλληλος για αναζήτηση ομοιότητας ακόμα και όταν τα μόρια-προσδέτες παρουσιάζουν 

σχετική ευκαμψία. Παράλληλα, είναι εξίσου αποτελεσματικός στην αναζήτηση ομοιότητας 

άκαμπτων (rigid) πρωτεϊνών. Λόγο του μικρού του μεγέθους (compactness), ο νέος περιγραφέας 

είναι κατάλληλος για γρήγορη αναζήτηση όμοιων μορίων ακόμα και από πολύ μεγάλες βάσεις.  
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Chapter 1 

Introduction 

1.1 Protein Docking 

Proteins are the workhorse molecules of life, since numerous biological processes are 

mediated by them. Among others, proteins are the motors that cause muscle contraction, they 

drive life-sustaining chemical processes and they hold cells together to form tissues and organs. 

Enzymes are proteins that catalyse chemical reactions, while regulatory proteins control the 

location and timing of gene expression. Information between cells is transmitted by signaling 

proteins such as cytokines and hormones. Structural proteins provide support for cells and 

organs and form large structures such as hair, nails and skin. In the human genome, the protein-

coding genes lead to the production of human proteins. If the mechanism of activity of all these 

proteins was fully understood, we would be able to understand the causes of several diseases, 

such as cancer, amyotrophic lateral sclerosis, Parkinson's, heart disease etc. All of the above  

indicate that protein science is still an active research field [1]. 

The structure of a protein is the arrangement of a polypeptide chain (sequence of aminoacids) 

in the three-dimensional (3D) space. The 3D structure of the protein and the way its polypeptide 

chain folds in the 3D space are crucial to understand the protein’s biological function [2]. There 

are several techniques for determination of the protein structure. The most commonly used is X-

ray crystallography, which is applicable to molecules/complexes of any size. A drawback of this 

method is that it provides only information about the native structure of the protein under the 

particular experimental conditions, thus, it does not include information about the flexibility of 

the molecule. On the other hand, Nuclear Magnetic Resonance (NMR) spectroscopy can detect 

more than one structures for the flexible parts of the protein, but it is limited to proteins smaller 
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than 25-30 kilodaltons (kDa). Finally, Electron Diffraction is another option, however, it is rarely 

used for protein structure determination. 

Protein functions are carried out through their interactions with other biological molecules, 

such as proteins, nucleic acids, lipids, sugars, nucleotides, ions and water. A failure to create the 

appropriate complex, during a protein interaction, may be the cause of several serious diseases, 

such as Alzheimer’s disease, Huntington's disease, cystic fibrosis, etc. Thus, it is not surprising 

that research in protein interactions has attracted special interest from the scientific community 

for decades and still remains a hot research topic in Biochemistry, Biophysics and Bioinformatics. 

Despite the fact that a vast number of protein interactions have been discovered in the last 

years, only in a little portion of them the crystallized structures of the resulting complexes are 

currently available. Thus, it is not surprising that the number of solved complexes in Protein Data 

Bank (PDB1) is orders of magnitude smaller than those of structures of individual proteins [4]. The 

main reason for this is that X-ray crystallography and NMR spectroscopy encounter difficulties in 

dealing with structures of complexes. The former because the flexibility of the complex formation 

makes the crystallization difficult and the latter because the size and weight of the resulting 

complex usually becomes prohibitive for NMR [5]. Thus, there is an increasing interest to 

investigate computational methods that automatically predict the structures of protein-protein 

complexes [6]. These approaches constitute the field of Protein Docking, which has attracted 

increasing interest during the past two decades and still remains a hot research topic in 

Bioinformatics. 

Protein docking deals with the prediction of the conformation and orientation of one protein 

(ligand) within the binding site of another (receptor). In other words, it calculates the three-

dimensional (3D) structure of a protein complex starting from the individual structures of the 

constituting proteins [7]. The optimized conformation and orientation should be such that the 

free energy of the overall system is minimized. Most docking algorithms include the following 

components: a search technique to find the optimal placement (pose) of one protein (ligand) 

                                                           
1 http://www.rcsb.org/ 
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with respect to the other (receptor); and a scoring function to rate each pose and provide a rank 

list of candidate complexes. Detecting the optimal pose, during the search stage, is based on the 

“lock-and-key” concept, that is, the surfaces of the receptor and ligand at their binding site 

should have geometric complementarity. The “lock-and-key” principle was initially introduced in 

1894 by Fischer [3] to explain the function of enzymes and it remains valid until today. Although 

it is a simple concept, its implementation is not a trivial task. Searching for complementary 

surfaces usually involves an exhaustive search of the rotational and translational space of one 

protein with respect to the other, resulting in a six-dimensional search, which is highly time-

consuming. 

Despite the extensive research in protein-protein docking, a complete solution has yet to be 

achieved due to the large complexity of the problem. It has been proposed that shape 

complementarity alone cannot achieve highly accurate docking predictions [7], but it should be 

used in combination with physicochemical factors, such as Coulomb potentials, van der Waals 

forces, hydrophobicity, etc. Additionally, protein interactions can involve significant 

conformational changes, thus, docking techniques should take into account the side-chain and 

the backbone flexibility. A fast computational method that will accurately predict protein-protein 

interactions would become a valuable tool for biologists and biochemists. Successful docking will 

predict binding site amino acids crucial for the complex stability, which will assist biochemists 

perform concrete mutations in order to test their impact for the protein function. Moreover, a 

search for docking partners for a protein in structural data bases and prediction of its binding 

mode could suggest a possible function for this protein. 

1.2 Rational Drug Design 

As explained above, several biological processes involve binding of a protein to a target 

molecule. This binding may be the part of a signalling mechanism between cells or a mechanical 

operation (e.g. muscle contraction), it can mediate a catalytic event, or it could be part of 

another process. An approach that is usually followed in drug discovery is competitive inhibition, 
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which is based on finding an inhibitor able to bind to a protein instead of its natural binding 

partners, in order to interrupt whatever process the protein mediates. 

The process of drug discovery in the laboratory is highly time-consuming and expensive. The  

candidate drugs must be synthesized and assayed on the target protein for activity, as well as 

with non-targets for cross-reactivity. In order to speed-up the drug design process, 

computational techniques would be beneficial. In general, computational approaches comprise 

two main categories [1]: 

De novo design: these methods are based on building a molecule from scratch to fit the 

binding site of a protein. This usually involves identifying molecular fragments complementary to 

specific parts of the binding site and connecting them into a single molecule. 

Docking: the process starts with a database of known molecules and attempts to place each 

one in the binding pocket of the protein. When a candidate pose is achieved, the affinity of the 

binding is estimated using a scoring function. Eventually, a list of the best-binding molecules for 

the target protein is returned. 

In industrial drug design, the economic impact of protein-protein docking is very high, since an 

accurate and fast docking algorithm will enable rapid scanning of structural data bases for 

matches with specific targets, which will speed-up the design process of new drugs and increase 

productivity. Thus, it is not surprising why protein-protein docking is still a very hot research topic 

and a lot of effort is put towards investigation of a more accurate computational docking 

solution, which is expected to provide additional insight into the nature of macromolecular 

recognition. 

1.3 Scope and Outline of the Dissertation 

As previously explained, one of the key factors for protein docking is the geometric 

complementarity of the interacting proteins’ surfaces at their binding site. However, methods 

based on exhaustive search of the rotational and translational space of the molecule are highly 

complex and become prohibitive when search for potential binding partners of a protein is 
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performed on large databases of ligands, as is the case in drug design. A common technique in 

rational drug design is the process of virtual screening, where a search is performed in libraries of 

small molecules in order to identify those structures which are most likely to bind to a drug 

target. Several variations of virtual screening are available. The most common are structure-

based virtual screening and ligand-based virtual screening. Structure-based virtual screening 

involves docking of candidate ligands into a protein target followed by applying a scoring function 

to estimate the likelihood that the ligand will bind to the protein with high affinity [120]. Ligand-

based virtual screening is based on searching molecules with shape similar to that of known 

actives, as such molecules will fit the target's binding site and hence will be likely to bind the 

target [121]. The latter technique is based on the similarity property principle [8], according to 

which similar molecular structures are likely to have similar properties. 

The scope of the research that is presented in this dissertation is to investigate novel 

approaches to assist protein-protein docking, particularly in the part of geometric 

complementarity search. The main objective is to develop algorithms for Molecular Shape 

Comparison to facilitate geometric docking, without the need for exhaustive translations and 

rotations of the interacting molecules. Special attention is given to the conformational changes 

that take part during the interaction, thus, the proposed methods will partially support molecular 

flexibility. Molecular shape comparison will be based on 3D pattern recognition. More 

specifically, the molecular surface of a protein is treated as a 3D object. After proper 3D content 

processing, a set of low-level features (descriptors) is extracted from the object, which uniquely 

characterize the shape of the protein. These features are in the form of low-dimentional vectors 

and provide a highly compact representation of the specific protein. The descriptors are applied 

to local regions of the molecular surface and allow for partial or global shape matching. Proteins 

or parts of proteins with similar low-level features will also have similar (or complementary) 

shape. This reduces significantly the computation time and provides a fast geometric filtering to 

speed-up the overall docking process. 

The rest of the dissertation is organized as follows. 
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In Chapter 2, a state-of-the-art analysis in the field of protein-protein docking is given, with 

emphasis on methods based on geometric complementarity of surfaces. The advantages and 

disadvantages of each approach are discussed and the motivation for the algorithms proposed in 

this dissertation is explained. Furthermore, the problem of molecular shape comparison is 

introduced and the most representative approaches in the field of 3D pattern recognition, which 

are appropriate for protein similarity matching, are presented.   

In Chapter 3, an approach to protein-protein docking is introduced, which is based on 

geometric complementarity matching of the molecular surfaces. The molecular surface (of either 

the receptor or the ligand) is segmented into equally-sized geometric patches and a shape 

descriptor is extracted for each patch. The basic idea of this algorithm is to use a descriptor that 

measures 3D shape similarity for computing shape complementarity, since equally-sized 

complementary surface patches tend to have similar shapes. Complementarity matching is 

achieved through pairwise comparison of the local shape descriptors, thus, providing a fast 

geometric filtering and avoiding the exhaustive translational and rotational search. To produce 

the candidate poses, alignment of the ligand is implemented by superimposing either a ligand 

patch onto a complementary receptor patch or a pair of neighboring ligand patches onto a pair of 

complementary receptor patches.  

Chapter 4 extends the work presented in Chapter 3 in several aspects. Protein docking, as 

initially proposed in Chapter 3, is based on accurate surface complementarity, which produces 

high quality poses in the rigid-body case. However, when it comes to non-rigid docking, which is 

the real case, accurate surface complementarity has been proven to be inappropriate. Thus, a 

new matching framework is proposed in Chapter 4, which allows binding of surfaces with 

approximate surface complementarity. Eperiments proved that the improved algorithm is more 

robust to conformational changes. Furthermore, a new scoring function is presented, which 

combines geometric complementarity with physicochemical factors, such as Coulomb potentials, 

van der Waals forces, hydrophobicity. The scoring function takes as input the list of candidate 

poses and a new rank list is produced having more near-native poses in the first positions. 
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In Chapter 5, a new approach for molecular shape comparison is presented. It aims to assist 

the problem of virtual screening, a process that is commonly used in rational drug design. More 

specifically, a compound shape descriptor is introduced to represent the global shape of a 

molecule. The advantage of the specific descriptor is that it combines features for both rigid and 

non-rigid shape matching, thus, it is appropriate for similarity search of flexible ligands, while at 

the same time is robust in shape comparison of rigid proteins. Due to its compactness, the new 

descriptor enables fast screening of similar ligands to a target molecule from very large 

compound databases. A comparison with existing shape-based methods for virtual screening 

demonstrates the superiority of the proposed method. 

In Chapter 6, overall conclusions are drawn and some ideas for future work are proposed. 
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Chapter 2 

Related Work 

2.1 Protein Docking Approaches 

Protein docking has been evolved into a distinct computational discipline, bringing together 

techniques from a broad spectrum of sciences such as physics, chemistry, biology, mathematics 

and computing, with the objective to model in silico how proteins behave [7]. Protein-protein 

docking methods generally consist of three components: a) Molecular Surface Representation; b) 

Conformational Space Search; and c) Scoring of Potential Solutions. These components and their 

role to docking are analysed in the following subsections. 

2.1.1 Molecular Surface Representation 

The basic description of the protein (or ligand) surface is the atomic representation of 

exposed residues. A protein structure file (e.g. PDB file) usually provides no more information 

than a list of atom locations in space and their types. This representation allows for visualization, 

but it cannot help to distinguish which parts of which atoms are on the surface of the protein and 

which are buried inside the structure. Knowledge of the surface atoms is crucial for docking since 

only those take part in the interaction. Thus, an additional tool is needed to capture notions of 

interior and exterior and spatial adjacency. 

One of the most common ways to represent the molecular surface is by its geometric 

features, such as the Solvent Excluded Surface (SES) [9], also known as “Connolly Surface”. SES is 

calculated by rolling a probe sphere (of size equal to the size of the solvent molecule) over the 

exposed contact surface of each atom. Everywhere the center of the sphere goes is the Solvent 

Accessible Surface (SAS), while everywhere the sphere touches (including empty space) 

constitutes the SES (Figure 2.1). Depending on how the probe sphere touches the Van der Waals 
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atoms, there are three different types of surface regions (

the probe sphere touches one atom; b) concave (yellow), where it touches three atoms and c) 

saddle (purple), where it touches two atoms. 

Speed Molecular Surface (MSMS) 

Figure 2.1: Calculation of SES and SAS surface using a probe

Figure 2.2: The SES surface of a protein, where convex, concave and saddle regions are coloured 
in green, yellow and purple, respectively.
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atoms, there are three different types of surface regions (Figure 2.2): a) convex (green), where 

the probe sphere touches one atom; b) concave (yellow), where it touches three atoms and c) 

saddle (purple), where it touches two atoms. A common tool for extraction of SES is the 

Speed Molecular Surface (MSMS) [10] algorithm. 

Calculation of SES and SAS surface using a probe sphere

 

The SES surface of a protein, where convex, concave and saddle regions are coloured 
in green, yellow and purple, respectively. 
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Apart from the Connolly surface, the 

surface representation. In 2D space, two points 

radius α  such that the two points lie on the surface of the circle and the circle contains no other 

points from point set. Thus, finding all the alpha

enclosed region (Figure 2.3). Expanding this principle in 3D space

define the surface of the molecules.

Connolly surface, however, since t

surface as well as the surface matching run faster.

degree of matching (i.e. coarse or fine)

Figure 2.3: 

Other representation approaches

Spheres [13]. The former computes the possible locations of the ligand that will be bound. Thus

it computes a “complementary

pair of points i and j that lie on the surface. The generated sphere is centered on the normal at 

point i. Regions where these generated spheres overlap define possible areas of cavities on the 

receptor and protrusions on the ligand.

2.1.2 Conformational Space Search

During this step, an appropriate technique is used to 

poses in the binding site of the receptor. The goal is to achieve at least one near

among the resulting candidate poses. 
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Apart from the Connolly surface, the Alpha Shapes technique [11] is also used for molecular 

surface representation. In 2D space, two points are “alpha-exposed” if there exists a circle of 

hat the two points lie on the surface of the circle and the circle contains no other 

, finding all the alpha-exposed regions of the point set defines 

Expanding this principle in 3D space, we can use 

define the surface of the molecules. Alpha Shapes provide a coarser representation of the 

Connolly surface, however, since there are fewer points to consider, the approximation of the 

surface as well as the surface matching run faster.Additionally, by tuning α , we can define the 

rse or fine). 

 

 Defining an enclosed region using Alpha Shapes.

approaches are the Lenhoff technique [12] and the Kuntz et al

computes the possible locations of the ligand that will be bound. Thus

complementary” surface for the receptor. The latter generates

that lie on the surface. The generated sphere is centered on the normal at 

egions where these generated spheres overlap define possible areas of cavities on the 

ons on the ligand. 

Conformational Space Search 

During this step, an appropriate technique is used to place the ligand in various candidate 

in the binding site of the receptor. The goal is to achieve at least one near

andidate poses. Although each placement could be completely random and 
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Defining an enclosed region using Alpha Shapes. 

Kuntz et al. Clustered 

computes the possible locations of the ligand that will be bound. Thus, 

s a sphere for every 

that lie on the surface. The generated sphere is centered on the normal at 

egions where these generated spheres overlap define possible areas of cavities on the 

place the ligand in various candidate 

in the binding site of the receptor. The goal is to achieve at least one near-native pose 

Although each placement could be completely random and 
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independent, most algorithms either use heuristics based on the chemistry or geometry of the 

atoms involved or use a standard optimization technique to avoid exhaustive translational and 

rotational search. A wide spectrum of docking algorithms include Fast Fourier Transform (FFT) 

correlations [14], geometric hashing [15], and Monte Carlo (MC) [16] techniques has been 

utilized in current docking algorithms.  

Regarding geometric docking, two broad categories of algorithms can be identified: a) brute-

force scanning of the transformation space and b) local shape feature matching. Brute force 

algorithms [17], [18], [19] search the entire 6-dimensional transformation space of the ligand. 

They begin with a simplified rigid body representation of protein shape obtained by projecting 

each protein onto a regular 3D Cartesian grid, and by distinguishing grid cells according to 

whether they are near or intersect the protein surface, or are deeply buried within the core of 

the protein. Then, docking search is performed by scoring the degree of overlap between pairs of 

grids in different relative orientations. The running times of those algorithms may reach days of 

CPU time. In order to make the procedure faster, several techniques have been utilized, such as 

the FFT [20]. 3D FFT has been incorporated in several correlation-based docking algorithms [21], 

[22], [23]. A recent overview of the principles of grid-based FFT docking approaches is given in 

[24]. In [25], a grid-free Spherical Polar Fourier (SPF) approach is introduced which allows 

rotational correlations to be calculated rapidly using one-dimensional (1D) FFTs.  

Towards the direction to improve the computation time in brute-force algorithms, ZDOCK [26] 

introduces a shape complementarity scoring function called Pairwise Shape Complementarity 

(PSC). The method computes the total number of receptor-ligand atom pairs within a distance 

cutoff. In contrast with traditional FFT based methods, PSC does not explicitly explore the entire 

rotational space resulting in low computation times. Finally, there are also non-deterministic 

methods in the category of brute-force docking approaches that use genetic algorithms [27], 

[28]. One of the most recent approaches of this category is presented in [35]. The so-called 

F2Dock is an extension of a NFFT-based docking algorithm, where an adaptive search phase 

(rotational and translational) has been incorporated to achieve faster running times. 
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Since they are based on exhaustive scanning of translational and rotational space, brute-force 

methods are able to detect at least one near-native pose in almost every complex. On the other 

hand, this may lead to an extraordinary big number of candidate docking poses, where, due to 

the existence of false positives, the near-native poses may not be ranked at the first positions. 

Such phenomena could be avoided with the use of local shape feature matching methods, which 

detect points of interest on the protein surfaces. These methods require a representation of the 

molecular surface, attempting to find critical patches on the surface. Then, pairwise 

complementarity matching is applied on these patches. One of the first docking approaches, 

based on local shape feature matching, was introduced in 1982 [29]. In [30], a method to match 

local curvature maxima and minima points was presented. This technique has been extended in 

[31], [32]. In [33], a method based on geometric hashing [15] is presented. Each protein surface is 

first pre-processed to give a list of critical points (“pits”, “caps”, and “belts”) which are then 

compared, using geometric hashing, to generate a relatively small number of trial docking 

orientations for grid scoring. The method requires low computation times, comparing with other 

docking algorithms, however, it is not so efficient in predicting the correct pose, since the pits, 

caps and belts do not enclose significant shape information.  

A more recent approach extracts local features from the solvent excluded surface of a protein 

and is called context shapes [34]. These are boolean data structures and correspond to 

significantly large parts of the protein surface. Complementarity shape matching is achieved 

using efficient boolean operations (Figure 2.4). The method demonstrates superior performance 

over other similar approaches in predicting the correct docking pose using only geometric 

criteria. However, the exhaustive search of relative orientations for each local feature, even with 

the use of a pre-calculated lookup table, increases the computational cost as well as the memory 

requirements. In [36], the method LZerD is introduced, which is based on 3D Zernike Descrptors 

(3DZD). These are a series expansion of a 3D function (i.e. protein surface) allowing for a compact 

representation of the 3D function. 3DZD are extracted on local patches that are derived on 

uniformly distributed points of the protein surface. Partial matches are computed using 
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geometric hashing. Surface Histograms (shDock) 

the local geometry around a set of two points with given normals on the surface of a protein. The 

docking pose is obtained automatically by matching two surface histograms. shDock has achieved 

the best performance among existing methods in Docking Benchmark 2.4, in the bound docking 

case, i.e. where the candidate proteins are taken directly from the crystallized complex. However, 

when dealing with the unbound case, the performance of shDock decreases significantl

Figure 2.4: The Context Shapes approach for protein docking.

2.1.3 Scoring of Potential Solutions

The scoring function provides a way to rank 

score should correspond directly to 

best scoring pose is a near-native pose

scoring functions have been introduced, based either on geometric complementarity or other 

non-geometric factors such as desolvation, hydrophobicity, and electrostatics 

In [33], the candidate poses produced by geometric hashing are ranked using a geometry

based scoring function. This function relies on the creation of a 3D distance transform grid, where 

the receptor is placed. Each voxel (cubic bin) of th

from the receptor’s molecular surface. Then, the translated and rotated ligand enters the grid

The total score is the sum of scores of all ligand surface points accessing the grid voxels (

2.5). Ligand points that lie within the Buried Surface Area (BSA) designate a region where the two 
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geometric hashing. Surface Histograms (shDock) [37] is a local shape descriptor, which captures 

the local geometry around a set of two points with given normals on the surface of a protein. The 

docking pose is obtained automatically by matching two surface histograms. shDock has achieved 

ce among existing methods in Docking Benchmark 2.4, in the bound docking 

case, i.e. where the candidate proteins are taken directly from the crystallized complex. However, 

when dealing with the unbound case, the performance of shDock decreases significantl

The Context Shapes approach for protein docking.

Scoring of Potential Solutions 

The scoring function provides a way to rank the candidate poses of the ligand

score should correspond directly to the binding affinity of the ligand for the protein, so that the 

native pose. In order to evaluate the feasibility of each pose several 

scoring functions have been introduced, based either on geometric complementarity or other 

geometric factors such as desolvation, hydrophobicity, and electrostatics [38]

, the candidate poses produced by geometric hashing are ranked using a geometry

based scoring function. This function relies on the creation of a 3D distance transform grid, where 

the receptor is placed. Each voxel (cubic bin) of the grid is assigned a value equal to the distance 

s molecular surface. Then, the translated and rotated ligand enters the grid

The total score is the sum of scores of all ligand surface points accessing the grid voxels (

). Ligand points that lie within the Buried Surface Area (BSA) designate a region where the two 
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surfaces are complementary, thus, increase the total score of the pose. Ligand

penetrate the surface of the receptor, i.e. create steric clashes, are not allowed, thus, decrease 

the total score of the pose. A similar geometric scoring function is also described in Chapter 3.

Figure 2.5: Geometric scoring using distance transform grid.

It has been proven that shape complementarity 

results, thus, non-geometric factors such as desolvation, hydrophobicity, and electrostatics have 

been also investigated in order to improve the scoring functions 

combining geometric and physicochemical properties in order to produce more accurate 

predictions. In [39], shape complementarity matching along with knowledge

electrostatics, atom desolvation energy, residue contact preferences and Van

are combined, demonstrating remarkable results on a test set of 68 bound and 30 unbound test 

cases. Although the contribution of each individual non

[39], an important conclusion can be drawn: shape complementarity should be combined with 

physicochemical complementarity to increase the accuracy of docking predictions. F2Dock

computes separately shape complementarity scores and electrostatics scores and combines 

them. This leads to an improvement of shape

Benchmark 2.0.  
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surfaces are complementary, thus, increase the total score of the pose. Ligand

penetrate the surface of the receptor, i.e. create steric clashes, are not allowed, thus, decrease 

the total score of the pose. A similar geometric scoring function is also described in Chapter 3.

Geometric scoring using distance transform grid.

shape complementarity alone does not provide the best possible 

geometric factors such as desolvation, hydrophobicity, and electrostatics have 

in order to improve the scoring functions [38]. Recent attempts focus on 

combining geometric and physicochemical properties in order to produce more accurate 

, shape complementarity matching along with knowledge

electrostatics, atom desolvation energy, residue contact preferences and Van-

ing remarkable results on a test set of 68 bound and 30 unbound test 

cases. Although the contribution of each individual non-geometric factor was not assessed in 

, an important conclusion can be drawn: shape complementarity should be combined with 

physicochemical complementarity to increase the accuracy of docking predictions. F2Dock

computes separately shape complementarity scores and electrostatics scores and combines 

them. This leads to an improvement of shape-only docking in 54% of the complexes of Docking 
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The most straightforward way to incorporate geometric and non-geometric properties is to 

represent the final scoring function as a weighted sum of those factors and determine the 

optimal weights that each factor contributes to the overall scoring. In [40], an empirical scoring 

function is proposed, which is a linear combination of the energy score, interface propensity and 

residue conservation score. The scoring function is the weighted sum of these three values, 

where the weights are optimized using a simple grid method (exhaustive search of the optimal 

combination).  Similarly in [38], the scoring function is a linear weighted sum of van der Waals 

attractive and repulsive energies, electrostatics short and long range attractive and repulsive 

energies, and desolvation. To optimize the weights, a downhill simplex minimization algorithm is 

used. 

Towards the direction of improving existing docking approaches and investigating new 

approaches, the CAPRI experiment [41] (Critical Assessment of Predicted Interactions) has 

become an ideal arena for testing docking algorithms. More specifically, in CAPRI, new protein-

protein complexes are subjected to structure prediction before they are published. The 

complexes are submitted by several predictor groups and they are assessed by comparing their 

geometry to the original structure. Some of the most well-known docking algorithms, such as 

PatchDock and ZDock, have participated in CAPRI experiment producing acceptable solutions for 

several CAPRI targets [42], [43]. 

2.2 Molecular Shape Comparison 

As it has been explained in the previous chapter, the 3D structure of a protein is very 

important in order to understand its function and biological action. Comparison of the 3D 

molecular structures is useful in a variety of applications such as protein function prediction, 

computer aided molecular design, rational drug design and protein docking. Following the 

similarity property principle [8], according to which similar structures are likely to have similar 

properties, several approaches for molecular structure comparison have been proposed, using 

different representations of the molecules. As an example, in rational drug design, the process of 
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virtual screening is usually applied, where given a target molecule, a search is performed in a 

large database for compounds that are most similar to the target. Since these compound 

databases range from thousands to millions of structures, an ideal method should provide 

accurate and at the same time rapid similarity matching. Among the various existing structural 

comparison methods [44], [45] those that are based on comparison of structures by their 

mainchain orientation [46] or the spatial arrangement of secondary structure [47] are quite slow, 

thus, similarity search in large molecular databases can be time-consuming. Therefore, in order 

to accelerate the search time, methods of 3D shape matching have been proposed in the 

literature. 

Techniques for similarity matching of molecular structures can be classified into different 

categories based on the molecular representation [48]. The most commonly used 

representations include backbone Ca positions [44], distance maps [49], secondary structure 

elements [47] and backbone torsion angles [50]. The technique/algorithm that is used for 

comparison highly depends on the chosen representation. As an example, for backbone 

representations, a common technique is dynamic programming [44]; spatial arrangements are 

used with secondary structure elements [47], while Monte Carlo algorithms are used with 

distance maps [49]. In general, most of the aforementioned methods are based on comparing 

coordinates of corresponding residues, which requires a structure superimposition (e.g. by using 

dynamic programming) as a preprocessing step. This can be time consuming when search is 

performed in large-scale molecular databases with thousands of structures. As the need for rapid 

and accurate comparison is becoming even more critical, due to the increasing size of the 

databases, Molecular Shape Comparison (MSC) techniques have been introduced [51]. MSC 

methods extract low level features (descriptors) that capture the spatial profile of the protein as 

a multidimensional feature vector. In this case, similarity matching is reduced to descriptor 

comparison using a common distance measure, which obviates the need for any feature 

correspondence or prealignment. Since the work presented in this paper belongs to the category 
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of MSC techniques, a more detailed state-of-the-art analysis of these methods is provided in the 

sequel. 

In shape-based approaches, the protein (or molecule in general) is treated as a three-

dimensional (3D) object, on which an appropriate algorithm is applied to extract low-level 

descriptors that uniquely characterize its shape. A common representation that is extensively 

used is the molecular surface [52]. Considering the molecular surface as input, several features 

can be generated, such as Spin Images [53] or Shape Histograms [54]. Spin Images are local 2D 

descriptions of the surface based on a reference frame that is defined by the associated surface 

points. Shape Histograms, on the other hand, exploit global geometric properties of the protein 

captured in the form of a probability distribution sampled from a shape function (e.g. angles, 

distances, areas). In [55], the protein surface is given as input and 2D views of the surface are 

taken from 100 uniformly sampled viewpoints. Comparison is performed by multi-view matching 

using 2D Zernike moments and Fourier descriptors for each 2D view. Multi-view representation 

has been proven quite efficient for shape matching of 3D objects; however, the optimal 

performance is achieved when the database objects have symmetries, i.e. in retrieval of generic 

objects [56]. In the case of molecular shapes, these symmetries are not present. Apart from the 

molecular surface, other representations are also possible. The method presented in [57], [58], 

describes the shape of a molecule through its set of interatomic distances, which is encoded as a 

geometrical descriptor vector. The method achieves very fast comparison times and is 

appropriate for virtual screening problems. 

An interesting category of shape-based approaches comprises methods that extract moments 

from the 3D object. These have been successfully applied in pattern recognition problems [59]. 

The moment-based representations result in compact descriptor vectors with high discriminative 

power. Examples of moments are based on the theory of orthogonal polynomials, such as 2D/3D 

Zernike moments and Legendre moments [60]. These descriptors allow also reconstruction of the 

object from its moments [61]. The method in [62] takes as input the volume of the 3D molecular 

structure producing a new domain of concentric spheres. In this domain, 2D Polar-Fourier 
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coefficients and 2D Krawtchouk moments are applied, resulting in a completely rotation-invariant 

descriptor vector. Spherical Harmonics have been widely used in molecular similarity comparison 

problems such as virtual screening [63], protein structure representation and comparison [64] 

and molecular docking [65][66]. Spherical Harmonics have the advantage of allowing the surface 

information to be encoded in a compact form as an orthonormal 1D vector of real numbers 

allowing fast comparison. Their main disadvantages are: a) they represent only star-shape 

surfaces; and b) the handling of alignment problems is associated with the fast comparison of 

objects [67]. Recently, 3D Zernike descriptors (3DZD) have been introduced as a representation 

of the protein surface shape [68]. These are based on a series expansion of a given 3D function. 

3DZDs are rotation invariant, with the protein structures not necessarily being aligned to perform 

the molecular shape comparison. Another advantage of 3DZDs is that they allow other 

characteristics of a protein surface, such as electrostatic potentials, to be incorporated into the 

descriptor vector [68]. 3DZDs have been used in problems of protein structure retrieval, protein-

protein docking [36] and virtual screening [69] with quite satisfactory results. 

In all methods for molecular shape comparison described above, the 3D molecules are treated 

as rigid objects. A drawback of these approaches is that they are not robust to shape 

deformations of flexible molecules. Since many molecules are flexible and this flexibility is part of 

their function, it should by no means be underestimated. To address such problems, methods for 

non-rigid shape matching should be utilized. Some initial attempts have been proposed, which 

exploit non-rigid 3D shape descriptors, such as the Local-diameter Descriptor [70] and the Inner 

Distance Shape Signature [71][72], however, they are not able to efficiently handle shape 

deformations of molecules with topological changes. In [73], authors propose a method for 

flexible molecular shape comparison using diffusion distances. The Diffusion Distance Shape 

Descriptor (DDSD) is a histogram of the diffusion distances between all sample point pairs on the 

molecular surface. Experiments in a database of flexible molecules show that DDSD outperforms 

similar approaches. Another approach, which was introduced in [74] for fast screening of 

proteins, is based on extraction of local patches from the protein surface and computation of a 
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geometric fingerprint (distribution of curvatures) for each patch. This method exploits local 

surface similarities and achieves rapid shape comparisons. 

Methods for non-rigid shape matching have been introduced to address problems that 

include articulation of the 3D objects (e.g. different human or animal poses in generic 3D object 

retrieval, molecular flexibility in bioinformatics), since rigid shape descriptors have been proven 

inappropriate [75]. The two main categories of non-rigid approaches are: a) global-shape-based 

and b) local-shape-based methods. Global approaches usually transform the Euclidiean space or 

Euclidean metrics to a metric space where the pairwise distances between points of the 3D 

object surface are invariant to deformations of the 3D object. Examples include canonical forms 

[76], geodesic distances [77] or diffusion distances [73]. Local-shape-based methods sample the 

surface and extract descriptors for each of the sampled local regions. Then, a codebook is created 

and a bag-of-features method is applied to generate a global shape descriptor [78][79]. Although 

these approaches are appropriate for non-rigid shape matching problems, in rigid shape retrieval 

they have inferior performance comparing to rigid methods [80]. To increase the robustness of 

shape matching so as to deal with both rigid and non-rigid problems, a combination of multiple 

features that capture different properties of the 3D shape should be investigated. It has been 

recently proven that combining multiple shape descriptors can significantly improve the 

performance of rigid 3D shape retrieval [81]. Following the same concept, a framework that 

combines multiple shape descriptors to address both rigid and flexible molecular shape matching 

problems is presented in Chapter 5 of this dissertation. 
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Chapter 3 

Molecular Docking using Geometric Complementarity 

Matching 

3.1 Introduction 

This chapter presents a novel approach for fast rigid docking of proteins based on geometric 

complementarity. After extraction of the 3D molecular surface, a set of local surface patches is 

generated based on the local surface curvature. The shape complementarity between a pair of 

patches is calculated using an efficient shape descriptor, the Shape Impact Descriptor. The key 

property of the Shape Impact Descriptor is its rotation invariance, which obviates the need for 

taking an exhaustive set of rotations for each pair of patches. Thus, complementarity matching 

between two patches is reduced to a simple histogram matching. Finally, a condensed set of 

almost complementary pairs of surface patches is supplied as input to the final scoring step, 

where each pose is evaluated using a 3D distance grid. The experimental results prove that the 

proposed method demonstrates superior performance over other well-known geometry-based, 

rigid-docking approaches. 

The chapter is organized as follows: in Section 3.2, an overview of the proposed method is 

provided along with its major scientific contributions. In Section 3.3, a new approach for 

extraction of critical points from the molecular surface is introduced. In Section 3.4, a description 

of the Shape Impact Descriptor is given, while in Section 3.5, the final step of the algorithm, 

which includes alignment and geometric scoring is presented. Then, in Section 3.6, the 

experimental results are presented, where the proposed method is compared with other state-

of-the-art approaches. Finally, the chapter is summarized in Section 3.7. 
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3.2 Overview and Contributions

The proposed method can be summarized as in the block diagram presented in 

input is the PDB [82] file of the protein, which is used to generate the Solvent Excluded Surface 

(SES). Then, a set of critical points is extracted from the surface. The critical points correspond to 

the centers of small elementary patches (either convex or concave). Then, for each critical point, 

an Extended Surface Patch (ESP) is created, which spreads over a wider surface area

point. Each ESP that corresponds to a convex (or concave) elementary patch of the receptor 

protein is matched with all ESPs that correspond to concave (or convex) elementary patches of 

the ligand protein. For complementarity shape matching a n

descriptor, called the Shape Impact Descriptor (SID), is used. Since SID is invariant to rotation, 

there is no need to rotate the ESP of the ligand with respect to the receptor patch. The pairs of 

ESPs ranked as most complementa

the candidate poses are scored, using a distance transform grid.

Figure 
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Overview and Contributions 

The proposed method can be summarized as in the block diagram presented in 

file of the protein, which is used to generate the Solvent Excluded Surface 

l points is extracted from the surface. The critical points correspond to 

the centers of small elementary patches (either convex or concave). Then, for each critical point, 

an Extended Surface Patch (ESP) is created, which spreads over a wider surface area

point. Each ESP that corresponds to a convex (or concave) elementary patch of the receptor 

protein is matched with all ESPs that correspond to concave (or convex) elementary patches of 

the ligand protein. For complementarity shape matching a new rotation

descriptor, called the Shape Impact Descriptor (SID), is used. Since SID is invariant to rotation, 

there is no need to rotate the ESP of the ligand with respect to the receptor patch. The pairs of 

ESPs ranked as most complementary are given as input to the final step of the algorithm, where 

the candidate poses are scored, using a distance transform grid. 

Figure 3.1: Block diagram of the proposed method 

Molecular Docking using Geometric Complementarity Matching 

The proposed method can be summarized as in the block diagram presented in Figure 3.1. The 

file of the protein, which is used to generate the Solvent Excluded Surface 

l points is extracted from the surface. The critical points correspond to 

the centers of small elementary patches (either convex or concave). Then, for each critical point, 

an Extended Surface Patch (ESP) is created, which spreads over a wider surface area around that 

point. Each ESP that corresponds to a convex (or concave) elementary patch of the receptor 

protein is matched with all ESPs that correspond to concave (or convex) elementary patches of 

ew rotation-invariant shape 

descriptor, called the Shape Impact Descriptor (SID), is used. Since SID is invariant to rotation, 

there is no need to rotate the ESP of the ligand with respect to the receptor patch. The pairs of 

ry are given as input to the final step of the algorithm, where 
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The major strength of the proposed approach is that it introduces a shape similarity descriptor 

to measure surface complementarity. This is based on the notion that two ESPs with 

complementary shape can be also regarded as of similar shape if a) they have a specific size and 

b) the second ESP is turned upside down so that the inner part of the ligand surface matches the 

outer part of the receptor surface. The size of the ESP should be relevantly large to enclose 

significant shape information, while at the same time it should be kept within a maximum radius, 

since with further growth in ESP’s size the criterion (b) may not be fulfilled. While there are only 

few techniques for efficient complementarity surface matching, regarding similarity shape 

matching a wider variety of algorithms is available. Thus, following the notion described above, it 

is easier to develop a method for partial surface complementarity by appropriately modifying a 

shape matching technique. The idea of matching the negative surface of a protein to deal with 

complementarity matching has been used in the past for similar problems. The DOCK program 

[83], which is widely used in protein docking, is based on generating a negative image of the 

receptor’s docking site. Then, the shape of a ligand is matched with this negative image in terms 

of similarity. This approach, which is analysed in [84], differs from the proposed method in the 

following: the method presented in [84] requires an approximation of the imaginary atoms that 

lie at the other side of the receptor’s negative surface, since mathching is performed by atom-by-

atom comparison with the atoms of the ligand. On the other hand, our method is applied directly 

on the surfaces of the interacting molecules in a more efficient way. 

Another innovative feature is that the proposed Shape Impact Descriptor is invariant to any 

rotation of the matching ESPs, which obviates the need for an exhaustive search of relative 

orientations, during the pairwise complementarity matching of ESPs. This reduces significantly 

the computation time and provides an efficient fast filtering for the final scoring stage. 

The reduction of computation time is of crucial importance for a docking algorithm, however, 

the prediction accuracy should by no means be underestimated. The proposed method achieves 

significant improvement in prediction accuracy by introducing two conceptually simple features 

in the geometric scoring stage. The first involves a set of additional translations, after 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Molecular Docking using Geometric Complementarity Matching 

23 

superimposition of the two ESPs. The reason is that an actual contact point may not always 

coincide with a critical point. In fact the actual contact point may lie in a small area close to the 

critical point. By slightly moving the ligand ESP within a small area close to the critical point, it is 

more likely to find a pose, which is close to the original pose. The second feature is a slight 

modification of the scoring function. More specifically, instead of using the ligand surface points 

to access the distance grid, the triangle centers of the ligand surface are used. The contribution 

of each triangle to the total score is multiplied by the area of the triangle. This results in a more 

accurate scoring, taking into account that the point distribution is not uniform across the 3D 

mesh of the molecular surface.  

The idea behind the proposed approach was inspired by the method presented in [34]. The 

concept of pairwise complementarity matching of equally sized surface patches is common to 

both approaches; however, the proposed method introduces several innovative features. First of 

all, in [34], the authors adopt the method in [32] in order to generate an initial set of sparse 

critical points, while, in this work, a new method is developed (Section 2), which provides a more 

approximate representation with sparse points and it can be applied also to non-molecular 3D 

meshes. Furthermore, the two methods use different local descriptors to measure the shape 

complementarity of surface patches. In [34], the Context Shapes are used, which require an 

exhaustive set of rotations of the ligand patch with respect to the receptor. In the proposed 

approach, a new descriptor is introduced, the Shape Impact Descriptor, which is rotation-

invariant, thus, it does not require several rotations of the ligand. This provides a fast geometric 

filtering, keeping only a very small subset of candidate poses for the final scoring step. Finally, the 

proposed method provides an additional scoring step, which is an improvement of the distance 

grid used in [33], in order to produce more accurate results. 

3.3 Molecular Surface Representation and Critical Points Extraction 

A local shape feature matching algorithm for protein docking requires, as a first step, an 

appropriate representation of the molecular surface. In this work, the Solvent Excluded Surface 
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(SES) [9] has been used, which efficiently represents the shape of a protein. SES is calculated by 

rolling a probe sphere (of size equal to the size of the solvent molecule) over the exposed contact 

surface of each atom. In order to 

(MSMS) [10] algorithm has been utilized. 

Given the SES of a protein as input, a set of critical points can b

the centers of concave (holes), convex (knobs) or saddle areas of the molecular surface. Several 

approaches have been utilized to derive critical points from SES. One of the most widely used is 

the sparse surface representati

caps, pits and belts. These points correspond to the face centers of convex, concave and flat 

areas of the surface, respectively. The face centers are calculated by projecting the centroid of 

each face to the surface in the normal direction.

Figure 3.2: Estimation of the local curvature around a point 

As an alternative, we propose

curvature of the surface. The reason for not adopting the sparse surface 

points is that the proposed method is applied directly to the 3D mesh, while the sparse surface 

requires additional information about the surface atoms. Thus, the sparse surface can be used to 

estimate the local curvature only for molecula

while the proposed approach is applicable to all types of triangulated meshes.

More specifically, for each point P of the molecular surface, the vector k, which provides a 

local estimation of the curvature
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has been used, which efficiently represents the shape of a protein. SES is calculated by 

rolling a probe sphere (of size equal to the size of the solvent molecule) over the exposed contact 

surface of each atom. In order to generate the SES, the Maximal Speed Molecular Surface 

algorithm has been utilized.  

Given the SES of a protein as input, a set of critical points can be extracted. These are usually 

the centers of concave (holes), convex (knobs) or saddle areas of the molecular surface. Several 

approaches have been utilized to derive critical points from SES. One of the most widely used is 

the sparse surface representation [85]. The sparse surface consists of three types of points called 

caps, pits and belts. These points correspond to the face centers of convex, concave and flat 

areas of the surface, respectively. The face centers are calculated by projecting the centroid of 

each face to the surface in the normal direction. 

Estimation of the local curvature around a point P

we propose a method for generating critical points based on the local 

curvature of the surface. The reason for not adopting the sparse surface [85]

points is that the proposed method is applied directly to the 3D mesh, while the sparse surface 

requires additional information about the surface atoms. Thus, the sparse surface can be used to 

estimate the local curvature only for molecular surfaces extracted using the Connolly algorithm, 

while the proposed approach is applicable to all types of triangulated meshes. 

More specifically, for each point P of the molecular surface, the vector k, which provides a 

local estimation of the curvature, is calculated as follows (Figure 3.2): 

Molecular Docking using Geometric Complementarity Matching 

has been used, which efficiently represents the shape of a protein. SES is calculated by 

rolling a probe sphere (of size equal to the size of the solvent molecule) over the exposed contact 

generate the SES, the Maximal Speed Molecular Surface 

e extracted. These are usually 

the centers of concave (holes), convex (knobs) or saddle areas of the molecular surface. Several 

approaches have been utilized to derive critical points from SES. One of the most widely used is 

. The sparse surface consists of three types of points called 

caps, pits and belts. These points correspond to the face centers of convex, concave and flat 

areas of the surface, respectively. The face centers are calculated by projecting the centroid of 

 

P 

a method for generating critical points based on the local 

[85] to extract critical 

points is that the proposed method is applied directly to the 3D mesh, while the sparse surface 

requires additional information about the surface atoms. Thus, the sparse surface can be used to 

r surfaces extracted using the Connolly algorithm, 

 

More specifically, for each point P of the molecular surface, the vector k, which provides a 
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where N is the total number of neighboring points Qi of P, ui is the vector from P to Ui and Ui is 
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and iq  is the vector from P to Qi. 

For surface points P that belong to convex areas, their corresponding vectors k point at the 

inner part of the molecule, while the vectors of points that belong to concave areas point at the 

outer part of the molecule (Figure 3.2). In flat areas, the vectors are almost tangential to the 

surface (they point neither at inner nor outer part of the molecule). This can provide an initial 

segmentation of the SES into three distinct regions according to the curvature (convex, concave 

and flat regions), which is reduced to selecting continuous regions where the vectors point at the 

same direction (inner, outer or tangential to molecular surface). In Figure 3.3, a Connolly surface, 

segmented into different regions according to the curvature, is depicted. Convex areas are 

marked with red, concave areas with blue and flat areas with green color, respectively. 

These areas need to be further segmented into smaller patches. The centers of these patches 

will eventually provide the set of critical points. The algorithm for the segmentation of these 

areas (Figure 3.4) consists of the following steps: 

Step 1: select a continuous region of surface points of the same type (convex, concave or flat). 

Step 2: rank all region points according to their distance from the region contour and select 

those with the maximum distance as seed points. In Figure 3.4 (a), the two selected seed points 

are marked with the blue dots. 

Step 3: expand each seed point uniformly to all directions along the surface until the region 

contour is reached. In the example shown in Figure 3.4 (b), the contour is reached at the second 

level of expansion for both seed points. The set of surface points, which are grouped around a 

seed point, constitute an elementary patch (convex, concave or flat) centered at the seed point 
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(Figure 3.4 (c)). If a seed point is already included in a group centered at 

removed from the seed points list.

Figure 3.3: Segmentation of SES into convex, concave and flat regions. The critical points are 

In Figure 3.3, the yellow points represent the centers of elementary patches after the 

segmentation step. The procedure described above results in a sparse set of critical surface 

points. These can be characterized as convex, concave or flat, according to the type of their 

corresponding elementary patches. Critical points provide a sufficient approximation of the 

molecular surface, which significantly reduces the search space in local shape feature matching

algorithms. In our approach, the convex points of the receptor are matched with the concave 

points of the ligand and vice versa (excluding flat points) in order to find candidate poses. The 

matching relies on the shape complementarity between the extended
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(c)). If a seed point is already included in a group centered at another seed point, it is 

removed from the seed points list. 

Segmentation of SES into convex, concave and flat regions. The critical points are 
represented by yellow dots. 

, the yellow points represent the centers of elementary patches after the 

segmentation step. The procedure described above results in a sparse set of critical surface 

acterized as convex, concave or flat, according to the type of their 

corresponding elementary patches. Critical points provide a sufficient approximation of the 

molecular surface, which significantly reduces the search space in local shape feature matching

algorithms. In our approach, the convex points of the receptor are matched with the concave 

points of the ligand and vice versa (excluding flat points) in order to find candidate poses. The 

matching relies on the shape complementarity between the extended patches which correspond 
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another seed point, it is 

 

Segmentation of SES into convex, concave and flat regions. The critical points are 

, the yellow points represent the centers of elementary patches after the 

segmentation step. The procedure described above results in a sparse set of critical surface 

acterized as convex, concave or flat, according to the type of their 

corresponding elementary patches. Critical points provide a sufficient approximation of the 

molecular surface, which significantly reduces the search space in local shape feature matching 

algorithms. In our approach, the convex points of the receptor are matched with the concave 

points of the ligand and vice versa (excluding flat points) in order to find candidate poses. The 

patches which correspond 
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to each critical point. The Shape Impact Descriptor used for complementarity matching is 

described in the following subsection.

Figure 3.4: The steps for segmenting a continuous region of surface 
select the most distant points from the region contour as seed points (b) expand uniformly to all 

directions until the region contour is reached; the numbers represent the level of expansion 
around the seed point (c) group all 

point; these sets of points constitute the elementary patches.

3.4 The Shape Impact descriptor

The idea of local shape complementarity matching 

presented in [34]. More specifically, we are interested in finding one or more Possible Contact 

Points (PCPs) from the receptor and their corresponding points from the ligand. These 

be derived from the sparse critical surface points of each molecule, since sparse critical surface 

provides a good approximation of the molecular surface. If two PCPs, one from the receptor and 

one from the ligand, are actual contact points, the l

with the receptor’s PCP. Then the ligand is appropriately rotated around that point in order to 

find the optimal pose. 

It can be easily inferred from the above that for a pair of actual contact points, the ESPs

which are centered at these points, should be parts of the actual binding site and reveal shape 

complementarity. Thus, in order to identify candidate poses, a complementarity matching of all 

potential pairs of ESPs takes place. In the proposed approach, 

at convex critical points are matched with the ESPs of the ligand centered at concave critical 
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to each critical point. The Shape Impact Descriptor used for complementarity matching is 

described in the following subsection. 

The steps for segmenting a continuous region of surface points of the same type: (a) 
select the most distant points from the region contour as seed points (b) expand uniformly to all 

directions until the region contour is reached; the numbers represent the level of expansion 
around the seed point (c) group all surface points covered by the expansion around each seed 

point; these sets of points constitute the elementary patches.

The Shape Impact descriptor 

The idea of local shape complementarity matching that we propose is similar to the one 

. More specifically, we are interested in finding one or more Possible Contact 

Points (PCPs) from the receptor and their corresponding points from the ligand. These 

be derived from the sparse critical surface points of each molecule, since sparse critical surface 

provides a good approximation of the molecular surface. If two PCPs, one from the receptor and 

one from the ligand, are actual contact points, the ligand is translated so that its PCP coincides 

with the receptor’s PCP. Then the ligand is appropriately rotated around that point in order to 

It can be easily inferred from the above that for a pair of actual contact points, the ESPs

which are centered at these points, should be parts of the actual binding site and reveal shape 

complementarity. Thus, in order to identify candidate poses, a complementarity matching of all 

potential pairs of ESPs takes place. In the proposed approach, the ESPs of the receptor centered 

at convex critical points are matched with the ESPs of the ligand centered at concave critical 
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to each critical point. The Shape Impact Descriptor used for complementarity matching is 

 

points of the same type: (a) 
select the most distant points from the region contour as seed points (b) expand uniformly to all 

directions until the region contour is reached; the numbers represent the level of expansion 
surface points covered by the expansion around each seed 

point; these sets of points constitute the elementary patches. 

is similar to the one 

. More specifically, we are interested in finding one or more Possible Contact 

Points (PCPs) from the receptor and their corresponding points from the ligand. These PCPs can 

be derived from the sparse critical surface points of each molecule, since sparse critical surface 

provides a good approximation of the molecular surface. If two PCPs, one from the receptor and 

igand is translated so that its PCP coincides 

with the receptor’s PCP. Then the ligand is appropriately rotated around that point in order to 

It can be easily inferred from the above that for a pair of actual contact points, the ESPs, 

which are centered at these points, should be parts of the actual binding site and reveal shape 

complementarity. Thus, in order to identify candidate poses, a complementarity matching of all 

the ESPs of the receptor centered 

at convex critical points are matched with the ESPs of the ligand centered at concave critical 
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points and vice versa. This is due to the assumption that a convex critical point is highly probable 

to match with a concave critical point, while other combinations (convex

concave, convex-flat, concave flat) are less likely to happen. Finally, the case of flat

points is not taken into account, even if it is very likely to happen. The reason is that 

discriminative power of a complementarity matching algorithm cannot be fully exploited in this 

case, since two flat-only ESPs can be both complementary and similar at the same time. 

Therefore, at least one convex

pair of matching ESPs.  

Figure 3.5: Removal of unconnected surface parts using geodesic distance: taking into account 
only Euclidean distances from the center 
However, points of S2 have geodesic distances greater than the predefined threshold 

3.4.1 Preprocessing 

Given the SES of a protein along with the set of critical points, an ESP is extracted as 

Firstly, a sphere of a given radius

the part of the SES (points/triangles) enclosed within the sphere. In order to discard small 

unconnected surface parts enclosed within the sphere, an additional filtering based on the 

geodesic distance G  from the center is applied. Geodesic distance between two surface points is 

the shortest path on the surface connecting these points. In 

depicted. Based only on Euclidean distance between the ESP center 

both 1S  and 2S  surface parts are included. However, points that belong to the unconnected 
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points and vice versa. This is due to the assumption that a convex critical point is highly probable 

itical point, while other combinations (convex

flat, concave flat) are less likely to happen. Finally, the case of flat

points is not taken into account, even if it is very likely to happen. The reason is that 

discriminative power of a complementarity matching algorithm cannot be fully exploited in this 

only ESPs can be both complementary and similar at the same time. 

Therefore, at least one convex-concave or concave-convex combination should appear in every 

Removal of unconnected surface parts using geodesic distance: taking into account 
only Euclidean distances from the center K of the ESP, both S1 and S2 surface parts are enclosed. 

have geodesic distances greater than the predefined threshold 
they are discarded. 

Given the SES of a protein along with the set of critical points, an ESP is extracted as 

Firstly, a sphere of a given radius E  centered at a critical point is created. The ESP consists of 

the part of the SES (points/triangles) enclosed within the sphere. In order to discard small 

unconnected surface parts enclosed within the sphere, an additional filtering based on the 

from the center is applied. Geodesic distance between two surface points is 

the shortest path on the surface connecting these points. In Figure 3.5, the creation of an ESP is 

depicted. Based only on Euclidean distance between the ESP center K  and all surface points, 

surface parts are included. However, points that belong to the unconnected 
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points and vice versa. This is due to the assumption that a convex critical point is highly probable 

itical point, while other combinations (convex-convex, concave-

flat, concave flat) are less likely to happen. Finally, the case of flat-flat critical 

points is not taken into account, even if it is very likely to happen. The reason is that the 

discriminative power of a complementarity matching algorithm cannot be fully exploited in this 

only ESPs can be both complementary and similar at the same time. 

hould appear in every 

 

Removal of unconnected surface parts using geodesic distance: taking into account 
surface parts are enclosed. 

have geodesic distances greater than the predefined threshold Gmax, thus, 

Given the SES of a protein along with the set of critical points, an ESP is extracted as follows: 

centered at a critical point is created. The ESP consists of 

the part of the SES (points/triangles) enclosed within the sphere. In order to discard small 

unconnected surface parts enclosed within the sphere, an additional filtering based on the 

from the center is applied. Geodesic distance between two surface points is 

, the creation of an ESP is 

and all surface points, 

surface parts are included. However, points that belong to the unconnected 
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surface part 2S  are very far from the ESP center in terms of geodesic distance, thus, they should 

be discarded. Surface points with geodesic distance greater th

are excluded from the ESP. The value of 

that was used for the experiments is given in

Figure 3.6: a) an ESP of the receptor of the 1CGI complex (large protrusion); b) the ESP of the 
ligand (deep cavity) centered at a critical point which is a point of 
a); c) the ESP of b) turned upside down so that the inner surface is visible. The patches in a) and 

c) have approximately similar shapes.

In Figure 3.6, a pair of complementary ESPs of the 1CGI complex is depicted. Their centers (red 

spheres) are actual contact points in the SESs of the two interacting proteins. Note that in both 

Figure 3.6a and Figure 3.6b, the outer parts of the surface patches are shown. In 

inner part of the ligand ESP is depicted. It is obvious that the latter patch has similar shape with 

the receptor ESP (Figure 3.6a), if its inner part is treated as outer and vice versa. Based on this 

observation, the complementarity matching of ESPs can be reduced to a similarity matching 

problem, using a shape similar

The Shape Impact Descriptor was first introduced in 

objects. In the present work, the 3D objects are the ESPs of the receptor and the ligand. In order 

to proceed to descriptor extraction, the triangulated m

transformed into a binary 3D function. More specifically, the triangulated mesh, after translation, 

is placed inside a cubic grid (Figure 

the cubic grid is given as: 
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are very far from the ESP center in terms of geodesic distance, thus, they should 

be discarded. Surface points with geodesic distance greater than a predefined threshold (

are excluded from the ESP. The value of maxG  has been experimentally determined and the value 

that was used for the experiments is given in Table 3.4. 

a) an ESP of the receptor of the 1CGI complex (large protrusion); b) the ESP of the 
ligand (deep cavity) centered at a critical point which is a point of actual contact with the ESP in 
a); c) the ESP of b) turned upside down so that the inner surface is visible. The patches in a) and 

c) have approximately similar shapes. 

, a pair of complementary ESPs of the 1CGI complex is depicted. Their centers (red 

spheres) are actual contact points in the SESs of the two interacting proteins. Note that in both 

b, the outer parts of the surface patches are shown. In 

inner part of the ligand ESP is depicted. It is obvious that the latter patch has similar shape with 

a), if its inner part is treated as outer and vice versa. Based on this 

observation, the complementarity matching of ESPs can be reduced to a similarity matching 

problem, using a shape similarity descriptor, the Shape Impact Descriptor. 

The Shape Impact Descriptor was first introduced in [86] as a shape similarity measure for 3D 

objects. In the present work, the 3D objects are the ESPs of the receptor and the ligand. In order 

to proceed to descriptor extraction, the triangulated mesh representation of the ESPs has to be 

transformed into a binary 3D function. More specifically, the triangulated mesh, after translation, 

Figure 3.7). The binary 3D function ( )kjif ,,  for each voxel 
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are very far from the ESP center in terms of geodesic distance, thus, they should 

an a predefined threshold ( maxG ) 

has been experimentally determined and the value 

 

a) an ESP of the receptor of the 1CGI complex (large protrusion); b) the ESP of the 
actual contact with the ESP in 

a); c) the ESP of b) turned upside down so that the inner surface is visible. The patches in a) and 

, a pair of complementary ESPs of the 1CGI complex is depicted. Their centers (red 

spheres) are actual contact points in the SESs of the two interacting proteins. Note that in both 

b, the outer parts of the surface patches are shown. In Figure 3.6c, the 

inner part of the ligand ESP is depicted. It is obvious that the latter patch has similar shape with 

a), if its inner part is treated as outer and vice versa. Based on this 

observation, the complementarity matching of ESPs can be reduced to a similarity matching 

as a shape similarity measure for 3D 

objects. In the present work, the 3D objects are the ESPs of the receptor and the ligand. In order 

esh representation of the ESPs has to be 

transformed into a binary 3D function. More specifically, the triangulated mesh, after translation, 

for each voxel [ ]kji ,,  of 
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Note that in the above equation voxels that lie inside the molecule are not taken into account, 

since only surface points lead to non

of the 3D mesh is not required in this case si

Figure 3.7: a) An ESP of the receptor of the 1AY7 complex (triangulated mesh); b) the same ESP 
represented as a binary 3D function 

3.4.2 Descriptor Extraction

The key idea of the Shape Impact Descriptor (SID) is the description of the resulting 

phenomena that occur by the insertion of the 3D object in the space. It is expected that similar 

objects will result in similar physical phenomena. Regarding the specific problem of 

complementarity matching between two ESPs, SID can provide an efficient geometric descriptor. 

Some obvious selections are the traditional electrostatic force field (following the Coulomb 

and the Newtonian force field. More sophisticated selections could involve the generalized 

Einstein field theory, or the Maxwell electromagnetic field theory 

In order to compute a field, a cause for the field existence should be selected. Thus, every 

voxel of the 3D object is considered as point mass, (or, equivalently as a point charge). Any 3D 

object can be considered as a distributed mass (or a distrib

Molecular Docking using Geometric Complementarity Matching

30 

otherwise 

the inside lies  point surfaceone least at when 

,0

,1

Note that in the above equation voxels that lie inside the molecule are not taken into account, 

since only surface points lead to non-zero values of ( )kjif ,, . Note also that scaling normalization 

of the 3D mesh is not required in this case since all ESPs have the same size. 

a) An ESP of the receptor of the 1AY7 complex (triangulated mesh); b) the same ESP 
represented as a binary 3D function f. Here only the voxels (red boxes) where 

values are depicted. 

Descriptor Extraction 

The key idea of the Shape Impact Descriptor (SID) is the description of the resulting 

phenomena that occur by the insertion of the 3D object in the space. It is expected that similar 

ult in similar physical phenomena. Regarding the specific problem of 

complementarity matching between two ESPs, SID can provide an efficient geometric descriptor. 

Some obvious selections are the traditional electrostatic force field (following the Coulomb 

and the Newtonian force field. More sophisticated selections could involve the generalized 

Einstein field theory, or the Maxwell electromagnetic field theory [87]. 

In order to compute a field, a cause for the field existence should be selected. Thus, every 

voxel of the 3D object is considered as point mass, (or, equivalently as a point charge). Any 3D 

object can be considered as a distributed mass (or a distributed charge) with a specific 
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voxel the
 

Note that in the above equation voxels that lie inside the molecule are not taken into account, 

. Note also that scaling normalization 

 

a) An ESP of the receptor of the 1AY7 complex (triangulated mesh); b) the same ESP 
. Here only the voxels (red boxes) where f has non-zero 

The key idea of the Shape Impact Descriptor (SID) is the description of the resulting 

phenomena that occur by the insertion of the 3D object in the space. It is expected that similar 

ult in similar physical phenomena. Regarding the specific problem of 

complementarity matching between two ESPs, SID can provide an efficient geometric descriptor. 

Some obvious selections are the traditional electrostatic force field (following the Coulomb law) 

and the Newtonian force field. More sophisticated selections could involve the generalized 

In order to compute a field, a cause for the field existence should be selected. Thus, every 

voxel of the 3D object is considered as point mass, (or, equivalently as a point charge). Any 3D 

uted charge) with a specific 
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distribution, resulting in a static field around it. More specifically, in every point [ ]Tz y x=x  of 

the 3D space that is not occupied by the object, the density and the potential of the field can be 

computed according to: 

 ( )i
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i
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i

xx
xx
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where K,2,1=r  is a free parameter that defines the field’s law. It is obvious that for 2=r , the 

generalized field is identical to the classical Newtonian/Coulombian field. The constant 

parameter has been selected to be 1=C , without any loss of generality. Equations (3.3) and (3.4) 

are applied to all points [ ]Tz y x=x  of the 3D space not occupied by the object, i.e. those points 

lying at the centers of the voxels [ ]kji ,,  of the cubic grid where ( ) 0,, =kjif . The parameter N  

in (3.3) and (3.4) represents the number of all non-zero voxels, i.e. where ( ) 1,, =kjif . With the 

voxel-based representation, a uniform distribution of field points around the 3D object is easily 

obtained. 

The introduction of the parameter r  in the field's equations offers a great flexibility: different 

values of r  result in different ways that every point of the object contributes to the resulting 

field. Generally, the static field at a point is mainly the result of the mass that is included in an 

area centered at this point and its size depends on the value of r , due to the quantity 
1−

−
r

ixx  

in the denominator of (3.3) and (3.4). For lower values of r , the area that affects the value of 

the field in a specific point is larger, while for greater values of r , the area is smaller. In general, 

when the value of r  is low, the resulting field captures more global information while greater 

values of r  result in a more local object description. 
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Figure 3.8: The field’s potential f(x) produced from the surface of an 

The field is computed in various points in the exterior of the object. The key point in the 

presented approach is the selection of the appropriate observation areas in the exterior of the 

3D object to create histograms. By examining 

and tends to be homogeneous as the point under suspicion in the exterior of the 3D objet is 

moved away from the object. This effect is clearly depicted in the equipotential areas around the 

object (Figure 3.8). Thus, the field at points that are closer to the surface of the object presents 

more variations and, thus, the resulting descriptor corresponding to these points is intuitivel

more discriminative. 

In the proposed approach, SID is composed of three major histograms created by:

The field potential values, computed in points that are equidistant from the object surface. A 

point x  belongs to a set of equidistant points of distance 

closest non-zero voxel is equal to 

voxel-based distribution is used, where points 

 

The field density Euclidean norms, computed in points that are equidistant from the object 

surface. 

 

Molecular Docking using Geometric Complementarity Matching

32 

The field’s potential f(x) produced from the surface of an 

The field is computed in various points in the exterior of the object. The key point in the 

presented approach is the selection of the appropriate observation areas in the exterior of the 

3D object to create histograms. By examining (3.3) and (3.4), it is observed that the field vanishes 

and tends to be homogeneous as the point under suspicion in the exterior of the 3D objet is 

moved away from the object. This effect is clearly depicted in the equipotential areas around the 

). Thus, the field at points that are closer to the surface of the object presents 

more variations and, thus, the resulting descriptor corresponding to these points is intuitivel

In the proposed approach, SID is composed of three major histograms created by:

The field potential values, computed in points that are equidistant from the object surface. A 

belongs to a set of equidistant points of distance d  from the object, if its distance to the 

zero voxel is equal to d . For the computation of the sets of equidistance point

is used, where points x  lie at the centers of zero valued voxels.

{ }dxxRxx i =−∈ )min(,:)( 3φ  

The field density Euclidean norms, computed in points that are equidistant from the object 

{ }dxxRxxE i =−∈ )min(,:)( 3
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The field’s potential f(x) produced from the surface of an ESP 

The field is computed in various points in the exterior of the object. The key point in the 

presented approach is the selection of the appropriate observation areas in the exterior of the 

is observed that the field vanishes 

and tends to be homogeneous as the point under suspicion in the exterior of the 3D objet is 

moved away from the object. This effect is clearly depicted in the equipotential areas around the 

). Thus, the field at points that are closer to the surface of the object presents 

more variations and, thus, the resulting descriptor corresponding to these points is intuitively 

In the proposed approach, SID is composed of three major histograms created by: 

The field potential values, computed in points that are equidistant from the object surface. A 

from the object, if its distance to the 

. For the computation of the sets of equidistance points, the 

lie at the centers of zero valued voxels. 

(3.5) 

The field density Euclidean norms, computed in points that are equidistant from the object 

(3.6) 
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The radial component of the field density, computed in points that are equidistant from the 

object surface. 

 { }dxxRxxnxE ir =−∈⋅ )min(,:)()( 3
 (3.7) 

where 
c

c

r
xx

xx
xn

−

−
=)( and cx  is the mass center of the 3D object. 

The computation of the histograms involves only relative distances, thus the resulting 

histograms are invariant under rotation of the 3D object. In fact, very slight variances in the 

values of SID descriptors between an ESP at the initial pose and the same ESP under rotation are 

observed. In general, the creation of a 3D voxel grid results in information loss due to 

discretisation errors. Therefore, the resulting voxel grids are not completely invariant under 

rotation of the original ESPs (surface points). However, if an adequate level of resolution is 

chosen for the 3D grid (643 voxels), these variances are insignificant (0.001% dissimilar) 

comparing with the dissimilarity values between two SID descriptors of different ESPs. 

In our implementation, the ESPs are described as binary 3D functions in a MMM ××  grid. 

The size M  of the grid was determined experimentally. More specifically, several resolutions of 

the binary 3D function were tested ( 256,128,64,32=M ). For 64<M , the resolution was not 

high enough to efficiently describe cavities and protrusions of the ESP, while for 64>M , the 

descriptor extraction time became dramatically high.  Finally, 64=M  was selected as the 

optimal grid size. 

Each ESP’s descriptor is composed of eight histograms of potential values, eight histograms of 

field’s density and eight histograms of field’s radial component. More specifically, each of the 

above three measures (potential values, field’s density and field’s radial component) is calculated 

for 6,5,2,1=r  field’s laws, examined at points that are 1=d  and 2=d  far from the object 

surface. Therefore a total of 24243 =×× histograms are calculated. Every histogram consists of 

75 bins. The values of r  have been appropriately chosen so as to capture both global ( 2,1=r ) 

and local ( 6,5=r ) features. Based on the notion that similar 3D objects will result in similar 
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physical phenomena, these sets of histograms are expected to efficiently capture the geometry 

of the ESP patch. For a more elaborate analysis of how these values were selected, the reader 

could refer to [87], which describes the extraction of the SID descriptor in detail. 

3.4.3 Matching 

Due to the different nature of the histograms described above, several comparison metrics 

have been utilized. More specifically, for the potential related histograms, the normalized 

distance, presented in [88], has been utilized: 

 ∑
= +

−
=

K

i iHiH

iHiH
HHdis

0 21

21
21

)()(

)()(2
),(  (3.8) 

where K  is the number of histogram bins. For the other two types of histograms (field’s density 

and field’s radial component), the diffusion distance [89] was used. In diffusion distance, the 

difference between two histograms 1H  and 2H  is treated as an isolated temperature field and a 

metric for its diffusion is computed. 

The object descriptors are compared in pairs. Each SID descriptor consists of 24 histograms (8 

histograms of potential values, 8 of field’s density and 8 histograms of field’s radial component). 

Every histogram is compared to the appropriate histogram of the other object and “sub-

dissimilarities” are computed using the aforementioned dissimilarity metrics. The final 

dissimilarity metric between two objects is the sum of the sub-dissimilarities. 

Let now R  and L  be the receptor and ligand protein and RN , LN  the number of critical points 

of their SESs respectively. We also define the extended surface patches ( )iESPR  and ( )iESPL , as 

well as the Shape Impact Descriptors ( )iSIDR  and ( )iSIDL  for each critical point, where 

RNi ,,1 K=  and LNj ,,1 K= . All pairwise dissimilarities ijdis  between convex (or concave) 

critical points i  of the receptor and concave (or convex) critical points j  of the ligand, are 

computed: 

 ( ))(),( jSIDiSIDdisdis LRij =  (3.9) 
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where the dissimilarity between two SID descriptors is computed using the comparison metrics 

described above. Pairs of ESPs with low values of ijdis  have similar shape and should constitute 

pairs of complementary surface patches. In order to keep only pairs of complementary patches, 

the array of pair dissimilarities ijdis  is sorted in ascending order and the k-first pairs are selected 

for the final scoring step. 

In the final scoring step, for each of the selected complementary ESP pairs, a set of candidate 

poses is calculated and a score for each pose is computed. The process of final geometric scoring 

is much more time consuming than the dissimilarity matching between SID descriptors. 

Therefore, only a significantly small subset of patch pairs should be selected as k-first, in order to 

avoid high computation times. On the other hand, the number of k-first pairs should not be very 

small, so that at least one pair of actual contact points is among these pairs.   

In order to determine an optimal value for k-first, an experiment has been performed using a 

set of 10 arbitrarily chosen complexes from the Docking Benchmark v2.4 [90]. The results are 

shown in Table 3.1. In the second column, the total number of ESP pairs (convex-concave and 

concave-convex) between receptor patches and ligand patches is depicted. In the third column, 

the rank of the first ranked pair of actual contact points is shown. In order for a pair of patches to 

be a pair of actual contact points, the following inequality must be fulfilled: 

 
( ) ε<LREUCL CCdis ,

 (3.10) 

where EUCLdis  is the Euclidean distance between the centres RC  and LC  of the receptor and 

ligand ESPs, respectively. The coordinates of RC  and LC  are the absolute coordinates in the 

original complex and ε  should be a very small value (less than 1.5Å but not zero in order to 

compensate for small translations around the contact points). From this table it can be inferred 

that just 0.1% of the total ranked pairs suffice to derive at least one pair of actual contact points. 

Moreover, the number of k-first selected pairs is not a constant value but it depends on the sizes 

of the two interacting molecules. 
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Table 3.1: The rank of the first ranked pair of actual contact points along with the percentage 
over the total number of ESP pairs for 10 arbitrarily chosen complexes from the Docking 

Benchmark v2.4. 

Complex Total Pairs 
First ranked pair of 

Actual Contact Points 
Percentage (%) 

1AVX 438010 96 0.022 

1CGI 238932 68 0.028 

1F51 685587 891 0.1 

1FAK 1033662 783 0.005 

1FSK 1105528 726 0.065 

1GCQ 91749 12 0.013 

1HE1 353156 19 0.005 

1JPS 1246835 333 0.026 

1MLC 704308 207 0.03 

1WEJ 719943 20 0.0027 

3.5 Alignment and Final Geometric Scoring 

In this section, the final stage of the proposed docking approach is described, which involves 

alignment and scoring of candidate poses. More specifically, the ligand L  is translated and 

rotated with respect to the receptor R  and the feasibility of each pose is calculated. 

3.5.1 Alignment 

Translation is performed by superimposing the centers of each pair of ESPs. Only the k-first 

ranked pairs of ESPs (i.e. the most complementary pairs, according to SID results) are taken into 

account. 

While candidate translations can be easily retrieved from the SID results, the optimal rotation 

estimation for each translation is not straightforward. This is due to the fact that the SID 

descriptor is a rotation-invariant shape measure, thus, it does not provide information about the 

relative rotation between two interacting ESPs. In order to avoid the use of an exhaustive set of 
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rotations, an initial alignment based on 

defined below: 

Let P  and E  be the center and radius of an ESP, respectively. Let also 

excluded volume of the molecule enclosed by the sphere 

homogeneous mass, and M  its mass center. The solid vector 

shown in Figure 3.9. For the alignment of two superimposed ESPs with respect to rotation, their 

corresponding solid vectors ( v

Figure 3.9: Alignment of two ESPs based on their solid vectors v and v’. The angle 

The translation and rotation estimation described above provide only an approximation of the 

final pose. Small translations and rotations (after the initial alignment) should be also taken 

account so as to achieve the best pose. Regarding rotation, the ligand ESP is firstly rotated about 

its solid vector in ϕ  degrees intervals (

Then, the solid vector is rotated by 

again around the solid vector, resulting in 360/

times, keeping the direction of the solid vector within a region of solid angle 
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rotations, an initial alignment based on solid vectors [34] takes place. The solid vector of an ESP is 

be the center and radius of an ESP, respectively. Let also 

excluded volume of the molecule enclosed by the sphere ( )EPS , , which is regarded as a 

its mass center. The solid vector v  is the vector from 

. For the alignment of two superimposed ESPs with respect to rotation, their 

v  and 'v ) are placed such that their angle ω is 180 degrees.

Alignment of two ESPs based on their solid vectors v and v’. The angle 
two solid vectors is 180 degrees. 

The translation and rotation estimation described above provide only an approximation of the 

final pose. Small translations and rotations (after the initial alignment) should be also taken 

account so as to achieve the best pose. Regarding rotation, the ligand ESP is firstly rotated about 

degrees intervals (Figure 3.10). This results in a set of 360/

Then, the solid vector is rotated by θ  degrees from its initial position and the ESP is rotated 

in around the solid vector, resulting in 360/ϕ  more poses. The procedure is repeated several 

times, keeping the direction of the solid vector within a region of solid angle 
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takes place. The solid vector of an ESP is 

be the center and radius of an ESP, respectively. Let also V  be the solvent 

, which is regarded as a 

is the vector from P  to M , as 

. For the alignment of two superimposed ESPs with respect to rotation, their 

is 180 degrees. 

 

Alignment of two ESPs based on their solid vectors v and v’. The angle ω between the 

The translation and rotation estimation described above provide only an approximation of the 

final pose. Small translations and rotations (after the initial alignment) should be also taken into 

account so as to achieve the best pose. Regarding rotation, the ligand ESP is firstly rotated about 

). This results in a set of 360/ϕ  different poses. 

degrees from its initial position and the ESP is rotated 

more poses. The procedure is repeated several 

times, keeping the direction of the solid vector within a region of solid angle Ω  (Figure 3.10). 
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Eventually, a set of θN  uniformly sampled positions of the solid vector are retained, resulting in a 

total of ( )( )ϕθ /360×N  rotations.

Furthermore, the ligand, after the final superimposition, is translated from the receptor’s 

possible contact point along several directions. The step is kept small (1Å), while the set of 

directions can be derived from the vertices of a regular polyhedron of radius 1 (e.g. icosahed

in order to be uniformly distributed. If the 12 vertices of a regular icosahedron are used to model 

the set of small translations, a total of 13 translations is required. If it is combined with the set of

( )( )ϕθ /360×N  rotations, it results 

of ESPs. For each of these PosesN

grid and the pose with the best score is finally selected.

Figure 3.10: Rotations of the ligand ESP, after first alignment based on solid vector: angle 

corresponds to rotations about the solid vector v. Angle 
vector from its initial position. The direction of the solid vector is kept within a region of solid 

In order to avoid the use of 

investigated. The method was inspired by the approach presented in 

registration. According to this method, two points 

vectors n1, n2 and two corresponding points 
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uniformly sampled positions of the solid vector are retained, resulting in a 

rotations. 

after the final superimposition, is translated from the receptor’s 

possible contact point along several directions. The step is kept small (1Å), while the set of 

directions can be derived from the vertices of a regular polyhedron of radius 1 (e.g. icosahed

in order to be uniformly distributed. If the 12 vertices of a regular icosahedron are used to model 

the set of small translations, a total of 13 translations is required. If it is combined with the set of

rotations, it results in ( )( )ϕθ /36013 ××= NNPoses  different poses for each pair 

Poses poses, a scoring is computed based on the distance transform 

grid and the pose with the best score is finally selected. 

Rotations of the ligand ESP, after first alignment based on solid vector: angle 

corresponds to rotations about the solid vector v. Angle θ  corresponds to rotations of the solid 
vector from its initial position. The direction of the solid vector is kept within a region of solid 

angle Ω . 

In order to avoid the use of PosesN  poses, an alternative alignment method 

The method was inspired by the approach presented in [119]

his method, two points p1, p2 from one surface along with their normal 

and two corresponding points p’1, p’2 from another surface and their normal 
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uniformly sampled positions of the solid vector are retained, resulting in a 

after the final superimposition, is translated from the receptor’s 

possible contact point along several directions. The step is kept small (1Å), while the set of 

directions can be derived from the vertices of a regular polyhedron of radius 1 (e.g. icosahedron) 

in order to be uniformly distributed. If the 12 vertices of a regular icosahedron are used to model 

the set of small translations, a total of 13 translations is required. If it is combined with the set of 

different poses for each pair 

poses, a scoring is computed based on the distance transform 

 

Rotations of the ligand ESP, after first alignment based on solid vector: angle ϕ  

corresponds to rotations of the solid 
vector from its initial position. The direction of the solid vector is kept within a region of solid 

alignment method has been also 

[119] for 3D surface 

from one surface along with their normal 

from another surface and their normal 
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vectors n’1, n’2 are required to directly align the two surfaces without the need for exhausti

rotations. In our case, the points 

performed only between pairs of complementary ESPs, i.e. those retained from the 

complementarity matching step.

Figure 3.11: Alignment of two protein surfaces (complex 1AHW) based on two pairs of 

In Figure 3.11, the alignment of the receptor and ligand surfaces of the complex 1AHW, based 

on two pairs of complementary ESPs, is shown. The alignment procedure consists of the 

following steps: 

Step-1: if || p1 – p2 || ≈ || 

and p’2) and repeat the procedure for another pair.

Step-2: if (n1^n2) ≈ (n’1^n’2), then, proceed to 

procedure. 

Step-3: compute the rotation matrix 

Step-4: estimate the rigid transformation that aligns points 

translating p1, p2 by p’1– p1, rotate them so that 

n’1 to align p2 with p’2. A more detailed description of the algorithm is available in 
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are required to directly align the two surfaces without the need for exhausti

rotations. In our case, the points p1, p2, p’1 and p’2 are the centers of ESPs and the alignment is 

performed only between pairs of complementary ESPs, i.e. those retained from the 

complementarity matching step. 

Alignment of two protein surfaces (complex 1AHW) based on two pairs of 
complementary ESPs. 

, the alignment of the receptor and ligand surfaces of the complex 1AHW, based 

on two pairs of complementary ESPs, is shown. The alignment procedure consists of the 

 p’1 – p’2 ||, then, proceed to step-2, otherwise, reject that pair (

) and repeat the procedure for another pair. 

), then, proceed to step-3, otherwise, reject that pair and repeat the 

: compute the rotation matrix R that aligns the normal vectors n1 and 

: estimate the rigid transformation that aligns points p1, p2, with p’1, p’

, rotate them so that n’1 is aligned with n1, and, finally, rotate around 

. A more detailed description of the algorithm is available in 
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are required to directly align the two surfaces without the need for exhaustive 

are the centers of ESPs and the alignment is 

performed only between pairs of complementary ESPs, i.e. those retained from the 

 

Alignment of two protein surfaces (complex 1AHW) based on two pairs of 

, the alignment of the receptor and ligand surfaces of the complex 1AHW, based 

on two pairs of complementary ESPs, is shown. The alignment procedure consists of the 

, otherwise, reject that pair (p’1 

, otherwise, reject that pair and repeat the 

and n’1. 

p’2. This consists of 

, and, finally, rotate around 

. A more detailed description of the algorithm is available in [119]. 
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3.5.2 Geometric Scoring 

For the geometric scoring of each pose, a method based on a 3D distance grid [33] has been 

implemented. The SES of the receptor R  is inserted in a bounding rectangle divided in equally 

sized voxels and a 3D function ( )kjiDT ,,   is used to represent the value of each voxel. The sign of 

( )kjiDT ,,   is given as: 

( )








>

<=

molecule the outside liesvoxel  the if 

molecule the inside liesvoxel  the if 

voxel the inside lies  point surfaceone least at if 

kjiDT

,0

,0

,0

,,  

The absolute value in each voxel corresponds to the Euclidean distance from the closest 

surface point. Then, the distance grid is divided into shells according to the distance from the 

molecular surface. In our implementation, 5 shells are used, which are presented in Table 3.2. 

The ranges of the shells have been experimentally determined. 

 

Table 3.2: The shells in which the distance grid is divided. 

Shell 1 [1.4, ∞) 
The range (in Å) of the first shell of the distance 

grid  

Shell 2 [-0.8, 1.4) The range of the second shell of the distance grid  

Shell 3 [-1.8, -0.8) The range of the third shell of the distance grid  

Shell 4 [-3.2, -1.8) The range of the fourth shell of the distance grid  

Shell 5 [–∞,  -3.2) The range of the fifth shell of the distance grid  

w1-5 0, 1, -7, -10, -27 
The values of the weights in the scoring function  

(equation 12)  

The scoring of each pose is calculated as follows: the molecular surface of the ligand L , after 

translation and rotation, enters the 3D distance grid of the receptor R . L ’s surface points access 

the voxels of the 3D grid and are assigned a value according to the distance from R ’s molecular 

surface. The score of the transformation is given by: 

 ∑
=

=
5

1i

ii NwScore  (3.11) 
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where iN  is the number of L  points in shell i  of the distance grid and iw  the weight of i-th shell 

(Table 3.2). The above equation can be modified to better represent the surface of the ligand L  

in each shell, as follows: 

 ∑ ∑
= =









=

5

1 1i

N

j

iji

i

swScore  (3.12) 

where iN  is the number of ligand triangles whose centroids lie in i-th shell, iw  the weight of i-th 

shell and ijs  the area (in Å2) of j-th triangle of i-th shell. 

The 3D distance grid provides an accurate measure for geometric scoring of candidate poses. 

The computation time required for this process is proportional to the size as well as the 

resolution of the ligand’s molecular surface. In the alignment step of the proposed method PosesN  

different poses of the ligand are taken for each pair of complementary ESPs. In order to achieve 

low computation times without affecting the accuracy of scoring, two different resolutions of the 

ligand molecular surface are used. For the low-resolution surface, a point density of 1 point per 

Å2 was chosen as parameter to MSMS algorithm [10], while for the high-resolution surface a 

density of 4 points per Å2 was chosen. The low-resolution surface is used to score the entire set 

of PosesN  poses, during the first step of the scoring procedure. After filtering out the majority of 

poses, only the poses with the highest scores are used for high-resolution scoring. Finally, the 

pose with the highest score is kept for each pair of ESPs. The first scoring step may become even 

faster if instead of the entire SES of the ligand only the part that belongs to the corresponding 

ESP is used. In this case, the filtering criteria to exclude poses at the first step are given below: 
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 0,0 43 == NN  (3.15) 

where TotalN  is the total number of triangles of the ligand ESP and js  is the area of each triangle. 

The first criterion implies that at least half of the area of the ligand ESP should lie within a region 

close to the surface of the receptor, while the last two criteria imply that very deep penetrations 

are not allowed. 

3.6 Experimental Results 

The proposed method was experimentally evaluated using the protein-protein docking 

benchmark v2.4 [90]. This dataset consists of 84 known complexes, with 63 rigid-body cases, 13 

cases of medium difficulty, and 8 cases of high difficulty with substantial conformational change. 

To evaluate the performance of the method, for each complex of the dataset, the receptor 

and ligand are separated from each other and the ligand is translated and rotated arbitrarily. 

Then, the docking algorithm described in the previous sections is applied to generate a set of 

candidate poses of the ligand. A predicted pose is called a hit if the interface Root Mean Square 

Deviation (RMSD) between the ligand in that pose and the ligand in the original complex is less 

than a predefined threshold. The interface RMSD is calculated over the interface Ca atoms of the 

ligand. The value of the predefined threshold was selected to be 2.5Å. 

3.6.1 Comparison with Context Shapes, ZDOCK and PatchDock 

The results of the proposed method were compared to those of the following three methods: 

a) Context Shapes (CS) [34], b) ZDOCK (PSC) [26] and c) PatchDock [33]. The first and the third 

method belong to the category of “local shape feature matching” approaches, while the second 

is a brute force approach. ZDOCK(PSC) returns a maximum of 3600 predictions, therefore, only 

the top 3600 predictions are taken into account for all methods. More specifically, for the 

proposed approach, the number of k-first selected pairs after the SID complementarity matching 

was set to 3600 in order to be comparable to the other methods. In our experiments, the R-

bound/L-bound case was evaluated. In this case, the receptor and ligand are both bound, i.e., the 

receptor and the ligand from the co-crystallized protein complexes are used. The performance of 
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the above three methods was computed by using the executables taken from the home pages of 

the authors: http://www.cs.rpi.edu/~zaki/software/ContextShapes/ for Context Shapes, 

http://zlab.bu.edu/zdock/ for ZDOCK v2.1 and http://bioinfo3d.cs.tau.ac.il/PatchDock/ for 

PatchDock. 

The method has been optimized by training on a small dataset (20 complexes) of the docking 

benchmark v0.0 [91]. This dataset was selected so as not to include complexes common in 

benchmark v2.4. The dataset is depicted in Table 3.3. 

The set of parameters that required optimization is given in Table 3.4. Each of these 

parameters has been assigned several values, during the training procedure. Those values that 

produced better docking results on this dataset were selected for the experiments in benchmark 

v2.4. 

Table 3.3: Selected training dataset from Docking Benchmark v0.0. 

1 1CHO(E:I) 11 1BQL(LH:Y) 

2 2PTC(E:I) 12 1NMB(LH:N) 

3 1TGS(Z:I) 13 1MEL(B:M) 

4 1CSE(E:I) 14 2VIR(AB:C) 

5 2KAI(AB:I) 15 1EO8(LH:A) 

6 1BRC(E:I) 16 1AVZ(B:C) 

7 1BRS(A:D) 17 1MDA(LH:A) 

8 1UGH(E:I) 18 1SPB(S:P) 

9 1FSS(A:B) 19 1BTH(LH:P) 

10 1AVW(A:B) 20 1FIN(A:B) 

 

Table 3.4: The set of parameters that required optimization. In the first column, the abbreviation 
of the parameter as stated in the text is given. In the second and third column, the optimal value 

and the description of each parameter are given, respectively. 

Abbreviation Optimal Value Description 

E 10Å The radius of the sphere that determines the 
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size of an ESP (Section 3.1) 

Gmax 12 Å 
The maximum allowed geodesic distance 

from the center of ESP (Section 3.1) 

φ 22.5Ο The angle interval (in degrees) for rotations 

of the ESP about the solid vector (Section 4.1) 

Ω 0.068π 
The solid angle within which the solid vector 

is rotated (Section 4.1) 

Nθ 9 
The number of uniformly sampled positions 

of the solid vector (Section 4.1) 

NPoses 1872 
The total number of different poses for each 

pair of ESPs (Section 4.1) 

In Table 3.5, the performance of the proposed method in benchmark v2.4, compared with the 

other three methods, is depicted. In the first column for each method, the rank of the best 

ranked hit is presented. This is not necessarily the hit with the smallest RMSD value, it is the first 

result of the rank list that produces RMSD less than 2.5Å. In the second column for each method, 

the RMSD value of the best ranked hit is given. In complexes where these values are missing, the 

method failed to return a hit within the first 3600 predictions. In 7 cases none of the four 

methods returned a hit in the first 3600 predictions, thus, they are not stated in Table 3.5. 

Table 3.5: R-bound/L-bound: Comparisons between the proposed method, Context Shapes, 
ZDOCK(PSC) and PatchDock on 84 test cases from Benchmark v2.4. PDB gives the PDB id for the 

protein complex. RMSD and Rank give the RMSD and rank of the best ranked hit (using 2.5 Å cut-
off). In 7 cases none of the four methods returned a hit in the first 3600 predictions, thus, they 

are not stated. 

  Proposed Method Context Shapes ZDOCK(PSC) PatchDock 

PDB Rank RMSD Rank RMSD Rank RMSD Rank RMSD 

1A2K 17 0.92 40 1.08 570 2.41 300 1.47 

1ACB 13 1.89 8 2.32 6 0.82 10 1.60 

1AHW 167 1.8 7 1.20 56 1.18 40 1.55 

1AK4 908 0.52 2925 2.08 3471 1.14 - - 

1AKJ 174 1.67 265 2.15 448 1.88 - - 

1ATN 223 1.64 49 2.10 558 1.15 - - 

1AVX 7 1.71 10 1.76 1 1.96 43 2.14 

1AY7 23 2.69 193 1.23 46 1.68 24 2.07 

1B6C 3 2.26 11 1.78 24 1.69 40 1.92 

1BGX 1 2.51 1 1.96 - - - - 
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1BJ1 - - 1 1.05 3 1.42 - - 

1BUH 49 1.58 61 1.55 393 1.43 83 1.14 

1BVK 249 5.05 45 1.69 1087 1.43 131 2.12 

1BVN 1 0.99 1 1.55 10 1.24 1 0.75 

1CGI 1 0.72 1 1.37 1 1.12 1 1.08 

1D6R 2 1.31 4 1.68 35 1.04 - - 

1DE4 538 2.17 13 1.21 452 1.62 - - 

1DFJ 1 1.08 - - - - - - 

1DQJ 49 1.12 67 1.65 19 2.00 83 1.71 

1E6E 34 2.4 1 1.58 58 2.06 2 2.29 

1E6J 526 2.31 1337 1.92 699 2.02 1706 1.43 

1E96 809 2.32 1206 1.84 - - 1767 1.44 

1EAW 1 1.95 1 1.41 1 1.75 1 0.99 

1EER 1 1.16 1 1.62 - - 1 1.66 

1EWY 103 2.45 518 2.26 - - 139 1.42 

1EZU 1 2.07 1 1.60 - - 1 0.94 

1F34 1 2.4 1 1.99 - - 1 1.90 

1F51 3 1.18 7 2.01 - - 1 1.92 

1FAK 119 1.47 1997 1.70 - - - - 

1FC2 2 2.34 7 1.85 55 2.18 49 1.24 

1FQJ 8 1.62 12 1.94 120 1.94 248 1.48 

1FSK 145 0.99 9 2.06 19 1.70 218 1.57 

1GCQ 1 1.16 2 1.26 382 1.81 - - 

1GP2 551 2.07 53 1.86 - - - - 

1GRN 1 1.66 1 1.84 7 2.26 3 1.45 

1H1V 49 1.75 14 2.37 1510 2.40 - - 

1HE1 1 0.8 1 1.44 7 1.67 1 1.06 

1HIA 8 1.05 2 1.07 1 1.70 14 1.19 

1I2M 1 0.86 6 1.36 14 1.80 - - 

1I4D 1278 2.48 104 1.42 793 2.08 167 1.05 

1I9R 142 1.38 - - 1271 2.04 - - 

1IB1 1 1.87 2 1.48 - - - - 

1IBR 1 2.01 1 2.05 - - - - 

1IQD 531 1.09 14 1.19 55 1.83 - - 

1JPS 216 1.68 2 1.26 23 2.30 96 1.87 

1K4C 712 2.21 5 0.88 30 1.16 337 1.53 

1K5D 59 1.98 2 2.06 10 2.11 - - 

1KAC 14 1.5 - - 381 1.52 - - 

1KKL 158 2.68 226 1.67 - - - - 

1KLU 899 2.28 1108 1.80 - - - - 

1KTZ 240 1.84 2280 1.41 - - - - 

1KXP 2 1.87 3 2.17 - - - - 
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1KXQ 3 1.35 229 1.51 30 1.60 29 1.63 

1M10 6 2.4 - - 33 2.23 - - 

1MAH 1 1.44 1 1.45 1 1.91 1 1.27 

1ML0 532 2.46 569 1.91 75 1.94 7 0.58 

1MLC 955 1.86 30 1.15 1205 1.37 516 1.79 

1N2C 8 2.12 3 1.36 - - - - 

1NCA 76 2.21 3 1.77 20 1.48 - - 

1NSN 149 1.15 - - - - - - 

1PPE 1 1.38 1 2.32 2 1.21 1 1.03 

1QA9 3 2.18 972 1.30 - - - - 

1QFW 1013 2.39 1247 2.21 16 2.46 - - 

1RLB 591 1.6 311 1.63 - - 3143 2.32 

1SBB 962 1.72 - - - - - - 

1TMQ 18 2.27 1 2.32 8 1.79 1 1.52 

1UDI 1 1.58 3 1.52 1 1.50 1 1.97 

1VFB 73 1.06 8 1.50 - - - - 

1WEJ 897 2.04 496 1.25 1120 1.11 - - 

1WQ1 1 2.32 1 1.14 4 2.04 1 0.84 

2BTF 2 1.45 4 1.13 21 1.21 137 1.82 

2JEL 377 2.15 56 1.40 532 1.77 282 1.65 

2MTA 469 1.64 21 1.45 1447 2.26 115 1.71 

2PCC 5 2.28 - - - - - - 

2SIC 2 0.73 4 1.36 9 1.19 - - 

2SNI 1 1.78 2 1.27 4 2.50 13 2.10 

7CEI 2 1.14 123 1.90 5 2.18 - - 

Summing up the results of Table 3.5, the proposed approach failed to return a hit in 8 out of 

84 cases, while Context Shapes failed in 13 cases, ZDOCK in 29 and PatchDock in 42 cases. In 

Table 3.6, the number of successful predictions for all methods is presented. It is clear from the 

results that the proposed method managed to return a hit in most of the cases, outperforming 

the other three methods. If we relax the RMSD cutoff threshold to 5Å, it is obvious that all 

methods achieve more successful predictions. Again, the proposed method outperforms the 

other three, since it fails only in three cases.   

Table 3.6: R-bound/L-bound: Number of test cases where a hit is found within the top 3600 
predictions, for each method, and the number of test cases where all three methods fail. 

Proposed 

Method 
Context Shapes ZDOCK PatchDock All Fail 
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RMSD  ≤  2.5Å 

76 71 55 42 7 

RMSD  ≤  5Å 

81 76 71 63 2 

In Table 3.7, the 7 cases where all four methods failed are presented. It is worth to mention 

that in none of these cases could any of the above methods return a near-native solution among 

a set of 3600 predicted poses. These examples can really help towards improving existing docking 

approaches. Additionally, they provide an indication that geometric complementarity is not 

always the dominant factor in protein-protein docking but other non-geometric parameters 

(desolvation, hydrophobicity, electrostatics, etc.) should be also taken into account. 

Table 3.7: R-bound/L-bound: The 7 cases where all three methods fail. 

PDB IDs of the complexes where all methods failed (RMSD  ≤  2.5Å) 

1FQ1 1GHQ 1HE8 1IJK 

2HMI 2QFW 2VIS  

In Table 3.8, the win-tie-loss-failure records for the proposed method versus Context Shapes, 

ZDOCK and PatchDock is presented. Comparing with Context Shapes, the proposed approach 

returns a better ranked hit in 39 cases, whereas Context Shapes returns a better hit in 25 cases. 

The methods tie in 13 cases, and both fail in 7 cases. Comparing against ZDOCK and PatchDock, 

the proposed method clearly outperforms them across all three scenarios; it has 56-17 win-loss 

record against ZDOCK and 52-13 win-loss record against PatchDock. 

Table 3.8: R-bound/L-bound: the win-tie-loss-failure records for the proposed method versus 
Context Shapes, ZDOCK(PSC) and PatchDock. 

Proposed Method vs Win Tie Loss Both fail 

Context Shapes 39 13 25 7 

ZDOCK 56 4 17 7 

PatchDock 52 11 13 8 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Molecular Docking using Geometric Complementarity Matching 

48 

In Table 3.9, the results for the first ranked and the 10 best ranked solutions, with RMSD < 5 Å, 

using the proposed method, are presented. It is obvious that in 51 out of the 83 cases, at least 

one almost correct prediction with RMSD < 5 Å is ranked among the top 10 solutions. 

Table 3.9: The numbers of solutions with RMSD < 5 Å, within the top-1 and top-10 ranked 
positions, using the proposed method. 

PDB Top 1 Top 10 PDB Top 1 Top 10 PDB Top 1 Top 10 

1A2K 0 1 1F51 1 2 1KTZ 0 0 

1ACB 0 1 1FAK 0 0 1KXP 1 3 

1AHW 0 1 1FC2 0 1 1KXQ 0 2 

1AK4 0 0 1FQ1 0 0 1M10 0 2 

1AKJ 0 0 1FQJ 0 1 1MAH 1 1 

1ATN 0 0 1FSK 0 1 1ML0 0 0 

1AVX 0 2 1GCQ 1 2 1MLC 0 0 

1AY7 0 1 1GHQ 0 0 1N2C 0 1 

1B6C 0 2 1GP2 0 0 1NSN 0 0 

1BGX 1 2 1GRN 1 2 1NCA 0 1 

1BJ1 0 0 1H1V 0 1 1PPE 1 2 

1BUH 0 1 1HE1 1 2 1QA9 0 1 

1BVK 0 0 1HE8 0 0 1QFW 0 0 

1BVN 1 3 1HIA 0 1 1RLB 0 0 

1CGI 1 2 1I2M 1 3 1SBB 0 0 

1D6R 0 1 1I4D 0 0 1TMQ 0 1 

1DE4 0 0 1I9R 0 0 1UDI 1 2 

1DFJ 1 2 1IB1 1 2 1VFB 0 1 

1DQJ 0 1 1IBR 1 1 1WEJ 0 0 

1E6E 0 1 1IJK 0 0 1WQ1 1 3 

1E6J 0 0 1IQD 0 0 2BTF 0 1 

1E96 0 0 1JPS 0 1 2HMI 0 0 
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1EAW 1 1 1K4C 0 0 2JEL 0 0 

1EER 1 2 1K5D 0 1 2MTA 0 0 

1EWY 0 1 1KAC 0 1 2PCC 0 1 

1EZU 1 2 1KKL 0 0 2SIC 0 2 

1F34 1 3 1KLU 0 0 2SNI 1 2 

      2VIS 0 0 

      7CEI 0 1 

Median RMSD can also provide a useful performance measure. In Table 3.10, the 

median/min/max RMSD and Rank for the 10 best ranked and 25 best ranked solutions, using the 

proposed method, are presented. These values were obtained over the entire test dataset. 

The above experiments have been performed using the bound molecules of both the receptor 

and the ligand (R-bound/L-bound). This is due to the fact that none of the above methods, 

including the one presented in this chapter, is able to efficiently model the side-chain 

conformations during flexible docking. Experiments for the R-bound/L-bound case were 

performed to measure the efficiency of the geometric-only algorithms in the ideal case of rigid-

body docking. In order to measure the robustness of the proposed method with respect to 

conformational changes, a set of experiments were performed in Benchmark v2.4 for the R-

unbound/L-bound case. In this case, the receptor is taken from the unbound form of the protein, 

while the ligand is taken from the bound co-crystallized complex. 

Table 3.10: The median/min/max RMSD and Rank for the best solution, within the top-10 and 
top-25 ranked positions, using the proposed method. 

 Top 10 Top 25 

Median RMSD 3.29 2.34 

Minimum RMSD 0.72 0.6 

Maximum RMSD 21.03 13.91 

Median Rank 5 8 

Minimum Rank 1 1 
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Maximum Rank 10 25 

In Table 3.11, the number of successful predictions for all methods, for the R-unbound/L-

bound case, is presented. It is clear that the performance of all methods is significantly reduced, 

comparing with the R-bound/L-bound case. However, the performance of the proposed method 

is still higher. 

Table 3.11: R-unbound/L-bound: Number of test cases where a hit is found within the top 3600 
predictions, for each method, and the number of test cases where all three methods fail. 

Proposed 

Method 
Context Shapes ZDOCK PatchDock All Fail 

RMSD  ≤  2.5Å 

46 43 33 22 31 

RMSD  ≤  5Å 

54 52 52 50 18 

Similar conclusions can be drawn in the win-tie-loss-failure records (Table 3.12). Comparing 

with Context Shapes, the proposed approach returns a better ranked hit in 29 cases, whereas 

Context Shapes returns a better hit in 24 cases. Both methods fail in 31 cases. Comparing against 

ZDOCK and PatchDock, the proposed method outperforms them; it has 31-20 win-loss record 

against ZDOCK and 34-12 win-loss record against PatchDock. For the R-unbound/L-unbound case, 

where both the receptor and the ligand are unbound, all four methods fail to return a hit in more 

than half of the complexes, which implies that a solution able to efficiently deal with flexibility is 

needed. 

Table 3.12: R-unbound/L-bound: the win-tie-loss-failure records for the proposed method versus 
Context Shapes, ZDOCK(PSC) and PatchDock. 

Proposed Method vs Win Tie Loss Both fail 

Context Shapes 29 0 24 31 

ZDOCK 31 0 20 33 

PatchDock 34 0 12 38 
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3.6.2 Performance Analysis of the proposed method 

In Table 3.13, the numbers of the ESPs (centered at convex and concave critical points) for the 

receptor and ligand, as well as the total number of ESP pairs are presented for the 84 test cases 

of benchmark v2.4. 

The numbers of receptor and ligand atoms for each complex are also included for the sake of 

completeness. The table shows that the number of generated ESPs as well as the number of ESP 

pairs is almost proportional to the number of receptor and ligand atoms. In Figure 3.12, the 

scatter-plot of the combined receptor+ligand size (number of atoms) versus the number of ESP 

pairs is depicted. It can be inferred that when the total number of receptor and ligand atoms 

increases, then the number of ESP pairs increases as well. 

Table 3.13: Number of ESPs and ESP pairs for the receptor and ligand in benchmark v2.4. The 
numbers of atoms are also shown for completeness. 

  Number of Atoms Number of ESPs Number of ESP 

pairs PDB Receptor Ligand Receptor Ligand 

    Convex Concave Convex Concave 

1A2K 1990 1570 542 780 447 628 689036 

1ACB 1769 522 482 676 187 233 238718 

1AHW 3304 1612 876 874 526 531 924880 

1AK4 1266 1062 371 467 403 499 373330 

1AKJ 3075 1814 905 916 524 528 957824 

1ATN 2907 2035 771 843 505 579 872124 

1AVX 1630 1286 418 477 394 404 356810 

1AY7 746 720 252 342 231 290 152082 

1B6C 831 2602 274 352 719 803 473110 

1BGX 3245 6570 806 864 1452 1465 2435318 

1BJ1 3307 1522 906 939 507 588 1008801 

1BUH 2311 605 634 714 200 285 323490 

1BVK 1744 1001 454 549 318 376 345286 

1BVN 3907 536 879 938 202 241 401315 

1CGI 1799 440 463 528 195 206 198338 

1D6R 1629 427 413 503 189 223 187166 

1DE4 3063 10044 772 803 1949 1980 3093607 

1DFJ 951 3411 316 423 815 893 626933 

1DQJ 3244 1001 856 862 302 388 592452 

1E6E 3518 859 960 1017 302 367 659454 

1E6J 3275 1639 894 904 596 671 1138658 
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1E96 1419 1502 408 585 429 515 461085 

1EAW 1864 2310 500 524 174 198 190176 

1EER 1291 3328 456 581 661 751 726497 

1EWY 2492 749 705 763 249 301 402192 

1EZU 1656 2198 425 491 787 832 740017 

1F34 2423 1074 622 772 405 502 624904 

1F51 2993 940 873 927 277 296 515187 

1FAK 2782 1495 722 732 468 513 712962 

1FC2 354 1656 150 184 561 636 198624 

1FQ1 1439 2402 450 572 693 751 734346 

1FQJ 2611 1111 728 803 368 380 572144 

1FSK 3347 1230 729 802 411 514 704328 

1GCQ 468 558 199 226 192 243 91749 

1GHQ 2417 987 590 632 367 453 499214 

1GP2 2788 3021 859 926 768 771 1373457 

1GRN 1494 1586 479 633 446 519 530919 

1H1V 2875 2539 791 859 718 762 1219504 

1HE1 997 1374 340 432 398 433 319156 

1HE8 6070 1326 1501 1610 397 416 1263586 

1HIA 1787 353 469 570 173 160 173650 

1I2M 1346 2899 410 526 714 800 703564 

1I4D 3004 1381 819 873 424 467 752625 

1I9R 3276 3297 790 852 884 940 1495768 

1IB1 3642 1404 1045 1192 438 488 1032056 

1IBR 1371 3573 418 471 1036 1117 954862 

1IJK 2071 1595 597 613 410 511 556397 

1IQD 3089 1246 839 888 367 422 679954 

1JPS 3247 1611 858 884 518 578 953836 

1K4C 3252 765 887 980 322 381 653507 

1K5D 2868 2698 790 871 716 732 1201916 

1KAC 3805 625 396 461 304 341 275180 

1KKL 1401 959 974 983 218 266 473378 

1KLU 3028 1880 838 921 530 626 1012718 

1KTZ 653 840 267 333 289 359 192090 

1KXP 2736 3431 723 851 993 923 1512372 

1KXQ 3910 916 803 844 187 301 399531 

1M10 1601 2087 433 571 594 607 602005 

1MAH 4116 460 940 1025 193 206 391465 

1ML0 5706 515 2150 2169 302 332 1368838 

1MLC 3290 1001 310 394 902 1090 693288 

1N2C 15926 4132 854 913 667 749 1248617 

1NSN 3282 1108 920 991 337 426 725887 
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1NCA 3329 3075 873 901 669 747 1254900 

1PPE 1629 222 410 503 125 101 104285 

1QA9 846 776 305 406 351 278 227296 

1QFW 1762 1476 504 580 478 581 570064 

1RLB 3760 1453 997 1008 444 518 963998 

1SBB 1826 1975 563 662 531 630 706212 

1TMQ 3598 881 793 820 298 359 529047 

1UDI 1818 654 489 594 241 302 290832 

1VFB 1730 1001 459 561 312 381 349911 

1WEJ 3340 868 901 1055 270 293 548843 

1WQ1 2533 1322 719 873 418 528 744546 

2BTF 2917 1044 780 885 292 333 518160 

2HMI 7630 3264 1377 1346 869 877 2377303 

2JEL 3297 640 883 1004 238 285 490607 

2MTA 3853 807 938 1059 256 328 578768 

2PCC 2371 847 622 712 292 395 453594 

2SIC 1938 764 441 585 277 334 309339 

2SNI 1938 513 442 560 187 242 211684 

2VIS 3261 2076 895 993 548 652 1127704 

7CEI 698 1026 248 331 365 499 244567 

 

 

Figure 3.12: Scatter-plot of receptor plus ligand size versus the total number of ESP pairs for each 
complex. When the total number of receptor and ligand atoms increases, then the number of ESP 

pairs increases as well. 

In Table 3.14, the average computation times for various tasks of the proposed approach are 

presented. The average time required for extraction of the SID descriptor for an ESP is 0.6s. The 

SID descriptor extraction time, as well as the time for SES computation is not included in the 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Molecular Docking using Geometric Complementarity Matching 

54 

average running time. These tasks belong to the pre-processing step and are computed off-line. 

Likewise, the times to calculate the context shapes in Context Shapes method, the SES for 

PatchDock method and surface residues for ZDOCK method, are also not included in the average 

running time. 

The time required for SID-based matching between a pair of ESPs is less than 0.02ms, since it 

is based on simple histogram matching. It is obvious that SID descriptor matching is 10000 times 

faster than the geometric scoring based on distance grid, which demonstrates the importance of 

the SID descriptor as a fast filtering stage, during the docking procedure. This is made clearer in 

Table 3.15, where the average running times for the four methods across all 84 test cases are 

presented. In our approach, the running time is the sum of the time required for SID descriptor 

matching and the time needed for geometric scoring. Even though geometric scoring is applied to 

a much smaller set of ESPs (the 3600 first ranked pairs), it lasts longer than SID matching. 

Comparing with the other methods, the proposed docking approach achieves faster computation 

time. It is more than two times faster than the Context Shapes approach, more than three times 

faster than ZDOCK and faster than PatchDock. 

Table 3.14: Average computation times for various tasks of the proposed approach 

Activity 

Average 

Computation 

Time 

SID Descriptor Extraction / ESP 0.6s 

SID matching of a pair of ESPs 0.019ms 

Scoring (distance grid) of a pair of ESPs 196ms 

The average pre-processing time for a protein in benchmark v2.4, using the proposed method, 

is about 720s and for a pair of interacting proteins is about 1440s. This results in a total pre-

processing and running time of 2280s. This is still faster than ZDOCK and comparable to 

ContextShapes, while PatchDock, which involves fewer steps in preprocessing, is faster than the 

proposed method. 
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Table 3.15: Average running time over all 84 test cases 

Method 

Average Running 

Time  

(SID matching) 

Average Running Time  

(Geometric Scoring) 

Average 

Running 

Time 

Proposed Approach 135s 705s 840s 

Context Shapes   2031s 

ZDOCK   2914s 

PatchDock   1098s 

The times were obtained using a PC with a dual-core 2.4 GHz processor and 8GB RAM. The 

executable files of the proposed method can be downloaded for testing from the authors’ 

website (http://3d-test.iti.gr:8080/3d-test/Images/ProteinDocking.zip). 

3.7 Summary 

In this chapter, a new framework for fast geometric protein-protein docking was presented. 

After extraction of the Solvent Excluded Surface, a set of critical points is formed based on the 

local curvature of the surface. Then, for each critical point an Extended Surface Patch (ESP) is 

generated, centered at the critical point with radius 10Å. The shape complementarity of all pairs 

of ESPs between the receptor and the ligand is measured using the Shape Impact Descriptor 

(SID), which is a fast rotation-invariant shape descriptor. The complementarity matching between 

two patches is reduced to a simple histogram matching of their SID Descriptors, without the need 

for taking an exhaustive set of rotations for each pair of patches. For the final scoring step, only a 

very small subset of the most complementary ESP pairs is given as input, significantly reducing 

the computation time. The proposed approach was evaluated against three state-of-the-art 

methods for geometric docking. Not only it achieved more successful predictions in benchmark 

v2.4, but also reduced two or even three times the computation time, due to the efficiency of the 

Shape Impact Descriptor.  
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Chapter 4 

SP-Dock: Protein-Protein Docking using Shape and 

Physicochemical Complementarity 

4.1 Introduction 

In this chapter, a framework for protein-protein docking is proposed, which exploits both 

shape and physicochemical complementarity to generate improved docking predictions. Shape 

complementarity is achieved by matching local surface patches. However, unlike existing 

approaches, which are based on single-patch or two-patch matching, we developed a new 

algorithm that compares simultaneously, groups of neighboring patches from the receptor with 

groups of neighboring patches from the ligand. Taking into account the fact that shape 

complementarity in protein surfaces is mostly approximate rather than exact, the proposed 

group-based matching algorithm fits perfectly to the nature of protein surfaces. This is 

demonstrated by the high performance that our method achieves especially in the case where 

the unbound structures of the proteins are considered. Additionally, several physicochemical 

factors, such as desolvation energy, electrostatic complementarity, hydrophobicity, Coulomb 

potential and Lennard-Jones potential are integrated using an optimized scoring function, 

improving geometric ranking in more than 60% of the complexes of Docking Benchmark 2.4. 

The chapter is organized as follows: in Section 4.2, an overview of the method and its major 

scientific contributions is presented. In Section 4.3, the preprocessing phase is described, which 

includes the surface representation and extraction of local patches, as well as the local shape 

descriptor extraction for each patch. Section 4.4 analyzes the new group-based matching and 

alignment algorithm, while in Section 4.5 the geometric and physicochemical scoring procedure 

of the candidate docking poses is given. Concerning the physicochemical scoring, the 

optimization process that assigns a set of weights for each physicochemical factor is provided. 
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Then, in Section 4.6, the experimental results are presented, where the proposed method is 

compared to other existing docking approaches. Finally, the chapter is summarized in Section 4.7. 

4.2 Overview and Contributions 

 

Figure 4.1: Block diagram of the proposed method. 

In Figure 4.1, the block diagram of the proposed method is depicted. The PDB files of the 

receptor and ligand proteins are given as input and their Solvent Excluded Surfaces (SESs) are 

extracted. Then, by computing the curvature of the SES, a set of critical points is extracted, which 

correspond to the centers of small elementary patches (either convex or concave). Each 

elementary patch is expanded in size in order to cover a wider area producing a Geodesic Surface 

Patch (GSP). For each GSP an appropriate local shape descriptor is extracted, which uniquely 

characterizes its shape. During complementarity matching, each GSP that corresponds to a 

convex (or concave) elementary patch of the receptor protein is matched with all GSPs that 

correspond to concave (or convex) elementary patches of the ligand protein. As a next step, 

several neighboring GSPs are grouped together to generate candidate binding regions on the 

surfaces of the receptor and the ligand. For aligning the two proteins, one candidate region of 

the ligand is aligned with respect to a complementary candidate region of the receptor using the 

Iterative Closest Point (ICP) algorithm. At the final step of the algorithm, the aligned poses are 
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scored using both geometric and physicochemical properties. The weights of the scoring function 

are optimized via training to achieve improved docking results. 

Comparing the proposed SP-Dock (Shape-Physicochemical Docking) method with the 

approach presented in the previous chapter, both are based on local shape feature matching of 

surface patches corresponding to convex or concave elementary shape patches. However, 

numerous novel features are introduced in SP-Dock, which are explained below. 

First of all, a more discriminative local surface descriptor has been adopted in SP-Dock for 

patch complementarity matching, instead of the Shape Impact Descriptor (SID) that was initially 

used. Some of the most well-known local descriptors [92] were compared to SID in a dataset of 

known complexes to select the most appropriate descriptor. The Local Spectral Descriptor [93] 

has been proven to be the most discriminative among others. 

Another notable innovation of SP-Dock is the group-based matching algorithm. It introduces a 

new approach for shape complementarity matching beyond traditional local shape feature 

matching techniques. It has been inspired by the fact that the shape complementarity between a 

pair of local surface patches (one from the receptor and one from the ligand), which correspond 

to a near-native pose, is mostly approximate rather than exact, while at the same time there are 

plenty of pairs of patches corresponding to non-native poses that have similar or even better 

shape complementarity than the near-native ones. Thus, existing local shape matching 

approaches, which rely on single-patch-to-single-patch or two-patch-to-two-patch 

complementarity matching, may predict a large number of false-positive docking poses and fail to 

detect near-native poses. The approach presented in this chapter intuitively groups neighboring 

patches from both the receptor and the ligand so as to create larger candidate binding regions. 

This increases the confidence of a receptor patch to be complementary to a ligand patch, since, 

according to the grouping criterion, the neighbours of the receptor patch should be 

complementary to the neighbors of the ligand patch as well. The effectiveness of the proposed 

approximate complementarity matching is convincingly reflected in the unbound docking case 

where SP-Dock clearly outperforms similar docking approaches. 
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Additionally, SP-Dock proposes the adoption of the Iterative Closest Point (ICP) algorithm for 

fast alignment of the complementary candidate regions. ICP has been extensively used for 

surface registration in 3D reconstruction problems. Although 3D reconstruction involves 

alignment of surfaces with near-exact similarity, we prove that ICP is also appropriate for aligning 

surfaces with approximate similarity, as is the case of geometric docking. It is the first time, to the 

best of our knowledge, that ICP has been used for alignment of protein surfaces. It is also worth 

mentioning that surface similarity is equivalent to surface complementarity, if the surface of the 

ligand is turned upside-down, as it has been already proven in the previous chapter. 

Finally, the contribution of physicochemical factors to achieve more accurate docking 

predictions is assessed. Several non-geometric factors, namely the Atom Desolvation Energy, 

Interface Residue Contact Preferences, Generic Residue Contact Preferences, Electrostatic 

Complementarity, Coulomb Potential, Hydrophobicity and Van der Waaks Potential, were 

computed and combined with the geometric properties into a unified scoring function. These 

factors have been already discussed in previous works and are summarized in [39]. In this work, 

the contribution of each factor is assessed and the optimal weight, with which each factor 

participates in the scoring function, is estimated using an appropriately selected optimization 

method. The improvement of docking predictions by combining the geometric with the 

physicochemical factors, in Docking benchmark 2.4, is impressive. 

As it is a local feature matching method, the proposed algorithm shares similarities with the 

well-known PatchDock method [33]. More specifically, the step of critical points extraction 

produces similar sparse surface representations for both PatchDock and SP-Dock (although a 

different algorithm is used in each case to extract the critical points). The geometric scoring step 

is also similar in both methods, since they generate a 3D distance grid around the receptor, which 

is accessed by the surface points of the ligand. On the other hand, their surface complementarity 

matching stages, which constitute core parts of the docking process, are completely different. 

First of all, SP-Dock does not rely on shape matching of the small convex and concave patches of 

the sparse surface, but it generates bigger surface patches (the GSPs), which cover a wider 
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surface area around a critical point. These GSPs enclose more significant shape information than 

the local patches of PatchDock, which is important especially in filtering out a lot of false positive 

matches. Additionally, instead of the rather simple geometric features that describe the shape of 

a patch (or a pair of patches) in PatchDock, SP-Dock utilizes state-of-the art local shape 

descriptors, which makes the method more discriminative in terms of local complementarity 

matching. Then, in order to match multiple complementary pairs simultaneously and enhance 

the certainty of pairwise matches, the proposed SP-Dock method does not use geometric hashing 

(as in PatchDock) but it introduces a new grouping algorithm. This algorithm groups intuitively 

pairs of complementary GSPs and allows for slight flexibility in the relative positions of the 

corresponding GSPs within a group. The latter increases the robustness of the method and makes 

it more appropriate for unbound docking cases, where slight side-chain flexibilities are allowed. 

The superiority of the proposed method over PatchDock is demonstrated in the experiments 

section, where SP-Dock outperforms PatchDock especially in the unbound case. 

4.3 Preprocessing 

This section describes the preprocessing procedure, which involves two phases: during the 

first phase, an appropriate representation of the molecular surface is generated from the input 

PDB file, a set of critical points is extracted and a GSP is created for each critical point. The 

second phase involves the extraction of low-level geometric descriptors for each GSP, which 

uniquely characterize its shape. 

4.3.1 Surface Representation and Extraction of Local Patches 

Extraction of 3D shape descriptors from a protein initially requires an appropriate 

representation of its 3D structure. Several representations have been proposed so far, namely 

the volumetric representation [66], the Solvent Excluded Surface (SES) [9], Sparse Surface [85] 

and Alpha Shapes [94]. In this work, the SES method has been selected, which produces a 3D 

triangulated surface of the protein. In order to generate a SES, the Maximal Speed Molecular 

Surface (MSMS) [10] algorithm has been utilized. 
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Computation of critical points on the SES offers a sufficient approximation of the protein 

surface and constitutes a preliminary step that is followed by almost all the local shape feature 

matching approaches. We have followed a method for generating critical points based on the 

local curvature of the surface. This approach has been introduced in our previous work (Chapter 

3), it is applied directly to the 3D triangulated mesh and it is applicable to all types of triangulated 

meshes. The extracted critical points are the centers of concave and convex regions of the 

molecular surface.  

 

Figure 4.2: A Geodesic Surface Patch (GSP) is centered at the critical point p. 

For each critical point, a GSP is created (Figure 4.2), which spreads over a wider surface area 

around that point. More specifically, a GSP consists of all points of SES whose geodesic distance 

from the critical point is less than a predefined threshold (Gmax). GSP differs from the Extended 

Surface Patch (ESP) that was defined in our previous work in the sense that the latter uses the 

Euclidean distance as an initial threshold, while the geodesic distance is used only as a post-filter 

to remove unconnected surface parts. However, it was proven experimentally that the GSP-

based approach achieves better accuracy than the ESP-based approach. It was also 

experimentally found that an optimal value for Gmax is 16Å. 

p

Geodesic Surface Patch (GSP)  
centered at the 
critical point  p
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4.3.2 Local Descriptor Extraction 

In protein-protein docking problems, local-shape-feature-based methods rely on pairwise 

matching of local surface regions between the receptor and the ligand. The most complementary 

surface regions are, then, selected as candidate poses. The approach presented in this chapter 

uses shape similarity descriptors to measure surface complementarity. It has been proven in the 

previous chapter that complementarity matching of surface patches can be reduced to a 

similarity matching problem, if the inner surface part of the ligand patches is treated as outer and 

vice versa.  

In the approach presented in this chapter, the GSPs of the receptor that correspond to convex 

(or concave) critical points are matched with the GSPs of the ligand that correspond to concave 

(or convex) critical points. The matching relies on the shape complementarity between the GSPs. 

Unlike our previous method, where only the SID was used for shape similarity, in this work, three 

local shape descriptors have been tested in order to find the most appropriate one for our 

problem. The most well-known local shape descriptors for 3D meshes have been presented in 

SHREC 2011 (Shape Retrieval Contest on Non-rigid 3D Watertight Meshes) [92]. Two local shape 

descriptors that achieved high accuracy in SHREC 2011 have been tested in our docking 

framework and compared with the Shape Impact Descriptor. The selection of descriptors has 

been performed according to the following criteria: 

Rotation Invariance: the local patches of the two protein surfaces have arbitrary orientations. 

In order to be matched, they should be either aligned or a rotation-invariant descriptor can be 

used. Alignment is usually based on the directions of the patch normals; however, the latter do 

not provide a robust measure, which leads in inaccurate alignment. Rotation-invariant 

descriptors are able to match two surface patches irrespective of their pose. 

Compactness and fast extraction: local descriptors are applied to a relatively big number of 

surface patches. This implies that descriptor extraction and pairwise matching of single patches 

should be extremely fast. Fast matching is achieved by using very compact descriptor vectors 
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(usually up to 100 values). Thus, shape descriptors with high computational complexity are not 

appropriate in our case. 

Finally, the candidate shape descriptor should be applied to the surface of the protein, which 

automatically excludes descriptors based on the volume of a 3D object. The descriptors that will 

be described in the sequel, for the sake of completeness, fulfil all the above requirements. 

Local Spectral Descriptor 

This local descriptor has been proposed by G. Lavoue in [93] for retrieval of non-rigid 3D 

meshes. It is based on the extraction of geometric descriptors from a surface patch iP  centered 

around a sample point ip  on the mesh. The method computes the Fourier spectra of the patch by 

projecting the geometry on the eigenvectors of the Laplace-Beltrami operator (LBO). LBO is 

defined as the divergence of the gradient for functions that are defined over manifolds. The 

eigenvalues and eigenvectors of this operator satisfy the following equation: 

 k

k

k
DhQh λ=−  (4.1) 

where kλ is the k
th eigenvalue, k

h  is the k
th eigenvector ],[ 1

k
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number of vertices of the surface patch. D  is the Lumped Mass matrix and Q  is the Stiffness 

matrix that are described in [95]. In order to compute the k
th spectral coefficient, the inner 

product between the patch surface and the kth eigenvector is calculated: 
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where ix  is the x-coordinate of the ith vertex of the surface patch. Similar equations hold for ky~  

and kz~ , which correspond to the y and z coordinates, respectively. Finally, the k
th spectral 

coefficient is given by: 
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The Local Spectral Descriptor for patch iP  around point ip  is the vector ],[ 1
i

n

ii
cc K=c , where 

nk ,,1 K=  the first spectral coefficients. The dimensionality of the descriptor has been 

experimentally found to be 50=n . 

ShapeDNA 

The ShapeDNA descriptor has been proposed by M. Reuter et al. in [96] for non-rigid shape 

analysis. It presents similarities with the previous approach of Local Spectral Descriptors in the 

sense that they are both based on solving the eigenvalue problem of the Laplace-Beltrami 

operator. However, in ShapeDNA the descriptors are the first smallest N eigenvalues, which are 

the solutions of the Laplacian eigenvalue problem (4.1), while in Local Spectral Descriptors, the 

descriptors are extracted by projecting the geometry of the surface on the eigenvectors of the 

Laplace-Beltrami operator. 

The ShapeDNA descriptor is insensitive to noise, it can deal with objects containing cavities 

and it is isometry invariant. To compute the first eigenvalues of LBO, the simple linear Finite 

Element Modeling (FEM) [95] is utilized. In general, a small number of egenvalues (10 to 15) 

provide a sufficient number of descriptors (less than 10 is not discriminative enough, while 

including higher values increases influence of noise and non-isometric deformations). In our 

experiments, 14=N  was experimentally found to give the optimal results. To compute the 

ShapeDNA descriptor on the GSPs of the receptor and ligand proteins, a remeshing on the 

surface patches has been applied, since mesh quality can degrade the accuracy of the linearly 

approximated eigenvalues. A detailed description of the ShapeDNA descriptor is available in [96]. 

Shape Impact Descriptor (SID) 

SID was firstly introduced in [86] and extended in [87] as a shape similarity measure for 3D 

objects. The key idea of SID is the description of the resulting phenomena that occur by the 

insertion of the 3D object in the space. It is expected that similar objects will result in similar 

physical phenomena. Some obvious selections of surrounding fields are the traditional 

electrostatic force field and the Newtonian force field. Any 3D object can be considered as a 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



SP-Dock: Protein-Protein Docking using Shape and Physicochemical Complementarity 

65 

distributed mass (or a distributed charge) with a specific distribution, resulting in a static field 

around it.  

SID is composed of three major histograms created by a) the field potential values )(xφ , b) the 

field density Euclidean norms )(xE  and c) the radial component of the field density ( )()( xnxE r⋅ ), 

computed in points x that are equidistant from the object surface. The computation of 

histograms involves only relative distances, thus the descriptor is rotation-invariant. A more 

detailed description of SID is available in the previous chapter and in [86], [87]. 

4.4 Group-based Matching and Alignment 

Most of the existing local shape feature docking approaches are based on either one-patch-to-

one-patch or two-patch-to-two-patch complementarity matching between the local patches of 

the receptor and the ligand. Then, the most complementary pairs are aligned in order to produce 

the final poses as follows: a) for methods based on single-patch matching [34], the ligand is 

translated so that the patch center of the ligand patch coincides with the patch center of the 

receptor patch; b) for methods based on two-patch matching [33], the ligand is translated so that 

its first critical point coincides with one of the receptor and then it is rotated so that its second 

critical point coincides with the second critical point of the receptor. These approaches suffer 

from the following limitations: 

Alignment is not always accurate: the patch centers (critical points) of the receptor and the 

ligand do not always coincide with their real contact points, producing docking poses that may be 

far from the near-native poses. An approach that is usually followed is to increase the number of 

samples on the protein surfaces, which in turn dramatically increases the computation time. 

Low shape complementarity between surface patches: this is due to the fact that shape 

complementarity in protein surfaces is mostly approximate rather than exact. This results in 

relatively low complementarity scores of patches that correspond to near-native poses 

comparing to scores of patches that correspond to non-native poses, causing a high number of 

false positive predictions. 
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Instead of applying single-patch or two-patch matching, we propose a novel approach, where 

several neighboring GSPs are grouped together to generate candidate binding regions on the 

surfaces of the receptor and the ligand. This increases the confidence of a receptor patch to be 

complementary to a ligand patch, since, according to the grouping criterion, the neighbours of 

the receptor patch should be complementary to the neighbors of the ligand patch as well. 

4.4.1 Creating Groups of Neighboring Complementary GSPs 

The steps of the group-based matching algorithm are summarized in Figure 4.3. Let 
RN , 

LN  be 

the GSPs of receptor and ligand, respectively, and  i

RD  , i

LD  their corresponding local shape 

descriptors, where 
RNi ,,1 K=  (or 

LN ). Let, also, the function that represents the convexity or 

concavity of a GSP be: 
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Figure 4.3: The Group-based Matching algorithm. 

 

INPUT: 

   NR, NL the GSPs of receptor and ligand, respectively 

   
i
RD , 

i
LD  their local shape descriptors, i=1,…NR (or NL) 

OUTPUT: 

   },,,{ 21 MGGGG K=  the set of patch groups 

ALGORITHM: 

   Set {}←G  

   For each receptor GSP i   

      For each ligand GSP j   
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         For each group GGk ∈   

            If pair (i,j) fulfils Grouping Criterion for Gk 

               Then add pair (i,j) to Gk 

         If (i,j) not added to any group 

            Then create new group and add to G 
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Each receptor GSP i  is matched with all ligand GSPs j  of different type ( 1)()( −=⋅ jCuriCur ). 

A dissimilarity metric is calculated for each pair ( )ji ,  as: 

 ),(),( j

L

i

R DDdisjiityDissimilar =  (4.5) 

where ()dis  is an appropriate distance metric applied on the descriptor vectors i

RD  and i

LD . The 

distance metric depends on the selected descriptor. In our experiments, the Manhattan distance 

( 1L ), the Euclidean distance ( 2L ) and the diffusion distance [89] have been selected for matching 

of the Local Spectral Descriptors, the ShapeDNA descriptors and the SID descriptors, respectively. 

After computation of the dissimilarities, the GSPs of ligand are sorted with respect to similarity to 

the receptor GSP i  and the k-first are selected to form a ranked list i

RRL . It is worth mentioning 

that similarity of the local descriptors is equivalent to complementarity. 

The output of the algorithm is a set of groups G , which is defined as follows: 

 },,,{ 21 MGGGG K=  (4.6) 

where )},(,),,(),,{( 2211 g

L

g

RLRLRk IIIIIIG K=  is a group that consists of the pairs ),( i

L

i

R II , i

RI is the index 

of a receptor GSP ( R

i

R NI K,1= ) and i

LI is the index of a ligand GSP ( L

i

L NI K,1= ). In order for the 

above pairs to form a group, the following grouping criterion must hold: 

 [ ]gji,      gThresIId
j

R

i

RGeod K,1),( ∈<  and 

 [ ]gji,      gThresIId
j

L

i

LGeod K,1),( ∈<  (4.7) 

where Geodd  is the geodesic distance between two GSPs of either the receptor or the ligand and 

gThres  an appropriately selected geodesic threshold. 

The candidate pairs of a group 
kG  are created by combining each receptor GSP i  with the k  

most similar ligand GSPs, i.e. those included in the ranked list i

RRL . Consequently, a group 
kG  

consists of neighboring receptor and ligand GSPs and each receptor GSP of the group is 

complementary with at least one ligand GSP of the group. This is illustrated in Figure 4.4 (a) and 

(b). In Figure 4.4 (a), the group of the receptor consists of four patches, whose centers are 
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represented by blue spheres. Three of these patches are complementary with one patch of the 

ligand group, while the second patch of the ligand group is complementary with the fourth patch 

of the receptor. In general, the proposed grouping algorithm allows many–to-many 

correspondences of local patches increasing the confidence of complementarity between pairs of 

groups. 

The ranges of gThres  and k  values have been experimentally determined to be at the 

ranges of 4-6 Å and 8-11, respectively. Higher values of gThres  result in a smaller number of 

larger groups, while lower values of gThres  result in a larger number of smaller groups. In the 

former case, the algorithm may fail to predict some near-native poses, while in the latter case, 

more false positive results may occur. Similar observations are made for k , if we decrease it (

8<k ) or increase it ( 11<k ), respectively. For the experiments, gThres=5Å and k=10 lead to the 

best results. 

 

Figure 4.4: (a) and (b): a pair of complementary groups, one from receptor and one from ligand, 
respectively, for the 1AVX complex. The first patch of the ligand is complementary with one patch 

of the receptor and the second patch of the ligand is complementary with three patches of the 
receptor. (c) and (d) the corresponding point clouds that are given as input to ICP for the 

alignment step. 

(a) (b)

(d)(c)
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The above process produces M  groups, which will be given as input to alignment and final 

scoring function and will result in M  predicted docking poses. There is no need to define an 

additional cutoff threshold, as required in our previous work to select the first most 

complementary pairs of patches, since the average number of M  is just 2500-3000. Another 

advantage of the proposed grouping algorithm, comparing with our previous method, is that 

patch pairs that lead to almost the same docking poses are not taken as separate cases but are 

grouped together (due to the neighborhood criterion). This results in a significantly smaller 

number of false positive predictions, which improves the final rank of the near-native 

predictions. 

4.4.2 Iterative Closest Point (ICP) Alignment 

During the alignment phase, a rigid transformation of the ligand is computed for each of the 

M  groups created using the group-based matching algorithm. Let i

RC  (or i

LC ) be the point cloud 

that consists of all points of the ith receptor GSP (or ligand GSP). The receptor point cloud k

RGC  of 

group kG  is given by: 

 
g
RR I

R

I

R

k

R CCGC UKU
1

=  (4.8) 

i.e. it is the union of the receptor point clouds i

RC  of the GSPs within group kG . The ligand point 

cloud k

LGC  of group kG  is computed in a similar manner. The required rigid transformation 

translates and rotates k

LGC  so as to optimally fit to k

RGC . Then, the same rigid transformation is 

applied to the entire ligand molecule in order to compute the final score of the predicted pose. 

The optimal alignment of two point clouds is a surface registration problem. One of the most 

well-known techniques for surface registration is the Iterative Closest Point (ICP) algorithm [97]. 

Let { }Rn

RRRRGC ccc ,,, 21
K=  and { }Ln

LLLLGC ccc ,,, 21
K=  be the two point clouds to be aligned, 

and i

R

j

L cc −  be the Euclidean distance between point R

i

R GC∈c  and L

j

L GC∈c . Let also 

),( R

j

L GCCP c  the closest point of RGC  to the point j

Lc . It is useful to launch ICP with an initial 
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estimate 0T  of the rigid transformation. This is usually computed by translating the median point 

of LGC  to coincide with the median point of RGC  and rotating LGC  so that its average normal 

(the average of the normals of all points j

Lc ) is aligned with the average normal of RGC . Then, an 

iterative process is repeated ( max,,1 tt K=  iterations) until convergence. For the tth iteration, the 

set of correspondences is computed by: 

 ( )( ){ }
R

i

L

ti

L

n

i

t
GCTCPCorr L ),(, 1

1 cc
−

== U  (4.9) 

Then, the new transformation tT  that minimizes the mean square error between point pairs 

in t
Corr  is computed. In Figure 4.4 (c) and (d), the point clouds that correspond to the pair of 

complementary groups (a) and (b) are depicted. These are given as input to ICP at the alignment 

phase. In Figure 4.5, two results of alignment using ICP are provided for the 1AVX and 1HIA 

complexes. It is obvious that a highly accurate alignment is achieved. 

 

Figure 4.5: Aligment results using ICP for the (a) 1AVX and (b) 1HIA complexes. A surface 
representation is used for the receptor and a backbone representation for the ligand. The blue 
line corresponds to the original position of the ligand and the magenta line corresponds to the 

pose predicted using ICP. 

4.5 Scoring of Candidate Poses 

In this section, the final stage of the proposed SP-Dock method is described, which involves 

scoring of the candidate poses that were produced during the group-based matching and 

alignment phase. Apart from the geometric complementarity, the effect of several (non-

geometric) physicochemical factors on the accuracy of docking predictions is also investigated. 

(a) (b) 
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The final scoring function is a weighted sum of the geometric score and the scores obtained from 

each separate physicochemical factor. The predicted docking poses are sorted in descending 

order, with the poses of the highest overall score to appear first in the ranked list. 

4.5.1 Geometric Scoring 

For the geometric scoring of each candidate pose, the 3D distance grid, which was presented 

in Chapter 3, is used. The receptor protein and its surrounding space is represented by a 3D 

function ( )kjiDT ,, : 

 ( )








>

<=

molecule the outside liesvoxel  the if    

molecule the inside liesvoxel  the if    

voxel the inside lies  point surfaceone least at if       

kjiDT

,0

,0

,0

,,  (4.10) 

The absolute value of each voxel corresponds to the Euclidean distance from the closest 

surface point. Then, the distance grid is divided into 6 shells (Table 4.1) according to the distance 

from the molecular surface. The shell ranges have been experimentally determined. It is worth 

mentioning that the shell ranges are similar to the ones obtained by the PatchDock method [33] 

(with a 0.2 Å shift), which was expected since the geometric scoring step is quite similar in both 

methods. 

Table 4.1: The shells in which the distance grid is divided. 

Shell 1 [1.2, ∞) 
The range (in Å) of the first shell of the distance 

grid  

Shell 2 [-1.2, 1.2) The range of the second shell of the distance grid  

Shell 3 [-2.4, -1.2) The range of the third shell of the distance grid  

Shell 4 [-3.8, -2.4) The range of the fourth shell of the distance grid  

Shell 5 [-5.2,  -3.8) The range of the fifth shell of the distance grid  

Shell 6 [–∞,  -5.2) The range of the sixth shell of the distance grid 

a1-6 
0, 1, -1, -18, -190, -

10000 

The values of the weights in the scoring function 

(13)  

For each of the docking poses predicted in the group-based matching and alignment phase, 

the translated and rotated ligand L  enters the 3D distance grid of the receptor R . L ’s surface 
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points access the voxels of the 3D grid and are assigned a value according to the distance from 

R’s molecular surface. The score SE of the transformation is given by: 

 ∑
=

=
6

1i

iiS NaE  (4.11) 

where iN  is the number of L  points in shell i of the distance grid and ia  is the weight of the i-th 

shell (Table 4.1). 

After the ICP-based alignment step, M different poses of the ligand are taken (equal to the M 

generated groups G). For the pose that corresponds to a group kG , an additional refinement step 

is applied, which involves +/-2 Å translation of the ligand towards the direction of k

LGC ’s average 

normal and +/-25O rotation of the ligand around k

LGC ’s average normal. This results in a total of 

9 poses for each group kG , which is significantly faster than our previous method that requires 

1872 different poses for each pair of complementary ESPs. The reason for taking only 9 poses is 

that the final transformation has been already approximated using ICP, thus, only a slight 

refinement is required. Taking also into account that ICP is significantly faster than distance-grid-

based scoring, the significance of ICP in our approach is obvious. 

The computation time required for the distance-grid-based scoring is proportional to the size 

and the resolution of the ligand’s surface. In order to achieve low computation times, two 

different resolutions of the ligand SES are used: a) the low-resolution surface with point density 

of 1 point per Å2 and b) the high-resolution surface with point density of 4 points per Å2. The low-

resolution surface is used to score all 9 poses for each group Gk, and the high-resolution surface 

is used for the best among the 9 poses. 

4.5.2 Physicochemical Factors Assessment 

Among the several non-geometric physicochemical factors that may affect the accuracy of 

protein-protein docking, the following have been assessed: 
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Atom Desolvation Energy (ADE): the atomic contact potential, which is used to estimate the 

desolvation energy for the replacement of protein-water contacts with protein-protein contacts, 

is given by [98]: 

 ∑∑
= =

=
N

i

M

j

ijADE eE
1 1

 (4.12) 

where ije  is the non-scaled contact value of a contact between atom i from receptor and atom j 

from ligand. The contact values are summed over all atoms of receptor that are within 6 Å 

distance to at least one atom of ligand and vice-versa. 

Interface Residue Contact Preferences (RCP): these are volume-normalized pair probabilities 

that represent the pairing preferences of aminoacids at the protein-protein interface [99]: 

 ∑∑
= = +

=
N

i

M

j ij

ij

RCP
r

e
E

1 1 5.1
 (4.13) 

where ije  is the volume-normalised pairing preference between aminoacid i from the receptor 

and aminoacid j from ligand and ijr  is the distance between their corresponding βC atoms. The 

value 1.5 has been added to avoid unrealistic close contacts. 

Generic Residue Contact Preferences (GCP): it is calculated in a similar manner as in the case of 

Interface Residue Contact Preferences. In this case, ije  is the pairing probability of aminoacids in 

protein structures [100]. 

Electrostatic Complementarity (EC): the electrostatic complementarity at the interface is 

calculated by [101]: 

 ∑∑
= =

=
N

i

M

j

ijEC eE
1 1

 (4.14) 
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where ),( ji ppA  are statistical interaction energies, ijr  is the distance between atoms i,j, and 

=maxr  4Å if both atoms are apolar and 3.4 Å otherwise. 

Coulomb Potential (CP): Coulomb potential is given by the following equation: 

 ( )cr

qq
E

ij

ji

CP +
=  (4.16) 

where iq , jq  are the partial charges of each atom. The constant c is equal to 1.5 Å to avoid 

strong influence of very close atoms [102]. 

Hydrophobicity (HP): it is calculated using the following equation [103]: 

 
hppphh

hh
EHP ++

=  (4.17) 

where hh is the number of contacts between hydrophobic atoms, pp is the number of contacts 

between two polar atoms and hp is the number of contacts between polar and hydrophobic 

atoms. 

Van-der-Waals Potential (vdW): here, the modified 6-12 Lennard-Jones Potential is calculated 

by: 
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where ijσ  is the sum of van-der-Waals radii and ijr  is the distance between atoms i and j. The 

potential is calculated for atoms with interatomic distances of less than 6 Å. 

It should be stressed that the above factors are not the only ones that affect the protein 

interactions. A variety of additional physicochemical properties could be also found and 

integrated into a compound scoring function. An extensive survey on all possible factors is not 

within the scope of this work, but it constitutes a significant challenge for future research. The 
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factors presented above are also summarized in [39], where it is stated that they are able to 

improve docking predictions when merged with geometric docking. However, no information 

about the contribution of each separate factor is given in [39]. In this work, an assessment of 

each factor is provided through an appropriate optimization method. More specifically, the 

overall score of each docking pose is given as the weighted sum of the geometric score (Section 

4.1) and the scores of the factors described above. The weights are optimized on a training 

dataset (59 test cases of Docking Benchmark v1.0 [91]) using Particle Swarm Optimization (PSO) 

[104]. The overall scoring function is given by: 

 vdWvdWCPCPHPHPECECGCPGCPRCPRCPADEADEssTotal EwEwEwEwEwEwEwEwScore +++++++=

(4.20) 

PSO is a global optimization algorithm, similar to a genetic algorithm, motivated by social 

behavior of organisms such as bird flocking and fish schooling. PSO iteratively tries to improve a 

candidate solution with respect to a given measure of quality (fitness function). PSO establishes a 

population (swarm) of candidate solutions, known as particles that move around in the search 

space, and are guided by the best found positions, updated when better positions are found by 

the particles. 

In our approach, the population of candidate solutions is the 8 weights w of (4.20), which can 

take arbitrary real values within the range ]1,0[ . The values of scores E (4.20) have been 

normalized so that their value range is within ]100,0[ . The key of success of the PSO method is 

the selection of an appropriate fitness function. In our experiments, two fitness functions are 

determined. The first one is the Average Precision of the first-ranked hit for all the complexes of 

the training dataset. The Precision of the first-ranked hit for one complex is given by: 

 
retrievedretrieved

hit

nn

n
F

1
1 ==  (4.21) 

where hitn  is the total number of hits (i.e. near-native poses) that are retrieved and retrievedn  is 

the total number of predicted docking poses that are retrieved. If we select retrievedn  to be equal 
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to the number of retrieved poses until the first hit is retrieved, then the numerator of (4.21) is 

equal to 1. As an example, if the first hit is retrieved in the fourth position, then the Precision for 

this complex is 25.01 =F , or 25%. The Average Precision of the first-ranked hit provides an 

acceptable metric to be used as a fitness function, however, it suffers from the following 

limitation: it favors those complexes in which the first ranked hit is retrieved at the first positions 

(1 - 10), while the complexes, in which the first hit has 100>rank , have insignificant 

contribution to the calculation of the Average Precision. In other words, an improvement of the 

hit’s rank from 200 to 100 contributes with 0.01 to the average precision, while an improvement 

from 2 to 1 contributes with 1 to average precision. This is not desired since in the former case 

the improvement is much more significant and should contribute more to the average precision. 

To overcome the above limitation a new fitness function was determined, which is given by: 

 ∑
=

−
=

CN

i
i

Poses

i

SP

i

S

C N

rankrank

N
F

1
2

1  (4.22) 

where CN  is the number of complexes of the training dataset, i

Srank is the rank of the first hit (of 

complex i) that is retrieved using only shape complementarity, i

SPrank  is the rank of the first hit 

using the weighted score (4.20) and i

PosesN  is the number of predicted poses of complex i. 

4.6 Experimental Results 

 The proposed (Shape-Physicochemical) SP-Dock method was experimentally evaluated using 

the protein-protein docking benchmark v2.4 [90], which consists of 84 known complexes (63 

rigid-body cases, 13 cases of medium difficulty, and 8 difficult cases). To evaluate the 

performance of the method, for each complex, the receptor and ligand are separated from each 

other and the ligand is translated and rotated arbitrarily. In order to increase the confidence of 

the results, the docking algorithm has been repeated for three different initial rotations of the 

ligand. Eventually, we observed that these three arbitrary rotations produced only very slight 

modifications on the final poses (mainly due to the outcome of the ICP algorithm), which did not 

affect the final rankings. Thus, the result of only one of the three iterations (the first one) is 
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presented in the following subsections. The docking algorithm described in the previous sections 

is applied to generate a set of candidate poses of the ligand. The predicted pose of the ligand is 

compared to its original pose in the complex in terms of interface Root Mean Square Deviation 

(iRMSD): 

 
∑
=

−=
N

i

o

i

p

i
N

iRMSD
1

21
aa  (4.23) 

where p

ia  is the ith interface 
aC  atom (in x, y, z coordinates) of the ligand in the predicted pose 

and o

ia  is the corresponding 
aC  atom of the ligand in the original pose (crystallized complex). 

Interface 
aC  atoms of the ligand are those that are within the distance of 10 Å from the receptor. 

A predicted pose is called a hit if the iRMSD between the ligand in that pose and the ligand in the 

original complex is less than 2.5 Å. 

4.6.1 Evaluation of Local Descriptors and Physicochemical Factors 

The choice of the appropriate local shape descriptor is crucial for the accuracy of the docking 

predictions. In Figure 4.6(a), a comparison of the three shape descriptors of Section 4.3.1 is given. 

The diagram depicts the distribution of the ranks of the first prediction within 2.5 Å of the native 

complex structure. As an example, in the case of the Local Spectral Descriptor (blue column), the 

value of the first bin is 17, which means that in 17 out of 84 complexes of Docking Benchmark 2.4 

the algorithm returned a hit at the first position. Similarly, the value of second bin is the number 

of complexes where a hit is predictred within the first five positions and so on. The value of the 

last bin is 76, i.e. in 76 complexes the algorithm returned a hit within the first 3600 positions, 

thus failed only in 8 cases. It is also clear from Figure 4.6(a) that the Local Spectral Descriptor 

produces better results than ShapeDNA and SID, thus it was eventually selected for our SP-Dock 

method. 

In Figure 4.6(b), the effect of using physicochemical properties along with shape 

complementarity is demostrated. The red and green columns depict the ranks distribution in 

Docking Benchmark 2.4 using the unified scoring function of (20) optimized with the fitness 
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functions 1F  (21) and 2F  (22), respectively. In both cases, the use of physicochemical properties 

improves the docking predictions of the shape-only approach. However, the weighted function 

optimized with 1F  demonstrates better improvement at the first ranks (1-10), while the weighted 

function optimized with 2F  is better at the higher ranks (100-2000). This makes sense taking into 

account the fact that 1F  favors those complexes in which the first ranked hit is retrieved at the 

first positions. Eventually, the results obtained with the fitness function 2F  were selected since 

they provide better overall improvement over the shape-only approach (65.3% improvement 

comparing with 57.3% obtained with 1F ). 

 

Figure 4.6: Distribution of the ranks of the first prediction within 2.5 Å of the native complex 
structure for all test cases in Docking Benchmark 2.4, a) for different local shape descriptors and 
b) comparison of our method using only shape complementarity with our method using shape 

and physicochemical complementarity and different fitness functions for weight optimization of 
the scoring function (F-1 is the precision of the first-ranked hit and F-2 is the function described 

in (22)). 

The weights of (20) that produced the results presented in Figure 4.6 (b) have been optimized 

by training on a dataset (59 complexes) of the docking benchmark v1.0 [91]. These weights for 

both 1F  and 2F  fitness functions are depicted in Table 4.2. 

Table 4.2: The optimized weights for each factor in (20) obtained by the two fitness functions and 
Particle Swarm Optimization. 

Fitness 

Function 
wS wADE wRCP wGCP wEC wHP wCP wvdW 

F1 0.114 0.158 0.008 0.006 0.143 0.01 0.05 0.51 
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F2 0.231 0.013 0.007 0.005 0.104 0.079 0.047 0.512 

4.6.2 Comparison with PatchDock, ZDock, LZerD, shDock and F2Dock 

The results of the proposed method were compared to those of the following five methods: a) 

Local 3D Zernike descriptor-based Docking (LZerD) [36], b) Surface Histograms (shDock) [37], c) 

Fast Fourier Protein-Protein Docking (F2Dock) [35], d) PatchDock [33] and e) ZDock [26]. These 

are the most recent works related to geometric protein-protein docking and they have achieved 

the best docking accuracy reported so far. In our experiments, both R-bound/L-bound and R-

unbound/L-unbound cases were evaluated. It is worth mentioning that the last two methods, 

PatchDock and ZDock, have participated in the CAPRI experiment, a well-established arena for 

testing docking algorithms. 

Two variations of the proposed method have been tested: the first (S-Dock) is based only on 

geometric properties, while in the second (SP-Dock), both shape and physicochemical properties 

are integrated. In Table 4.3, the performance of the proposed method in the R-bound/L-bound 

case, compared with the other three methods, is depicted. In “Rank” column, the rank of the 

best ranked hit is presented. This is not necessarily the hit with the smallest iRMSD, it is the first 

result of the rank list that produces iRMSD < 2.5Å. In “RMSD” column, the iRMSD of the best 

ranked hit is given. When these values are missing, the method failed to return a hit within the 

first 3600 predictions. In 3 cases none of the methods returned a hit in the first 3600 predictions, 

thus, they are not presented in Table 4.3. Moreover, two variations of F2Dock are presented, 

either with (S-E) or without (S) the use of electrostatics. 

Table 4.3: R-bound/L-bound: Comparisons between S-Dock, SP-Dock, LZerD, shDock and F2Dock 
on 84 test cases from Benchmark v2.4. PDB gives the PDB id for the protein complex. RMSD and 
Rank give the iRMSD and rank of the best ranked hit (2.5 Å cut-off). In 3 cases none of the four 

methods returned a hit in the first 3600 predictions. 
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1ACB 10 1.6 6 0.82 15 1.5 140 1.31 1 0.45 1 0.45 142 1.42 20 1.37 

1AVX 43 2.14 1 1.96 812 1.8 1 0.73 46 0.64 10 0.64 11 0.91 1 0.91 

1AY7 24 2.07 46 1.68 46 1.31 11 0.56 1867 0.55 941 0.55 7 2.02 7 2.14 

1BVN 1 0.75 10 1.24 1 0.71 1 0.52 3 0.98 44 0.98 1 1.14 1 1.14 

1CGI 1 1.08 1 1.12 1 0.61 1 0.41 1 0.4 1 0.4 1 0.63 1 0.63 

1D6R - - 35 1.04 27 0.52 13 1.48 40 0.35 41 0.35 5 2.01 3 2.12 

1DFJ - - - - - - - - 1 0.61 1 0.61 44 1.27 6 1.27 

1E6E 2 2.29 58 2.06 11 1.45 23 0.56 34 1.18 3 1.02 22 2.14 16 2.14 

1EAW 1 0.99 1 1.75 2 0.81 1 0.75 59 1.14 10 1.14 1 2.27 1 2.27 

1EWY 139 1.42 - - 141 0.86 - - 779 0.73 447 0.62 69 2.03 16 2.03 

1EZU 1 0.94 - - 1 1.18 3 0.35 24 1.09 9 1.09 9 0.97 1 0.97 

1F34 1 1.9 - - 1 1.32 1 0.79 1 1.35 1 1.35 1 2.25 1 2.25 

1HIA 14 1.19 1 1.7 3 1.5 3 0.71 1 0.52 1 0.52 7 2.23 1 2.15 

1KKL - - - - 946 0.91 26 0.78 1097 1.38 297 1.38 22 1.03 103 1.12 

1MAH 1 1.27 1 1.91 1 0.98 1 0.64 - - - - 1 1.49 1 1.49 

1PPE 1 1.03 2 1.21 1 0.41 1 0.43 1 0.77 1 0.77 1 1.32 1 1.32 

1TMQ 1 1.52 8 1.79 1 0.65 4 0.69 302 1.06 254 1.08 4 2.01 1 0.65 

1UDI 1 1.97 1 1.5 1 0.8 1 0.27 324 1.15 18 0.94 1 2.13 1 2.13 

2MTA 115 1.71 1447 2.26 92 0.88 81 0.66 269 1.58 305 1.41 56 2.17 27 2.03 

2PCC - - - - - - 788 1.89 503 1.36 16 0.6 50 1.71 314 1.06 

7CEI - - 5 2.18 54 1.08 3 0.86 162 0.34 58 0.34 26 1.77 2 1.56 

Antibody–Antigen 

1AHW 40 1.55 56 1.18 1 1.21 43 1.06 - - - - - - - - 

1BGX - - - - - - - - 35 1.4 44 1.4 107 2.21 34 2.21 

1BVK 131 2.12 1087 1.43 - - 259 0.45 1831 0.66 310 0.41 78 2.03 206 1.93 

1DQJ 83 1.71 19 2 391 0.67 1 0.36 3336 2.23 - - 346 1.18 63 1.18 

1E6J 1706 1.43 699 2.02 104 0.62 46 0.52 - - - - - - - - 

1JPS 96 1.87 23 2.3 21 0.98 2 0.65 1414 1.51 666 0.85 297 2.24 148 2.24 

1K4C 337 1.53 30 1.16 274 0.88 5 0.26 - - - - 148 2.07 34 2.07 

1MLC 516 1.79 1205 1.37 1378 2.49 10 0.67 - - - - 1274 1.73 252 2.16 

1VFB - - - - 37 1.74 1369 0.27 349 0.59 159 0.59 92 1.33 59 1.14 

1WEJ - - 1120 1.11 707 2.4 202 0.55 2266 1.36 2778 1.36 186 2.03 155 2.09 

2VIS - - - - - - 3471 0.59 - - - - 2225 2.15 454 2.15 

Antigen–Bound Antibody 

1BJ1 - - 3 1.42 58 0.73 4 0.55 - - - - 180 2.02 57 2.02 

1FSK 218 1.57 19 1.7 454 0.94 1 0.52 1030 1.89 994 1.89 385 2.38 719 2.38 

1I9R - - 1271 2.04 174 2.11 3319 0.6 2794 1.69 1189 1.69 748 2.11 271 2.11 

1IQD - - 55 1.83 1 0.35 28 0.37 772 0.99 81 0.99 334 2.19 200 2.19 

1KXQ 29 1.63 30 1.6 47 0.83 4 0.21 1511 1.7 569 1.69 4 1.97 2 1.71 

1NCA - - 20 1.48 354 1.21 8 0.46 - - - - 655 2.21 658 2.21 

1NSN - - - - 36 0.82 3305 2.2 - - - - 701 2.24 1451 2.24 

1QFW - - 16 2.46 14 2.1 1036 0.58 433 0.89 147 0.89 289 0.97 221 0.97 
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2JEL 282 1.65 532 1.77 1 0.79 10 0.31 3029 1.05 3124 0.86 297 2.09 161 2.14 

Other 

1A2K 300 1.47 570 2.41 826 1.2 1 0.7 232 0.6 50 0.6 22 1.89 47 1.74 

1AK4 - - 3471 1.14 1024 2.18 - - 13 0.34 5 0.34 - - - - 

1AKJ - - 448 1.88 - - 7 0.68 32 0.93 12 0.93 3 2.13 37 2.13 

1ATN - - 558 1.15 - - 11 0.43 - - - - 134 2.27 41 2.27 

1B6C 40 1.92 24 1.69 44 0.94 88 0.96 911 0.94 1588 0.94 35 1.03 1 1.13 

1BUH 83 1.14 393 1.43 2378 0.82 130 0.4 8 0.33 2 0.26 5 0.46 1 0.98 

1DE4 - - 452 1.62 - - 4 0.32 51 1.36 38 1.36 32 1.19 4 1.19 

1E96 1767 1.44 - - - - 87 0.68 946 1.26 1053 1.26 462 2.17 104 2.17 

1EER 1 1.66 - - 38 1.4 1 0.4 - - 531 1.55 117 2.05 94 2.05 

1F51 1 1.92 - - 26 1.58 26 1.51 642 2.21 782 2.21 2 2.10 4 1.34 

1FAK - - - - - - 1 0.59 974 1.89 818 1.89 38 1.05 30 0.89 

1FC2 49 1.24 55 2.18 42 0.52 3 0.94 2530 0.49 - - 36 2.11 26 1.63 

1FQ1 - - - - - - 2 0.7 187 0.73 - - 1076 1.15 189 1.15 

1FQJ 248 1.48 120 1.94 15 1.78 1 0.85 - - - - 12 2.23 119 2.23 

1GCQ - - 382 1.81 119 0.44 1 0.44 11 0.4 328 0.43 1 1.55 1 0.82 

1GP2 - - - - - - 1 0.34 2224 1.85 1277 1.42 1 2.17 1 2.17 

1GRN 3 1.45 7 2.26 1 1.08 1 0.22 329 1.21 39 1.21 1 2.07 1 2.11 

1H1V - - 1510 2.4 - - 818 1.19 - - - - 194 1.3 46 1.3 

1HE1 1 1.06 7 1.67 15 0.81 1 0.3 3 0.59 1 0.59 1 0.74 1 0.74 

1HE8 - - - - - - - - - - - - 847 2.27 847 2.27 

1I2M - - 14 1.8 1 1.48 95 0.92 433 0.99 2 0.98 9 2.14 26 2.14 

1I4D 167 1.05 793 2.08 695 1.68 38 0.57 - - - - - - - - 

1IB1 - - - - 5 2.04 1 0.57 181 0.91 56 0.91 1 1.26 1 1.26 

1IBR - - - - 336 1.34 1 0.79 398 1.87 166 1.74 1 2.27 1 2.27 

1IJK - - - - 115 0.9 2958 1.04 277 1 - - 164 2.11 86 2.11 

1K5D - - 10 2.11 2245 2.03 1 0.75 1370 0.83 42 0.69 1 1.57 1 1.57 

1KAC - - 381 1.52 - - 534 0.52 1018 0.55 341 0.55 38 0.86 8 0.7 

1KLU - - - - - - 178 0.54 424 1.13 1558 1.13 24 2.09 28 2.09 

1KTZ - - - - - - 603 0.51 2965 0.8 190 0.61 589 2.15 332 2.15 

1KXP - - - - - - 1 0.97 203 0.98 54 0.98 1 1.25 1 1.25 

1M10 - - 33 2.23 - - 33 0.63 197 0.93 11 0.84 86 2.18 26 2.18 

1ML0 7 0.58 75 1.94 157 1.48 52 0.41 - - - - 42 1.14 35 1.14 

1N2C - - - - - - 2 0.52 - - - - 8 2.03 1 2.03 

1QA9 - - - - - - - - 77 1.25 22 0.84 28 1.24 86 1.05 

1RLB 3143 2.32 - - 561 0.49 2021 2.22 - - - - 517 2.27 226 2.27 

1WQ1 1 0.84 4 2.04 1 1.77 - - 10 0.49 2 0.49 1 1.38 1 1.38 

2BTF 137 1.82 21 1.21 40 0.94 4 0.9 - - - - 4 0.71 1 0.71 

2QFW - - 54 1.84 - - 986 0.61 1106 0.91 364 0.91 - - - - 

2SIC - - 9 1.19 1 0.88 1 0.68 1 0.64 7 0.64 1 2.14 1 2.14 

2SNI 13 2.1 4 2.5 4 1.27 2 0.51 1 0.81 1 0.81 2 0.88 1 0.73 
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Summing up the results of Table 4.3, the proposed approach failed to return a hit in 8 out of 

84 cases, while shDock failed in 10 cases, LZerD in 25, F2Dock (S) in 22, F2Dock (S-E) in 25, 

PatchDock in 39 and ZDock in 23 cases. SP-Dock was ranked first in 40 out of 84 cases, far beyond 

the shDock method that was ranked first in 32 cases. In Table 4.5, the number of cases, where at 

least one hit is found at different docking thresholds, is presented for all methods. In the R-

bound/L-bound results, the proposed SP-Dock method outperforms all other five methods for 

thresholds 1, 1000, 2000 and 3600, while for thresholds 5, 10, 100 only shDock outperforms the 

proposed method. In Table 4.4, the win-tie-loss-failure records for the proposed method versus 

shDock, LZerD, F2Dock, PatchDock and ZDock is presented. Comparing our shape-only approach 

(S-Dock) with shDock, S-Dock returns a better ranked hit in 31 cases, whereas shDock returns a 

better hit in 29 cases. The methods tie in 20 cases, and both fail in 4 cases. Comparing against 

LZerD, F2Dock (S), PatchDock and ZDock, the proposed method clearly outperforms them; it has 

50-21 win-loss record against LZerD, 66-8 win-loss record against F2Dock (S), 54-17 win-loss 

record against PatchDock and 56-21 win-loss record against ZDock (S). The accuracy of our 

method is further improved when shape complementarity is merged with physicochemical 

complementarity (Table 4.4). Note that S-Dock is compared to the shape-only version of F2Dock, 

while SP-Dock is compared to the F2Dock (S-E), where electrostatics are merged with the 

geometric properties. 

Table 4.4: R-bound/L-bound: the win-tie-loss-failure records for the proposed method versus 
shDock, LZerD and F2Dock. 

S-Dock vs Win Tie Loss Both fail 

shDock 31 20 29 4 

LZerD 50 9 21 4 

F2Dock (S) 66 4 8 6 

PatchDock 54 9 17 4 

ZDock 56 4 21 3 

 

SP-Dock vs Win Tie Loss Both fail 

shDock 39 18 23 4 

LZerD 51 11 18 4 

F2Dock (S-E) 59 6 13 6 
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PatchDock 58 11 11 4 

ZDock 60 6 15 3 

The above experiments have been performed using the bound molecules of both the receptor 

and the ligand. In Table 4.5, the number of cases, where at least one hit is found at different 

docking thresholds, is presented also for the unbound case. In the R-unbound/L-unbound results, 

the proposed SP-Dock method is ranked first for all docking thresholds. 

Table 4.5: Number of test cases where at least one hit is found for different thresholds (1, 5, 10, 
100, 1000, 2000 and 3600) and the average iRMSD, for both R-bound/L-bound and R-unbound/-

unbound cases. 

 PatchDock ZDock shDock LZerD F2Dock 

(S) 

F2Dock 

(S-E) 

S-

Dock 

SP-

Dock R-bound/L-bound 

Rank = 1 13 6 23 16 8 8 17 26 

Rank ≤ 5 15 11 37 20 10 13 25 31 

Rank ≤ 10 17 18 41 20 12 17 30 34 

Rank ≤ 100 28 37 57 39 23 33 51 56 

Rank ≤ 1000 39 48 67 56 46 52 73 75 

Rank ≤ 2000 41 54 69 58 55 57 75 76 

Rank ≤ 3600 42 55 74 60 62 59 76 76 

Avg, iRMSD (Å) 1.53 1.73 0.69 1.17 1.01 0.95 1.73 1.68 

R-unbound/L-unbound 

Rank = 1 0 2 0 1 1 1 2 2 

Rank ≤ 5 1 4 1 2 2 2 3 6 

Rank ≤ 10 1 5 2 2 2 2 9 11 

Rank ≤ 100 9 11 6 14 9 11 23 30 

Rank ≤ 1000 23 30 22 29 24 27 53 53 

Rank ≤ 2000 31 35 33 36 31 33 55 56 

Rank ≤ 3600 37 42 41 38 33 37 56 56 

Avg, iRMSD (Å) 1.76 1.84 1.89 1.87 1.57 1.59 1.88 1.84 

In Table 4.5, the average iRMSD is also presented for both the bound and the unbound cases. 

The average iRMSD is calculated as follows: for each case that succeeds in finding a hit in the top 

3600 predictions, the iRMSD of the best ranked hit is taken. For all these cases, the average 

iRMSD is computed. It is worth mentioning that the average iRMSD of the proposed method is 

greater (i.e. less accurate) than the iRMSD of the other methods in the bound case, while it is 

comparable in the unbound case. This can be explained by the fact that the proposed method 

provides an approximate estimation of the docking pose, while other methods provide more 

exact estimations. However, the approximate complementarity matching of SP-Dock allows 
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identification of complementary pairs of patches even after small conformational changes 

(unbound docking). This is the reason why the proposed method performs better in unbound 

docking than other methods, while at the same time its iRMSD is not significantly affected (as it 

happens with the other methods). 

Table 4.6: R-unbound/L-unbound: the win-tie-loss-failure records for the proposed method 
versus shDock, LZerD and F2Dock.  

S-Dock vs Win Tie Loss Both fail 
shDock 47 0 18 19 
LZerD 46 1 19 18 

F2Dock (S) 51 0 13 20 
PatchDock 47 0 15 7 

ZDock 41 1 22 5 
 

SP-Dock vs Win Tie Loss Both fail 
shDock 49 0 16 19 
LZerD 50 1 15 18 

F2Dock (S-E) 47 0 17 20 
PatchDock 52 0 11 6 

ZDock 45 1 19 4 
Similar conclusions can be drawn in the win-tie-loss-failure records (Table 4.6). The proposed 

approach clearly outperforms all five methods, even in the case when only shape 

complementarity is used (S-Dock). If, instead of the geometric-only scoring, the shape-

physicochemical scoring of (20) is used, the hit ranks are improved in 60.4% of the cases of 

Benchmark 2.4. The performance of all five methods for the unbound case in Benchmark 2.4 is 

shown in Table 4.7. It should be stressed that the proposed SP-Dock method does not return a 

fixed number of docking poses. The number of docking poses corresponds to the number M of 

patch groups (Section 4.4.2) and it varies depending on the size of the interacting proteins. In 

case M>3600, only the first 3600 ranked poses are kept and presented in Table 4.7. In complexes 

where M<3600, all poses fulfill the constraint of “first 3600 predictions”, thus, all hits can be 

included in Table 4.7. 

Table 4.7: R-unbound/L-unbound: Comparisons between S-Dock, SP-Dock, LZerD, shDock and 
F2Dock on 84 test cases from Benchmark v2.4. PDB gives the PDB id for the protein complex. 

RMSD and Rank give the iRMSD and rank of the best ranked hit (2.5 Å cut-off). In 15 cases none 
of the four methods returned a hit in the first 3600 predictions. 

 PatchDock ZDock LzerD shDock F2Dock (S) F2Dock (S-E) S-Dock SP-Dock 
PDB Rank RMSD Rank RMSD Rank RMS Rank RMS Rank RMS Rank RMS Rank RMS Rank RMS

Enzyme–Inhibitor or Enzyme–Substrate 
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1ACB – – – – – – – – – – – – 26 2.24 10 2.17 

1AVX 2053 2.22 2863 2.23 786 2.41 1199 2.5 1769 1.75 1909 1.75 122 2.21 97 2.21 

1AY7 679 1.14 – – 1884 1.98 733 1.56 94 0.87 32 0.98 37 2.15 83 2.15 
1BVN 110 1.68 502 1.97 27 2.32 82 2.15 72 1.58 54 1.58 6 1.65 5 1.65 

1CGI – – 145 2.44 – – – – 39 2.5 45 2.5 7 2.12 21 2.12 
1D6R – – 2951 2.03 2619 2.24 – – 177 1.45 170 1.45 634 2.19 449 2.19 
1DFJ – – 9 2.27 – – – – 243 1.15 22 1.14 – – – – 
1E6E 38 2.12 – – 52 2.13 1014 1.52 – – 3526 2.41 728 1.72 7 1.34 

1EAW 59 2.1 3 1.54 20 2.42 324 2.07 517 1.7 454 1.52 9 1.14 18 1.14 
1EWY 88 2.46 259 2.32 349 2.36 175 2.15 4 1.21 4 1.17 76 2.12 15 2.12 
1EZU – – 1100 1.94 824 1.21 784 2.24 – – – – – – – – 
1F34 30 1.57 5 2.2 – – 1528 2.14 98 1.34 60 1.34 1 0.72 1 0.72 

1HIA – – – – – – – – – – – – 49 1.93 336 1.93 
1KKL – – – – – – – – – – – – 4 2.13 8 2.13 

1MAH 1184 0.83 92 1.31 92 0.87 2252 2.13 – – 3327 2.07 1614 1.94 155 1.34 
1PPE 12 1.51 1 0.57 1 0.83 8 1.86 355 1.12 392 1.12 1 0.62 1 0.62 

1TMQ 3 1.16 314 1.88 50 1.45 186 1.18 247 1.63 241 1.63 225 1.56 5 1.56 
1UDI 261 1.55 258 2.17 59 2.36 – – – – 3043 1.74 25 1.56 25 1.56 

2MTA 1086 0.83 – – 606 1.64 2423 2.11 1378 1.58 1124 1.58 208 1.42 24 1.19 

2PCC – – – – – – – – – – 843 0.66 14 2.21 70 2.21 
2SIC 113 1.24 173 1.86 12 2.04 35 1.94 1072 1.79 1429 2.35 – – – – 
2SNI – – – – – – – – 362 1.92 377 1.92 72 2.15 51 1.98 

7CEI 241 2.49 106 1.97 – – 1515 2.05 1188 1.04 598 0.85 197 1.46 39 1.46 

Antibody – Antigen 

1AHW 168 1.3 268 2.28 5 1.34 1419 2.05 – – – – 319 2.29 269 2.29 
1BVK – – – – – – – – 801 2.21 560 2.21 935 2.14 576 2.14 
1DQJ – – 2287 2.48 – – – – – – – – 933 1.32 1009 1.32 
1E6J 3483 2.29 15 1.56 439 2.18 3065 2.49 – – – – 631 2.21 83 2.12 
1JPS 1185 1.89 171 1.81 292 0.9 469 1.56 484 1.24 702 1.17 – – – – 

1MLC 847 0.98 110 1.19 1834 1.16 1027 0.96 – – – – 524 2.18 54 2.18 

1VFB 1541 2.48 2734 1.79 1303 1.69 207 2.23 310 0.75 213 0.75 611 2.09 526 2.09 
1WEJ 2152 1.25 465 2.37 – – – – – – – – 386 2.26 269 2.34 

2VIS – – 2747 2.49 – – 3027 1.45 – – – – – – – – 
Antigen–Bound Antibody 

1BJ1 – – 129 0.86 298 1.86 2052 1.58 – – – – 143 2.32 14 2.17 

1FSK 420 2.08 1 1.63 15 2.4 47 0.62 – – – – 46 0.91 64 0.91 
1I9R – – 50 2.45 95 2.39 302 2.48 2739 1.51 2090 1.51 71 2.28 96 2.28 
1IQD 3228 2.12 612 2.27 41 1.2 – – – – – – 374 2.13 75 2.13 
1K4C – – – – 1188 1.43 – – – – – – – – – – 
1KXQ 11 1.5 212 1.91 73 1.68 30 1.41 646 1.36 528 1.39 308 2.2 387 2.18 
1NSN 1254 1.76 185 1.96 945 2.29 1364 2.03 – – – – 179 2.01 115 2.01 

1NCA 575 1.45 14 1.93 – – 600 0.85 – – – – 232 1.21 257 1.21 
1QFW 1457 1.85 257 1.14 108 1.24 759 1.08 1372 1.34 1212 1.34 – – – – 
2JEL 1142 0.95 45 1.79 133 2.49 – – – – – – 83 2.16 9 1.89 

2HMI – – 237 2.5 – – – – – – – – – – – – 
Others 

1A2K – – – – – – 237 2.45 – – – – 13 2.21 27 2.21 
1AKJ – – – – – – 292 2.23 102 1.45 46 1.45 47 2.04 484 2.04 
1B6C 201 2.14 1717 2.43 1001 2.41 – – 1862 1.96 1687 1.96 172 2.06 159 2.06 

1BUH 625 2.37 – – – – 391 1.78 65 0.75 64 0.75 357 1.62 735 1.62 
1E96 – – 3094 2.26 216 2.14 3526 2.5 300 1.79 193 1.79 – – – – 
1F51 650 2.03 230 2.18 3545 1.58 3561 2.12 – – – – 79 2.21 154 2.21 
1FAK – – – – – – – – – – – – 993 2.11 146 1.87 

1FQJ 3004 2.46 – – – – – – 27 2.12 30 2.1 7 2.17 19 2.17 
1GCQ – – – – – – 1787 2.21 – – – – 681 1.93 231 1.93 

1GP2 – – – – – – – – – – – – 764 2.21 288 2.21 

1GRN 831 1.54 1704 2.34 1407 2.18 1724 1.61 1264 2.23 674 2.23 501 2.17 692 2.17 
1HE1 33 2.16 – – 267 1.98 3107 1.41 1 1.12 1 1.12 – – – – 
1HE8 – – – – – – 646 2.27 – – – – 1589 2.32 898 2.32 
1I2M – – – – – – – – – – – – 210 1.57 482 1.57 
1I4D – – – – – – – – – – – – 647 2.14 1186 2.24 
1IB1 – – – – – – – – – – – – 16 2.27 4 2.27 
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1IJK – – – – – – 1639 2.42 2221 2.5 1426 2.43 – – – – 
1KAC – – 2896 2.33 655 2.18 138 2.38 747 1.67 672 1.67 8 2.12 5 2.12 

1KLU – – – – – – – – – – – – 2450 1.89 1861 1.67 

1KTZ – – – – – – – – – – – – 286 1.23 17 1.23 

1KXP 37 2.49 1734 2.36 – – 3 1.7 306 2.01 157 2.01 100 0.87 8 0.87 
1ML0 450 1.59 36 1.56 559 2.38 303 1.87 – – – – 714 1.92 522 1.92 
1QA9 3039 1.86 – – 1381 2.19 1264 2.16 – – – – – – – – 
1WQ1 – – 1101 2.49 141 1.87 – – 96 1.95 62 1.95 7 1.76 102 1.76 
2BTF – – – – – – – – – – – – 236 1.72 363 1.56 

2QFW 1018 1.68 832 2.29 68 1.55 – – 525 1.18 427 1.18 – – – – 
 

4.6.3 Computational Issues 

In Table 4.8, the average computation times for various tasks of the proposed approach are 

presented. The average time required for extraction of the Local Spectral Descriptor for a GSP is 

0.1s. The time required for matching between a pair of GSPs (using the Local Spectral Descriptor) 

is ~ 0.001ms. It is obvious that descriptor matching is 4108 ⋅ times faster than the geometric 

scoring based on distance grid, which demonstrates the importance of the Local Spectral 

Descriptor as a fast filtering stage. 

Table 4.8: Average computation times for various tasks of the proposed approach 

Activity Average Computation 

Time Local Spectral Descriptor Extraction / 

GSP 

100ms 

Complementarity matching of a pair of 

GSPs 

0.001ms 

Scoring (distance grid) of a pose 86ms 

The average running time of SP-Dock is the sum of a) the time required for preprocessing and 

descriptor extraction; b) descriptor matching, grouping and alignment; c) distance-grid-based 

geometric scoring and d) physicochemical scoring. The most time-consuming parts are the 

geometric and physicochemical scoring, while the fastest part is the descriptor matching, 

grouping and alignment. The average running time for small-to-medium-sized complexes is 

approximately one hour (Table 4.9), while it takes a few hours for large complexes. The times 

reported were obtained using a PC with a dual-core 2.4 GHz processor and 8GB RAM. 

Table 4.9: Average running time of the proposed method 

Average Running Time 

Preprocessing/   Descriptor Matching, 

Grouping, Alignment 

Geometric 

Scoring 

Physicochemical 

Scoring 

Average 

Running Time 300s 85s 1935s 1340s 3660s 
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Although we did not run the other three methods, we compare our algorithm with the times 

reported in the related articles. As stated in [36], LZerD requires 1-2 hours for small proteins and 

it may take longer for larger proteins. These numbers were obtained using a computer with dual-

core 2.1 GHz processor with 8 GB RAM, i.e. similar to the PC that we conducted our experiments. 

Thus, our approach is slightly faster than LZerD, while at the same time it clearly outperforms 

LZerD. In [37], authors use a computer with i7 quad-core processor at 3.2GHz and 12GB RAM. 

The average running time for shDock is reported to be 2758s, i.e. a bit less than SP-Dock and 

LZerD. Taking into account the fact that in shDock a higher performance computer is used, it can 

be inferred that the average running time is comparable to SP-Dock and LZerD. Finally, in [35], no 

specific running time is reported for F2Dock. It should be stressed that the running time for SP-

Dock includes also the time for physicochemical scoring, while in the cases of LZerD and shDock 

only geometric docking is considered. If we keep only the geometric part, our method becomes 

much faster than LZerD and shDock. On the other hand, if we use both shape and 

physicochemical properties, we produce much better docking results within approximately the 

same running time. 

4.7 Summary 

We have presented a unified framework for protein-protein docking based on both shape and 

physicochemical complementarity. For shape complementarity, a new approach has been 

implemented, which utilises an effective local descriptor. The so-called Local Spectral Descriptror 

is compact, fast to extract and capable to capture similatities of local surface patches. As a next 

step, multiple pairs of complementary local patches from the receptor and the ligand are 

grouped together using a new grouping algorithm. The above grouping algorithm was inspired by 

the observation that shape complementarity in protein surfaces is mostly approximate rather 

than exact, thus single-patch or two-patch complementary matching generates numerous false-

positive predictions. Additionally, shape complementarity is enhanced by physicochemical 

complementarity. Several non-geometric factors were tested and their contribution to the 
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improvement of the shape-only docking predictions was assessed. Particle Swarm Optimization 

was applied to train the weights that each factor contributes to the overall scoring function. The 

most significant improvement is achieved when Atom Desolvation Energy, Electrostatic 

Complementarity, Hydrophobicity, Coulomb Potential and van der Waals Potential are 

introduced along with the shape complementarity, while Residue Contact Preferences and 

Generic Contact Preference seem to have insignificant contribution. This was an initial selection 

of the most well-known non-geometric factors. More factors that are available in the literature 

can be tested and assessed in a similar manner, which is planned for future work. 

Results performed on the 84 complexes of the Docking Benchmark 2.4 demonstrate the 

superiority of the proposed SP-Dock method over five similar docking approaches. While in the 

case of bound complexes our method performs slightly better than the best docking methods 

reported so far, in the unbound case our approach clearly outperforms them. 
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Chapter 5 

Similarity Search of Flexible 3D Molecules combining Local 

and Global Shape Descriptors 

5.1 Introduction 

In this chapter, a framework for shape-based similarity search of 3D molecular structures is 

presented. The proposed framework exploits simultaneously the discriminative capabilities of a 

global, a local and a hybrid local-global shape feature to produce a geometric descriptor that 

achieves higher retrieval accuracy than each feature does separately. Global and hybrid features 

are extracted using pairwise computations of diffusion distances between the points of the 

molecular surface, while the local feature is based on accumulating pairwise relations among 

oriented surface points into local histograms. The local features are integrated into a global 

descriptor vector using the bag-of-features approach. Due to the intrinsic property of its 

constituting shape features to be invariant to articulations of the 3D objects, the framework is 

appropriate for similarity search of flexible 3D molecules, while at the same time it is also 

accurate in retrieving rigid 3D molecules. The proposed framework is evaluated in flexible and 

rigid shape matching of 3D protein structures as well as in shape-based virtual screening of large 

ligand databases whith quite promising results. 

The chapter is organized as follows: an overview of the method is given in Section 5.2, along 

with its major contributions. In Section 5.3, the preprocessing stage is described, which includes 

computation of molecular surface and selection of sample points and keypoints. The 

methodology for extracting the global descriptor based on diffusion distances is analysed in 

Section 5.4. Section 5.5 describes the extraction process of the local and the hybrid local-global 

features, along with the combined matching scheme that includes the global, the local and the 
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hybrid feature. Experiments performed in four benchmark datasets are reported in Section 

Finally, a summary is provided 

5.2 Method Overview and Contributions

In Figure 5.1, the block diagram of the proposed method is depicted. The crystal structure of 

the molecule is given as input (e.g. PDB file) and its Solvent Excluded Surface (SESs) is generated 

in the form of a triangulated mesh. Then, a mesh simplification step is performed on SES, 

resulting in two sets of points: a set of 

that provide a coarser representation of the 3D molecule. In the descriptor extraction step, two 

different descriptor vectors are proposed in this work: the 

(BoALD) and the Modal Representation of the Diffusion

These descriptor vectors are combined into a common distance measure in order to calculate the 

dissimilarity between the query molecule and the molecules of a database. The main innovative 

points of the proposed framework are outlined in the sequel.

Figure 5

First of all, to the best of the authors’ knowledge, it is the first time that 

hybrid local-global feature are combined
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ments performed in four benchmark datasets are reported in Section 

 in Section 5.7. 

Method Overview and Contributions 

, the block diagram of the proposed method is depicted. The crystal structure of 

the molecule is given as input (e.g. PDB file) and its Solvent Excluded Surface (SESs) is generated 

of a triangulated mesh. Then, a mesh simplification step is performed on SES, 

resulting in two sets of points: a set of 
SN  oriented points and a set of KN  keypoints (

presentation of the 3D molecule. In the descriptor extraction step, two 

different descriptor vectors are proposed in this work: the Bag of Augmented Local Descriptor 

Modal Representation of the Diffusion-Distance Matrix (DDMR

hese descriptor vectors are combined into a common distance measure in order to calculate the 

dissimilarity between the query molecule and the molecules of a database. The main innovative 

points of the proposed framework are outlined in the sequel. 

5.1: Block diagram of the proposed method. 

First of all, to the best of the authors’ knowledge, it is the first time that a global, a local and a 

global feature are combined into a unified descriptor to address shape similarity 
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ments performed in four benchmark datasets are reported in Section 5.6. 

, the block diagram of the proposed method is depicted. The crystal structure of 

the molecule is given as input (e.g. PDB file) and its Solvent Excluded Surface (SESs) is generated 

of a triangulated mesh. Then, a mesh simplification step is performed on SES, 

keypoints (
SK NN < ) 

presentation of the 3D molecule. In the descriptor extraction step, two 

Bag of Augmented Local Descriptor 

DDMR descriptor). 

hese descriptor vectors are combined into a common distance measure in order to calculate the 

dissimilarity between the query molecule and the molecules of a database. The main innovative 

 

a global, a local and a 

ress shape similarity 
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search of flexible 3D molecules. This combination captures different properties of the 3D 

structure of molecules resulting in a robust shape descriptor appropriate for both rigid and non-

rigid shape similarity problems. 

Although Diffusion Distances have been already exploited to address non-rigid shape retrieval 

problems [73], we have further extended this work. Instead of computing histograms of diffusion 

distances between all sample point pairs on the molecular surface, we provide a Modal 

Representation (MR) by performing singular value decomposition (SVD) of the Diffusion Distance 

Matrix (DDM), a matrix that summarizes all point-to-point diffusion distances on the molecular 

mesh. This extension improves the accuracy in similarity matching of flexible molecules over 

existing diffusion-distance-based approaches. 

Combining a local and a hybrid local-global feature for non-rigid shape retrieval was initially 

proposed in [80], where the local geometrical feature was augmented with its spatial context 

computed as histogram of diffusion distances computed over mesh surface. In our case, the local 

geometrical feature of [80] is substituted by a more discriminative shape descriptor, which is 

based on Surflet-Pair relations [105]. The resulting Augmented Local Descriptor (ALD) improves 

significantly the retrieval accuracy. Additionally, the diffusion distances for the computation of 

the hybrid local-global feature are directly derived from the DDMR descriptor computation step, 

instead of using the manifold ranking method of [80], to speed-up the descriptor extraction 

process. 

The proposed unified framework demonstrates superior performance to existing methods for 

non-rigid shape matching. Experiments performed in a benchmark Database of Macromolecular 

Movements (MolMovDB) [106] show that our method clearly outperforms other state-of-the-art 

approaches. 

Although the proposed method was initially designed to address non-rigid shape matching 

problems, it achieves high accuracy in retrieval of rigid molecules as well. More specifically, the 

proposed framework outperforms existing molecular shape matching approaches in three 

datasets. Thus, the proposed framework is applicable to both rigid and non-rigid problems. 
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Finally, it is worth mentioning that the resulting shape descriptors constitute a compact 

representation of the molecular shape. This makes the method appropriate for problems of 

virtual screening in very large databases, since it achieves both high accuracy and fast retrieval. 

This is analysed in Experiments section, where the proposed method is tested on two large-scale 

virtual screening benchmarks. 

5.3 Preprocessing 

This section describes the preprocessing procedure, which consists of two steps: the first step 

involves computation of the Solvent Excluded Surface (SESs) of the molecule, while, during the 

second step, the SES is remeshed so that each molecule is represented by the same number of 

oriented points. These preprocessing steps are required for both descriptor extraction processes. 

Input to the system is the crystal structure of the molecule (e.g. in PDB file format), which 

represents its atoms in the 3-dimensional space (x, y, z coordinates). In order to generate a SES, 

the Maximal Speed Molecular Surface (MSMS) [10] software has been utilized, which is based on 

rolling a probe sphere (of size equal to the size of the solvent molecule) over the exposed contact 

surface of each atom. 

The output mesh is then used for the extraction of global and local shape descriptors. In order 

to apply the descriptor extraction algorithms, all molecules of the dataset should have the same 

number of mesh vertices. Since by using the MSMS software we cannot determine the exact 

number of the extracted vertices, a remeshing step follows to produce a mesh with the exact 

number of vertices
SN . For this remeshing, the Computational Geometry Algorithms Library 

(CGAL2) has been used. Let ip be the i
th vertex, 

SNi ,,1 K= . For each ip its normal vector in is 

computed resulting in a set of 
SN oriented points ),( ii np . These oriented points are further sub-

sampled to generate a new set of KN  keypoints iq , 
KNi ,,1 K= , where 

SK NN < , that provide a 

coarser representation of the 3D molecule. Sub-sampling is performed using quasi-random 

                                                           
2 http://www.cgal.org/ 
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sequence, which is a deterministic sequence that produces sample points more uniformly 

distributed than a pseudo-random sequence 

depicted. This mesh consists of 25144 vertices and 50278 faces. The new surface after the 

remeshing step consists of 3000 vertices and 5996 faces and it is

normals in  of the 
SN oriented points are given in green lines, while the dark blue spheres depict 

the centers of the KN sub-sampled points

a) 

Figure 5.2: a) the SES of a protein that consists of 25144 vertices and 50278 faces; b) the surface 
that is produced after the remeshing step, consisting of 

dark blue spheres depict the 

5.4 A Global Shape Descriptor Based on Diffusion Distances

Distance-based descriptors constitute a category of 3D shape descriptors, which are based on 

computation of pairwise distances between surface vertices. These distances ar

accumulated into a histogram, which provides the final descriptor vector. The first attempts in 

this category were using the Euclidean distance, such as the Euclidean Distance (ED) descriptor 

[108]. However, Euclidean metrics were proven inappropriate to deal with the articulation of 3D 

objects [72], [73]. To address this issue, the Euclidiean space or Euclidean metrics should be 

transformed to a metric space where the pairw
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sequence, which is a deterministic sequence that produces sample points more uniformly 

random sequence [107]. In Figure 5.2a, the SES of a protein is 

depicted. This mesh consists of 25144 vertices and 50278 faces. The new surface after the 

remeshing step consists of 3000 vertices and 5996 faces and it is shown in 

oriented points are given in green lines, while the dark blue spheres depict 

sampled points. 

b) 

a) the SES of a protein that consists of 25144 vertices and 50278 faces; b) the surface 
that is produced after the remeshing step, consisting of NS = 3000 vertices and 5996 faces. The 

dark blue spheres depict the NK =500 sub-sampled points, while the green lines depict the 
normals ni. 

A Global Shape Descriptor Based on Diffusion Distances

based descriptors constitute a category of 3D shape descriptors, which are based on 

computation of pairwise distances between surface vertices. These distances ar

accumulated into a histogram, which provides the final descriptor vector. The first attempts in 

this category were using the Euclidean distance, such as the Euclidean Distance (ED) descriptor 

. However, Euclidean metrics were proven inappropriate to deal with the articulation of 3D 

To address this issue, the Euclidiean space or Euclidean metrics should be 

transformed to a metric space where the pairwise distances between points of the 3D object 
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sequence, which is a deterministic sequence that produces sample points more uniformly 

a, the SES of a protein is 

depicted. This mesh consists of 25144 vertices and 50278 faces. The new surface after the 

shown in Figure 5.2b. The 

oriented points are given in green lines, while the dark blue spheres depict 

 

a) the SES of a protein that consists of 25144 vertices and 50278 faces; b) the surface 
= 3000 vertices and 5996 faces. The 

lines depict the 

A Global Shape Descriptor Based on Diffusion Distances 

based descriptors constitute a category of 3D shape descriptors, which are based on 

computation of pairwise distances between surface vertices. These distances are usually 

accumulated into a histogram, which provides the final descriptor vector. The first attempts in 

this category were using the Euclidean distance, such as the Euclidean Distance (ED) descriptor 

. However, Euclidean metrics were proven inappropriate to deal with the articulation of 3D 

To address this issue, the Euclidiean space or Euclidean metrics should be 

ise distances between points of the 3D object 
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surface are invariant to deformations of the 3D object. Thus, geodesic distances (GD) [77], inner 

distances (ID) [72] or diffusion distances (DD) [73] have been used instead. 

GD refers to the length of the shortest path between two points along the boundary surface. 

Advantages of GD is its invariance to surface bending, however, it is not quite efficient in 

capturing shape articulation deformation that commonly exists in macromolecular movements 

(e.g. hinge motion). ID overcomes some disadvantages of GD. ID distance is computed as the 

length of the shortest path between landmark points within the molecular shape. It outperforms 

GD in capturing deformation of molecular structure [72]. A drawback of ID is that it may be 

significantly affected by topological changes of shape deformation [73]. Invariance to topological 

changes can be achieved by using diffusion distances (DD). DD is the probability of travelling on 

the surface from one point to another in a fixed number of random steps. 

The difference of DD comparing to GD and ID is that DD is computed as the average length of 

paths connecting two points, while GD and ID represent the length of the shortest path. Thus, DD 

is usually more robust to topological changes. In our framework, the diffusion distance was 

selected as a base to the global shape descriptor. The computation of DD on the molecular 

surface as well as the extension of DD with a modal representation are provided in the following 

subsections. 

5.4.1 Computing Diffusion Distances on the Molecular Surface 

The computation of diffusion distances is performed in three main steps: (a) calculation of the 

Markov probability matrix; (b) Singular Value Decomposition (SVD) of the matrix to generate the 

diffusion map space; and (c) computation of the diffusion distances. 

Let 
ip  be the set of 

SN  vertices. Let ( )⋅K  be a kernel function with bandwidth h . The 

Gaussian kernel ( ) ( )22/exp, hK jiji pppp −−=  is one of the most commonly used, where the 

bandwidth h  controls the local scale of each data point's neighborhood and 
2

ji pp −  is the 

Euclidean distance between surface points i  and j . Then, the diffusion matrix L  with elements 

( )jiij KL pp ,=  is normalized as 11 −−= LDDM  by the degree matrix D with 
ijiij LD ∑= . The 
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normalized diffusion matrix M  is a stochastic matrix with all row sums equal to one, and 

according to [109] it can be interpreted as a random walk on a graph, where the vertices of the 

graph are the surface points 
SNi ,,1 K=  and the weights of the ji,  edges correspond to ijM  

values. Thus, ijM  denotes the ( )jip |,1  transition probability from the surface point j  to point i  

in one time step ( 1=t ). For any finite time t  the Markov probability matrix t
M  with elements 

t

ijM  is computed as ( )jitpM t

ij |,= , expressing the probability distribution of reaching surface 

point i , given a starting point j  at time 0=t . Thus, the transition probability is given by 

( ) t

jjitp Me=|, , where je  is a row vector of zeros with a single entry equal to one at the j-th 

coordinate. Let the SVD of matrix t
M  be: 

 Tt   BΣAM =  (5.1) 

where ( )kdiag σσσ ,,, 10 K=Σ  and 010 ≥≥≥≥ kσσσ K  are the 1+k  singular values of 

t
M , [ ]kaaaA ,,, 10 K=  and [ ]kbbbB ,,, 10 K=  with ( ) ( ) ( ){ }Siiii Naaa ,,2,1 K=a  and 

( ) ( ) ( ){ }Siiii Nbbb ,,2,1 K=b  are the left and right singular vectors, respectively, and 0a  and 0b  

are the first left and right eigenvectors, corresponding to the first ( )10 =σ  eigenvalue. Note that 

following [109], the first eigenvalue and the respective eigenvectors are excluded from the 

diffusion process and are used only for normalization purposes. The distance between two 

surface points ji,  at time t  is calculated as: 

 ( ) ( ) ( ) ( ) ( )( ) ( )∑
∈

−=−=
yy

wt ywjytpiytpjytpiytpjiD
222 |,|,|,|,,  (5.2) 

where Y  is the set of the SN  surface points and Yy∈∀  the ( )yw  value is treated as weight 

function and calculated as ( ) ( )yayw 0/1= . 

Since the ( )jiDt ,2  distance depends on the random walk on the graph, it denotes the 

diffusion distance at time t . As it is mathematically proven in [109], the diffusion distance 

between surface points ji,  is calculated by: 
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 ( ) ( ) ( ) 22 , jijiD ttt ΨΨ −=  (5.3) 

with ( ) ( ) ( ) ( )( )ibibibi k

t

k

tt

t ⋅⋅⋅= σσσ ,,, 2211 KΨ  is the mapping of the i-th surface point from the 

original kernel space (formed by the kernel function ( )⋅K ) to the diffusion map space at time t . 

5.4.2 Modal Representation of Diffusion Distance Matrix 

Given the computation of diffusion distances between the molecular surface points, the next 

step is to exploit this intrinsic feature for the computation of a global shape descriptor. A 

common technique is to accumulate these pairwise distances into a histogram [73]. In this work, 

we propose an alternative approach based on a modal representation. 

As a first step, the Diffusion Distance Matrix ( ){ }jiDt ,2=DDM , where 
SNji ,,1, K= , is 

computed. Then, SVD of DDM  yields: 

 
T  VLUDDM=  (5.4) 

where the modal representation, i.e. the singular value matrix ),,,( 21 ndiag λλλ K=L , contains 

the intrinsic information about geometry, and matrices U , V  contain the information about 

correspondences between points. The first n  singular values { }nλλλ ,,, 21 K  constitute the 

Modal Representation of Diffusion Distance (DDMR) descriptor DDMR
D  of the 3D object. It has 

been proven in [77] that the eigenvalue matrix is invariant to sampling order of the surface 

points. 

5.5 An Augmented Local Descriptor 

The proposed Augmented Local Descriptor (ALD) is computed on each of the KN  keyponts 

that provide a coarse approximation of the molecular surface. This results in a total of KN  ALD 

descriptor vectors ALD

iD  (i=1,…, KN ) that are extracted for each 3D molecule. Each descriptor 

ALD

iD  is the concatenation of two vectors: the Local Descriptor based on Surflet-Pair Relations 

LDSP

iD  and the Hybrid Local-Global feature 
HLG

iD , i.e. ),( HLG

i

LDSP

i

ALD

i DDD = . Finally, a Bag-of-
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Features approach applied on the KN  ALD descriptors produces a global descriptor vector, the 

Bag-of-ALD (BoALD). 

5.5.1 A Local Descriptor based on Surflet-Pair Relations 

This descriptor takes as input the set of oriented points ),( ii np , 
SNi ,,1 K=  and the set of 

keypoints iq , 
KNi ,,1 K=  (Figure 5.2b). Each local descriptor is defined on a spherical region of 

radius R  centered at each keypoint iq . Let { }),(,),,(),,( 2211 NNQ npnpnp K=  be the set of 

oriented points within a spherical region around keypoint q  with R≤− qp1  and qn  the 

normal vector of q . The Local Descriptor based on Surflet-Pair relations (LDSP) is computed as 

follows: 

For each oriented point Qii ∈),( np  the following values γβα ,,  and δ  are computed: 

 ),arctan( iqi nnnw ⋅⋅=α , (5.5) 

 inv ⋅=β , (5.6) 

 
qp

qp
n

−

−
⋅=

i

i

qγ , (5.7) 

 qp −= iδ  (5.8) 

where 
( )
( ) qi

qi

nqp

nqp
v

×−

×−
=  and vnw ×= q . 

The above process is illustrated in Figure 5.3. The 
SN  points of the molecule are given as a 

point cloud (small black dots), while the larger dots represent the KN  keypoints. In the magnified 

view, on the right, the oriented points ),( ii np  within the spherical region centered at q  are 

depicted. 

Using (5.5)-( 5.8), a 4-tuple ( )δγβα ,,,  is created for each oriented point ),( ii np  of set Q . 

Then, all 4-tuples of Q  are collected into a 4-dimensional joint histogram. Let 
Lk  be the number 

of bins for each dimension, then the total number of bins of the 4D histogram is 4
Lk . Each 4-tuple 
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( )δγβα ,,,  is assigned to bin ( )mlji ,,,  with 1,,,0 −≤≤ Lkmlji  according to the following 

inequalities: 

 ( ) αααα α hstepihminhstepihmin ⋅++<≤⋅+ 1 , (5.9) 

 ( ) ββββ β hstepjhminhstepjhmin ⋅++<≤⋅+ 1 , (5.10) 

 ( ) γγγγ γ hsteplhminhsteplhmin ⋅++<≤⋅+ 1 , (5.11) 

 ( ) δδδδ δ hstepmhminhstepmhmin ⋅++<≤⋅+ 1 , (5.12) 

where α  ranges from αhmin  to ααα hstepkhminhmax ⋅+= , β  ranges from βhmin  to 

βββ hstepkhminhmax ⋅+=  and so on. 

 

Figure 5.3: The protein surface given as point cloud. The circles represent the local spherical 
regions centered at the local keypoints NK. On the right, the oriented points within a local 

spherical region are given in a magnified view. 

The LDSP LDSP

iD  for each keypoint iq  is a 1D vector of dimension 4
Lk . The values of LDSP

iD

are normalized so that their sum equals 1. The selection of parameter 
Lk  should be such that the 

number of bins is adequate to produce a discriminative descriptor, while at the same time 
Lk  is 

not very high so as to keep the descriptor dimensionality low. In [105], 5=Lk  was reported as an 

optimal solution, which was also verified in our case: for 5<Lk , the discriminative power of the 

local feature was negatively affected, while for 5>Lk , the descriptor dimensionality was 

q

nq

n1

n2

n3

n4
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increasing dramatically without achieving significant improvement of accuracy. The optimal value 

for radius R  has been estimated in a similar manner: very low values of R  result in spherical 

regions with trivial shape information; for very high values of R , the local character of the 

descriptor, which gives its robustness to non-rigid problems, disappears. Eventually, an optimal 

choice for our experiments was 
ARR ⋅= 4.0 , where 

AR  is the radius of the 3D molecule’s smallest 

bounding sphere. 

Regarding the values hmax hmin,  and hstep  of (5.9)-(5.12), their selection is 

straightforward: since α  is an arctan function, πα −=hmin  and πα =hmax ; γβ ,  represent 

dot products of unit vectors, thus 1−== γβ hminhmin  and 1== γβ hmaxhmax ; δ  is 

practically the distance of each point 
ip  from the center keypoint q , thus 0=δhmin  and  

Rhmax =δ ; finally, ( ) Lkhmin-hmaxhstep /=  in all cases. 

5.5.2 A Hybrid Local-Global Feature 

Similar to LDSP, the Hybrid Local-Global feature (HLG) is computed for each keypoint iq , 

KNi ,,1 K= . More specifically, the following set is computed for each iq : 

 ( ) ( ) ( ){ },,,,,,, 21 Si Niii ddddddDD pqpqpqq K= , (5.13) 

where ( )jidd pq ,  is the diffusion distance from the keypoint iq  to sample point jp , 

SNj ,,1 K= . The SN  diffusion distances of the set 
i

DDq are accumulated into a 1D histogram of 

100=Hk  bins. Again, the dimension 
hk  has been experimentally determined [80]. This 

histogram, which is normalized so that the sum of all values equals 1, constitutes the HLG 

descriptor HLG

iD  of keypoint iq . 

According to the above definition, the HLG descriptor is neither a purely local feature nor a 

global descriptor. It combines local characteristics – as it is computed for each keypoint – with 

global characteristics – as it takes into account the set of diffusion distances of the entire 

molecule. HLG resembles to the Local Distance Feature (LDF) that was proposed in [80]. 
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However, in [80], the distances to all points jp  are computed using a Manifold Ranking algorithm 

[110], according to which each keypoint iq is used as the source of diffusion of ranking score for 

the MR. The resulting histogram is created by all ranking scores at sample points jp . In this work, 

the distances ( )jidd pq ,  are computed using the framework presented in Section 5.4.1. Thus, 

diffusion distances are computed only once for both the DDMR and the HLG descriptors. 

5.5.3 Computation of Bag-of-ALD (BoALD) Descriptors 

During this step, the local LDSP descriptors and the hybrid HLG descriptors are integrated into 

a global histogram. This process is summarized in Figure 5.4. Initially, for each keypoint iq , its 

LDSP descriptor LDSP

iD  and HLG descriptor HLG

iD  are concatenated into an ALD descriptor 

),( HLG

i

LDSP

i

ALD

i DDD = . ALD

iD  is a histogram of dimension 7251006254 =+=+= HLA kkk . The idea 

of concatenating histograms of two features into one histogram was inspired by the method in 

[80], where the Local Distance Feature (LDF) was merged with a local descriptor, the Local 

Geometrical Feature (LGF), in order to produce a descriptor with improved accuracy. In this work, 

LGF has been substituted by the LDSP descriptor. 

To produce a global descriptor from the KN  local descriptors ALD

iD , the well-known Bag-of-

Features approach has been utilized. Let { }
VNV vvv ,,, 21 K=  be a set of visual words. The 

dimension of each visual word is equal to Ak  i.e. of the ALD histogram. The set V  is created by 

applying k-means clustering to a subset (training set) of the ALD descriptors ALD

iD  of the 

molecular database. The descriptors that constitute the training set are selected randomly (10% 

of the local features of the database) in order to capture a representative view of the database. 

Each visual word v  is the center of a cluster. Then, each ALD descriptor ALD

iD of the 3D molecule 

is vector quantized into a visual word and a histogram of VN  visual words is produced. This 

histogram BoALD
D  is called Bag-of-ALD descriptors or BoALD. 
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Figure 5.4: The process for computing the BoALD descriptors.

The size of vocabulary VN  

and computational cost. For large datasets, which imply also a large number of samples to 

cluster, an increase of size VN

On the other hand, retrieval accuracy is improved as vocabulary size increases, until a specific 

upper limit is reached, above which no further improvement is observed. Based on the 

aforementioned criteria, the optimal choice of vocabul

experimentally found. 

5.5.4 A Distance Measure for Shape Similarity Matching

Let DDMR
D  and BoALD

D  be the DDMR and BoA

the methods described in Sections 

between two 3D molecules A and B can be calculated as the weighted sum of the dissimilarities 

of each descriptor separately: 

 ( )BAdis ,

where DDMR
dis  and BoALD

dis

respectively, and DDMRw , BoALDw

optimal distance metric for each descriptor is not trivial. An extensive study on the performance 
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The process for computing the BoALD descriptors.

 should be carefully chosen since it affects both retrieval accuracy 

and computational cost. For large datasets, which imply also a large number of samples to 

 would require high computation times for the k

On the other hand, retrieval accuracy is improved as vocabulary size increases, until a specific 

upper limit is reached, above which no further improvement is observed. Based on the 

aforementioned criteria, the optimal choice of vocabulary size is 1000=VN

A Distance Measure for Shape Similarity Matching 

be the DDMR and BoALD descriptor vectors that are extracted using 

the methods described in Sections 5.4 and 5.5, respectively. The overall shape dissimilarity 

between two 3D molecules A and B can be calculated as the weighted sum of the dissimilarities 

 

) ( ) ( )BAdiswBAdisw
BoALDBoALDDDMRDDMR ,, ⋅+⋅= ,

BoALD  are the dissimilarities of DDMR and BoALD descriptors, 

BoALD  their corresponding weights. In general, the selection of the 

optimal distance metric for each descriptor is not trivial. An extensive study on the performance 
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The process for computing the BoALD descriptors. 

should be carefully chosen since it affects both retrieval accuracy 

and computational cost. For large datasets, which imply also a large number of samples to 

k-means clustering. 

On the other hand, retrieval accuracy is improved as vocabulary size increases, until a specific 

upper limit is reached, above which no further improvement is observed. Based on the 

1000, as it has been 

LD descriptor vectors that are extracted using 

, respectively. The overall shape dissimilarity 

between two 3D molecules A and B can be calculated as the weighted sum of the dissimilarities 

, (5.14) 

are the dissimilarities of DDMR and BoALD descriptors, 

their corresponding weights. In general, the selection of the 

optimal distance metric for each descriptor is not trivial. An extensive study on the performance 
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of the most well-known dissimilarity metrics is available in [81]. In the case of the DDMR 

descriptor, the X-Distance (or normalized Manhattan Distance) was experimentally proven to be 

the optimal metric: 

 ( )
( ) ( )
( ) ( )∑

= +

−
⋅=

DN

i
DDMR

B

DDMR

A

DDMR

B

DDMR

ADDMR

iDiD

iDiD
BAdis

1

2, , (5.15) 

where DDMR

AD , DDMR

BD are he descriptors of molecules A and B, respectively and DN  is the 

dimensionality of the descriptor vector. Similarly, the optimal distance metric for the BoALD 

descriptor is the Kullback-Leibler Divergence: 

 ( ) ( ) ( )( ) ( )
( )∑

=

−=
VN

i
BoALD

A

BoALD

BBoALD

B

BoALD

A

BoALD

iD

iD
iDiDBAdis

1

ln, , (5.16) 

where BoALD

AD , BoALD

BD  are the descriptors of molecules A and B, respectively and VN  is the 

dimensionality of the descriptor vector. 

After selecting the optimal dissimilarity metrics, the weights DDMRw , BoALDw  need to be 

determined. In our case, we followed the Particle Swarm Optimization (PSO) strategy [81] for the 

weight optimization. PSO is an algorithm for global optimization. It is motivated by the social 

behavior of organisms such as bird flocking and fish schooling. PSO optimizes a problem in which 

a best solution can be represented as a point or surface in an n-dimensional space. It iteratively 

tries to improve a candidate solution based on a given quality measure (fitness function). PSO 

establishes a population (swarm) of candidate solutions, known as particles that move around in 

the search space, and are guided by the best found positions, updated while better positions are 

found by the particles. 

The population of candidate solutions, in our case, is the weights DDMRw , BoALDw , which can 

take arbitrary values between [ ]1,0 . The fitness function to be optimized is the average Tier-1 

precision, which is calculated on a train dataset. More specifically, each 3D molecule of the 

dataset is used as query to retrieve similar objects, using (14) as dissimilarity metric. The 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Similarity Search of Flexible 3D Molecules combining Local and Global Shape Descriptors 

103 

retrieved results are ranked in ascending order. The Tier-1 precision is given by the following 

equation: 

 1,
)(

1 −== CK
K

KR
P

C

T
 (5.17) 

where K  is the number of first retrieved objects, )(KR
C is the number of retrieved objects within 

the K-first, which are of the same class C with the query, and C  is the number of objects that 

belong to class C . PSO resulted in the following weights: 62.0=DDMR
w , 38.0=BoALD

w . 

5.6 Experimental Results 

For the experimental evaluation of the proposed method, four different datasets have been 

selected. The first dataset is part of the Database of Macromolecular Movements (MolMovDB) 

[106], which comprises molecules with large conformational changes 

(http://www.molmovdb.org/), also including the intermediate morphs. It consists of 2695 PDB 

files classified into 214 categories [111]. This dataset is used for parameter selection and for 

comparison with existing flexible molecular shape matching approaches [72], [73]. The second 

dataset consists of 2631 3D protein structures. It is a subset of the FSSP database [112] and was 

created by us to demonstrate the performance of the Spherical Trace Transform (STT) in [62]. 

The 2631 proteins are classified into 27 categories according to the DALI algorithm [113] and the 

proteins that belong to the same class demonstrate rigid shape similarity. This dataset is used to 

evaluate the performance of the proposed method in rigid shape matching of 3D protein 

structures and is available for download at vcl.iti.gr/protein_retrieval/PDB_FSSP.zip. Finally, the 

third and fourth dataset are used to demonstrate the performance of our framework in large-

scale virtual screening of ligands. Experiments have been performed on a PC with i5 2.8GHz 

processor, 4GB RAM, running Windows 7. 
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5.6.1 Parameter Selection for the DDMR Descriptor 

For the implementation of the DDMR descriptor, the Matlab Toolbox for Dimensionality 

Reduction3 (v0.8.1) has been selected, using the default parameters 1=h  and 1=t . The 

discriminative power of DDMR mainly depends on two parameters: a) the number SN  of sample 

points ip  on the molecular surface, and b) the dimensionality of DDMR descriptor vector, i.e. the 

number n  of first singular values { }nλλλ ,,, 21 K  of SVD (5.4). By increasing the number of 

sample points SN , a higher-quality representation of the surface is achieved and accuracy is 

improved, however, this results in higher descriptor extraction times. Additionally, an increase of 

n  may also improve the accuracy. We run several sets of experiments using different values of 

SN  and n . As a performance metric, the average Tier-1 Precision has been selected (5.17). 

In Figure 5.5, the average Tier-1 Precision for different values of SN  and n , in MolMovDB is 

presented. It is obvious that as the number of sample points SN increases a higher precision is 

achieved. Using a mesh resolution higher than 2000 points, though, the improvement in accuracy 

is negligible. Similar conclusions are drawn regarding the number n  of first singular values. For 

values n  higher than 50-60, there is no significant improvement in precision. 

A critical factor for the parameter selection is the descriptor extraction time. Since the process 

of extracting the DDMR descriptor involves computations on SS NN ×  matrices, the processing 

time may increase prohibitively as the number of sample points SN  increases. This is highlighted 

in Table 5.1, where it is obvious that for meshes consisting of 4000 points it takes approximately 

one minute for descriptor extraction, while for meshes of 1000 points the extraction time is less 

than 2 seconds. For the experiments that will be presented in the following subsections the 

values 2000=SN  and 50=n  have been selected for DDMR. 

                                                           
3 http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html 
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Figure 5.5: Parameter selection for DDMR descriptor: the average Tier

Table 5.1: Average extraction times of the DDMR descriptor for 

Number of sample 

 

5.6.2 Parameter Selection for the BoALD Descriptor

The BoALD descriptor has been implemented by us in C++ based on the works presented in 

[80] and [105]. The performance

the local descriptor LDSP; b) the number of sample surface points 

points KN , and d) the vocabulary size 

related to radius R  as follows: a small 

requires a high SN  so that the local histograms (

local points KN  affects the selection of the vocabulary size 
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Parameter selection for DDMR descriptor: the average Tier-1 Precision in MolMovDB 

for different values of n  and SN . 

Average extraction times of the DDMR descriptor for different numbers of sample 
points. 

Number of sample 

points N  

 DDMR Descriptor  

500 0.47 

1000 1.34 

2000 4.69 

3000 14.08 

4000 46.52 

Parameter Selection for the BoALD Descriptor 

The BoALD descriptor has been implemented by us in C++ based on the works presented in 

. The performance of BoALD is affected by several parameters: a) the radius 

the local descriptor LDSP; b) the number of sample surface points SN ; c) the number of local 

, and d) the vocabulary size VN  of the codebook. The number of surface points 

as follows: a small R  provides sufficient locality to the descriptor but it 

so that the local histograms (5.9)-(5.12) are well populated. The number of 

affects the selection of the vocabulary size VN : for a given 
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1 Precision in MolMovDB 

different numbers of sample 

The BoALD descriptor has been implemented by us in C++ based on the works presented in 

of BoALD is affected by several parameters: a) the radius R  of 

; c) the number of local 

of the codebook. The number of surface points SN  is 

nt locality to the descriptor but it 

are well populated. The number of 

KN , an increase of 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Similarity Search of Flexible 3D Molecules combining Local and Global Shape Descriptors

VN  improves the accuracy until a specific upper limit is reached. Beyond that limit a further 

increase of VN  has no effect in accuracy. If we

limit for VN  resulting in a more discriminative descriptor.

In Figure 5.6, the average Tier

values of radius R  and number of sample points 

bag-of-features to the local LDSP histograms only (while the full BoALD descriptor is produced by 

the concatenation of LDSP and HLG histograms). For lower resolution meshes (1000

an increase of R  improves precision, while for higher resolution meshes (3000

increasing R  over AR⋅4.0  may have an opposite effect.

Figure 5.6: Parameter selection for BoLDSP descriptor: the average Tier

for different values of radius 

In Figure 5.7, the average Tier

values of vocabulary size VN

increase of VN  does not affect the average precision. Similarly, for 

improved for 1000≥VN . Finally, for 

500=KN  is negligible. It is also worth mentioning that the dimensionality 

be kept relatively low to achieve faster matching times. For the experiments that will be 
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improves the accuracy until a specific upper limit is reached. Beyond that limit a further 

has no effect in accuracy. If we increase KN , then we can achieve a higher upper 

resulting in a more discriminative descriptor. 

, the average Tier-1 Precision of the BoLDSP descriptor in MolMovDB for different 

and number of sample points SN  is depicted. BoLDSP is produced by applying 

features to the local LDSP histograms only (while the full BoALD descriptor is produced by 

the concatenation of LDSP and HLG histograms). For lower resolution meshes (1000

mproves precision, while for higher resolution meshes (3000

may have an opposite effect. 

Parameter selection for BoLDSP descriptor: the average Tier-1 Precision in MolMovDB 

for different values of radius R  and SN . 

, the average Tier-1 Precision of the BoALD descriptor in MolMovDB for different 

 and number of local points KN  is depicted. 

does not affect the average precision. Similarly, for 500=KN  

. Finally, for 1000=KN , the improvement in accuracy comparing to 

is negligible. It is also worth mentioning that the dimensionality N

be kept relatively low to achieve faster matching times. For the experiments that will be 
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improves the accuracy until a specific upper limit is reached. Beyond that limit a further 

, then we can achieve a higher upper 

1 Precision of the BoLDSP descriptor in MolMovDB for different 

is produced by applying 

features to the local LDSP histograms only (while the full BoALD descriptor is produced by 

the concatenation of LDSP and HLG histograms). For lower resolution meshes (1000-2000 points) 

mproves precision, while for higher resolution meshes (3000-4000 points) 

 

1 Precision in MolMovDB 

1 Precision of the BoALD descriptor in MolMovDB for different 

 For 250=KN , an 

 the precision is not 

n accuracy comparing to 

VN  of BoALD should 

be kept relatively low to achieve faster matching times. For the experiments that will be 
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presented in the sequel the values 

selected for BoALD. 

Figure 5.7: Parameter selection for BoALD descriptor: the average Tier
for different values of vocabulary size 

The processing times for extraction of local features LDSP and HLG and for the BoALD bag

feature integration are given in 

computationally expensive process. For the MolMovDB dataset with 2695 molecules and 

500=KN  local features per molecule, the total number of training samples (10% of the dataset) 

is 134750 local features. The 

1000=VN  took about 1700s (28 minutes). Then, the bag

molecule is 2.34s, thus, 6300s (105 minutes) for the entire database. These computations need to 

be performed only once, during the pre

Table 5.2: Average extraction times of the BoALD descriptor.

Number of 

sample points 

LDSP Descriptor

1000 

2000 

3000 

4000 
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presented in the sequel the values 3000=SN , ARR ⋅= 4.0 , 500=KN and VN

Parameter selection for BoALD descriptor: the average Tier-1 Precision in MolMovDB 
for different values of vocabulary size VN  and KN . 

The processing times for extraction of local features LDSP and HLG and for the BoALD bag

feature integration are given in Table 5.2. The codebook learning via k-means clustering is a 

computationally expensive process. For the MolMovDB dataset with 2695 molecules and 

local features per molecule, the total number of training samples (10% of the dataset) 

is 134750 local features. The k-means clustering of 134750 features with vocabulary size 

took about 1700s (28 minutes). Then, the bag-of-features integration time for each 

molecule is 2.34s, thus, 6300s (105 minutes) for the entire database. These computations need to 

performed only once, during the pre-processing stage. 

Average extraction times of the BoALD descriptor.

LDSP Descriptor HLG Descriptor BoALD bag-of

integration time (s) 0.28 0.34 

2.34
0.42 1.66 

0.75 3.08 

0.95 8.74 
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1000=  have been 

 

1 Precision in MolMovDB 

The processing times for extraction of local features LDSP and HLG and for the BoALD bag-of-

means clustering is a 

computationally expensive process. For the MolMovDB dataset with 2695 molecules and 

local features per molecule, the total number of training samples (10% of the dataset) 

lustering of 134750 features with vocabulary size 

features integration time for each 

molecule is 2.34s, thus, 6300s (105 minutes) for the entire database. These computations need to 

Average extraction times of the BoALD descriptor. 

of-feature 

integration time (s) 

2.34 
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5.6.3 Performance Evaluation in MolMovDB 

For performance evaluation in MolMovDB the 

precision is the proportion of the retrieved molecules that are relevant to the query and recall is 

the proportion of relevant molecules in the entire database that are retrieved. As it is described 

in Section 5.5.3, ALD is generated by concatenating a histogram of the LDSP descriptor with a 

histogram of the HLG descriptor. It is also stated that the substitution of the local LGF feature of 

[80] with the LDSP feature, which is based on the Surflet

augmented descriptor for non

combination of LDSP with HLG into the ALD descriptor is prop

Figure 5.8: Comparison of BoLGF, BoFoG, BoLDSP and BoALD in MolMovDB.

The improvement in terms of accuracy is depicted in 

integration of the Local Geometrical Feature (LGF) that was used in 

with the hybrid local-global feature is the BoFoG descriptor. In our case, BoLDSP is the bag

feature integration of the local

hybrid local-global feature (HLG) is our BoALD descriptor. It is clear that LDSP is a more accurate 

geometric feature than LGF, which in turn improves the precision of BoALD over BoFoG.
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Performance Evaluation in MolMovDB – Flexible Similarity Matching

For performance evaluation in MolMovDB the precision-recall curve has been used, where 

precision is the proportion of the retrieved molecules that are relevant to the query and recall is 

evant molecules in the entire database that are retrieved. As it is described 

rated by concatenating a histogram of the LDSP descriptor with a 

histogram of the HLG descriptor. It is also stated that the substitution of the local LGF feature of 

with the LDSP feature, which is based on the Surflet-Pair relations [105]

augmented descriptor for non-rigid shape matching with higher discriminative power. This 

combination of LDSP with HLG into the ALD descriptor is proposed here for the first time

Comparison of BoLGF, BoFoG, BoLDSP and BoALD in MolMovDB.

The improvement in terms of accuracy is depicted in Figure 5.8. BoLGF is the bag

integration of the Local Geometrical Feature (LGF) that was used in [80], while its combination 

global feature is the BoFoG descriptor. In our case, BoLDSP is the bag

feature integration of the local-only feature (LDSP), while the combination of LSDP with the 

global feature (HLG) is our BoALD descriptor. It is clear that LDSP is a more accurate 

geometric feature than LGF, which in turn improves the precision of BoALD over BoFoG.
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curve has been used, where 

precision is the proportion of the retrieved molecules that are relevant to the query and recall is 

evant molecules in the entire database that are retrieved. As it is described 

rated by concatenating a histogram of the LDSP descriptor with a 

histogram of the HLG descriptor. It is also stated that the substitution of the local LGF feature of 

[105], produces an 

higher discriminative power. This 

osed here for the first time. 

 

Comparison of BoLGF, BoFoG, BoLDSP and BoALD in MolMovDB. 

. BoLGF is the bag-of-feature 

, while its combination 

global feature is the BoFoG descriptor. In our case, BoLDSP is the bag-of-

ion of LSDP with the 

global feature (HLG) is our BoALD descriptor. It is clear that LDSP is a more accurate 

geometric feature than LGF, which in turn improves the precision of BoALD over BoFoG. 
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Another innovative feature of the proposed work i

distance matrix, which results in the DDMR descriptor. In 

the method of [73], which accumulates the pairwise diffusion distances into a histogram (DD

Hist). The proposed DDMR descriptor outperforms DD

Finally, the combination of DDMR with BoALD, using the weighted sum of dissimilarities 

presented in Figure 5.9. DDMR

our assumption that the combination of a global feature (DDMR) with a local feature (BoALD) 

achieves higher retrieval accuracy than each descriptor separately.

Figure 5.9: Comparison 

5.6.4 Evaluation of Rigid Similarity Matching

A shape descriptor that performs well in non

accuracy in rigid shape retrieval problems. As an example, the BoFoG met

rigid-shape-based approaches in a non

a rigid dataset (PSB). In this section, we prove that the proposed method is robust even to rigid 

shape retrieval problems. 
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Another innovative feature of the proposed work is the modal representation of the diffusion 

distance matrix, which results in the DDMR descriptor. In Figure 5.9, DDMR is compared against 

which accumulates the pairwise diffusion distances into a histogram (DD

Hist). The proposed DDMR descriptor outperforms DD-Hist especially for higher valu

Finally, the combination of DDMR with BoALD, using the weighted sum of dissimilarities 

. DDMR-BoALD clearly outperforms the rest of descriptors, which confirms 

our assumption that the combination of a global feature (DDMR) with a local feature (BoALD) 

achieves higher retrieval accuracy than each descriptor separately. 

Comparison of DD-Hist, DDMR, BoALD and DDMR-BoALD in MolMovDB.

Evaluation of Rigid Similarity Matching 

A shape descriptor that performs well in non-rigid similarity matching may not achieve high 

accuracy in rigid shape retrieval problems. As an example, the BoFoG method 

based approaches in a non-rigid database (MSB), while it has inferior performance in 

a rigid dataset (PSB). In this section, we prove that the proposed method is robust even to rigid 
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, DDMR is compared against 

which accumulates the pairwise diffusion distances into a histogram (DD-

Hist especially for higher values of recall. 

Finally, the combination of DDMR with BoALD, using the weighted sum of dissimilarities (5.14), is 

the rest of descriptors, which confirms 

our assumption that the combination of a global feature (DDMR) with a local feature (BoALD) 

 

BoALD in MolMovDB. 

rigid similarity matching may not achieve high 

hod [80] outperforms 

rigid database (MSB), while it has inferior performance in 

a rigid dataset (PSB). In this section, we prove that the proposed method is robust even to rigid 
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Figure 5.10: Comparison of the proposed method with STT in the subset of FSSP database that 

In Figure 5.10, the precision

Our DDMR-BoALD descriptor is compared with STT 

It is obvious that DDMR-BoALD outperforms STT in a rigid

due to the fact that the combination of intrinsically different features (a global,

hybrid local-global) increases the robustness of the resulting descriptor.

5.6.5 Virtual Screening of Ligands

The proposed method has been also evaluated in large

molecules, where the investigation of an accurate 

scientific challenge. Two benchmark datasets have been used in our tests. The first is called the 

“Directory of Useful Decoys” (DUD) 

available compounds for virtual screening 

consists of 13 targets and has been already used in recent studies 

in Table 5.3. More specifically, each of the 13 

molecules from its corresponding se

actives and 1796 decoys and so on). 

                                                          
4 http://dud.docking.org/ 
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Comparison of the proposed method with STT in the subset of FSSP database that 
was used in [62]. 

, the precision-recall curves for the second dataset (subset of FSSP) are depicted. 

BoALD descriptor is compared with STT [62], which is a rigid shape matching method. 

BoALD outperforms STT in a rigid-shape dataset as well. This is mainly 

due to the fact that the combination of intrinsically different features (a global,

global) increases the robustness of the resulting descriptor. 

Virtual Screening of Ligands 

The proposed method has been also evaluated in large-scale virtual screening of ligand 

molecules, where the investigation of an accurate algorithm for rapid shape matching is a major 

scientific challenge. Two benchmark datasets have been used in our tests. The first is called the 

” (DUD) [114]. DUD is derived from the ZINC database of commercially 

available compounds for virtual screening [115]. A subset of DUD4 was downloaded, which 

consists of 13 targets and has been already used in recent studies [69]. The dataset is presented 

. More specifically, each of the 13 targets is used as query to retrieve similar 

molecules from its corresponding set of actives+decoys (e.g. ace is used as query in the set of 46 

actives and 1796 decoys and so on). The difference between decoys and actives is that the 
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scientific challenge. Two benchmark datasets have been used in our tests. The first is called the 
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former are presumed to be inactive against a target. The more actives are included among the 

first retrieved results the better the accuracy of the search algorithm is. 

Table 5.3: The subset of DUD dataset that was used in our experiments. 

Target PDB Actives Decoys Decoys per Active 

angiotensin-converting enzyme (ace) 1o86 46 1796 39.04 

acetylcholinesterase (ache) 1eve 100 3859 38.59 

cyclin-dependent kinase 2(cdk2) 1ckp 47 2070 44.04 

cyclooxygenase-2(cox2) 1cx2 212 12606 59.46 

epidermal growth factor receptor(egfr) 1m17 365 15560 42.63 

factor Xa(fxa) 1f0r 64 2092 32.69 

HIV reverse transcriptase(hivrt) 1rt1 34 1494 43.94 

enoyl ACP reductase(inha) 1p44 57 2707 47.49 

P38 mitogen activated protein(p38) 1kv2 137 6779 49.48 

phosphodiesterase(pde5) 1xp0 26 1698 65.31 

platelet derived growth factor receptor 

kinase(pdgfrb) 

1t46 124 5603 45.19 

tyrosine kinase SRC(src) 2src 98 5679 57.95 

vascular endothelial growth factor 

receptor(vegfr2) 

1fgi 48 2712 56.5 

The second benchmark is the anti-HIV dataset derived from the National Cancer Institute5 

(NCI) and is employed to simulate a typical virtual screening experiment. It consists of 42687 

compounds [116], which are split into 423 confirmed actives, 1081 moderately actives and 41185 

confirmed inactives. The structures are available for download6 in SDF format. The objective of 

the virtual screening experiment in this dataset is to use the 1081 moderately actives as queries 

and search into the database of actives and inactives. The more confirmed actives are retrieved 

among the first ranked results the higher the accuracy of the search algorithm is. 

Three different metrics have been used to evaluate the performance of the proposed method 

in these datasets. The first is the Enrichment Factor (EF) [117], which describes the ratio of 

actives retrieved relative to the percentage of the database scanned: 
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EF =  (5.18) 

                                                           
5 http://dtp.nci.nih.gov/docs/aids/aids_data.html 
6 http://ligand.info 
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where AT  is the total number of actives in the database of size DT  and aN  is the number of 

actives in the top x  percent xN  of the database. 

Another metric is the Boltzmann Enhanced Discrimination of Receiver Operating Characteristic 

(BEDROC) [118], calculated as: 
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where n  is the number of actives among N  compounds, NnRa /= , ir  is the rank of the i
th 

active and a  is a weighting parameter. In our experiments, 2.32=a  is selected, which 

corresponds to %5=x  of the relative rank. Similarly, %5=x  is also selected for the EF metric 

(5.18). 

Finally, the Area Under Curve for Receiver Operator Characteristic (ROCAUC) [69] is computed 

by: 

 ∑−=
aN

i d

i

decoys

a N

N

N
AUCROC

1
1  (20) 

where aN  and dN  is the number of actives and decoys, respectively, and i

decoysN  is the number of 

decoys ranked above the ith active. 

The proposed DDMR-BoALD descriptor is compared with two approaches for fast virtual 

screening, which are also based on shape similarity matching. The first one is the 3D Zernike 

Descriptor (3DZD) [69], which is based on a series expansion of a given 3D function. The second 

one is the Ultrafast Shape Recognition (USR) scheme [57], which represents the molecular shape 

as a set of statistical moments generated from all-atom distance distributions that are calculated 

with respect to preselected reference locations. Both aforementioned methods are rotation-

invariant, i.e. are able to capture the shape information independent of orientation. 
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Figure 5.11: Performance of the 3DZD, USR and the proposed method on the 13 targets of the 
DUD dataset, using the Enrichment Factor metric. 

In Figure 5.11, Figure 5.12 and Figure 5.13, the performance of 3DZD, USR and DDMR-BoALD 

on the 13 targets of the DUD dataset is given for the metrics EF ( %5=x ), AUCROC and BEDROC (

2.32=a ), respectively. For 3DZD, the descriptor of order-12 using Correlation Coefficient as 

distance metric is reported, while for USR, the descriptor of order-16 using Correlation 

Coefficient as distance metric is reported [69]. 

Regarding the EF metric, the proposed method outperforms the other two in 4 out of 13 

targets of the DUD Dataset, while 3DZD and USR are better in 5 and 4 targets, respectively. For 

the AUCROC metric, DDMR-BoALD is better in 5 targets, 3DZD in 3 and USR in 5. Finally, regarding 

the BEDROC metric, the proposed method outperforms others in 6 targets, 3DZD in 6 and USR in 

1 target. The average scores are given in Table 5.4. The results derived using the 3 different 

metrics are not fully consistent, since e.g. USR is better than 3DZD in EF and AUCROC but it is 

worse in BEDROC. Overall, the proposed method is more robust since it outperforms the other 

two approaches in all metrics. 
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Figure 5.12: Performance of the 3DZD, USR and the proposed method on the 13 targets of the 
DUD dataset, using the AUCROC metric. 

Table 5.4: Average values of EF, AUCROC and BEDROC in the DUD dataset for 3DZD, USR and the 
proposed method. 

Descriptors Metric Order EF 5% AUCROC BEDROC 32.2 

3DZD Correlation 

coefficient 

12 2.90 0.59 0.14 

USR Correlation 

coefficient 

16 2.99 0.62 0.12 

DDMR-BoALD - - 3.05 0.64 0.16 

The performance of 3DZD, USR and DDMR-BoALD is also compared in the anti-HIV dataset. In 

Table 5.5, the average values of EF ( %5=x ), AUCROC and BEDROC ( 2.32=a ), for the three 

methods, are presented. Several results are available for both 3DZD and USR depending on the 

order of expansion of descriptor and the distance metric used. Again, the proposed method 

outperforms others in all three evaluation metrics. 

Table 5.5: Average values of EF, AUCROC and BEDROC in the anti-HIV dataset for 3DZD, USR and 
the proposed method. 

Descriptors Metric Order EF 5% AUC ROC BEDROC 

32,2 

3DZD 
Correlation 

coefficient 

4 1.298 0.421 0.0485 

6 1.334 0.423 0.0500 

8 1.297 0.430 0.0490 

10 1.208 0.435 0.0461 

12 1.297 0.430 0.0490 
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14 1.146 0.444 0.0440 

Euclidean (DE) 

4 1.307 0.411 0.0471 

6 1.292 0.416 0.0473 

8 1.301 0.427 0.0477 

10 1.255 0.435 0.0464 

12 1.301 0.427 0.0477 

14 1.263 0.455 0.0470 

Manhattan (DM) 

4 1.281 0.412 0.0466 

6 1.267 0.418 0.0463 

8 1.250 0.431 0.0462 

10 1.201 0.442 0.0448 

12 1.251 0.431 0.0462 

14 1.222 0.463 0.0461 

USR 

Correlation 

coefficient 

12 1.248 0.417 0.0461 

16 1.357 0.422 0.0480 

Euclidean (DE) 
12 1.301 0.392 0.0486 

16 1.296 0.386 0.0485 

Manhattan (DM) 
12 1.403 0.395 0.0515 

16 1.335 0.386 0.0497 

DDMR-BoALD - - 1.923 0.479 0.0521 

A critical parameter that should be taken into account in virtual screening, especially in large 

databases, is the similarity matching time. In the anti-HIV dataset, which consists of more than 

40000 molecules, the search times for USR are approximately 0.74-0.76s, while for 3DZD are 

2.62-2.70s. These methods are significantly faster than non-shape-based approaches, which may 

take several hours for the same virtual screening task. The reason is that the shape-based 

descriptor vectors constitute a very compact representation of the molecular structure, thus, 

similarity matching using a common distance metric is rapid. The proposed DDMR-BoALD 

descriptor takes about 2.83s for a one-to-all matching in the anti-HIV dataset, thus, it is 

comparable to 3DZD. Consequently, since DDMR-BoALD outperforms 3DZD and USR in terms of 

retrieval accuracy, it can provide a better solution for rapid geometric virtual screening. 
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Figure 5.13: Performance of the 3DZD, USR and the proposed method on the 13 targets of the 
DUD dataset, using the BEDROC metric. 

5.7 Summary 

We have presented a framework for similarity search of flexible molecules, which exploits 

both local and global geometric features. The global feature is based on pairwise computations of 

diffusion distances over the points of the surface and a singular value decomposition of the 

resulting diffusion distance matrix. The local feature is computed on each keypoint of the surface 

by accumulating pairwise relations among oriented surface points into a local histogram. Finally, 

the hybrid local-global feature is computed for each keypoint, taking into account the diffusion 

distances from the keypoint to all surface points, thus, enhancing the local keypoint with spatial 

context. The local and the hybrid features are concatenated into a joint histogram per keypoint 

and the multiple histograms are integrated into a global descriptor using the bag-of-features 

approach. The global and local features are combined to produce a geometric descriptor that 

achieves higher retrieval accuracy than each feature does separately. 

The proposed method achieves high retrieval accuracy in similarity search of flexible 

molecules. Experiments in the MolMovDB dataset, which consists of molecules with large 

conformational changes, demonstrate the superiority of the framework over existing 
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approaches. At the same time, the proposed DDMR-BoALD descriptor achieves high retrieval 

performance in datasets of rigid molecules. Additionally, DDMR-BoALD provides a compact 

representation of the 3D molecular structure; therefore, it is appropriate for large-scale search 

tasks such as the virtual screening in large ligand databases. It is worth mentioning that DDMR-

BoALD outperforms existing state-of-the-art approaches in two benchmarks for virtual screening. 
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Chapter 6 

Conclusions and Future Work 

In this dissertation, we aimed to address the problems of protein similarity search and 

protein-protein docking by exploiting 3D shape matching approaches. Regarding protein-protein 

docking, we took into account the fact that when two proteins interact, their surfaces at the 

binding site demonstrate geometric complementarity (apart from physicochemical 

complementarity). Two methods for protein docking have been introduced. The first is based on 

geometric complementarity only and is appropriate for bound docking problems. The second 

method advances the previous one in several aspects: a) it offers a more approximate similarity 

matching algorithm, which makes it appropriate even for unbound docking, and b) it combines 

physicochemical complementarity with geometric complementarity into a unified scoring 

function, which produces a more accurate scoring of the candidate poses. Protein similarity 

search is achieved by introducing a novel descriptor for shape matching of the global molecular 

shape. The descriptor is compact and it can be applied to both rigid and non-rigid molecular 

shape similarity tasks.   

More specifically, the first protein docking method reveals various innovative features. The 

most significant one is that it introduces a shape similarity descriptor to measure surface 

complementarity. Since there is a wide variety of algorithms for similarity shape matching, it is 

easier to develop a method for partial surface complementarity by appropriately modifying a 

shape matching technique. Another interesting feature is the rotation invariance of SID 

descriptor. This obviates the need for an exhaustive search of relative orientations, during the 

pairwise complementarity matching of ESPs. 

Although it outperforms the other geometric docking approaches, in several cases, the 

proposed method failed to return a hit within the first ranked positions, for two reasons: the 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Conclusions and Future Work 

119 

implementation of the final scoring step was based on the notion that the bigger the area of the 

interface between two proteins the more probable is to be the actual docking area. The second 

reason is that no consideration of non-geometric factors (electrostatics, hydrogen bonds, residue 

interface propensity, etc.) was taken into account. An efficient scoring function able to integrate 

all non-geometric factors with geometric complementarity is of significant importance. 

The second protein docking method that is proposed in this dissertation aims to overcome 

some of the drawbacks of the previous method. The so-called SP-Dock advances the state of the 

art mainly in the parts of local surface complementarity matching and alignment. The local 

spectral descriptor provides a more robust measure for shape complementarity of local patches, 

while the new grouping algorithm enhances the certainty of a wider surface region of receptor to 

be complementary to a wider surface region of the ligand. Additionally, instead of superimposing 

the sparse points of the ligand on the matching points of the receptor, as it is the case with most 

of the existing local-patch-based docking approaches, the ICP algorithm used by SP-Dock achieves 

alignment of the two proteins by taking into account the overall shape of the complementary 

regions. While this feature provides less accurate poses (i.e., with higher iRMSD) in the bound 

case, it significantly improves the unbound case. The reason is that the surfaces of the two 

proteins at their binding interfaces have approximate complementarity in the unbound case. 

Thus, a method based on exact matching and alignment would probably fail to retrieve a near-

native pose within the list of predicted poses, while a more approximate method, such as SP-

Dock, is more likely to achieve a correct prediction. This is an interesting conclusion and could 

assist in further research in protein-protein docking by proposing ideas on how to deal with 

unbound docking and slight side-chain flexibility.  

Another advancement of SP-Dock is the new scoring process based on geometric and 

physicochemical factors. Several works have been presented so far dealing with the assessment 

of physicochemical factors but only few of them address both geometric and physicochemical 

complementarity. The proposed scoring of SP-Dock can be used as a starting point for further 

research, where the effect of additional factors, apart from Atom Desolvation Energy, 
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Electrostatic Complementarity, Hydrophobicity, Coulomb Potential and van der Waals Potential, 

could be investigated. 

Results performed on the 84 complexes of the Docking Benchmark 2.4 demonstrate the 

superiority of the proposed SP-Dock method over five similar docking approaches. While in the 

case of bound complexes, our method performs slightly better than the best docking methods 

reported so far, in the unbound case, our approach clearly outperforms them. This confirms the 

assumption that shape complementarity should be approximate (not exact) to take into account 

small side-chain conformations on the protein surface. Additionally, when several 

physicochemical factors are introduced (SP-Dock), the shape-only docking predictions are 

improved in both bound and unbound cases. Despite the improvements of the proposed SP-Dock 

method presented above and the interesting conclusions regarding the protein-protein docking 

problem, there is still a lot of work to be done in this direction. In terms of accuracy, research 

should focus on the following two goals: 1) to appropriately model the contribution of each 

factor (geometric or nongeometric) to protein interactions; 2) to appropriately model the 

flexibility (both side-chain and backbone) of the interacting proteins. Existing methods have 

reached an acceptable level in terms of computation time, though not adequately modeling the 

flexibility. If a deeper analysis of the flexibility takes place, then the computational time increases 

prohibitively. This tradeoff between accuracy and computation time should be considered, until a 

method that will address both problems is proposed. 

Regarding our last method that has been introduced for molecular shape matching, it has 

been proven that it is quite efficient in both rigid and flexible shape comparison and, due to its 

compactness, it can provide a useful tool for virtual screening in large ligand databases. 

Nevertheless, the retrieval accuracy especially in virtual screening can be further improved, by 

enhancing the geometric features with non-geometric ones, such as physicochemical properties. 

At the moment, the latter are exploited by approaches that are extremely time-consuming, 

which, in combination with the rapid increase in size of the molecular databases, leads to 

prohibitively large search times. The effective integration of non-geometric information into a 

Institutional Repository - Library & Information Centre - University of Thessaly
05/02/2019 21:21:17 EET - 137.108.70.13



Conclusions and Future Work 

121 

compact representation along with the shape-based features still remains a challenge for future 

research. 
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